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Abstract

The topic of this paper is the development of dynamic lexical
representations using artificial neural networks. In previous
work on connectionist natural language processing a lot of ap-
proaches have experimented with manually encoded lexicon
representations for words. However from a cognitive point
of view as well as an engineering point of view it is diffi-
cult to find appropriate representations for the lexicon entries
for a given task. In this context, this paper explores the use
of building word representations during a training process for
a particular task. Using simple recurrent networks, principal
component analysis and hierarchical clustering we show how
lexical representations can be formed dynamically, especially
for neural network modules in large, real-world, computational
speech-language models.

Introduction

In the last decade a lot of progress has been made in con-
nectionist natural language processing. Many different tasks
have been covered and many different forms of representa-
tions and architectures have been developed (Kawamoto &
McClelland 1986, Wermter 1989, St. John & McClelland
1990, McMillan et al. 1993, Wermter et al 1996). However,
most of these architectures are still fairly limited with respect
to processing natural language in a “real-world” environment,
for instance processing a real-world speech dialog.

Comparing the conversational capabilities of connection-
ist models and the conversation capabilities of human beings,
we think there are several reasons why the performance of
connectionist models is still fairly moderate in real-world set-
tings. First, after a decade of ground-level work on essential
connectionist learning algorithms and representations we are
only now in the position to focus on larger architectures. In
order to make progress on larger areas of human language
processing capabilities we have to go beyond individual tasks.

For instance, for understanding spoken language from con-
versations we have to integrate speech recognition, syntac-
tic, semantic and pragmatic processing in a robust manner.
These subtasks provide different constraints (e.g. robustness
at speech, syntax and semantics levels) and we cannot expect
that one single small network can handle a large portion of
human language processing capabilities (Jain 1991, Wermter
& Weber 1997). Therefore, it is essential to focus on larger
modular architectures in order to make progress on real-world
natural language tasks.

Another second main point of limitation of many connec-
tionist models of natural language processing is their static
representation. Typically, for a given task a static connec-
tionist architecture is developed and static representations are
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used for testing the architecture on this task. However, hu-
man language processing in the brain is always influenced by
changing input from the environment. Neurons die all the
time, we learn and forget all the time; so there is plenty of ev-
idence why it is important to explore dynamic architectures
and dynamic representations in connectionist architectures .

In this paper we will mainly focus on how dynamic repre-
sentations can be developed for a larger hybrid connectionist
architecture. In order to examine this issue we have devel-
oped a hybrid connectionist architecture SCREEN! for an-
alyzing spoken language from real-world conversations on
scheduling meetings. SCREEN is built on principles of
an incremental flat scanning understanding (Wermter 1995,
Wermter & Weber 1997). Input to the system is real-world
speech, including errors from the speech recognizer or from
humans (hesitations, corrections, repetitions, interjections).
Output is a syntactic, semantic and dialog analysis of the spo-
ken sentences. Several properties of human language pro-
cessing are addressed in this system, for instance robustness
for errors and incremental parallel processing of syntax and
semantics.

After the development of a first version of a comprehensive
architecture, we are now in the position to explore the possi-
bility of forming lexical representations dynamically during
learning. Using simple recurrent networks, principal compo-
nent analysis and hierarchical clustering we show how lexi-
cal representations can be formed dynamically, especially for
neural network modules in large, real-world, computational
speech-language models.

The framework:
hybrid connectionist speech parsing

There has been surprisingly little work on developing dy-
namic lexicon representations using supervised learning tech-
niques. Major exceptions are the symbolic/connectionist re-
circulation work (Dyer 1991) and the work on DISCERN,
a connectionist model for understanding simple written sen-
tences (Miikkulainen 1993). However, most network archi-
tectures have used vector representations from a static lexi-
con. While static representations make it easier to add new
entries, static entries may not be cognitively plausible. Fur-
thermore, developing lexical representations automatically
integrates learning with representation and reduces the lan-
guage acquisition effort. Therefore, we will explore to what

'Symbolic Connectionist Robust EnterprisE for Natural
language
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extent representations can be formed dynamically in a real-
world spoken language environment.

145

dia-act

-

Dialog act
processing

Case role processing 1

bus-sem

I

%

lex-word-cq

Correction

speech-error

Category
assignment

Speech evaludti

Comdins
con-segu-hyps

4 Word hypotheses from speech recognizer

Lexicon

Speech sequence
Construction

Figure 1: Overall SCREEN architecture. The large arrow
shows the subtask of assigning abstract syntactic categories
at the phrase level. This subtask is examined for forming dy-
namic lexical representations automatically.

In this section we will give a brief overview of our
SCREEN system (see figure 1). There are three fundamen-
tal principles which are addressed in SCREEN based on ear-
lier experience with hybrid connectionist systems (Wermter
1995, Wermter & Weber 1997). First, we want to exam-
ine hybrid connectionist learning techniques in a real-world
speech/language system. Second, we want to explore to what
extent hybrid connectionist techniques can provide the neces-
sary robustness and incremental processing. Third, we want
lo examine a screening approach to spoken language analy-
sis; that is, rather than an in-depth understanding we aim at a
flat, scanning understanding, but we want the understanding
to be robust and learned.

In general, our long-term perspective has been to examine
the architectural consequences in hybrid connectionist archi-
tectures based on these principles. SCREEN consists of six
main parts each of which contains several modules. The fol-
lowing description gives just a brief averview of the frame-
work of the SCREEN architecture using a static lexicon; de-
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tails can be found in (Wermter & Weber 1997). This serves
as motivation for the examination of dynamic lexicon rep-
resentations which are initially explored using the subtask of
abstract syntactic categorization (large arrow in figure 1). The
data flow in figure 1 is shown by arrows between modules, in
some cases we have used numbers to replace arrow drawings
that are too complex.

The speech sequence construction part at the bottom of fig-
ure | receives incrementally single word hypotheses from a
speech recognizer and constructs possible partial sentence hy-
potheses (module con-sequ-hyps). The speech evaluation part
at the lower left side contains modules for evaluating individ-
ual partial sentence hypotheses and chooses better sentence
hypotheses based on acoustic, syntactic and semantic knowl-
edge (bas-syn-pre, bas-sem-pre, speech-error).

Category knowledge is learned and generalized in the cat-
egory assignment part at the lower right side. Furthermore,
phrase starts are detected for identifying phrase boundaries
(phrase-start). The category assignment part contains several
modules for a flat syntactic and semantic analysis of a cur-
rent sentence hypothesis (bas-syn-dis, bas-sem-dis, abs-syn-
cat, abs-sem-cat). The syntactic and semantic analysis is per-
formed at two syntactic and semantic levels. The large arrow
shows the subtask of assigning abstract syntactic categories
at the phrase level. This subtask is examined for fcrming dy-
namic lexical representations automatically in this paper.

The correction part above contains modules for often oc-
curring mistakes which have to be dealt with explicitly in
spontaneous language. For instance, there are modules for
detecting interjections and pauses, word repairs, and phrase
repairs (pause, interjection, word-error, phrase-error). Fur-
thermore, there are some assistance modules for preprocess-
ing (lex-stari-eq, bas-syn-eq, bas-sem-eq, lex-word-eq, abs-
syn-eq, abs-sem-eq). The case role part contains a segmen-
tation parser for segmenting complete dialog turns into utter-
ances segments and for filling the contents of a case frame
with the utterance constituents (segment-parser). The dialog
act part (dia-act) is responsible for recognizing dialog acts of
utterances and interacts with the case frame part.

As shown in figure 1, we have chosen primarily feedfor-
ward connectionist networks and simple recurrent networks
(Elman 1990). Simple recurrent networks were found to be
very effective based on their potential for sequential context
processing and fault tolerance. Gradient descent is used to
train these networks (Rumelhart et al 1986). If a module
does not contain a connectionist network it uses simple sym-
bolic rules, for instance for a lexical comparison. We will not
go into further details of the architecture which has been de-
scribed recently in more detail in (Wermter & Weber 1997).
Rather, we will now start to focus on our new experiments on
forming dynamic representations. In particular, we will de-
scribe the development of dynamic syntactic representations
for the task of abstract syntactic category assignment (see the
large arrow for the module in figure 1).

Focusing on an example: dynamics of syntactic
representations

Syntactic analysis can be interpreted as the process of assign-
ing higher abstract syntactic categories (nonterminals) to ba-
sic syntactic categories (terminals). In order to support the



necessary robustness for spoken language analysis we have
used a restricted number of basic and abstract syntactic cate-
gories in our domain of meeting scheduling. Table 1 shows
the basic syntactic categories and table 2 shows the abstract
syntactic categories which have been used in our comparison
experiments with manually defined lexicon representations.

Category Example || Category Example
noun (N) date adjective (T} late

verb (V) meet adverb (A) often
preposition (R) | at, in conjunction (C) | and
pronoun (U) I, you determiner (D) | the.a
numeral (M) fourth interjection (1) ¢h, oh
participle (P) taken other (O) particle
pause (/) pause

Table 1: Basic syntactic categories

[ Category Example ]
verb group (VG) mean, would propose
noun group (NG) a date, the next possible slot
adverbial group (AG) later, as early as possible

prepositional group (PG)

in the dining hall
conjunction group (CG)

and, either ... or

modus group (MG) interrogatives, confirmations
special group (SG) additives: please, then
interjection group (1G) interjections, pauses: eh, oh

Table 2: Abstract syntactic categories

VG AG CG SG
PG NG MG IG

Output layer

Hidden layer

Context
layer

Input layer: static
representation
for word w

Figure 2: Original simple recurrent network with static lexi-
con representations as used in the overall SCREEN architec-
ture. Static basic syntactic categories for one word are used
as input to the network.

First, we have trained a simple recurrent network to assign
abstract syntactic categories to basic syntactic categories in
a static lexicon framework (see figure 2). There was one in-
put unit for each basic syntactic category and one output unit
for each abstract syntactic category. For a very simple sen-
tence, e.g. "I would suggest eh a meeting on Friday” a basic

category representation “pronoun verb verb interjection de-
terminer verb/noun preposition noun” has to be mapped to
an abstract category representation “noun-group verb-group
interjection-group noun-group prepositional-group”. This
network (13 input, 7 hidden, 8 output units) had a fairly good
performance on a 2300 word corpus reaching 91% category
accuracy on the training set and 84% on the unknown test set.
However, this network had static lexicon entries.

Using these experiments with static predefined input rep-
resentations as a bottom line comparison, now we turn our
attention to the development of dynamic representations for
the task of assigning abstract syntactic categories. The sim-
ple recurrent network was modified so that the learning al-
gorithm was able to change the input representations over
time. Because of the possibility of developing input repre-
sentations automatically we can restrict the knowledge which
is provided to the network.

While the static network received the basic syntactic cat-
egory representation as the input and assigned the abstract
syntactic category representation as the output for each sub-
sequent word, now we will only provide the abstract syntactic
category representation as the output of the network during
learning (see the network architecture in figure 3). Then the
learning process backpropagates errors to the units in the hid-
den layer but also back to the input layer. This process allows
the learning algorithm to assist in the development of repre-
sentations which are particular useful for the given task. Over
time input representations emerge based on their use in dif-
ferent contexts.

VG AG CG 5G
PG NG MG JG

Output layer

Hidden layer

Input layer:

imitially random
representation
for word w

Context
layer

Input layer: new dynamic representation for same
word w after 2000 epochs

Figure 3: New simple recurrent network with dynamic basic
syntactic feature formation. Only the abstract syntactic cat-
egory knowledge is provided to the network during training.
The dynamic input representations are formed dynamically
during training.

Now we will describe the augmentations which are nec-
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essary for building dynamic representations. The standard
backpropagation learning algorithm is a gradient descent
learning procedure which minimizes the squares of the dif-
ferences between actual and desired output values over all
output units and all training instances:

E= 333 (dys — wos)’
P 3

where E is the global error function, p is the pattern of the
current training instance, j is the index of the output units, dp;
is the desired value and y,; is the current computed value. It
has been shown (Rumelhart et al 1986) that this error function
E is minimized if the weights are updated according to the
following equation:

(1

Apwij = 1bp; Yps (2)

where w;; is the weight from unit 7 to unit j, n is the learning
rate, dp; is the error associated with unit j, and y; is the
output value of unit 7.

The error d,; for a unit j is computed differently for output
units (3) and hidden units (4). This computation minimizes
the total sum squared error of equation (1). Furthermore, the
function f is a semilinear function, that is, the function f is
non-decreasing and differentiable.

dpi = (dps — Yps) f (Z Wi Ypi + 33‘) 3)

(5”- = f; (Z WijYpi + 9_-'.) z&,,kwjk (4)
i k

Up to this point we have the well-known backpropagation
learning rule. But it is possible to extend this backpropagation
of errors to the input layer (Miikkulainen 1993).

ri=ndi=n E‘sjwnj (5)
i

The value é; is the error for unit 7 of the input layer, §; the
error for a unit j in the hidden layer and w;; the weight from
unit 7 of the input layer to unit j of the hidden layer. The
actual change r; of an element in the input layer is multiplied
with the learning rate 7 and limited by the interval [0, 1]. The
new representations 7 (t + 1) are calculated by the sum of the
old representation 7; () plus the change r;.

ri(t + 1) = maz(0, min(1, r;(t) + r;)) (6)

Performance

Using a corpus of 184 turns from real-world spoken conversa-
tions about meeting scheduling we trained and tested network
architectures with 384 utterances (containing 2356 words).
Two thirds of the corpus belonged to the training set, 1/3 to
the test set. Using the hand-coded static representations we
could reach 91% accuracy on the training set and 84% on the
test set (see table 3). An assignment was counted as correct if
the abstract syntactic category of the output element with the
highest value was also the desired abstract syntactic category.
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[ Input representation | training set | test set
Static, hand-coded 91% 84%
Dynamic, learned 99% 79%

Table 3: Performance for abstract syntactic categorization
task

In contrast, the dynamic representation network used ini-
tially random lexical representations for the basic syntactic
representation of each word. During training only the current
abstract syntactic category representation of a word is shown
at the output layer. Over time, words with a similar use and
distribution in the corpus developed similar representations
based on equations 5 and 6.

Comparing the network with the static input representation
and the network with the dynamic representation, training
performance of the network which used dynamic representa-
tions was better. However, the generalization performance on
the test set dropped from 84% to 79%. This can be explained
by the fact that the dynamic representation network gave the
learning algorithm more conceptual freedom. Therefore the
input representations were particularly adapted according to
the occurring distributions of syntactic category assignments
in the training set.

The dynamic representations perform better on the train-
ing set, the static representations on the test set. In spite of all
differences these percentages for the static and dynamic rep-
resentations are roughly in the same area. However, it is more
important to point out that the network with the dynamic rep-
resentations received much less knowledge since it did not
receive the knowledge about the static basic syntactic cate-
gories. Seen from this perspective the necessary tagging ef-
fort can be reduced by 50% while still getting a rather similar
performance.

Clustering the learned input representations

In order to examine the overall learning effect on the devel-
opment of the word representations we performed a principal
component analysis analysis on all vector representation of
the input layer. Figure 5 shows the distribution of the initial-
ized vector representations before learning has started. For
this visualization we used the first and second principal com-
ponent. The word representations are distributed fairly equal
in this initial state.

The state after 1000 learning epochs is shown in figure 5.
As we can see there is a clear tendency to form clusters and
this demonstrates the general effect of learning. Furthermore,
at this high level of abstraction of showing all vector rep-
resentations we can identify two major clouds. These two
clouds correspond to the major division between noun-related
knowledge and non-noun-related knowledge. That is, the first
cloud contains mainly nouns and pronouns like “wir” (En-
glish: we), while the second cloud contains other syntactic
categories. This main distinction seems to be useful for the
learning algorithm since nouns and pronouns occur very often
and they occur in similar contexts.
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Figure 5: Clustering after 1000 training steps

After we have shown the general learning effect at a higher
level of abstraction we now zoom in on a certain example part
in order to illustrate the learning effect for individual words.
When we analyzed the learned word representations in more
detail we found that the network had developed a distributed
representation of syntactic categories. A hierarchical cluster
analysis on the vectors of the word representation showed that
words which belonged to the same basic syntactic category
were clustered together. Figure 6 shows a small portion of
the hierarchical cluster tree. In this part conjunctions (“und”
“dass” “obwohl” are German conjunctions) are clustered to-
gether.

Discussion
Although many connectionist models use static lexicon rep-
resentations, there has been some previous work on dynamic
lexicon formation in connectionist natural language process-
ing (Pollack 1988; Dyer 1991; Miikkulainen 1993). There
are two main differences between our approach here and this
previous work. First, we focus on noisy real-world speech
(including various mistakes, etc) rather than well-formed sen-
tence schemata. Second, we use dynamic representations

e UNDSCHCOSZWARSASSO
UNDBCRCGRDIENS TAGENING

oo ~[[ UNOSCSCASDONNER STAGSNING
UNDSCICOSFREITAGSNING
1200 UNDSCSCOSDUSUSNG
; J| UNDSCSCGSDASSUSNG
L |— UNDSCSCGSIEDERSMENG
=1 UNDECENGSZWANZIGSTERSMING
“e UNDSCENGEVIERZIGSMENG
UNDSCINGSVIERZICEMING
600 UNDSCICGSICHSURNG
DASSSCSCOSDUSUSNG
(1) DASSSCICGADUSUSNG
— DASSSCICOSDASSUSNG
a1 ASSSCSOGSSIESUSNG
DASSSCICGAICHSUSNG
000 DASSSCSCGRICHIUSNG
- DASSSCSCASWIRSUSNG
s DASSSCICGIWIRSUSNG
DASSSCICOSWIRSUSNG
00 OBWOHLSCSCGSICHSUSNG
AL OBWOHLSCESGEDASSUSNG
LT ORWOHLSCICGEDASSUSNG
1800 BT 200 400 600 X

Figure 6: Part of hierarchical cluster analysis of the learned
word representations

only at the input layer and guide the network through the out-
put layers.

What have we learned from this? We found that reduc-
ing the constraints on the network by forming dynamic word
representations leads to a classification improvement for the
accuracy on the training set, but also to a deterioration on the
test set. The additional degrees of representational freedom
are responsible for this behavior. In most cases the dynamic
word representations are clustered according to their syntac-
tic basic categories. The networks developed distributed word
representations throughout all experiments. We did not find
evidence for localist encodings of word representations.

Another important point is that the network which has to
form dynamic representations received much less knowledge
to perform the classification task. While the static network re-
ceived both abstract and basic syntactic category knowledge,
the dynamic network received only knowledge about the ab-
stract syntactic categories. Therefore much less manual label-
ing work is necessary. However there is also a performance
drop for the test set of the network with the dynamic repre-
sentations. So we find a tradeoff here. If manual labeling is
reliably good, a network with static representations can out-
perform a network with dynamic representations. However,
if manual labeling i1s expensive or unreliable, a network with
dynamic representations with a slightly lower classification
accuracy might be a good choice, in particular for developing
computational models in a flexible manner.

One important aspect is the question whether manual la-
beling can be avoided using automatic word representation
formation. Our experiments suggest that automatic represen-
tation formation is possible for syntactic lexicon construction,
and the user has to provide less manually encoded knowledge.
In a similar manner, the assignment of categories for seman-
tics or pragmatics should be possible.

On the other hand, the dynamically learned representations
are particularly tuned for the particular task and therefore the
representations may not be easy to interpret. However, ad-
ditional means like hierarchical cluster analysis and principal
component analysis can assist the user to interpret the learned
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representations. In contrast, manually determined static lexi-
con representations can be interpreted naturally and new en-
tries can be defined easily, but manually determined represen-
tations may not reflect the exact task knowledge and they are
difficult to develop.

We have examined the possibility of learning syntactic rep-
resentations automatically within a larger real-world spoken
language analysis system. Although we do not claim in gen-
eral SCREEN to be a cognitively valid model of human lan-
guage processing in general, we think it is important for
building computational models to integrate as much cogni-
tively valid aspects of human language processing as possi-
ble. While we already focused on incremental processing,
robustness, as well as parallel syntactic and semantic pro-
cessing in previous work, here we examined dynamic word
representation formation. Using this motivation from cog-
nitive language processing and knowledge engineering, it is
not only possible to improve the coverage of a computational
model but also gain insights on certain aspects of cognitive
language understanding.
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