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Global Convergence of Oja’s Subspace Algorithm
for Principal Component Extraction

Tianping Chen,Member, IEEE,Yingbo Hua,Senior Member, IEEE,and Wei-Yong Yan

Abstract—Oja’s principal subspace algorithm is a well-known
and powerful technique for learning and tracking principal infor-
mation in time series. A thorough investigation of the convergence
property of Oja’s algorithm is undertaken in this paper. The
asymptotical convergence rates of the algorithm is discovered.
The dependence of the algorithm on its initial weight matrix and
the singularity of the data covariance matrix is comprehensively
addressed.

Index Terms—Convergence rate, global convergence, principal
components extraction.

I. INTRODUCTION

I N MANY information processing systems, it is neces-
sary to extract the main features inherent in complex

high-dimensional input data streams. Such “dimensionality
reduction” helps eliminate information redundancy and al-
lows for further information transmission through limited
channels. One of the most general-purpose feature extraction
techniques is principal component analysis (PCA). In the
unconstrained “dimensionality reduction” problem, PCA gives
the estimate that best retains the information content in the
mean-square sense. PCA is closely related to such concepts as
Karhunen–Loeve transformation, least squares fitting, factor
analysis, singular value decomposition, and matched filtering.
Recently, there has been much interest in developing and
studying PCA algorithms; see, e.g., [1]–[9].

One of the most important principal component extraction
techniques is Oja’s subspace algorithm, which is a parallel
algorithm for extracting the principal subspace of a vector
random process and can be implemented by linear neural
networks. Moreover, under some very mild assumptions, many
other algorithms can be reduced to Oja’s subspace algorithm.
In [5], Oja summarized various algorithms and discussed their
asymptotic stability properties.
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The algorithm obtained by Oja in [4] can be formulated by
the following iteration equation:

(1)

where is the vector random process, is an
weight matrix, and is a fixed number (step size). The
corresponding ordinary differential equation (ODE) is

(2)

where is the covariance matrix with the singular
value decomposition

The single-neuron case was considered first by
Amari and Oja in [1] and [2]. The connection between the
discrete algorithm and the ODE was first established by Oja
and Karhunen in [3]. For the multineuron case the
orthogonality of the subspace algorithm was revealed in [4].
Since then, there has been much work devoted to revealing
the properties of the ODE through various approaches such
as gradient descent, optimization techniques, and asymptotic
analysis, etc. An explicit expression of the solution to (2) in
the time domain was given in [10], which, as will be shown, is
a powerful tool for further analyzing the global convergence
of the subspace algorithm.

Most of the existing results do not provide the global
asymptotic analysis. As Oja pointed out in his paper [5],to
analyze the global behavior for general initial conditions seems
a challenging problem. Indeed, it is of fundamental importance
to develop a rigorous mathematical analysis of the global
convergence of the subspace algorithm.

The purpose of this paper is to address the issue of global
convergence thoroughly from a mathematical point of view.
More specifically, we shall aim to gain an in-depth understand-
ing of the following concerns:

1) the global convergence of the solution to the differential
equation (2) when an arbitrary initial weight matrix is
possibly rank-deficient and the covariance matrix of the
inputs is possibly singular or has multiple eigenvalues;

2) the dependence of equilibria on the initial weight matrix;
3) the sharp rate of global convergence.

This paper is organized as follows. In Section II, we develop
an asymptotic representation of solutions to (2) as well as
some necessary notations. In Section III, we present and prove
the main convergence theorem (Theorem 3). In Section IV,
we give several simulations to verify the validity of the
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main theorem. In Section V, we end the paper with some
conclusions.

II. REPRESENTATION OFSOLUTIONS

Note that the covariance matrix can be decomposed as
where is orthogonal and

...
...

... with

and

Here, denotes the identity matrix.
With Oja’s ODE is reduced to

(3)

It is important to note that there is no loss of generality in
studying the global convergence of Oja’s ODE (2) through
the differential equation (3). In fact, we now need to show the
convergence of to a matrix with proper nonzero rows.

To facilitate our subsequent discussions, we introduce the
following notations, which will be used throughout the paper.

is an initial weight matrix with
row vectors.

is the th block of
with rows.)

is the least integer such that
where is the orthogonal projector to

the subspace with

is the spectral norm of the matrix and is the
Frobenius norm.

means that is bounded for
sufficiently large where and are positive
functions.

The following result gives a general representation of the
solution to the above ODE in terms of an orthogonal matrix.

Theorem A: The solution to the ODE (3) can be expressed
in the form

(4)

where is some orthogonal matrix and

... (5)

(6)

For the purpose of proving the global convergence, we need
an asymptotic representation of the solution in a more
convenient form.

Consider two symmetric matrices and Let

be an orthogonal matrix such that

with where is the number of columns of
If there holds

where denotes the spectrum of for then it is
known from [11] that there exists a matrix
satisfying

such that the columns of
form an orthogonal basis for a subspace invariant under

A direct application of this fact immediately leads
to the following lemma, which is instrumental in deriving an
alternative asymptotic representation of

Lemma 1: Suppose is a symmetric matrix of the form

where is a symmetric matrix of full rank and is such
that If

(7)

then there exist a matrix of the same size as and a matrix
of the same size as such that

and (8)

with

and

(9)

where and are positive numbers independent of
In what follows, all the equalities involvingare valid only

for sufficiently large unless otherwise stated.
Theorem 1: Let be as defined in (6), and let

be decomposed as

for where is a positive definite matrix and
is such that Then there are two matrices

such that can be expressed as

(10)
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with

(11)

(12)

(13)

where is bounded and

if
if

(14)

if
if

(15)

Proof: See the Appendix.

III. M AIN RESULTS

In this section, we shall not only prove the global conver-
gence of the subspace algorithm but also derive a tight rate of
convergence. In doing so, all the notations introduced in the
previous section will be adopted.

Main Theorem: Assume that Let a singular value
decomposition be

where is a positive definite matrix, and are such that

and

Then with the following defintion:

there is an orthogonal constant matrixsuch that

(16)

where is a rate of convergence given by

such that (17)

Proof: Let

Because each is nonnegative, it is easy
to see that

for where is a constant. It means that all
are bounded.

If then

where is a vector. By the boundedness
of given before, it is easy to see that

Therefore, we have

(18)

where

...

...

...

and
Without loss of generality, we shall replace by

Moreover, in view of the facts that if then
and that if for some then

it suffices to consider the case where
and

By Theorems A and 1, we have

(19)

where and
is composed by normal orthogonal vectors such

that for all
Let
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then

(20)

By the similar argument used before for the case it is
easy to see that

(21)

Because if Replacing
by and noticing

we have

(22)

and

(23)

By the definition of it is easy to see that

Therefore

(24)

then

(25)

Therefore, we have

(26)

In summary, we have proved that

(27)

From the definition of it can be verified directly that

(28)

Substituting (27) and (28) into (3) results in

(29)

where “0’s” in the previous equations are zero matrices.
Since
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the limit of exists when tends to and thus there is
a constant orthogonal matrix such that

(30)

The theorem is proved completely.
Remark 1: The assumption of is essential for ex-

tracting principal subspace by Oja’s algorithm. If
then

where In this
case, every column vector of the limiting solution contains
all components, i.e., we cannot extract principal component
subspace. In fact, by noticing that for all it is
easy to see that the subspace of the following:

(31)

keeps invariant and

(32)

where

Remark 2: Theorem 3 guarantees that Oja’s algorithm
yields the principal subspace without the requirement that
the correlation matrix and initial weight matrix be
nonsingular.

Remark 3: Note that if is an eigenspace spanned by
eigenvectors corresponding to the eigenvaluethen up to
an orthogonal transform the extracted component inwill
be with the number of columns being which
is completely determined by the initial value matrix In
addition, if happens to be zero, then no component
in can be extracted, which will be verified by simulations
2 and 3 in the following section.

Remark 4: Due to the sensitivity of the rank deficiency to
small perturbation, the equilibrium approached by the solution
associated with a rank-deficient initial weight matrix must be
unstable. This will be verified by simulation 2 in the sequel.

Remark 5: The convergence rate is the tightest in generic
case, which can been shown as following.

Suppose that for some and let

as before, then

and

Therefore, we can find a constant such that for sufficiently
large

which, combining with the main theorem, leads to that there
are two constants such that

(33)

and the convergence rate is the tightest in the generic
case.

Theorem 3: Under the assumptions that the firstrows of
are linearly independent and there is an indexsuch

that

and

there holds

(34)

Proof: See the Appendix.

IV. SIMULATIONS

In this section, a number of simulation results will be
reported. The purpose here is to verify the theoretical results
obtained in the paper and support some conclusions we draw.
Additional interesting phenomena will also be observed.

All the subsequent figures will contain plots of the derivative
of

versus since this derivative serves as a meaningful measure
of the convergence rate. In fact, the negative of the derivative
will be called the convergence rate.



CHEN et al.: GLOBAL CONVERGENCE OF OJA’S SUBSPACE ALGORITHM 63

Fig. 1. Simulation 1 (Negative convergence rate versus iterations).

Simulation 1: This simulation verifies the validity of The-
orem 3 even when has multiple eigenvalues.

Let the covariance matrix be

(35)

and the initial weight matrix be

(36)

where the first three rows of are independent. Taking
and running 500 iterations, we have

(37)

Clearly, is seen (or easy to verify) to converge to
an orthogonal matrix, whose columns are linear combinations
of the eigenvectors corresponding to the first three largest
eigenvalues, i.e., they are located in the three-dimensional
principal eigenspace of the covariance matrix. Fig. 1 shows
that the convergence rate is close to which
agrees with Theorem 4 (with

Simulations 2 and 3 will show what happens when the initial
matrix is of rank deficiency or

Simulation 2: Let

(38)

Fig. 2. Simulation 2: (negative) convergence rate versus the first 300 iter-
ations.

and

(39)

respectively, where In this case, the first
two rows of span the row space of

Taking and running 1500 iterations, we have

(40)

which shows that extracts the principal subspace
spanned by the two eigenvectors corresponding to the first two
largest eigenvalues. Fig. 2 shows that the convergence rate is
about the smallest among
which confirms Theorem 3.

However, if we iterate 1000 more times, the final result
becomes

(41)

which shows that extracts the principal subspace
spanned by the three eigenvectors corresponding to the first
three largest eigenvalues.

This phenomenon does not violate our theory. The reason
for this is that when we iterate, the numerical rounding errors
make become of full rank. Therefore, the dimension of
the principal subspace becomes three. All these results coin-
cide with the conclusion of our main theorem. It also means
that the theoretical equilibrium due to rank deficient initial
matrix is unstable. Fig. 3 shows the last 600 iterations
leading to . It can be seen that the convergence rate
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Fig. 3. Simulation 2: (negative) convergence rate versus the last 600 itera-
tions of total 1500 iterations.

is nearly zero initially in the figure (equilibrium) and then
becomes after the random numerical rounding error makes

becomes effectively full rank.
Simulation 3: This simulation shows that in some cases,

the eigenspace corresponding to a larger eigenvalue may be
eliminated while the eigenspace corresponding to a smaller
eigenvalue may be extracted, as indicated in Remark 3.

Let

(42)

and

(43)

respectively, where and
Taking and running 1000 iterations, we have

(44)

In this simulation, the second row of is linearly
dependent on the first row, and

It is clear from the above matrix that the first row of the
second block (corresponding to in the limiting solution

is approximately zero and the rows of the third
block (corresponding to still remain. This justifies the
conclusion of our main theorem and our remark 3. Moreover,
the convergence rate is determined by the minimum of

and which can be seen from Fig. 4.

Fig. 4. Simulation 3: (negative) convergence rate versus iterations.

Fig. 5. Simulation 4: (negative) convergence rate versus interations.

It is worth pointing out that in this simulation,
where which causes that is not
an orthogonal matrix.

Simulation 4: Let the covariance matrix and the initial
weight matrix be

(45)

and

(46)

respectively.
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Taking and running 500 iterations, we have

(47)

In this simulation,
therefore, the second, fourth, and fifth

rows of are approximately zero, which coincides with
the conclusion of our main theorem.

It is interesting to observe that due to the rounding errors,
starting from any initial matrix the solution
always converges to an full rank matrix with the upper
submatrix being an orthogonal matrix and the lower submatrix
being zero. Furthermore, after becomes full rank, the
convergence rate is given by Theorem 4.

V. CONCLUSIONS

In this paper, we have analyzed in detail the dynamic
behavior of Oja’s subspace algorithm. The global convergence
of the algorithm has been established and its convergence
rate has been found. The dependence of the convergence
on the initial value matrix has been explored completely. In
particular, we have discussed thoroughly the case when the
autocorrelation matrix has multiple eigenvalues or is singular.
All these results are summarized in the Main Theorem. We
have also demonstrated that in practice (with random rounding
error), starting from any initial -column weight matrix, the
algorithm will eventually extract a -dimensional principal
subspace with a global convergence rate given by Theorem
3. In the practical sense, therefore, Main Theorem provides
possible transient convergence rate which could be much
slower than the final convergence rate given by Theorem 3.

APPENDIX

Proof of Theorem 1:Let

by Lemma 1, we have

Because all the row vectors of belong to all the column
vectors in belong to too. Thus we have

where for are matrices and
is an matrix with

Letting

and repeating this procedure, by induction we have

and

for where are matrices
and is a matrix.

With

it is easy to check that there are such that

where

and

where

In a similar way, by letting

and

we have

where

if
if

and
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Continuing with the same argument successivelytimes, we
have

where

with

if
if

By the definition

Because each column vector in is some linear combi-
nation of the column vectors of therefore, there exist

such that

with being bounded and

if
if

(48)

Theorem 2 is proved.
Proof of Theorem 3:With

Oja’s ODE becomes

(49)

From the proof of Theorem 3, it follows that:

(50)

which implies that

(51)

due to

Thus, it is shown that converges to an orthogonal
matrix, Consequently, there is such that there holds

for all leading to

(52)

Setting

(53)

we see that

(54)

where the last inequality follows from (52) and (50). Quite
obviously, this inequality is equivalent to

from which it is deduced that

implying that

(55)

Now from (49), it follows that:

(56)

This in combination with (50) and (55) yields

(57)

In view of

one sees by the Cauchy criterion that converges as
at the exponential rate of Overall, it

is concluded that

(58)

as required.
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