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Abstract
Most of the ocean’s kinetic energy exists in the form of mesoscale eddies in geostrophic
and hydrostatic balance. Because of their relatively large horizontal size, they tend to
be dynamically robust, and it is unclear how they dissipate their energy. Submesoscale
oceanic density fronts are believed to be hotspots for such dissipation processes, but their
dynamics are poorly known. We present preliminary results about a mechanism through
which a front loses energy by releasing it in the form of internal inertia-gravity waves.
A mid-latitude, submesoscale ocean density front is set up to be symmetrically unstable
over a confined region of space. If the growth rate is large enough, the growth phase is
accompanied by significant near-inertial wave radiation, which we illustrate numerically.

1 Introduction

Oceanic density fronts are places of intense kinetic energy dissipation (D’Asaro et al.,
2011), which could have significant implications in closing the energy budget of the ocean
(see e.g. Ferrari and Wunsch, 2009; McWilliams, 2016). They are also small (O(10 km)
at mid-latitudes) and ephemeral (O(day)), and are therefore hard to observe. An oceanic
density front is typically characterized by a vertical density gradient ∂zρ̄, where z is the
vertical coordinate and ρ̄ the unperturbed density field, or equivalently by a buoyancy
frequency N =

√
−(g/ρ0)∂zρ̄, where g = 9.81 m2 s−1 is the gravitational acceleration

and ρ0 = 1025 kg m−3 a reference density. But a front is also characterized by a lateral
density gradient ∂xρ̄, where x is the across-front direction, such that one can define M2 =
−(g/ρ0)∂xρ̄. In the across-front direction, geostrophic and hydrostatic balances usually
hold approximately. Indeed, differential Coriolis forces induced by a vertically sheared
along-front velocity, v̄, approximately balance the baroclinic torque caused by the lateral
density gradient. In short, they are in thermal wind balance: dv̄/dz = M2/f , where f is
the Coriolis frequency (assumed constant in this communication).

Because of their relatively short width, however, their Rossby and Richardson numbers,

Ro = ∂xv̄/f (Rossby number) and Ri = N2/|∂zv̄|2 (Richardson number), (1)

are of order unity. Consequently, they are likely to undergo various instabilities (e.g.,
Haine and Marshall, 1998; Boccaletti et al., 2007; Wang et al., 2014; Arobone and Sarkar,
2015), and in particular, symmetric instability (SI). SI occurs in the mixed layer of the
ocean when isopycnals steepen so much that the product of the Ertel potential vorticity
(EPV), Q, with f is negative (e.g., Haine and Marshall, 1998; Taylor and Ferrari, 2009;
Thomas et al., 2013). We use the convention:

fQ = f∇b̄ · (∇× v̄ŷ) = Rof 2N2 −M4 < 0, (2)

where b̄ = −g(ρ̄− ρ0)/ρ0 and ŷ is the unity vector that orients the along-front direction.
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More recently, the role of internal waves, and in particular near-inertial waves (NIWs,
i.e., internal waves whose frequency is near f), has been investigated for potentially driv-
ing energy dissipation in fronts, although narratives are still incomplete. Near-inertial
waves tend to accumulate in fronts, which has been observed in situ (e.g., Kunze and
Sanford, 1984; Rainville and Pinkel, 2004; Joyce et al., 2013) and interpreted theoreti-
cally (Whitt and Thomas, 2013). Theoretical studies also indicate that a pre-existing
NIW field can extract energy from fronts, for example through parametric subharmonic
instability (Thomas and Taylor, 2014) or via dissipative processes occurring when NIWs
reflect against the ocean surface (Grisouard and Thomas, 2016). Other theoretical stud-
ies suggest that geostrophic flows can radiate internal waves, extracting energy during
frontogenesis and/or rapid loss of balance (Thomas, 2012; Shakespeare and Taylor, 2014).
Observations of internal wave radiation from fronts are challenging and therefore scarce,
to the notable exception of Alford et al. (2013).

We here document a mechanism of radiation of internal waves from fronts, which is distinct
from the ones cited above. A front is initially set up in a non-linear, non-hydrostatic
Boussinesq numerical model such that fQ < 0 in some finite region of space. As a result,
SI develops, with its typical along-isopycnal motions. However, most of the idealized
studies on SI previously cited have setups that are homogeneous in at least one spatial
direction. SI in our case expands outward from a localized region in space. In the cases
investigated in this communication, this localized, non-stationary phenomenon is shown
to be a source of NIW radiation. This communication is organized as follows. In § 2, we
present some basic theoretical facts about SI and NIWs, which help provide qualitative
explanations of the process at stake. In § 3, we introduce the setup of our experiments. In
§ 4, we present a numerical illustration of the process at stake. These preliminary results
hint at additional questions and perspectives, which we discuss in § 5.

2 Theoretical considerations

The original linear stability analysis of Stone (1966) helps understanding the connection
between SI and NIWs in fronts. We start from the linear, hydrostatic, inviscid Boussi-
nesq equations, expanded around a geostrophic flow, v̄, and the corresponding buoyancy
gradient at rest, ∇b̄ = (M2, N2). We only consider motions that have variations in x and
z, not y, and geostrophic flows for which Ro, M2, and N2 are constant in space and time.
Consequently, v̄ only depends on z. The equations are (e.g., Whitt and Thomas, 2013):

∂tu− fv + ∂xp = 0, ∂tv + f
(
1 + Ro

)
u+M2w/f = 0, −b+ ∂zp = 0, (2a)

∂tb+M2u+N2w = 0 and ∂xu+ ∂zw = 0. (2b)

v ≡ (u, v, w) is the velocity vector of the perturbations about v̄ along with its Carte-
sian projections, and p is the pressure divided by ρ0. Eliminating the pressure by
virtue of the hydrostatic balance and substituting a plane-wave Ansatz, namely {v, b} =
{v0, b0} exp i[kx + mz − (ω + iσ)t], where k, m, ω and σ are all real numbers, into the
equations above yields a linear system of equations. Canceling the determinant yields:

ω + iσ = ±
√
fQ/N2 +N2 (α + β)2, (3)

where β = M2/N2 and α = −k/m. Notice that the equation above can only be either
purely real, or purely imaginary, which yields either the dispersion relationship for internal
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waves in a geostrophic flow or the growth rate of SI, respectively. We find here that a
necessary condition for SI is indeed fQ < 0, and that if Ro = 0 and M2 = β = 0, then
fQ = f 2N2, σ = 0 and the classical hydrostatic dispersion relationship for internal waves
is recovered. In the situation where fQ < 0, and where α is such that ω = 0 and σ 6= 0,
then an instability grows. The fastest growing modes are such that α = −β, that is, have
motions aligned with isopycnals, and grow at a rate of

σ0 =

√
−fQ/N2. (4)

Although this growth rate only depends on the orientation of the mode, including viscous
and hyperviscous terms in the equations implies that the effective rate of growth, seen in
a given simulation, is the one that maximizes:

σ̃ = σ − ν(k2 +m2)− ν2hk4 − ν2zm4, (5)

with ν the Laplacian viscosity, ν2h and ν2z the horizontal and vertical hyperviscosities,
respectively. In effect, and as a rule of thumb, the fastest growing mode in a given
configuration will be the largest one that fits in the fQ < 0 region.

Outside of the fQ < 0 region, however, σ = 0, and the only perturbations allowed
are internal waves. As SI grows and propagates towards the boundary between the two
regions, it, therefore, has the potential to force internal waves. Once the SI-induced flow
has reached this boundary and saturates, then the instability is quasi-stationary, and
internal wave generation stops. We now illustrate this scenario with two-dimensional,
non-linear, non-hydrostatic numerical simulation, whose setup we describe next.

3 Setup
3.1 Physical Setup

Figure 1: Our basic geostrophic flow. In both panels, dashed lines are isopycnal (or iso-b̄) contours. (a)
geostrophic velocity v̄ and (b) Normalized EPV, highlighting the anticyclonic region where fQ < 0. The
EPV contours closely follow those of σ0, with max(σ0/f) ≈ 0.72. Note that the absolute value of v̄ is not
imposed by our equations. For the purpose of this illustration, we choose the level for which v̄ = 0 to be
at z = −5 km, without it having any consequence on the results.

The main physical features of our setup are summarized in fig. 1. Our domain is two-
dimensional, periodic in x, has x- and y−axes that align with the across- and along-
geostrophic flow directions, respectively, while the z-axis points upward, with the ocean
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surface located at z = 0. Its dimensions are Lx×Lz = 35 km× 50 m. Rigid lids close the
domain on top and bottom. We solve equations on the f -plane, with f = 1.03×10−4 s−1,
corresponding to a latitude of 45◦N. We define a buoyancy field in geostrophic balance
and featuring a region where fQ < 0, namely:

b =

∫ z

0

N2
1 (ξ)dξ + B̂Γ(x) exp(z/δ), (6)

from which we define all other geostrophic quantities. In the expression above, N1(z) is
the buoyancy frequency away from any front. We use the same stratification profile as
Gill (1984) and Hazewinkel and Winters (2011), namely:

N1(z) =
NG

1− z/zG
, with N2

G = 4.9× 10−5 s−2 and zG = 400 m. (7)

Γ(x) is the non-dimensional horizontal shape of the frontal system and B̂ is the dimen-
sional measure of the buoyancy difference induced by the presence of a density front below
the surface of the domain. The e-folding depth scale over which the geostrophic flow pene-
trates is δ = 50 m. Our unstable front is located around x0 = 27.5 km. However, because
the numerical code requires a horizontally periodic flow and density field, we design a
secondary front toward the beginning of the domain, which is stable, and which ensures
that e.g. b̄, v̄, Ro and M2 are equal at x = 0 and x = Lx. That is, we define Γ = Γ0 + Γ1,
with:

Γ0 =
1

2

[
1− tanh

(
x− x0
χ0

)]
and Γ1 = −sech2

(
x

χ1

)
, (8)

where Γ0 is the shape of the unstable front and Γ1 is that of the front that ensures
periodicity of the basic geostrophic flow. Their respective widths are χ0 and χ1. The
latter is determined ad hoc as the smallest value that ensures min(fQ) > 0 outside of
the unstable region and is computed after Γ0 is. Equations (6), (7) and (8) contain two
more free parameters that are yet to be determined, namely the horizontal buoyancy
difference B̂ and the width of the unstable front, χ0. Together with δ, they determine the
strength of the front. We set B̂ = 4.53× 10−3 m s−2 and χ0 = 2615 m, implying that our

unstable front is characterized by max(Fr) = max(Ri
−1/2

) = 1.2 (Froude number) and
max(Ro) = 1.2, typical of submesoscale flows. Under these conditions, χ1 = 5 km. As
a result, a region characterized by fQ < 0 is set up, associated with max(σ0) ≈ 0.72f
(eqn. 4, fig. 1).

3.2 Numerical Setup

Our numerical model is a pseudospectral, nonlinear, non-hydrostatic code initially de-
scribed by Winters et al. (2004). The set of equations, solved by the code, differs from
eqns. (3) in that it is fully non-linear, non-hydrostatic, and include dissipation terms:

Dtv + f ẑ× v + (M2w/f + fRou)ŷ − bẑ +∇p = Dv, (8a)

Dtb+M2u+N2w = Db and ∂xu+ ∂zw = 0, (8b)

where Dt ≡ ∂t + (v · ∇), ∇ ≡ (∂x, 0, ∂z), and D ≡ νh∂
2
x + νz∂

2
z − ν2h∂

4
x − ν2z∂

4
z . We

use νh = νz = 10−5 m2 s−1, ν2h = 2 × 103 m4 s−1 and ν2z = 10−7 m4 s−1. Note that
the damping rate of velocity and buoyancy fluctuations is the same. Free-slip and no-
buoyancy-fluctuation boundary conditions are implemented at the top and bottom, where
we also taper off the frontal terms (Winters and de la Fuente, 2012).
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We employ a grid of nx × nz = 1024× 513 points, corresponding to spatial resolutions of
∆x×∆z ≈ 34.28 m× 97.7 cm, with a time step ∆t = 125 s. We initialize the simulation
with random noise and integrate it for 1.8× 106 s (about 20 days, or 30 inertial periods).

4 Numerical Results

Figure 2 summarizes the process at stake, which we propose to separate into four stages.
In the initial stage (panel a), SI grows, with its characteristic isopycnal motion. This
stage’s duration has an inverse time scale of max(σ0) ≈ 0.72f . Therefore, it lasts for a
few inertial periods, an inertial period being Tf = 2π/f ≈ 61000 s. During this phase,
the instability propagates from the nucleus where the growth rate is maximum and fills
up the region where fQ < 0.

Figure 2: Snapshots of u, in mm s−2. The color scale, which is common to all four panels, saturates in the
unstable region, the maximum value of u in the whole time series being about 15 mm s−1. Dashed contours
are isopycnals, and solid contours are the initial σ0/f = 0 and σ0/f = 0.6 contours. Tf = 2π/f ≈ 61000 s.

The second phase starts when the instability reaches the fQ = 0 boundary, beyond which
the flow is stable to SI, and only internal waves can propagate. So far, the growth of the
SI-induced flow has been fast enough to induce perturbations, occurring over time scales
of order f . Outside of the front, this frequency is also the minimum frequency at which
internal waves can oscillate at. Therefore, the fQ = 0 boundary is a place where internal
waves, and in particular NIWs, are forced. Panel (b) of fig. 2 illustrates this second stage,
where we see internal waves being radiated from the instability region.

Panel (c) of fig. 2 represents an intermediate stage in which NIWs propagate away from
the front, and their generation subsides. Because our domain is horizontally periodic
and vertically bounded, NIWs linger inside our domain, where they slowly decay due to
viscous effects. The modal structure, visible in the middle of the domain, is of course an
artifact due to the presence of a lower boundary in our domain. In the real ocean, it is
likely that the structure would be more beam-like, as in panel (b).
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Finally, panel (d) of fig. 2 shows a glimpse of the longer-term state of our system: NIWs
are mostly gone, the SI flow is now steady, and does not generate any NIWs anymore.

The highly non-stationary nature of the process, described above, prevents any simple
time series analysis of the NIW signal. Figure 3 nonetheless provides a time series of
the horizontal, across-front signal near the middle of the domain, outside of the unstable
front. It shows the different stages of the process: the first stage (0 ≤ t ≤ 6Tf ), during
which the SI grows in the front; the second stage (6Tf ≤ t ≤ 10Tf ), where the front
releases the initial and most powerful burst of internal waves; and for t ≥ 10Tf , the waves
keep propagating and decay. The frequency spectrum seems to contain contain ω ≈ f ,
but also ω ≈ 2f , and perhaps higher-frequency waves; and finally, the final stage in which
NIW linger in the domain and decay due to viscosity.

Figure 3: Time series of u at the location (x, z) = (20 km, -25 m). Tf = 2π/f ≈ 61000 s.

5 Discussion and Conclusion

A symmetrically unstable oceanic front that is confined in two directions can be destabi-
lized fast enough to generate NIWs. It could have significant implications for our under-
standing of the energy budget and life cycle of oceanic submesoscale structures. However,
some of the features of our setup produced some artifacts that, while not being fatal to
the relevance of this communication, are worth keeping in mind. First of all, the closed
nature of our domain (horizontally periodic and bounded below) meant that NIWs linger
for much longer than they would in a real ocean front. In a front, the radiated internal
waves would probably look beam-like as in fig. 2(b), not mode-like like in fig. 2(c). Also,
ocean fronts last for a few days before being modified by large-scale flows, instabilities,
or else, and our process is not likely to happen on its own.

To our knowledge, this communication is the first to document radiation of NIWs by
SI in the oceanic context. Note however that in the atmospheric context, Plougonven
and Zeitlin (2009) did observe a very similar process involving inertial instability, SI’s
baroclinic relative. More recently, Bouchut et al. (2011) and Ribstein et al. (2014) also
succinctly observe radiation of baroclinic, super-inertial NIWs radiating from symmet-
rically unstable geostrophic flows. Nonetheless, this process was not the focus of these
articles, and more work is needed to understand it.

Our own results represent the first steps in this direction. In particular, the effects of
the dimensions and strength of the front should be studied. While we chose reasonable

VIIIth Int. Symp. on Stratified Flows, San Diego, USA, Aug. 29 - Sept. 1, 2016 6



dimensional parameters, oceanic submesoscale fronts come in all shapes and sizes. This
should be explored in order to determine which conditions, cast non-dimensionally, induce
to the most significant NIW generation.
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