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Abstract 

A framework for generating differential affine invariant signatures based on the gray 
level images of planar shapes is introduced. Non trivial invariant signatures and their 
corresponding arclengths are computed for planar shapes with smooth boundaries. 
These signatures are useful for pattern recognition and classification under partial 
occlusion. We deal only with implementable signatures and restrict the affine transfor
mation group accordingly. Based on the theory of affine curve evolution, an invariant 
gradient magnitude along the geometric scale space is used as an invariant edge en
hancer. The geometric heat equation for weighted (by the enhancer) affine arclength 
definition is shown to yield an invariant selective smoothing algorithm. This algo
rithm is used for image denoising in cases where we need to clean noisy images before 
computing invariant features. The denoising operation deforms the geometry of the 
object in a predictable invariant way, unlike traditional image denoising algorithms, so 
that the mapping between planar shapes after the denoising is preserved. The relation 
between the affine curvature and the Euclidean one leads to an efficient method for 
approximating the affine curvature signature, while the Euclidean curvature itself is 
used for generating the affine arclength parameter. Both curvatures are computed from 
the gray level image, using the implicit representation of the object's boundary as it 
appears in real world images. When the projection invariance assumption of the gray 
levels is added, robust non-trivial signatures are obtained. 

*This work was supported in part by the Applied Mathematical Science subprogram of the Office of 
Energy Research, U.S. Department of Energy, under Contract Number DE-AC03-76SF00098. 
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1 Introduction 

An important problem in image analysis. and shape understanding is the segmentation prob
lem. The question is how to isolate an object in a given image and how to integrate object 
boundaries in noisy data images to achieve a good model of the object under inspection. 
The low level segmentation problem was addressed in many ways over the years, starting 
with gray level thresholding, region growing, and deformable contours based on energy min
imization along a given curve called 'snakes'. At the higher level, after an object is isolated, 
the problem of recognition rises. In this case the question is how to classify the given object. 

Euclidean invariant operations refer to those operations for which movements and rota
tions of the objects in the image plane do not effect the result of the operation. We know 
that for pictures in the 'real' world, the class of transformations we encounter is much richer 
than pure Euclidean. In this paper we take one step into the world of transformations and 
deal with the affine group. The cases in which the camera is far away from the objects, so 
that perspective contributes minor distortions, and the objects are almost planar, may be 
considered (approximated) as part of the affine group. A framework that takes the affine 
invariance demand into consideration even before the shape is segmented, is introduced. It 
is shown how to deal with noisy images, and how to make use of the gray level information 
for generating invariant signatures and denoising algorithms. 

One of the fundamental problems in pattern recognition is the problem of classifying a 
partially occluded object using a local description of its boundary [4, 5, 6, 7, 8, 14, 22]. On 
the other hand, in the field of image processing, recent non-linear geometric based algorithms 
were shown to give very promising results compared to 'optimal' linear algorithms [2, 3, 24, 
26, 27]. These two research fields, that appear to be unrelated in nature, are treated in this 
paper by gaining the motivation from the theory of curve evolution. Specifically, we will 
use the affine scale space, generated by the affine heat equation as introduced in [29], to 
construct an affine invariant gradient magnitude. The affine gradient magnitude (affine edge 
enhancer) will help us in constructing an image denoising algorithm that is efficient as well 
as invariant to affine transformations. This algorithm is useful for denoising images before 
generating invariant signatures. In fact, the invariance property of the selective smoothing 
procedure guarantees that the change in the geometry of the shape in the smoothed image 
can be predicted by applying the same algorithm to a clean reference image of the shape we 
try to recognize. The affine gradient magnitude will also serve as a non trivial signature for 
pattern classification when projection invariance of the gray levels along the shape boundary 
is assumed. The projection invariance of gray levels [2] states that the order of gray levels 
along the boundary is preserved, so that the image of the planar shape is defined as a range 
of gray levels and not just as interior and exterior (i.e. black and white). We will show 
how to use this gray level information along the boundary for generating simple invariant 
signatures. 

It will be shown that the affine curvature can be approximated by a simple implementable 
equation exploiting the gray level information in the data image. This approximation is used 
for computing a simple differential affine invariant signature. A different interesting approach 
for computing the affine curvature while keeping the order of derivatives low was recently 
introduced in [17]. It is based on the affine curvature evolution equation through the affine 
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scale space as presented in [28]. 
The structure of the paper is as follows: Section 2 describes equi-affine invariant proper

ties of planar curves, like the affine arclength, the affine normal, and the affine curvature. In 
Section 3 the affine heat equation as introduced in [29] is used for constructing an affine gra
dient magnitude and Laplacian defined along the geometric scale space. Section 4 presents 
an invariant selective smoothing procedure for image denoising. This procedure is shown to 
be equivalent to the geometric heat equation of the 'weighted affine arclength'. In Section 
5, the invariant arclength and the geometric heat equation for the linear affine arclength are 
presented. The knowledge about the location of one point is added to the equi-affine group 
yielding a subgroup of the equi-affine referred to as the 'linear' subgroup. Section 6 presents 
the intrinsic property of the weighted arclength, and an expression of the affine curvature 
as a function of the Euclidean curvature and its derivatives according to the Euclidean ar
clength. Then, Section 7 presents considerations for implementing the proposed procedures, 
and an approximation of the affine curvature that uses up to second order derivatives along 
the implicit representation of the boundary (i.e. the data image). Section 8 presents some 
examples of using the proposed techniques for generating efficient and robust affine invari
ant signatures, and of using the dynamic weighted affine geometric heat equation for image 
denoising. In the appendix, it is shown how to express the Euclidean curvature and its 
derivatives from an implicit representation of the boundary, and how to approximate the 
affine curvature. 

We shall start by introducing some basic concepts from the theory of affine differential 
geometry of planar curves. More details can be found in [10]. 

2 Affine Invariants of Planar Curves 

Let C (p) : [a, b] --+ JR? be a simple regular parametric planar curve (in its planar coordinates: 
C (p) = { x (p), y (p)}). Let v be the Euclidean arclength so that 1 

[P 1/2 -v(p) = Jo (C:p, C:p) .dp, 

where p E [a, b]. is an arbitrary parameterization. The tangent is known to be given by 
Cv = f, and the Euclidean curvature vector is given by Cvv = KN, where jJ is the curve 
normal and K is the Euclidean curvature. We will use (X, Y) as the determinants of the 
2 x 2 matrix whose columns are given by the vectors X, Y E JR?. The equi-affine arclength 
s is defined so that 

(Cs, Css) = 1, 

and is given by [10] 

_ [P 1/3 -s(p)- Jo I(C:p,Cpp)l dp, 

see Figure 1, which is an intrinsic integral (as we will see in Section 6). 

(1) 

1 We will use the following notations along the paper: Cp = ~, ( {a, b}, { c, d}) _ ac + bd, and 

({a, b}, {c, d}) =ad- be. 
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Cv=T 

Figure 1: For s = the affine arclength and v = the Euclidean one, the relations between 
Cs, Css, Cv and Cvv are presented. 

Using the intrinsic property, the relation between the Euclidean and affine arclength [30] 
is obtained from 

that yields 

ds 
dv 

Using the above expression, the affine tangent is given by 

- av - -1/3 ... 
Cs - Cv as - IKI T. 

Differentiating Equation (1) we have 

(2) 

which means that the vectors Cs and Csss are linearly dependent: Csss = -f.lCs. The scalar f.l 
is the simplest affine differential invariant of the curve C, known as the affine curvature, and 
Css is the affine normal vector. A direct result form the last equation is 

4 

./ 



Differentiating Equation (2) with respect to s, it also follows that 

f.l = (Cssss,Cs)· 
\ 

It can be shown that f.l, the affine curvature, is the fastest normal velocity minimizing the 
affine arclength. However, unlike the Euclidean arclength shortening flow (Ct = KN) which 
is the same as the Euclidean geometric heat equation, it does not lead to any constructive 
smoothing scale space. The affine scale space [30) is achieved by the affine geometric heat 
equation Ct = Css . 

. In the next section, the affine gradient magnitude along the scale space [28) is used to 
define. an invariant edge enhancer. The. edge enhancer will be used for signature generation 
and for constructing an image invariant denoising algorithm. 

3 Affine Edge Enhancer 

For constructing an edge enhancer we will use the affine geometric heat equation as presented 
in [29). In the proposed model all the level sets of the data image are simultaneously evolved 
so that each gray level set is propagating according to 

(3) 

Now C(s,t): [a,b) x [O,T)---+ lR?, is a two parametric curve, where sis the affine arclength, 
and t indicates the 'time' of evolution. Observe that 

a ( ov) ( ov) 2 02v 
Css = OS Cv OS = Cvv OS + Cv os2 

1/3N... T ... o2v 
"' + os2 · 

Considering only the normal component in the evolution (the tangential component affects 
only the internal parameterization and does not influence the shape of the propagating curve 
[15]) the corresponding evolution equation is given [28) by 

(4) 

Consider the three dimensional function <P(x, y, t) : IR? x [0, T) ---+ lR for which each level set 
C = </J- 1 (c) is evolving according to Equation (4). The implicit (Eulerian) formulation [25) 
of ( 4) (see Section 7 and the appendix) is given by: 

Given <P(x,y,O) = I(x,y) one can evolve the whole image according to the 'affine ge
ometric heat equation' so that <P(x, y, tlT) is the result of propagating <P for t = tlT (see 
[2, 29, 31) for more details on the above equation used as an affine invariant geometric 
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smoothing operator on images.) We shall denote by E(fl.T) the evolution operation for 
t = fl.T, i.e. ¢;(.6.T) = E(fl.T) o ¢(0). Obviously E is an affine invariant operation [29], i.e. 
A o E(fl.T) o ¢(0) = E(fl.T) o A o ¢(0), where A is the affine transformation. 

Define the affine gradient magnitude G(fl.T) o ¢(0) = <t>(A~;:<t>(o). Then we readily have 
the following lemma 

Lemma 1 The operation defined by G(fl.T) o ¢(0) = <t>(A~;:<t>(O), is invariant under the equi
affine transformation. 

Proof. 

A o G(fl.T) o ¢(0) 

-

A 
0 

E(fl.T) o ¢(0)- ¢(0) 
fl.T 

A o E(fl.T) o ¢(0)- A o ¢(0) 
fl.T 

E(fl.T) o A o ¢(0)- A o ¢(0) 
fl.T 

G(fl.T) o A o ¢(0). 

The question is why can we consider I G( fl.T) o I ( x, y) I, where I is the image, to be an edge 
enhancer? It is obvious that edges are traversed by the evolution operation E(fl.T) and that 
constant regions in the image will stay still. Yet edges of high curvature will propagate in a 
higher velocity than those that appear as straight lines. The curvature dependent evolution 
yields a non-homogeneous result along the edges when applying G(fl.T). The fact that 
at edges of high curvature the edges are enhanced may as well be considered as a desired 
property. For example, active contour models [12] that are used to integrate edges so as 
to segment object boundaries, are pushed by a geometric force that is proportional to the 
curvature of the propagating contour. The result of the geometric affine edge enhancer that 
enhances edges of high curvature therefore helps in the convergence of the active contour· 
near the boundary, when used as the underlying potential. 

In a similar way one can define the affine Laplacian £( fl.T) to be: 

£(.6.T) o ¢(0) / ¢;(2.6.T)- ~i~T) + ¢(0). 

In the following sections it is shown how to use the affine gradient magnitude for constructing 
invariant differential signatures for object recognition under partial occlusion, and image 
invariant denoising algorithm. 

4 Invariant Image Denoising Procedure 

Base on ideas put forward in [31], we now construct an invariant image selective smoothing 
algorithm. The proposed algorithm is a procedure for image denoising with invariant control 
on the changing geometry of the shape through the smoothing operation. The procedure 
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is useful for denoising images before computing the invariant signatures. It can thus be 
considered as a step towards the calculations leading to the invariant signatures. Its relation 
to the total variation decreasing algorithms and to geometric heat equations are explored. 

Gradient based edge detectors are usually based on the discretization of edge enhancer 
IV GO'* II, see [11], which is equivalent to GO'* IV II. The convolution with a Gaussian kernel 
GO' is performed in order to overcome small perturbations and insignificant, high frequency, 
spatial noise. The variance of the smoothing op~rator u is analog in our IG(.6.T) o II model, 
to .6.T the amount of smoothing. 

In (27], the authors deal with image denoising they named nonlinear total variation based 
noise removal by minimizing the integral 

j IV Ildxdy. 

Convergence is achieved by limiting the displacement of the result from the noisy image to 
be proportional to the noise variance. It is done by adding a stopping condition to prevent 
over smoothing, e.g. f(<f>(t)- ¢>(0)) 2dxdy = u 2 (for ¢>(0) = I(x,y)). We have noticed that 
the same results (in some cases even more efficiently, yet without the convergence property) 
are achieved by limiting the time of evolution in the following scheme. Where the time of 
evolution is now proportional to the noise variance. 

The resulting minimization scheme is 

given ¢>(0) = I(x, y), 

according to which, each level set of the function </> is evolving via 

The last equation can be read as 

Ct = d h 
1 

f ¢>( ) · x geometric smoothing, e ge en ancer o t 

that leads to conditional geometric smoothing ('selective smoothing' according to [2]), so 
that at regions of high gradient (close to an edge) the smoothing is low, while at constant 
regions the smoothing is high. It is possible to replace the 1/IV</>1 with more sophisticated 
dynamic edge enhancers which take us to other kinds of algorithms [3]. 

In cases where clean edges are given, yet the image itself is very noisy, it is possible to 
use the edges information for selecting the smoothing regions. A mask of weights is built 
from the initial given edges, and then used to control the smoothing process so that each 
level is propagating by 

Ct = W(x,y)I\:N, 

where W(x y) = . l d f I( ) , is the control mask. ' given c ean e ges o x,y 

7 



The same motivation from the above Euclidean case direct us towards the construction of 
an affine invariant image denoising algorithm. Define a potential function f : JR? x [0, T) ---+ 
JR+ 

' 

f(x, y, t) = F(JG(.6.T) o </>(t)J), 

where F( ·) : JR+ ---+ JR+ is a decreasing function. Then, the invariant denoising procedure is 
performed via 

according to which, each level set of the function </> is evolving by 

1/3 ... Ct = J(x, y, t)K N. 

(5) 

(6) 

Selecting a static inverse edge enhancer function f(x, y, t) = f(x, y, 0) = F(JG(.6.T) o </>(O)J), 
Equation (6) becomes exactly the geometric heat equation Ct = C8s of the 'weighted equi
affine arclength': 

where g(x,y) = 1/)f(x,y), and since f is affine invariant, ds is also affine invariant. Using 
the causality property, the arclength may be redefined dynamically along the propagation, 
yielding the general invariant evolution, Equation (5). 2 

Taking .6.T ---+ 0 in the affine gradient magnitude definition, results 

lim (G(.6.T) o ¢(0)) = lim (¢>(.6.T)- </>(O)) = d<f>(t)lt=O = K113 JV'¢(0)J. 
AT -+0 AT -+0 .6.T dt 

As an example, let f(x, y, t) = l/JG(.6.T) o </>(t)J and .6.T ---+ 0, so that f(x, y, t) -
l~~:l/3itV<t>(t)l" Then Equation (5) becomes 

<Pt = sign(K), 

and each level set of </> is propagating via 

C = sign(K) jJ 
t JV'¢1 ' 

which is a conditional offsetting procedure. Although affine invariant as well as conditionally 
'variation decreasing', the above evolution is unstable near inflection points, and tends to 
form shocks. Selecting .6.T > 0 results a smoothed version of the above example. 

To summarize, using the geometric heat equation that is based on the right arclength, 
we have constructed an affine invariant noise removal algorithm. The algorithm is invariant 
in the sense that the result of the algorithm when applied to a given image is transferred 
exactly to the result of applying the algorithm to the transformed image. It is useful for 

2Such an affine invariant evolution of all the gray level sets simultaneously is invariant under the 'projec-
tion invariance' assumption as presented in [2]. , 
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cleaning noisy images with the ability to predict the geometry deformation that is caused 
by the smoothing process. 

In [8] the arclength and curvature for the projective and its general subgroups were 
introduced. In the following section, simple arclength for the linear affine group are used 
to define the corresponding heat equation. Here, we add one point to the affine group. In 
practice, we deal with shape descriptors in which there exist one anchor point to simplify 
the arclength definition. This arclength is referred to as semi-differential invariant in [6, 22]. 
By 'simple arclength' we refer to an invariant arclength that is defined by, at most, second 
order derivatives of the curve. 

5 Linear-Equi-Affine Arclength and Evolution 

In [9, 23] the authors argue that Equation (3), leads towards the geometric heat evolution 
equation of any given metric which is given by 

where r is the arclength defined for the specific transformation group. Simulating these 
evolution equations it is enough to track only the normal component of the evolution velocity, 
so that geometrically the above equation may be written as3 

This way it is possible [28] to reformulate the affine heat equation Ct = Css into its geometric 
equivalent Ct = "' 113 JJ. In [23] it was also shown that for the similarity group the inverse 
geometric heat equation, given by 

1 -Ct = --N, 
K, 

is invariant. Yet it can be applied only to convex shapes. 
In this section we introduce an invariant evolution of the affine group with one given 

point (e.g. given origin, or any other point). Using the same argument as for the equi-affine 
arclength, that is areas a-re invariant under the affine transformation, let the linear affine 
arclength be given by [6, 22] 

See Figure 2. As may be easily verified (following the same steps as the proof of Lemma 2 
in the following section) this is an intrinsic measure that does not depend on the parameter, 
and therefore equivalent to 

w = j I(C, i)ldv, 

where v is the Euclidean arclength as before. 

3The Eulerian formulation of Ct = (Crr,N)N is 4>t = (Crr, \7¢), see Section 7. 
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Figure 2: For w =linear affine arclength, the area I(C,Cw)l- 1. 

The area of a closed shape [18] is given by 

1 f ... 1 f ... A = 2 (C, T)dv = 2 (C,N)dv. 

Therefore, the arclength (as for the equi-affine one) corresponds to an area, and thus 
invariant. An arclength element is given by 

dw = I(C, T)ldv = I(C,N)Idv. 

Thus, 

C - C 8v C 1 
w - vas = v 1 ( c, N) 1 

1 ... 
... T, 

I(C,N)I 

and 

tangential component. 

The corresponding linear affine heat equation given by its geometric Euclidean version is 

(7) 

Observe that when considering closed curves, the interesting cases are those in which the 
anchor point is located inside the curve and no tangent points are formed. In other cases, it 
is possible to locate the smallest triangle that is formed by two tangent points (it is easy to 
prove that there exist at least two) and the anchor point. This triangle is then mapped into a 
givenxeference triangle for every data image, and the same mapping is used to eliminate the 
transformation effect, see Figure 3. So, considering only the 'interesting' cases, the geometric 
heat equation (7) is not influenced by singular values since tangent points are excluded. 
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Figure 3: There are three possible locations for the given point: Outside the shape, in which 
C(p) is tangent at least twice to the boundary of the shape. Inside a shape which consists 
of a concave part that leads again to at least two tangent points. Inside a shape with no 
tangents at .all, which is the interesting case from our point of view. 

6 Arclength Definition and Intrinsic Functionals 

In this section, we show that by 'weighing' the affine arclength , the intrinsic property of the 
arclength does not break. Then, the relatiqn between the affine curvature and the Euclidean 
one is used to generate a simple non trivial differential shape descriptor. We refer to such 
as affine invariant signatures. 

Define a 'non-edge' penalty function g : lR? -t 1Rf, that being a one to one mapping is 
also affine invariant. For example, let 

1 
g(x,y) = IG(~T) o I(x,y)i. (8) 

The function g maps edges to low positive values and constant regions to high positive values. 
Actually any decreasing positive function g of an affine gradient magnitude is valid for the 
rest of our discussion. 

Without breaking the invariance property, we integrate g along the affine arclength. Let 

L(C,Cp,Cpp) = g(C(p))(Cp,Cpp) 113
. 

We will consider thefollowing functional as the 'weighted affine arclength' 

S[C] = j L(C,Cp,Cpp)dp. (9) 

Let us prove that (9) is free of parameterization [19] (i.e. an intrinsic integral). We note 
that this is only an example, and the intrinsic property should hold for any arclength. 

Lemma 2 The functional 

1Pl 1/3 g(C(p))(Cp,Cpp) dp 
Po 

depends only on the curve in the xy-plane4 defined by the parametric equation x x(pL 
y = y(p) 7 and not on the choice of the parametric representation of the curve. 

4often referred to as the 'orbit', 'trace' or 'image' of the curve C(p) 

11 



\ 

r 
Proof. We show that if we go from p to a new parameter r by setting p = p(r), where 

dpj dr > 0 and the interval [po, p1] goes into [ro, r1], then 

l rl . 1/3 1P1 1/3 g(C(r))(Cr,Crr) dr = g(C(p))(Cp,Cpp) dp. 
ro Po 

Lemma 2 guarantees that the functional (9) is free of the parameterization of the curve. In 
fact, in the general case of selecting an arclength for a given transformation group, the integral 
must be intrinsic! It should have the general form of dl = [geometric quantity] x ICPidp, where 
'geometric quantity' is 1 for the Euclidean group, k(p )113 for the equi-affine group, k(p) for 
the similarity, (C(p), T(p)) for the linear-affine, etc .. 

Lemma 2 can be used to find the relation between the affine curvature f.l and the curvature 
derivatives K, Kv and Kvv· The same relation could be found in other ways as well [10, 22, 28]. 
It is easy to show that the normal propagation that corresponds to the affine arclength 
shortening :flow is given by Ct = f.lJJ, which is analog to the Euclidean shortening :flow 
Ct = KJJ., However, the affine :flow does not have the same smoothing properties as the 
Euclidean one. 

The computation of the affine curvature f.l involves derivatives of the forth order, and 
may be computed as presented in [10]. Expressing the affine curvature p as a function of 
the Euclidean curvature "' (see [22, 28]), yields 

II.= "'4/3- ~"'-8/3"'2 + ~"'-5/3"' 
r 9 v 3 =· (10) 

In the following section and in the appendix, we show how to approximate the affine curvature 
based on Equation (10), and use it to construct invariant signatures. This approximation will 
use up to second order derivatives of the the implicit -representation of the object boundary. 
Which means a direct operation on the data image, before any thresholding is performed. 

7 Implementation Considerations 

Before thresholding, the object boundary is given in an implicit representation, e.g. the 
boundary is defined as a given gray level set of the data image: I ( x, y) =Threshold, see [20]. 
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For all of our implementations of curve evolution as well as the computation of the affine 
and Euclidean curvatures this implicit level set representation is used. Similarly, implicit 
representation of planar curves will be used for the curve evolution implementations. We 
refer the interested reader to the growing literature on level set motion for curve and surface 
evolution, starting with the Osher Sethian classical paper [25]. 

The basic idea is to map the 'time' dependent coordinates (p, t) to fixed coordinates 
(x, y, t) by embedding the propagating contour in a higher dimensional function. The level 
sets of the function <jJ(x, y, t): JR? x [0, T) -+ 1R propagating according to 

<Pt = o:l"9 <PI, 

where 1"9 <PI = J <P'I: + </J~, are evolving according to 

Ct = o:N. 

This result may be easily obtained form jJ = { -yv, Xv} = "9 <P / 1"9 <PI, and the chain rule 
<Pt = ("9</J,Ct) = ("9</J,o:N) = o:I"9</JI. 

While the embedding is preserved, as was proven for curvature based evolutions [16], there 
is no need to control the propagation of the higher dimensional function </J. The embedding is 
preserved for morphology evolutions as well (which require additional 'entropy condition'). 
However, in other cases it is needed to supervise the level sets behavior so that the zero 
set evolution is the dominant one, and the rest are only swept by its influence. For this 
purpose some numerical methods were developed like the narrow strip introduced in [1, 13], 
re-initialization of the function every iteration [32], expansion of the zero set velocity to the 
whole image domain [21], etc. 

In the appendix we introduce formulas expressing "'' Kv and Kvv as a function of the x and 
y derivatives of <P (up to the fourth order for Kvv). Then to achieve practical formulas; we 
assume that the implicit representation along the boundary is given by polynomial patches of 
up to second order. This assumption holds only after affine geometric smoothing is performed 
so that sharp edges are smoothed and the approximation is valid. The affine curvature as 
given in Equation (10) is approximated by (see Appendix A) 

<Pxx</Jyy - </J;y 

8 Examples 

The first example, Figure 4, presents the evolution of a shape according to the affine ge
ometric heat equation Ct = Css, or in its implici't form (after eliminating the tangential 
component) <Pt = ( <Pxx<P; - 2</Jx<Pxy</Yy + <P;</Jyy )113

. . 

Next, Figure 5 demonstrate the power of the proposed framework in tracking the convex 
hull of objects by using the 'weighted affine' heat equation. 

Denoising algorithm results are presented in Figure 6. The 'dynamic weighted affine' 
heat equation, is an affine selective smoothing operator. It is used to efficiently remove 
noisy perturbations from the image, while preserving the edges. It is possible to predict the 
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geometric deformation caused by this invariant selective smoothing operation, by applying 
the same procedure to a reference image which is an affine transformation of the data image, 
see Figure 8. 

Affine invariant signatures p,(s), and G(!~T) o I(x,y) along the (smoothed) boundary, 
as a function of the affine arclength are computed by the proposed methods. It is shown 
in Figure 7 that the signatures of the same object under different affine transformations 
remain almost the same. The gradient magnitude G(l::l.T) o I(x, y) along the b9undary of 
the smoothed object, (the zero level set of ¢>(1::l.T)) is a robust signature, yet requires the 
projection invariance of the gray levels. While p,( s) is more sensitive, however free of any 
assumptions on the order of the gray levels along the object boundary in the image. The sig
nature functions are presented without any smoothing or filtering. For closed curves, Fourier 
descriptors of the periodic signature function may be the right choice for classification, while 
for recognition and classification of objects under partial occlusion, local matching meth
ods should be applied. Observe that the signatures G(s) = G(l::l.T) o ¢(O)I¢(~T)=o, where 
¢(0) = I(x, y), of the two images are very similar, while obviously ,..;(v) is different. The 
affine arclength was -computed by using the implicit representation of the boundary in the 
gray level image (see Appendix A). The Euclidean curvature at each pixel grid is interpolated 
at the grid intersection points with the boundary of the object. Then ds is approximated by 
.tls = ,..; 113 f::l.v, where .tlv is the length of the line connecting the zero crossings of the object 
boundary with a given pixel cell (a square defined by { ( i, j), ( i, j + 1 ), ( i +·1, j + 1 ), ( i + 1, j)}.) 

9 Concluding Remarks 

In this paper the affine invariant gradient magnitude along the affine scale scale space was 
introduced and used to construct image denoising algorithms and shape invariant signature 
functions. The geometric heat equation of the 'affine weighted arclength' that integrates the 
affine edges and the affine arclength from 'Affine Differential Geometry' [10] was shown to 
be an invariant selective smoothing procedure, resulting in the image denoising algorithm 
when the 'dynamic affine weighted arclength' is used. 

The forth order derivatives and the non-linear nature of the calculations of the geometrical 
properties, make the computation of the affine curvature signature a complicated task. We 
have shown that it is possible to reduce this complexity by locally approximating the implicit 
representation of the boundary contour as a second order polynomial function. Although 
such an approximation is valid only at smooth regions of the image, it is possible to treat 
object boundaries as such, after affine smoothing is applied to the image. 

A simple differential signature was obtained directly from the affine scale space, under 
the projection invariance assumption. It was shown to result a robust invariant non trivial 
differential signatures. 

We conclude by a table presenting the arclength and the geometric heat equations for 
some of the transformation groups we dealt with. The geometric heat equations may be used 
for generating the invariant signatures in the same manner we did for the equi-affine group. 
For the scale space gradient magnitude along the boundary to be a unique invariant signature, 
it is enough to assume projection invariance and the same ordering of gray levels along the 
boundaries of the objects under consideration (e.g. IY'II = const. along the boundary 

14 



under orthographic projection). It is obviously not a necessary condition. Actually, the 
fact that objects are usually more complex than pure planar shapes with constant intensity 
of the shape, helps in generating interesting invariants. As a simple example, consider a 
circle shape of radius R with a constant gradient along the boundary, say IV' II = a. The 
signature of this shape for the limit case !:l.T -+ 0, i.e. IV' IIK1/ 3 = R~/3 , is obviously constant. 
Observe that it remains a constant for the ellipses obtained by the affine transformation. 
This observation by itself is enough to show the non-trivial nature of this signature. 

II Group Arclength L(p) I Geom. Heat Eq. II 
Euclidean (Cp, Cp) 1

/
2 = 1 . ICpl Ct = KN 

Weighted Euclidean g( C) (Cp, Cp) 1
1

2 Ct = ~N 
Equi-Affine I(Cp,Cpp)l113 = IKI113 1Cpl Ct = K113N 
Weighted Affine g(C)(Cp,Cpp)l/3 = g(C)K1

/
3 ICPI Ct = ~K113N _q 

Linear-Equi-Affine I(C,Cp)l = I(C, T)IICPI Ct = (c ~l2N 
Weighted Linear-Equi-Affine g(C)I(C,Cp)l Ct = g2(CK 1VN 
Similarity i(CJ),CJ),)I = IKIIC I 

(C,,C,) P Ct = lN K 

Linear Affine I(Cp,Cpp)l - ~IC I Ct = ~jJ 
(C,Cp) 2 - (C,T)2 P , K 

I(C,Cpp)l -I K(C,Ai) /IC I C - (C,1)2 jJ 
I(C,Cp)l - (C,T) p t - K(C,Ai)2 

Appendix A 

Here the curvature K of the planar curve C = <P-1(c), and its first and second derivatives 
(Kv and Kvv) are computed as a function of <fl. We use the fact that along the level sets C 
of <P, the function does not change its values, i.e. Er<Pj&vn = 0, for any n. Particularly, for 
n = 2, 3, 4. From this, and the knowledge of the geometrical properties of Cv, Cvv, Cvvv and 
Cvvvv, we compute (using Mathematica algebraic calculations): 

K = 

' . 
2</Jx</Jxy</ly - <Pxx<PZ - <P;</Jyy 

( <P; + <P;)3/2 

( 6</>;</>;y</>y - 3</>!</>xyy</>y + 3</>;</>xxy</>Z - 9</>;</>xx</>xy</>Z + 3</>x</>;x</>~ 
-</>;</>xxx</>~ - 6</>x</>;y</>~ - 3</>;</>xyy</>~ + 3</>x</>xxy</>~ ,' 
+3</>xx</>xy</>~ - </>xxx</>~ - 3</>!</>xy</>yy + 3</>;</>xx</>y</>yy + 9</>;</>xy</>Z</>yy 
-3</>x</>xx</>~</>yy - 3</>;</>y</>Zy + </>~</>yyy + </>;</>Z</>yyy) / ( </>; + </>; )3 

(24</>~</>;y</>y - 24</>~</>xy</>xyy</>y + 4</>~</>xyyy</>y - 6</>~</>xxyy</>; + 36</>~</>xxy</>xy</>; 
- 72</>!</>xx</>;y</>; + 18</>~</>xx</>xyy</>; + 4</>~</>xxxy</>~ 
- 24</>!</>xx</>xxy</>~ + 60</>;</>;x</>xy</>~ - 16</>!</>xxx</>xy</>~ - 96</>;</>;y</>~ 

+ 12</>!</>xy</>xyy</>~ + 8</>~</>xyyy</>~ - 15</>;</>;x</>~ + 10</>;</>xx</>xxx</>~ - </>!</>xxxx</>~ 
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-12</J!<Pxxyy</J~ + 12¢;</Jxxy</Jxy</J~ + 132¢';¢xx¢';y¢~ + 6¢;</Jxx</Jxyy</J~ 
+8¢;¢xxxy</Jt - 18¢;</Jxx<Pxxy</Jt - 48</Jx<P';x</Jxy</Jt 
-12¢;</Jxxx</Jxy</Jt + 24</Jx</J;y<Pt + 36¢;</Jxy</Jxyy</Jt + 4¢;</Jxyyy</Jt 
+3</J;x¢~ + 10</Jx<Pxx<Pxxx</J~ - 2¢;</Jxxxx</J~ - 6¢;</Jxxyy</J~ 
-24</Jx<Pxxy</Jxy</J~ - 12</Jxx</J;y¢~- 12</Jx<Pxx</Jxyy</J~ + 4</Jx<Pxxxy</J~ + 6</Jxx<Pxxy</J~ 
+4</Jxxx</Jxy</J~ - <Pxxxx</J~ - 12</J~</J;y</Jyy + 6</J~</Jxyy</Jyy - 12</J~</Jxxy</Jy</Jyy 
+36</J~</Jxx</Jxy</Jy</Jyy - 18</J!<P';x<PZ</Jyy + 6</J~</Jxxx<P;</Jyy + 1325J>!¢;y¢;</Jyy 
-18</J~</Jxyy</J;</Jyy + 6</J!<Pxxy</J~</Jyy - 144¢;</Jxx</Jxy</J~</Jyy 

+33¢;¢;x¢~</Jyy + 2¢;</Jxxx<P~</Jyy - 72¢;¢;y¢~</Jyy - 24¢;</Jx~y</J~</Jyy 

+ 18¢;</Jxxy~t</Jyy + 36</Jx</Jxx</Jxy</Jt</Jyy - 3</J;x¢~</Jyy - 4</Jx<Pxxx</J~</Jyy 
-3</J~<Pxx<P;Y - 48¢~</Jxy</Jy</JZY + 33</J~<Pxx<P;<P;Y + 6o¢;¢xy</J~<P;Y 
-18¢;</Jxx</J~</J;y + 3</J~</J~y - 15</J~</J;</J~y + 4</J~</Jxy</Jyyy - 4</J~</Jxx</Jy</Jyyy 
-12</J~</Jxy</J;</Jyyy + 2</J!<Pxx<P~</Jyyy - 16¢;</Jxy</J~</Jyyy + 6¢;</Jxx<Pt</Jyyy 
+ 10¢~</Jy</Jyy</Jyyy + W<P!<P~</Jyy</Jyyy - <P~</Jyyyy - 2</J~<P;</Jyyyy - <P!<P~</Jyyyy) I 
( ¢; + <P;)9/2. 

Although impressive in length, the above expressions are too long for practical imple
mentation. Moreover, dealing with pixel based images, the large support required for the 
computation of the high order derivatives leads to inaccurate and noise sensitive operations 
around the edges. 

Assuming that the implicit function <P is smooth (can be achieved by affine smoothing) 
and therefore can be locally approximated by ax2 + bxy + cy2 + dx + ey +f. The third and 
fourth order derivatives of <P may thus be neglected. Using this approximation considerably 
simplify the scheme, and reduces the local support to a 3 x 3 pixel mask, with truncation 
error of 0( .6.x2

) (where .6.x is the distance between neighboring pixels). 
Thereby, taking all third and forth partial derivatives of <P (with respect to x and y) to 

be zero, the affine curvature J.l is simplified into 

4/3 5K; Kvv <Pxx</Jyy - ¢;y 
J.l = K - 9.-8/3 + 3.-5/3 :::::::: "' "' ( <Pxx<P~ - 2</Jx</Jxy</Jy + ¢;</Jyy )2

/
3

. 
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Figure 4: Affine curve evolution Ct = K
113 jJ (zero sets), and 5 steps of the implicit evolution 

4Yt = ( 4J~4Yxx - 24Jx4Yy4Yxy + qy;qyyy )113
, starting at the upper left and ending at the lower right 
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Figure 5: Affine invariant procedure for locating the convex hull of a shape: Evolution 
according to the weighted equi-affine geometric heat equation: Ct = "'1;

3 Ji, and four steps of 
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the implicit implementation evolution, qy( t) at t = 0, t~, t2 , oo. The edge enhancer g( x, y) = 
IG(,6.T) o I(x, y)j, is affine invariant, so that the final result as well as every step along the 
evolution is invariant (under the equi-affine transformation) 
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Figure 7: Invariant signatures under affine transformation: On the second and forth rows, 
from left to right are K( v), ~t( s) and G( !:lT) o I ( x, y) samples along the zero level set (as 
a function of the affine arclength). On the first and third rows, from left to right are the 
shapes I(x,y), <P(llT), and G(!:lT) o I(x,y) respectively. 
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Figure 8: The. smoothing invariant effect on the signature G(!::.T) o I(x,y). The two up
per raws present the signatures obtained after smoothing with the Rudin-Osher-Fatemi al
gorithm. The lower raws present the signature after smoothing with the affine invariant 
selective smoothing procedures. Observe that the invariant smoothing better preserves the 
relation between the signatures. 
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