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Abstract

The significant impacts of climate change on extreme weather events have been widely demon-

strated in past decades. As the most expensive climate disaster, the drought and its risks under the

warming climate always attract people’s attention. However, huge uncertainties exist in climate

projections, mainly consisting of scenario uncertainty, model uncertainty, and internal variability.

Moreover, drought is more difficult to assess in climate datasets, due to its long duration per event,

relative to the length of a typical simulation. Meanwhile, since the infamous extreme drought of

the 1960s, the climate of the Northeastern United States (NEUS) has generally trended towards

warmer and wetter conditions. Nonetheless, there is mounting evidence that short-term droughts

will continue to pose a significant risk for this region. Therefore, there is a growing need for a

comprehensive framework with the most advanced climate techniques and datasets to investigate

the impacts of climate change on drought over NEUS.

In this thesis, firstly, a comprehensive drought feature-based evaluation system, equipped with

statistical hypothesis testing and Principal Feature Analysis, is put forward and is designed to

be easily used for any climate datasets. With its help, people can choose climate models with

fewer model uncertainties and biases in capturing droughts in the regions of interest. This system

is applied to three characteristically distinct regions in the conterminous US and across several

commonly employed climate datasets (CMIP5/6, LOCA, and CORDEX). As a result, insights

emerge into the underlying drivers of model bias in global climate models, regional climate models,

and statistically downscaled models.

Then to reduce the impacts of internal variability on drought projections, 7 large ensemble

(LE) models and a novel drought index are employed to examine the changing trends of drought

at different temporal scales. We find most LE models indicate the NEUS will experience a long-

term wetting trend with more “extremely wet” months, but also more frequent short-term extreme

droughts. These changes are associated with increasing precipitation, atmospheric water demand,

and climate variability. We also conclude that discrepant trends in precipitation and evapotranspi-

ration variability will lead to increasing anti-correlation of these variables, which is relevant to the
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intensification of rapidly developing drought – particularly in the spring season. These changes are

associated with an increase in evapotranspiration from plants, brought by an earlier emergence of

the growing season and denser vegetation.
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Chapter 1 Introduction

Droughts are among the most disastrous extreme weather events in human society, especially for

the agriculture and ecosystem, with the most severe droughts having economic impacts greater than

$10 billion dollars (Andreadis and Lettenmaier, 2006). Both historical observations and climate

predictions indicate that climate change is likely to increase the intensity and frequency of extreme

weather events such as droughts, floods, wildfires and heatwaves (Christian et al., 2021; Frumhoff

et al., 2007; Pendergrass et al., 2020; Wilhite, 2000). However, significant uncertainties persist

regarding droughts’ frequency and magnitude in a warming climate especially over mid-latitude

regions like Northeastern US (NEUS) (Hayhoe et al., 2007; Kharin et al., 2007; Pfahl et al., 2017).

Given the advances in climate modeling over the past two decades, there’s an increasing and unmet

need for understanding how will droughts especially extreme droughts respond to climate change.

The Northeastern U.S. (NEUS) is not only well-known for its dense population and thriv-

ing economy (US Bureau of Economic Analysis, 2016), but also for its humid and mild climate

(Frumhoff et al., 2007). Unlike drier regions of the country that often suffer from drought, the

abundant precipitation of the NEUS generally enables it to avoid prolonged and severe drought.

This has been especially true over the relatively wet period since the unprecedented and infamous

1960s drought, which has essential influence on local water management (Ford and Labosier, 2017;

Seager et al., 2012). But water resource managers will be expected to deal with several impending

challenges brought by the warming climate such as the increased risk of wildfire, heatwaves, and

drought (Frumhoff et al., 2007; Hayhoe et al., 2007). Also, historical data may not be sufficiently

reliable for future projections due to the loss of stationarity, more intense extreme weather events,

and enhanced climate variability (Armal et al., 2018; Milly et al., 2008; Stryker et al., 2018; Yu

et al., 2018). Consequently, there remains a need for high-quality climate information to inform

regional adaptation strategy (AghaKouchak et al., 2015; Milly et al., 2008).

At present, climate models are the primary methods for decision-makers to project climate
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change and its consequences (Frumhoff et al., 2007; Kharin et al., 2007; Wagener et al., 2010).

Thanks to their rapid development in past decades, both the resolution and accuracy of climate

models have been improved significantly; however, huge uncertainties still exist, primarily coming

from scenario uncertainty, model uncertainty and internal variability (Deser et al., 2012; Hawkins

and Sutton, 2009; Xie et al., 2015). The last two uncertainties account for most of the total uncer-

tainty in projections in the next few decades and are potentially reducible by advances in climate

science (Deser et al., 2012, 2020). This study aims at reducing the climate projection uncertainties

and analyzing the impacts of climate change on drought and hydro-meteorological conditions over

NEUS to provide extensive projections for residents and stakeholders. A corresponding framework

will be put forward for regional climate impact analysis. Namely, this study proposes to answer

the following three questions by solving respective tasks:

1. How well do earth system models capture the drought features? 2. How are the drought

features, especially the flash drought, projected to change in the future? 3. What are the potential

climate risks of the returned 1960s extreme drought under a warming climate?

Therefore, aiming at providing reliable regional climate projections, this thesis consists of three

major case studies. In Chapter 2, we put forward a comprehensive drought feature-based evaluation

system to select models good enough for drought projection to reduce the model uncertainties

and understand their biases. In Chapter 3, to sample both internal variability and structural

uncertainty, 7 large ensemble (LE) models are employed to answer the outstanding question – how

do the frequency and character of drought and flash drought in the NEUS change under a warming

climate? More importantly, answer the unsolved hot topic – what are the underlying drivers of flash

drought? In Chapter 4, we conducted the pseudo-global warming (PGW) experiment to simulate

the returned historical 1960s under climate warming and its potential climate risks.

2



Chapter 2 A Comprehensive Intermediate-Term

Drought Evaluation System and Eval-

uation of Climate Data Products

over the Conterminous United States

2.1 Introduction

Currently, climate models are the primary methods to project climate change and its impacts

on extreme weather events like drought (Frumhoff et al., 2007; Kharin et al., 2007; Wagener et al.,

2010). However, all models are known to possess certain biases which can contaminate simulation

results (Moon et al., 2018; Nasrollahi et al., 2015). Biases present in a single modeling system can

be quantified and mitigated through the use of an ensemble of global climate models (GCMs), such

as the multi-model ensemble featured in the Coupled Model Intercomparison Project phases 5 and

6 (CMIP5/6), and corresponding downscaled climate data products, such as the dynamical down-

scaled simulations from the Coordinated Regional Climate Downscaling Experiment (CORDEX)

or the statistically downscaled Localized Analogoues (LOCA) product. Nonetheless, there is signif-

icant value in understanding these biases in singular products, or across an ensemble, particularly

before projections are used for climate adaptation planning (Collier et al., 2018; Eyring et al., 2019;

Gleckler et al., 2008, 2016; Lee et al., 2018; Nguyen et al., 2017; Ukkola et al., 2018; Wagener et al.,

2010). However, repetitive and redundant evaluations across modeling centers can incur unneces-

sary efforts and increased costs. Thus comprehensive and robust evaluation systems (Eyring et al.,

2019; Gleckler et al., 2008, 2016; Lee et al., 2018) can reduce research costs and provide greater cer-

3



2.1. INTRODUCTION

tainty in the employ of climate models for understanding drought character and impacts, especially

when it comes to the large ensemble context (Deser et al., 2020).

With a patchwork of evaluation studies focusing on different products and different metrics,

there remains significant uncertainty as to which model data can be trusted for correctly represent-

ing drought intensity, frequency, and duration for their region of interest (Jagannathan et al., 2020;

Moon et al., 2018; Nasrollahi et al., 2015). In general, our capacity to evaluate drought depends on

the duration of the drought and the length of the available dataset. While large ensembles (Kay

et al., 2015) permit the assessment of multi-year droughts, individual CMIP5/6 models often only

provide single realizations. In this study, our evaluation suite is applied to datasets of 60 years

duration, but the model performance scores are shown to be relatively stable with as little as 30

years of data. With this in mind, this study proposes a system with four key novelties:

First, most past research has only focused on evaluating models using meteorological mean

fields such as mean precipitation and temperature (Koutroulis et al., 2016; Nguyen et al., 2017);

however, mean performance often does not necessarily correlate with model performance in the

extreme (Wehner et al., 2020). In the case of drought, impacts from drought are related to tem-

poral continuity features like consecutive duration which can’t be captured by mean fields. Thus

holistic metrics that are more comprehensive in capturing the features of each event are needed.

For this, drought indices like standardized precipitation index (SPI) are proposed to calculate and

straightforwardly employed for quantifying the character of droughts (Hayes et al., 2002; Svoboda

and Fuchs, 2016; Ukkola et al., 2018; Yihdego et al., 2019). Second, most drought evaluation

systems (Darand and Sohrabi, 2018; Orlowsky and Seneviratne, 2013; Teshome and Zhang, 2019)

rely on a handful of Expert Team on Climate Change Detection and Indices (ETCCDI) metrics

established by the World Meteorological Organization (WMO) and the World Climate Research

Program (WCRP). Given that ETCCDI metrics use daily-mean precipitation, their metrics (e.g.

consecutive dry days) capture features on a much shorter timescale than traditionally associated

with drought (Mishra and Singh, 2010; Wilhite and Glantz, 1985). Third, to determine a score

for a model’s overall performance, most evaluation systems have normalized these metrics using

a standard score or Min-Max Feature scaling (Collier et al., 2018; Koutroulis et al., 2016; Yang
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2.1. INTRODUCTION

et al., 2014). Others have evaluated models’ performance by assessing relative performance for

each kind of metric (Chen and Sun, 2015; Meher et al., 2017; Ukkola et al., 2018). However, a key

problem that arises in this case is that the scoring does not have an absolute optimum – the score

cannot convey whether a group of models are all terrible or all indistinguishable from observations.

So, herein we propose to use a normalization that emerges naturally from the theory of statistical

hypothesis testing. Namely, we normalize the value of each metric relative to the statistical signif-

icance of its null hypothesis (that is, the hypothesis that the model and observations come from

the same distribution or have the same mean value) at the 95% confidence level. This implies that

a score of 1 has the same meaning across metrics. Finally, to build a comprehensive evaluation

system which scores climate models’ consistency with historical simulations, we evaluate multiple

feature-specific metrics related to drought, including: monthly precipitation, Standardized Precip-

itation Index (SPI), seasonality, drought spatial coverage, drought duration, intensity, frequency

and probability of initiation/termination. And the overall performance of each model is illustrated

by the assembling of principal metrics detected by selected by Principal Feature Analysis (PFA).

This study focuses on meteorological droughts with temporal scale between seasonal and an-

nual (herein referred to as intermediate-term droughts). Although the term “intermediate-term

drought” is widely used in numerous studies of droughts (Bhuyan et al., 2017; Kolb et al., 2016;

Thomas et al., 2015; Vicente-Serrano et al., 2014; Wilhite, 2005), it has no strict definition. But

generally, it refers to the droughts that are quantified and detected by drought indices that operate

at time scales shorter than a year but longer than a month, especially the 6-month Standardized

Precipitation Index (SPI6) (Bhuyan et al., 2017; M. Svoboda and Wood, 2012; Thomas et al.,

2015; Vicente-Serrano et al., 2014; Wilhite, 2005). Intermediate-term drought tends to be a focus

of water managers for several reasons: First, following its original definition (McKee et al., 1993;

Wilhite, 2005), intermediate-term SPI (e.g. SPI6) retains advantages of both short-term and long-

term indices. Namely, it not only responds quickly to emerging drought conditions but also provides

greater stability and persistence for longer-term droughts; therefore, SPI6 is commonly employed in

the drought monitor and associated applications (Center, 2021; M. Svoboda and Wood, 2012; Wil-

hite, 2005). Secondly, although SPI is designed to measure only meteorological drought conditions
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2.1. INTRODUCTION

(Guttman, 1999; McKee et al., 1993), some studies (Center, 2021; M. Svoboda and Wood, 2012;

McKee et al., 1993; Svoboda and Fuchs, 2016) have shown that SPI can capture drought impacts

on water resource availability because it is closely related to accumulated precipitation. Namely,

soil moisture conditions (agriculture drought) respond to precipitation anomalies on a relatively

short scale, while surface runoff and reservoir storage (hydrologic drought) are moreso determined

by longer-term precipitation anomalies. Therefore, at intermediate timescales, SPI6 can potentially

capture the conditions related to agriculture and hydrologic droughts. This motivates its employ

in characterizing “model droughts” for water management agencies (Center, 2021; M. Svoboda and

Wood, 2012; Zargar et al., 2011). Thirdly, some previous studies have illustrated that there exists a

general wetting trend at longer timescales and increased frequency of short-term drought conditions

over many of the CONUS regions (Andreadis and Lettenmaier, 2006; Orlowsky and Seneviratne,

2013; Otkin et al., 2018; Seager et al., 2012; Taylor et al., 2013). However, large uncertainties still

persist when it comes to intermediate-term drought conditions (Frumhoff et al., 2007; Strzepek

et al., 2010). Therefore, in our present evaluation we focus on drought-feature metrics based on

intermediate-term drought (SPI6), although we note that shorter droughts (as could be captured

with SPI1 or SPI3) as well as multiyear droughts (SPI24 or SPI36) could also be employed in our

package.

In this study we propose an evaluation system for drought and apply this system to evaluate

simulated droughts in three characteristically distinct regions of the US in the CMIP5/6, CORDEX,

and LOCA datasets. The evaluation system aims to select excellent models with less model uncer-

tainties to project the features of drought and is subsequently employed to answer our motivating

questions: First, what are the regional and model-specific characteristics that are most relevant

for determining the quality of model-simulated drought? Second, when it comes to drought, does

the CMIP6 ensemble outperform its predecessor CMIP5? Third, does dynamical or statistical

downscaling provided robust added value in the representation of drought? And if so, how?

The study is structured as follows. Assessed datasets are described in section 2.2. The statistical

methods employed across the metrics suite are described briefly in section 2.3. Our proposed suite

of monthly-precipitation-based drought metrics are defined in section 2.4. Results and conclusions
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are then provided in sections 2.5 and 2.6, respectively.

2.2 Datasets

Following the requirements of SPI, monthly mean precipitation from four datasets below will

be used as input data and evaluated by our system.

2.2.1 Climate Prediction Center (CPC) unified gauge-based analysis precipita-

tion data

The CPC Unified Gauge-Based Analysis precipitation data is a component of the CPC Unified

Precipitation Project underway at NOAA Climate Prediction Center (CPC). The dataset covers

the period 1948-2014 with a spatial resolution of 0.25◦ (Chen et al., 2008; NOAA Physical Sciences

Laboratory, 2020; Xie et al., 2007, 2010). For this study, CPC is used as our observational dataset

and serves as the “real” values – hereafter whenever the text refers to “observational data” we are

referring to the CPC data.

2.2.2 The fifth and sixth phase of Coupled Model Intercomparison Project

(CMIP5/6) model data

The Coupled Model Intercomparison Project (CMIP) provides a framework for GCMs to produce

simulations for understanding climate change (Balaji et al., 2018; Eyring et al., 2016). As the

most advanced presently-available GCM ensemble, CMIP6 is expected to be frequently employed

for understanding future climate impacts. As such, it’s particularly important to understand the

biases and performance of its component models in capturing features of drought. The resolution

of each model simulation is determined by individual modeling centers, varying between 0.5° and

2.8°. Here 33 CMIP6 r1 ensembles are evaluated, which all have more than 60 years overlap with

CPC observed data. To understand CMIP6 performance relative to its predecessor (Knutti and

Sedláček, 2013; Taylor et al., 2012), 33 CMIP5 r1 ensembles are also evaluated.
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2.2.3 The North American Coordinated Regional Climate Downscaling Exper-

iment (NA-CORDEX) dynamical downscaled data

The NA-CORDEX dataset is produced using boundary conditions from global climate model sim-

ulations (CMIP5) to drive several regional climate models (RCMs) over North America. The sim-

ulations are from 1950-2100 with a spatial resolution of 0.22◦/25km or 0.44◦/50km (Giorgi et al.,

2012; Mearns, 2020). Here we use the raw CORDEX data, which doesn’t include bias correction,

to ascertain the added value from dynamical downscaling relative to the original CMIP5/6 data.

2.2.4 Localized Constructed Analogs (LOCA) statistical downscaling data

LOCA is a statistical downscaling technique that uses historical analogues to add fine-scale details

to global climate model simulations. The LOCA dataset includes 28 downscaled CMIP5 models

from 1950-2005 at a resolution of 0.0625◦ (Pierce et al., 2014). Bias correction is applied in LOCA

based on the Livneh observationally-based gridded product (Livneh et al., 2015).

2.2.5 The Watershed Boundary Dataset (WBD)

WBD is a highly-organized and seamless US national hydrologic units dataset describing watershed

boundaries across the Continental US (Survey and US Department of Agriculture, 2013). Gener-

ally, decisions on water management and policy are made at the watershed level. With this in

mind, our evaluation regions are based on the hydrological unit 2-digit level (HUC2) of the WBD.

These boundaries are used to subset models’ data and evaluate their performance in some typical

hydrological units with different meteorological and hydrologic conditions.

2.2.6 Data preprocessing

In our present study, the four climate model datasets described above are evaluated and compared

over three select hydrologic regions. In the context of simulated drought, we aim to determine

if CMIP6 outperforms its precursor, CMIP5, and ascertain whether or not dynamical downscaled

products perform better than their driver GCMs. Because one of our metrics (namely, fractional
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drought coverage) requires all compared datasets to have the same number of grid points and

hydrologic boundaries, in the evaluation performed in this study we interpolate all datasets onto

a 1° × 1° latitude-longitude grid using conservative interpolation (Zhuang et al., 2020). While a

common grid is required for the employ of our drought metrics package, the actual grid employed is

an input parameter. This particular grid is chosen as it represents an intermediate resolution among

available products. As most metrics employed here are based on regional fields, we expect that

the interpolation doesn’t actually have a significant impact on the evaluation results for any metric

except fractional drought coverage. To confirm this is the case we have conducted a sensitivity

analysis to common grid resolution in Supplement. Indeed we find that if we interpolate all datasets

onto a 0.22° or 0.44° grid (the resolution of the CORDEX ensemble), the evaluation produces total

scores with correlation between 0.90 to 0.94 (Fig. 2.24, 2.25, 2.26 and 2.27). Fractional drought

coverage does indeed produce worse scores at higher resolution, but scores that are in essentially

the same rank-order as the coarser evaluation.

2.2.7 Hydrologic regions

Although our drought evaluation could be easily conducted over all hydrologic regions fromWBD, in

the present study we focus on three characteristically distinct regions – the California Region (CA),

the Lower Mississippi Region (LM) and the New England Region (NE) (Fig. 2.1). These regions are

chosen because of their relatively distinct climatological and topographical characteristics, as well

as their potential vulnerability to drought. Specifically, the California Region is well known for its

pronounced intra- and inter-annual climatological variability (a consequence of its Mediterranean

climate), rough topography and substantial spatial heterogeneity, with hot deserts, humid coastline,

rugged highlands, and a flat central valley (Fig. 2.1). California has often suffered from droughts

and is projected to experience even worse drought conditions in the future (Ullrich et al., 2018;

Williams et al., 2015). As a part of the southeastern US, the Lower Mississippi Region includes parts

of Arkansas, Kentucky, Louisiana, Mississippi, Missouri, and Tennessee (Fig. 2.1) and is one of the

most productive and diverse agricultural regions in the US. It accounts for a quarter of the total US

cotton and two-thirds of the total US rice production (Committee et al., 2014; USDA, 2012) and
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has a humid subtropical climate with ample rainfall and a spatially and temporally homogeneous

climatology. However, it is also one of the most heavily irrigated land areas (7.1 million irrigated

acres) over the CONUS (USDA, 2020) and often experiences droughts that result in substantial

crop loss, typically driven by lower rainfall and higher temperatures occurring simultaneously over

the growing season (Melillo et al., 2014; Mo, 2011; US Army Corps of Engineers, 2013; USDA,

2012, 2020). The most well-known example of droughts in this region is the 1988-89 drought,

which even led to a stoppage of barge traffic over the lower Mississippi River (Changnon, 1989;

Trenberth and Guillemot, 1996; Trenberth et al., 1988). Finally, the New England Region is one

of the most populated and developed HUC2 regions in the US, accounting for about 20% of GDP

and population with only 5% of the land area (Hobbs, 2008; US Bureau of Economic Analysis,

2016) (Fig. 2.1). It has a humid continental climate with abundant precipitation evenly spread

throughout the year. However, there is significant spatial variation in precipitation between the

inland and coastal areas, driven by its rugged topography. Although the Northeastern US (NEUS)

is presently experiencing a wet period that has continued since the unprecedented 1960s drought

(Seager et al., 2012), it’s largely acknowledged that droughts are not things of the past for NEUS

(Hayhoe et al., 2007; Krakauer et al., 2019; Seager et al., 2012). In fact, several studies conclude

the risks of severe droughts for the NEUS remain, with increased likelihood of short-term droughts

under global warming (Frumhoff et al., 2007; Hayhoe et al., 2007; Krakauer et al., 2019). Overall,

we anticipate the performance and biases of climate models to depend on each region’s temporal and

spatial variability of precipitation, as well as their local geography. Therefore, these three regions

are selected to sample a spread of regional climatologies – large temporal and spatial variability over

mountainous topography (CA), small temporal and spatial variability over flat and even topography

(LM), and large spatial but small temporal variability over complex topography (NE).
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2.3 Statistical Methods

2.3.1 Scoring individual metrics

Standard statistical tests, including Kolmogorov-Smirnov (K-S) Test and Z Test (described in

Supplement) are used to derive quantitative measures of performance for various characteristics of

drought. These statistical tests also provide a means for absolute normalization of our performance

metrics: Our “score” for each metric is defined as the absolute ratio of each test’s statistic to

the critical value at 95% confidence level. As such, a score less than or equal to 1 indicates that

we cannot reject the null hypothesis at this level. On the other hand, if a score is larger than 1

there is evidence that this particular metric is significantly different from observations. Given that

scores are of approximately the same magnitude, this also means that scores convey comparable

information across metrics. In general, for continuous metrics we will use K-S Test to examine if

the model data has the same distribution as observed data. For discrete variables, we will use the

Z test to test if the model has the same mean value as observed data. And for those variables

involving proportion or probability, we will conduct one proportion Z test to see if model and

observed data have the same proportion/probability, with the assumption that the proportion or

probability derived from observational data is the real value.

2.3.2 Principal Feature Analysis (PFA)

Because of the multifaceted character of drought, multiple metrics are needed to capture all aspects

of model performance. However, metrics within the same category are highly correlated, and so it’s

necessary to select a subset of principal metrics so as to reduce redundancy in the total score calcu-

lation. In the context of dimension reduction, Principal Components Analysis (PCA) is commonly

used (Bryant and Yarnold, 1995); however, PCA yields a set of orthogonal vectors consisting of

the combination of original features instead of several selected original features. Therefore, here we

employ Principal Feature Analysis (PFA) to select a subset of metrics used to calculate the total

score.

PFA is a novel feature selection method based on PCA and the k-means unsupervised clustering
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algorithm used to select the p original features that are most independent and can best represent

the first q principal components produced by PCA (Lu et al., 2007; Song et al., 2010). To apply

this technique, we firstly standardize all the metrics’ scores and apply a PCA to see how many

principal components (q) are needed to explain 95% variance. By applying the k-means algorithm

with k = p, we cluster the first q principal components that explain 95% variance into p clusters.

Then we choose the original feature which is closest to the mean of each selected cluster as the

principal features. As suggested (Lu et al., 2007; Song et al., 2010), we set p = q + 1 because the

number of features should be slightly higher than the number of principal components to explain

the same variability.

2.3.3 Total Score

To better compare each model’s performance within the evaluation region, we also introduce a Total

Score which is defined as the sum of all principal metrics. By the reasonably performant model

will have metrics with individual scores between 0 to 2 (with 1 again corresponding to the 95%

confidence level). However, sometimes particularly strong disagreement arises and some metrics

produce scores that are larger than 2. Left unattended, such large metrics would dominate the

total score, and so we set an upper limit on the score of each metric of 2 in calculating the total

score and define the Total Score as:

⟨Total Score⟩ =
∑

all metrics i

min(⟨Score⟩i, 2). (2.1)

Under this modification, models with a significant deficiency in one metric can still achieve decent

performance in the total score if they have smaller scores in the other metrics; nonetheless, care

should be taken not to ignore such deficiencies as they may still be indicative of more severe issues

in the model’s treatment of drought. Also note that although a total score consisting of principal

metrics is recommended, users can still customize the total score by self-selecting features of drought

that they care about the most.
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2.4 Drought Metrics

The metrics discussed here are selected to capture a handful of meaningful quantities from data

that spans two dimensions in space and one in time. We expect the chosen metrics should only be

expected to produce reasonable scores with at least 30 years monthly precipitation as input to meet

the requirements of SPI and Central Limit Theorem (Supplement and (Guttman, 1999; Svoboda

and Fuchs, 2016; Svoboda et al., 2012)). These metrics do rely on the specification of a region over

which the evaluation takes place, which can (in essence) be any arbitrary shapefile of sufficient size

to ensure our statistics are robust. In the text that follows we refer to this as the evaluation region.

Generally, drought refers to a prolonged time period with abnormally low precipitation (me-

teorological drought) and a shortage of water (hydrological drought), usually varies from months

to years (Mishra and Singh, 2010; Wilhite and Glantz, 1985). In this study we focus specifically

on meteorological drought, since hydrological drought indicators such as soil moisture and runoff

are less frequently available and often inconsistently defined across models. For meteorological

droughts, the Standardized Precipitation Index (SPI) has been widely used as a drought indicator

to capture the drought’s beginning, end, frequency, intensity and probability at various time scales

(Hayes et al., 2002; McKee et al., 1993; Svoboda and Fuchs, 2016; Ukkola et al., 2018). Using the

SPI classification table (Table 2.1), drought magnitude can be easily assessed. Regional SPI and

gridpoint SPI are, respectively, calculated from regional mean precipitation and each gridpoint’s

precipitation via the Climate Indices Package (Adams, 2017). Because of the normalization, dry

months (SPI ≤ −1) refer to approximately 16% coverage over the whole time period (Hayes et al.,

2002; McKee et al., 1993; Yihdego et al., 2019).

Our 11 metrics have been placed into 6 categories associated with different characteristics of

drought. These categories and metrics are discussed in the following sections.

2.4.1 Monthly means

Monthly mean regional precipitation (A1. Mean Precip.) As precipitation is the most

relevant upstream driver of drought, it is important to determine if models capture the distribution
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Table 2.1: SPI Classification following Guttman (1999).

SPI Value Conditions Expected Frequency (Historical)

SPI = 3.09 Exceptionally Wet Once every 83.3 years
SPI ≥ 2 Extremely Wet Once every 3.66 years

2 ≥ SPI ≥ 1.5 Very Wet Once every 1.24 years
1.5 ≥ SPI ≥ 1 Moderately Wet Once every 6.3 months
1 ≥ SPI ≥ -1 Nearly Normal -

-1.5 ≤ SPI ≤ -1 Moderately Dry Once every 6.3 months
-2 ≤ SPI ≤ -1.5 Very Dry Once every 1.24 years

SPI ≤ -2 Extremely Dry Once every 3.66 years
SPI = -3.09 Exceptionally Dry Once every 83.3 years

of monthly mean precipitation correctly. To evaluate this, we apply the K-S test (Supplement 2.8.1)

to monthly regional precipitation (namely, the monthly mean precipitation of all grids’ within the

evaluation region) to evaluate if the comparative distributions of model data and observational

data.

Regional SPI6 (A2. Mean SPI6) Regional SPI6 is the SPI6 calculated by the regional monthly

mean 6 months’ accumulative precipitation in the evaluation region, and is representative of the

nature of intermediate term droughts. The model performance for this metric is again scored using

the K-S test (Supplement 2.8.1).

Regional SPI36 (A3. Mean SPI36) Regional SPI36 is also evaluated analogous to SPI6, using

the regional monthly mean 3-year accumulated precipitation in the evaluation region. This metric

is selected to evaluate the model’s performance at capturing longer-term droughts. Evaluation is

also conducted by K-S test (Supplement 2.8.1).

2.4.2 Seasonality

Regional precipitation at each month (B1. Season Precip.) An issue with the metrics in

category A is that they group all months into the same statistical sample and so cannot capture the

seasonality of precipitation. However, drought seasonality determines the intra-annual distribution

of drought, which is particularly important in regions of high climatic variability such as California.
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Here drought seasonality is assessed by applying the K-S Test to each month separately and using

the mean of the normalized score from each month to measure the model’s performance.

Regional long term monthly mean (accumulated seasonality) (B2. LTMM) The long

term monthly mean, a 12-month time series consisting of average precipitation in each month of the

year, is commonly used to describe the seasonality of precipitation and droughts. By normalizing

the LTMM by the total precipitation over the entire year, we obtain an accumulated fractional

contribution through the given month, analogous to a cumulative distribution function. This then

provides another means to test seasonality through calculation of the K-S test statistic for the

difference between the long term monthly mean of model and observational data. Unlike B1, this

metric focuses on the accumulated seasonality, which tends to emphasize the precipitation in the

middle of year (the growing season).

2.4.3 Spatial character

Fractional Drought Coverage (C1. Frac. Cover.) Each evaluation region typically contains

more than one grid point. Because of the variation in spatial characteristics of the domain, in-

cluding topography and land surface type, different grid points will also tend to have differences

in precipitation and susceptibility to dry conditions. Therefore, the fractional drought coverage

metric is intended to evaluate if the model can simulate the spatial distribution of drought within

a given region. Here, each grid point is deemed as dry when the SPI6 for that month is no larger

than -1 (as Table 2.1). We define the ratio of dry grids to total number of grids at each month as

the Fractional Drought Coverage:

⟨Fractional Drought Coverage⟩ = ⟨Number of grid points with SPI6 ≤ −1⟩
⟨Total number of grid points within the evaluation region⟩

(2.2)

The monthly dry grid ratio is then evaluated by the K-S Test statistic (Supplement 2.8.1) to assess

if model’s distribution is the same as observational data.
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2.4.4 Drought frequency

Proportion of dry months (D1. Dry Frac.). Using the definition of SPI (Table 2.1), we define

a dryness indicator via

⟨Dry month indicator⟩ =


1, if regional SPI6 ≤ −1

0, if regional SPI6 > −1

(2.3)

The proportion of dry months is then the number of dry months divided by the total number of

months:

⟨Proportion of dry months over all years⟩ = ⟨Number of months with regional SPI6 ≤ −1⟩
⟨Total number of months⟩

(2.4)

To determine the score for this metric, we use the one proportion Z test (Supplement 2.8.1).

Annual number of dry months (D2. Dry Count) In order to assess the interannual variabil-

ity of drought frequency, we define the annual number of dry months as the number of dry months

(equation 2.3) from each year. Because all models have more than 60 years data, and so meets

the criteria of the Central Limit Theorem, we calculate the Z test statistic (Supplement 2.8.1) to

evaluate and normalize this metric.

2.4.5 Drought intensity

Intensity from SPI6 (E1. Intensity) The drought intensity is defined as the regional SPI6

values over all months when SPI6 is no larger than -1. To test if model can produce the same

drought intensity distribution, we employ the K-S Test statistic (Supplement 2.8.1) to obtain the

normalized score for this metric.

2.4.6 Probability of drought

Probability of drought initiation (and average non-dry period duration) (F1. Prob.

Init.) The probability of drought initiation is defined as the probability that the following month is
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dry given the current month is not dry. This is connected to the average non-dry period duration

via

⟨Probability of drought initiation⟩

= P (⟨dry month⟩|⟨previous month is non-dry⟩)

=
⟨Number of dry months when the last month is non-dry⟩
⟨Total number of months when previous month is non-dry⟩

= ⟨Average non-dry period duration in months⟩−1. (2.5)

This connection between drought initiation and the duration of the non-dry period emerges nat-

urally if one treats each month as a sample from a geometric distribution. As is typically done

with proportions, to normalize the metric we apply the one proportion Z test to the non-drought

duration data.

Probability of drought termination (and average dry period duration) (F2. Prob.

Term.) We define the probability of drought termination as the probability that the following

month is not dry given the current month is dry:

⟨Probability of drought termination⟩

= P (⟨non-dry month⟩|⟨previous month is dry⟩)

=
⟨Number of non-dry months when the last month is dry⟩
⟨Total number of months when previous month is dry⟩

= ⟨Average drought duration in months⟩−1. (2.6)

This equation is analogous to the probability of drought initiation, again emerging naturally from

the geometric distribution. The metrics is also used to assess models’ ability in capturing average

drought duration. As with probability of drought initiation, we use the one proportion Z test to

normalize the model’s score.

Notably, the two metrics F1 and F2 are in essence derived from the transition probabilities of

a two-state Markov chain, with states corresponding to non-dry and dry conditions.
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2.4.7 Taylor Diagram and Taylor Score

In addition to the statistical metrics described above, we also compare our evaluation system

with a more traditional evaluation method. The Taylor diagram is a widely used mathematical

plot in earth model assessments that depicts correspondence between the model and observational

data using a mathematical property that relates the standard deviation, the Pearson correlation

coefficient and the root-mean-square error (RMSE) (Taylor, 2001). One way to quantify models’

performance on the Taylor diagram is by the Taylor score,

⟨Taylor Score⟩ = exp(−α(1−R)− β(σ + 1/σ − 2)) (2.7)

where α and β are scaling factors that are set to 1 (the default value) in this study, R is the Pearson

correlation between each gridpoint’s mean precipitation, and σ is the model’s normalized standard

deviation of each gridpoint’s mean precipitation (normalization is conducted by dividing this by

the standard deviation from the observational data). Notably, the Taylor score uses the mean

precipitation to measure performance but ignores temporal continuity (as we will see later). Unlike

our statistical scores above, a higher Taylor Score indicates better performance. In this study, we

rank all models from the best to the worst in the Taylor diagram and compare the results with our

evaluation system.

2.5 Results

2.5.1 Principal Metrics Employed

To maintain consistency among study regions, we apply PFA to the CMIP6 dataset over the entirety

of Continental US to select a set of principal metrics to apply analysis for all case evaluations.

These metrics and their total scores will then be our primary means to evaluate each dataset’s

performance.

PCA shows 6 principal components are needed to explain 95% variance (Fig. 2.15). To match

this level of variance, the PFA procedure gives a set of 7 principal metrics; as apparent from Fig.
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2.2, most principal metrics, have less than 0.6 correlations with each other which confirms the

reliability of PFA to select distinguish and significant metrics. Note that in Fig. 2.2, metrics within

one category are highly correlated partially because it’s over CONUS. And within each evaluation

region (like the California Region), metrics in one category are less correlated as shown by Fig.

2.16.

PFA’s identification of at least one metric from each category also confirms our natural intuition

on the independence of these metrics. In the following sections, we will evaluate the performance

of CMIP6, CORDEX and LOCA datasets over the California, the Lower Mississippi, and the New

England Region based on these 7 principal metrics and their total score. We conclude a model

“performs well” when its total score is less than the number of principal metrics, with a lower total

score generally indicative of better performance. In the result heatmaps, individual metric scores

less than 1, and total scores less than 7 are indicated in black font (and white font otherwise).

2.5.2 The validation of our evaluation system

In order to examine if our evaluation system can really distinguish the high-performance climate

models, here we evaluate the ECMWF Reanalysis v5 (ERA5) monthly precipitation (European

Centre for Medium-Range Weather Forecasts, 2020), which is the most advanced fifth genera-

tion ECMWF atmospheric reanalysis dataset, and processes numerous improvements and advances

(Hersbach, 2016; Hersbach et al., 2020; Hoffmann et al., 2019). From Fig. 2.3, it’s obvious that

the highly performant reanalysis data is also identified to be excellent to capture droughts’ features

over most CONUS hydrologic regions (14 out 18). Even if for those regions where ERA5 has total

scores larger than 7, the total scores are still relatively small (ranging from 7.07 to 8.32). This con-

firms that our system works well in capturing the drought features. Also, for these four hydrologic

regions, most CMIP6 models (32/33 for Great Basin Region and Upper Colorado Region, 30/33

for Souris-Red-Rainy Region, and 24/33 for Great Lakes Region) cannot get good total scores (less

than 7) too, which might be caused by the biases in CPC observed data, the deficiency to simulate

certain atmospheric circulation in climate models over these regions. More studies are needed to

explore the reasons why such a huge systematic discrepancy exists between CPC observed data and
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most climate models and reanalysis data.

2.5.3 CMIP6 Performance

Our first application of the metrics package focuses on CMIP6 model performance.

CMIP6 Performance over the California Region Performance for the CMIP6 suite of mod-

els in the California Region is tabulated in Fig. 2.4. From the principal metrics alone, 24 out of 33

CMIP6 models produce a total score less than 7, implying that more than a half CMIP6 models

perform well within this region. HadGEM3-GC31-LL is the best model, with the lowest total score

and with only one principal metric slightly larger than 1. CESM2-WACCM is also an impressive

model as it ranks 4 out of 33 and has all principal metrics less than 1.

Although overall CMIP6 performance is good, most models have a fractional drought coverage

score larger than 1. There are two main reasons why CMIP6 models tend to perform so poorly

on this metric over the California: First, the California Region is a region of significant spatial

variability due to its complex mountainous topography with steep altitude gradient (particularly

in the east of the state) which makes it hard to capture the spatial coverage of drought. As we can

see from Fig. 2.5 (g), CMIP6 tends to obtain much better performance at C1. Frac. Cover. over

low-lying regions without complex topography significantly (with p-value less than 0.03). Second,

compared with the resolution of the CPC observations, CMIP6 models have much coarser spatial

resolution that makes it particularly difficult to simulate the finer-scale geographic features present

in the CPC data. Examining CMIP6 models’ original resolution (defined by sqrt(dlon × dlat)

where dlon is the model’s longitudinal grid spacing and dlat is the latitudinal grid spacing) versus

fractional drought coverage scores, a weak but positive correlation emerges ranging from 0.14 to

0.28 (with p-value 0.12 to 0.44) in all 3 evaluation regions (Fig. 2.5 (a), (c), (e)). This indicates

the models with finer resolution tend to better capture the fractional drought coverage and agrees

with our hypothesis that coarse resolution is a limiting factor behind why CMIP6 cannot simulate

drought coverage well. Moreover, nearly all the CMIP6 model have scores less than 1 for their

proportion of dry months, probability of drought initiation and termination. One potential reason
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why CMIP6 models tend to simulate these temporally-related metrics well is because the significant

intra-annual and inter-annual climatological variability in California leads to a large normalization

factor in the Z test. Also the region’s overall dryness and strong seasonal contrast makes it easy

for models to correctly capture the probability of drought’s duration, initiation and termination.

Therefore, CMIP6 models are generally trustworthy when it comes to simulating these drought

features in the California Region, as opposed to spatial metrics like fractional drought coverage.

If we compare our results with the Taylor diagram which is based on each grid point’s mean

precipitation (Fig. 2.6 (a)), we can see there exists obvious differences between conclusions obtained

from the Taylor diagram and our system’s assessment. For example, BCC-ESM1 has a total score

of 5.16 and is ranked as 5 out of 33 in our system; however, it is assessed as a low-performing

model with rank 27 out of 33 in the Taylor diagram. This is mainly due to the low spatial standard

deviation of each grid point’s mean precipitation, which is captured by the precipitation mean

magnitude metrics in our framework (A1. Mean Precip., B1. Season Precip. and D1. Dry Frac.).

In Fig. 2.4, although BCC-ESM1 exhibits poor performance for two mean magnitude metrics (A1.

Mean Precip., B1. Season Precip.) and further shows poor performance at C1. Frac. Cover., it

shows better performance at the temporally related metrics (especially F1. Prob. Init. and F2.

Prob. Term.). This difference in scoring also confirms the value of our system, which can assess

models’ performance on drought’s temporal features. On the other hand, some models like GISS-

E2-1-H perform the worst in terms of both the Taylor diagram (Fig. 2.6 (a)) and under our metrics

(Fig. 2.4). The Taylor diagram metrics, namely spatial standard deviation (precipitation mean

magnitude) and spatial correlation of mean precipitation at each grid point, are not represented in

our system and so it makes sense that there is a not strong correlation (-0.392) between our total

score and the Taylor score (Fig. 2.5 (b)).

CMIP6 Performance over the Lower Mississippi Region Performance of the CMIP6 suite

of models in the Lower Mississippi region is tabulated in Fig. 2.7. As we mentioned, this region

is the flattest one over CONUS with small spatial variability of precipitation, thus it is perhaps

not surprising that the CMIP6 models capture fractional drought coverage much better over this
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relatively flat region than over California; 16 out of 33 models have a score less than 1 at fractional

drought coverage in this region, which is the best among all the hydrologic regions of the Continental

US. On the other hand, the Lower Mississippi Region has the most intense rainfall within the

Continental US, with much less climatological variability. Such a smooth precipitation seasonality

means it is difficult for CMIP6 to simulate drought frequency, duration and probability well. Thus

most CMIP6 models exhibit poor performance at D1. Dry Frac., F1. Prob. Init. and F2. Prob.

Term.. The poor performance among these metrics thus results in slightly worse performance across

the CMIP6 ensemble as compared with the California region, with 15 out of 33 models have total

scores less than 7. Comparing our total score to the Taylor diagram for this region, there still only

exists a weak correlation (-0.418) between our total score and the Taylor score (Fig 2.5 (d)).

CMIP6 Performance over the New England Region Performance for the CMIP6 suite of

models in the New England region is tabulated in Fig. 2.8. This weak temporal variability and

precipitation seasonality leads to poor performance for temporal features in the CMIP6 models

compared with the California Region (i.e. E1. Intensity and F2. Prob. Term.). The large spatial

variability of precipitation explains why CMIP6 models tend to perform poorly with respect to

spatial coverage (D1. Fractional Drought Coverage) as well. As a result, only 6 out of 33 models

have total scores less than 7. Again, there is only a weak correlation (-0.225) between our evaluation

results and the Taylor score (Fig. 2.5 (f)). We note that the poor performance for drought intensity

and fractional drought coverage may be affected by poor representation of tropical cyclones in GCMs

due their coarse resolution (Henderson-Sellers et al., 1998). Metrics to evaluate the representation

of tropical cyclones and their associated precipitation in model data remain under development

(Stansfield et al., 2020; Zarzycki et al., 2021), and can be employed to understand specific model

deficiencies in this regard.

2.5.4 CMIP5 Performance

To quantify any improvements in CMIP6 in capturing the drought, we evaluate the same number

(33) of CMIP5 models over all regions. As depicted in Fig. 2.17, 19 out of the 33 CMIP5 models
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perform well over the California Region, which is less than CMIP6 (with 24 out of 33). In general,

the improvements in CMIP6 are present in almost all principal metrics and total scores, with the

multi-model average total score decreasing from 7.20 to 6.66. These improvements are perhaps not

surprising given CMIP6 represents a later generation of models (Ahn et al., 2020; Eyring et al.,

2016; Li et al., 2020; Priestley et al., 2020). However, others have shown only relatively modest

improvement between CMIP5 and CMIP6 (Srivastava et al., 2020). The same process was also

applied to the Lower Mississippi Region (Fig. 2.18) and the New England Region (Fig. 2.19), with

the ratio of performant models increasing from 12/33 to 15/33 in LM but staying steady at 6/33

in NE. However, the means of total scores decreased from 8.08 to 7.59 over the LM Region and

9.25 to 8.76 over the NE Region. In fact, such improvements are present in nearly all hydrologic

regions, suggesting that CMIP6 is the preferred ensemble for study of drought features.

2.5.5 CORDEX Performance

We now turn our attention to the CORDEX dataset, consisting of downscaled simulations from

several regional climate models. In particular, we focus on using our evaluation system to under-

stand whether or not dynamical downscaling improves the quality of simulated drought compared

its driving model (CMIP5) and how these simulations compare to the CMIP6 ensemble.

CORDEX Performance over the California Region CORDEX performance is evaluated

with the same principal metrics mentioned above (Fig. 2.9). The most obvious finding is that

CORDEX achieves much better performance on fractional drought coverage within the Califor-

nia Region compared with CMIP6. There are 26/31 CORDEX models that perform well at C1.

Frac. Cover. (compared with CMIP6’s 7 out of 33 and CMIP5’s 5 out of 33). This is per-

haps unsurprising as the low CMIP5/6 model resolution is one main causes of poor performance

when it comes to spatial coverage of drought. Namely, the higher model resolution improves

how the model captures the spatial variability of precipitation over complex topography. Evi-

dence for this result also emerges from CORDEX products with different resolutions. For exam-

ple, MPI-M-MPI-ESM-MR.UQAM-CRCM5.22 is the downscaling product based on MPI-M-MPI-
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ESM-MR, downscaled by UQAM-CRCM5 with a spatial resolution of 0.22 °. Its performance

when it comes to fractional drought coverage (0.25) is better than MPI-M-MPI-ESM-MR.UQAM-

CRCM5.44’s (0.47), which uses the same two models but with a coarser resolution. Nonetheless,

3 products don’t follow this trend (CCCma-CanESM2.UQAM-CRCM5, UQAM-GEMatm-Can-

ESMsea.UQAM-CRCM5 and HadGEM2-ES.NCAR-WRF), because we interpolate all CORDEX

models onto the same 1° grid which masks the benefits of finer resolution products in capturing

spatial features. In the sensitivity analysis with different resolutions, if we interpolate all models

into a 0.22 or 0.44° grid (the original grid used in CORDEX), finer products always get better

performance in fractional drought coverage than their coarser analogues (see detailed information

at Supplement).

At first glance, there appears to be clear added benefit in using higher resolution products for

assessing the spatial character of drought/precipitation. However, we also find that for the other

principal metrics, CORDEX doesn’t provide improvement compared with CMIP5/6 – even yielding

worse performance for average drought intensity. For example, the mean average drought inten-

sity score from the CORDEX dataset is 2.20, which is larger than CMIP5’s (1.80) and CMIP6’s

(1.48). Further, while the difference in overall performance is much smaller, CMIP6 still tends to

produce the best overall performance with an average total score of 6.66, beating CMIP5 (7.20)

and CORDEX (6.83). Therefore, it seems that dynamical downscaling doesn’t provide significant

benefit in representation of drought features (and may even degrade some features’ representation).

The exception is in the fractional drought coverage, which does show some benefit from finer model

resolution (Supplement). Nonetheless the degradation of performance is perhaps unsurprising, as

droughts are primarily a product of synoptic-scale meteorological drivers which are largely pre-

scribed by the driving model. That is, this appears to be a combination of “garbage in, garbage

out” and systematic biases from regional downscaling at play (Giorgi and Mearns, 1999; Hall, 2014;

Pontoppidan et al., 2018; Rummukainen, 2010; Switanek et al., 2017). Notably, RCMs are known

to possess significant biases when it comes to precipitation over mountainous topography (Caldwell

et al., 2009; Maraun and Widmann, 2015); consequently we will see later that CORDEX perfor-

mance is much better over homogeneous and flat regions (e.g. the Lower Mississippi Region). Our
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sensitivity analysis using a common resolution grid at 0.44° and 0.22° resolution further supports

these findings (Supplement).

We do acknowledge that the mediocre overall performance of CORDEX compared with CMIP5

over the California Region may also be due to selection bias. That is, only a small subset of

the 33 CMIP5 models were chosen as CORDEX drivers, and these may not be representative of

the larger ensemble. However, according to Mearns (2020), the CMIP5 drivers used in CORDEX

were chosen because they were highly performant. To better understand if this is the case we

selected the 6 CMIP5 models used as drivers in CORDEX and tabulated their performance in

Fig. 2.9. Compared to their CMIP5 drivers we find that CORDEX products all have better

performance at fractional drought coverage. However, in most cases, CORDEX is actually worse

for the other principal metrics and total scores. For example, the average total score of the 6

CMIP5 drivers is 6.05, far smaller than the CORDEX’s (6.83) and the whole set of 33 CMIP5

models’ (7.20). This verifies that CORDEX CMIP5 drivers are performant models and supports

our claim that dynamical downscaling does not always improve the quality of simulated drought in

these models (Giorgi and Mearns, 1999; Hall, 2014; Pontoppidan et al., 2018; Rummukainen, 2010;

Switanek et al., 2017). Additionally, these results also appear to confirm that systematic biases

from dynamical downscaling do degrade the fidelity of simulated drought in regions of complex

terrain (Caldwell et al., 2009; Maraun and Widmann, 2015).

Using the Taylor diagram and score to evaluate CORDEX performance (Fig. 2.10 (a)) versus

its CMIP5 drivers’ performance (Fig. 2.10 (a)), we find analogous results to our evaluation. For

example, CORDEX models achieve better performance for spatial metrics (i.e. spatial correlation)

than their CMIP5 drivers as a result of their finer resolution. However, the mean magnitude metrics

(e.g. mean precipitation standard deviation) is not obviously improved and even degraded due to

systematic biases in the RCMs.

CORDEX Performance over the Lower Mississippi Region As in the California Region,

CORDEX simulations in the Lower Mississippi also provide significant improvement in the frac-

tional drought coverage; however, unlike California, here CORDEX also shows improvement for
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other metrics (Fig. 2.11). In this flat region the systematic biases from the RCMs are smaller

than the improvements that come from higher resolution, which also follows previous studies that

systematic biases in regional precipitation simulations are much larger over complex topography

(Caldwell et al., 2009; Maraun and Widmann, 2015). In total, 21 out of 31 CORDEX models

perform well here with a total score less than 7, compared with 15 out of 33 CMIP6 models and

12 out of 33 CMIP5 models. The improvement from the CORDEX models also holds against their

CMIP5 drivers (Fig. 2.11); except HadGEM2-ES, all other CORDEX models perform better than

their associated CMIP5 drivers. As CORDEX improves on the CMIP models for essentially all of

our metrics, it’s perhaps no surprise that these models also show improvements using the Taylor

diagram and score (Fig. 2.10 (b)) compared with CMIP6’s (Fig. 2.6 (b)) and their CMIP5 drivers

(Fig. 2.10 (b)).

CORDEX Performance over the New England Region The New England Region has

high spatial precipitation variability and complex terrain (mountains and coasts). In line with the

other two regions analyzed, we expect CORDEX to have better performance on fractional drought

coverage but worse performance for other metrics (Fig. 2.12). In general, CORDEX produces worse

performance for nearly all other metrics, with only 4 out of 31 CORDEX models having a total

score less than 7 (compared with 6 out of 33 CMIP5 and CMIP6 models). But perhaps surprisingly,

even for the fractional drought coverage, CORDEX doesn’t exhibit any obvious improvement.

This is likely because the New England Region has a more complex topography and precipitation

distribution, as well as coastal effects contributing to precipitation variability (Agel et al., 2015).

In the Taylor diagram (Fig. 2.10 (c)) we also see although CORDEX is evaluated to be better than

its CMIP5 drivers (Fig. 2.10 (c)), it still has clearly worse performance compared with CMIP6

(Fig. 2.6 (c)); CORDEX models generally have larger standard deviation and spatial correlation.

2.5.6 LOCA Performance

Although LOCA is also a downscaled product of CMIP5, LOCA has much finer resolutions (1/16

°) compared with CORDEX, and uses a statistical downscaling method based on local analogues
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combined with bias correction (Pierce et al., 2014). As such it is not surprising that LOCA’s

climatology tends to match the historical climate better than direct model simulations – nonetheless,

this does not necessarily mean that LOCA does a better job of capturing future change as it relies on

a functional relationship between coarse GCM and regional climate data that may not hold in the

future (i.e., the stationarity problem). Further, unlike dynamical downscaling, this method doesn’t

attempt to preserve relationships among different variables as variables are corrected independently

(Prasanna, 2018).

Over the California Region (Fig. 2.13), LOCA achieves much better performance than both

CMIP6 and CORDEX in not only the fractional drought coverage but across all principal met-

rics. All LOCA models actually produce total scores below 7, and the best LOCA model (IPSL-

CM5A-LR with 2.70 total score) also outperforms the best models from CORDEX (CCCma-

CanESM2.UQAM-CRCM5.22 with 4.67 total score), CMIP5 (MPI-ESM-MR with 4.35) and CMIP6

(HadGEM3-GC31-LL with 4.07 total score). There’s little doubt that LOCA captures the histor-

ical drought climatology better than these other products. Of course, its performance is strongly

related to the use of bias correction (Pierce et al., 2014), finer resolution and avoidance of biases

from direct simulation of physical processes.

From Fig. 2.14 (a), it’s apparent that when evaluated with the Taylor Diagram all models

are compressed to the same point and it’s impossible to distinguish performance. This problem

persists in other evaluation regions as well, and arises because LOCA uses statistical downscaling

and correction based on the observational data’s mean fields of precipitation; however, the Taylor

diagram only evaluates precipitation mean fields. Therefore, a Taylor diagram cannot be used for

distinguishing LOCA products – the results are effectively identical to comparing CPC with Livneh.

Results from LOCA are similar in the Lower Mississippi Region (Fig. 2.21 and Fig. 2.14 (b))

and the New England Region (Fig. 2.22 and Fig. 2.14 (c)).

2.6 Conclusions

To help with selecting datasets that are more likely to capture the features and process drivers

of intermediate-term drought, we have put forward a comprehensive evaluation framework that can
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be easily used within an arbitrary evaluation region, given more than 30 years monthly precipitation

data. In total, 11 metrics have been defined encapsulating drought’s monthly mean, seasonality,

spatial coverage, frequency, intensity, duration and probability. Principal Feature Analysis (PFA) is

suggested to select principal metrics which are significant and relatively independent; however users

can customize the metrics used to meet their needs. A framework based on statistical hypothesis

testing is used to normalize each metric and determine model performance. By employing this

framework to four climate datasets – CMIP5/6, CORDEX and LOCA over three characteristically

distinct hydrologic regions in CONUS, we have developed a better understanding of the sensitivity

of model performance to region and dataset. This enables us to provide guidance to stakeholders

and data users on the selection of suitable models, and furthers our understanding of how various

factors impact model biases in capturing the drought features.

Our evaluation system complements evaluation using ETCCDI drought indices and spatial

analysis of precipitation using the Taylor diagram and score. We evaluate a variety of drought

characteristics that depend only on monthly precipitation fields, including temporal characteristics

such as duration and occurrence/termination probability. We argue that these characteristics are

highly relevant for climate adaptation planning, and so should be included in any evaluation system.

Notably, the total scores from our proposed system are only weakly correlated with evaluation using

Taylor scores, with correlations between -0.12 to -0.42 across the three evaluation regions.

The system proposed here is a unique combination of statistical hypothesis testing, drought

indices, and a comprehensive multi-metric framework addressing various essential characters of

drought. It has several significant advantages:

1. The system can evaluate models’ performance on temporal continuity and probabilistic fea-

tures of drought which are often ignored in traditional evaluation. It can also be used on

arbitrarily large or small regions (data permitting), accounting for the fact that drought is

often widespread.

2. By using statistical hypothesis testing, the system builds a standard criteria to assess absolute

performance of models for each metric. Consequently, we can easily determine if one model
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produces drought that is similar to observational data and compare models’ performance

across multiple categories of models.

3. The system provides a method to analyze the performance of statistical downscaling prod-

ucts (like LOCA) while a traditional method like a Taylor score shows essentially identical

performance. This is because traditional methods usually only evaluate precipitation means

which are modified by the bias correction process.

4. The system is flexible depending on user need. Users can either use the principal metrics

selected by PFA, which can explain most variance of all metrics, or customize the metrics

used according to which drought features they need. And it’s easy to conduct evaluations

based on whatever regions (shapefile) or datasets (NetCDF) the users are interested in.

The major conclusions of this study are as follows:

• We have confirmed our system indeed assesses different drought features, and that the metrics

selected via PFA represent distinct measures of model performance. Using ERA5 data we

have validated that it can successfully identify that a high quality reanalysis product (ERA5)

captures drought features well over most hydrologic regions (14 out of 18). Among the four

remaining regions, the total scores are still reasonable (from 7.07 to 8.32).

• Evaluations of CMIP5/6 and CORDEX confirm our hypothesis that the performance of cli-

mate models in capturing regional drought features depends highly on the characteristics of

the evaluation regions. For example, 32 out of 33 CMIP6 models, and even the most advanced

reanalysis dataset (ERA5) cannot capture drought features well over the Great Basin Region

and Upper Colorado Region (that is, they get a total score no larger than 7).

• Climate models do an excellent job in simulating the temporal continuity features like drought

duration and probability over regions with a clear precipitation seasonality and strong pre-

cipitation variability like the California Region, but performance on temporal features is poor

over regions with weak temporal variability. Certainly, it’s intuitive that initiation and termi-

nation of drought is easier to simulate if precipitation follows a strong seasonality. Also, the
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significant intra-annual and inter-annual climatological variability can lead to a large normal-

ization factor in the statistical tests employed. On the other hand, CMIP5/6 models generally

better simulate the spatial features of droughts over flat regions with less spatial variability

since their typically coarse resolution (between 0.5° and 2.8° for CMIP6) prevents them from

capturing the finer spatial features represented in the CPC observational data (0.25°) over

the regions with complex topography and significant altitude gradients.

• Following recent advancements in climate modeling systems (Balaji et al., 2018; Eyring et al.,

2016), we also find CMIP6 outperforms its precursor – CMIP5 – in all regions and in nearly all

metrics employed. EC-Earth3 demonstrates particularly high performance and is identified

as the best CMIP6 model, with strong performance in all three evaluation regions. Overall,

even compared with CMIP5-based dynamical downscaling products (CORDEX), CMIP6 still

produced comparable or better performance in temporal continuity of droughts. With that

said, the coarser resolution of CMIP6 models produces worse performance in the fractional

drought coverage.

• For the uncorrected CORDEX runs we find that, compared with CMIP5/6, both our eval-

uation system and the Taylor diagram indicates that dynamical downscaling significantly

improves models’ performance on spatial metrics (i.e., spatial correlation in Taylor diagram

and fractional drought coverage). However, CORDEX models do not always exhibit better

performance on magnitude mean and temporal continuity metrics. And the degradation of

performance mainly exist over regions with completx topography and large latitude gradient.

Given that droughts are largely driven by synoptic meteorology, this problem appears to be,

at least in part, because of the “garbage in, garbage out” problem (Hall, 2014). CORDEX

models often produce worse performance on these metrics in regions with complex topography

and precipitation inhomogeneity due to systematic errors common in dynamical downscaling

systems over mountainous and coastal regions (Caldwell et al., 2009; Maraun and Widmann,

2015; Velasquez et al., 2019). But in the flattest hydrologic region examined – namely, the

Lower Mississippi region – the RCMs consistently exhibited overall improvements in their
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representation of droughts.

• The LOCA dataset produces far lower scores (better performance) across essentially all met-

rics. This is unsurprising as bias correction has been employed to match the historical clima-

tology. However, care still needs to be taken in the employ of LOCA for future projections,

as the statistical relationships employed in LOCA may not hold in the future and LOCA

doesn’t attempt to preserve physical relationship among different variables, as variables are

corrected independently (Prasanna, 2018).

• By examining the sensitivity of our results to different evaluation periods and common grid

spacing (Supplement), we find our conclusions are largely independent of these choices. As

long as the study period is larger than 30 years (the minimum requirement of Central Limit

Theorem and Standardized Precipitation Index), modifying the study period from 1948-2014

to 1970-1999 and 1970-2009 yields total scores that are highly correlated (0.88 and 0.93,

Supplement). Further, when interpolating CMIP6 and CORDEX to finer resolutions (0.22°or

0.44°) the total score correlations are similarly strong (0.90 to 0.94, Supplement).

Notably, the evaluation system proposed here only takes monthly precipitation as input data,

which may not account for the impacts of temperature and evapotranspiration on drought; there-

fore, future work will focus on expanding the suite of available metrics, and examining how this

system can be employed for long-term (multi-year) droughts.

The evaluation system proposed in this study is available as an open source software package

implemented in Python (https://github.com/Zeyu88/Drought_Metrics). Users can easily con-

duct evaluations by inputting monthly precipitation and observational data fields (NetCDF files)

along with the precipitation variable name, evaluation regions (shapefiles), principal metrics to be

calculated and the evaluation period. We recommended PFA be performed first over all evalua-

tion regions to select the principal metrics used. This package also provides a function to draw

Taylor diagrams for comparison. Prior to evaluation, both model and observational data must be

interpolated to the same resolution (provided by our package).
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2.8 Supplements

Fig. 2.15 is the number of principal components versus variance explained. In this paper, we try

to use principal metrics selected by PFA that explain 95% of the variance. Therefore, as indicated

by Fig. 2.15, we need 6 principal components to capture this level of variance. Following Lu

et al. (2007); Song et al. (2010), we would use 7 principal features because the number of principal

features should be slightly higher than the number of principal components needed to explain

the same variability. Fig. 2.16 is the cross-correlation heatmap of all metrics over the California

Region from CMIP6 models. We can see that within each category, metrics are highly correlated.

But across different categories, metrics are relatively independent. Notably, the principal metrics

selected by PFA are from different unique categories, which further confirms that our metrics indeed

capture different features of drought. Fig. 2.17 - 2.19 depict the principal metrics and total score

from the CMIP5 datasets over the three evaluation regions. Fig. 2.20 is the Taylor diagram of

CMIP5 datasets over three hydrologic regions. Fig. 2.21 and 2.22 are the principal metrics and

total score from LOCA datasets over the Lower Mississippi Region and the New England Region.

2.8.1 Statistical hypothesis testing

Kolmogorov-Smirnov (K-S) Test

The two-sample K-S test is employed in our analysis for assessing differences between two cumulative

distribution functions (CDFs). The K-S Test is one of the most useful and commonly employed

non-parameteric hypothesis tests to determine if two samples (here one is from model and the

other from observations) have the same empirical distribution (Brands et al., 2013). Its statistic is
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defined by

Dn,m = sup
x

|F1,n(x)− F2,m(x)|, (2.8)

where Dn,m is the K-S Test statistic, sup is the supremum function, and F1,n(x) and F2,m(x) are

the empirical distribution functions of the model and the observed data, respectively.

The K-S test indicates that there is evidence against the null hypothesis (namely, that the two

samples are drawn from the same distribution) if

Dn,m > c(α)

√
n+m

n ·m
, (2.9)

where n and m are the number of samples from the model and observational data, and c(α) is 1.358

at the 95% confidence level. Thus we calculate the normalized score by equation

Score =
Dn,m

c(α)
√

n+m
n·m

. (2.10)

Thus if the score is greater than 1, this is the same as saying there is evidence that the null

hypothesis does not hold, which may indicate poor model performance.

Z test

The Z test is a hypothesis test used to determine if two normally distributed sample populations

share the same mean. Although many of our metrics are not normally distributed, the Z test

may nonetheless be employed if the sample size is much larger than 30 (as per the Central Limit

Theorem) (Islam, 2018; Pollard, 1982). Due to the relatively long time coverage (more than 60

years) of climate models and CPC observed data, this is generally not an issue for the datasets

examined in this paper. Nonetheless, care should be taken if the metrics in this paper are employed

on datasets with fewer samples.

Here we use the one proportion Z test (equation 2.11) and two sample Z test (equation 2.12)

separately for different situations. The one proportion test is used to normalize the probability

related metrics such as the probability of drought initiation and termination with the null hypothesis
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that model and observational data have the identical proportions or probability. The two sample

Z test is used with the null hypothesis that observe and test data have the same mean values.

The equation governing the one proportion Z test is

Z =
|p1 − p2|√

p1 × (1− p1)(
1
n1

+ 1
n2
)
, (2.11)

where p1 is the proportion of samples in model data (i.e. number of events divided by number of

samples), p2 is the proportion of samples in the observational data, and n1 and n2 are the sample

sizes of the model and observational data. The equation governing the two sample Z test is

Z =
|x̄1 − x̄2|√

σ12/n1 + σ22/n2

. (2.12)

where x̄1 and x̄2 are the mean value of the metrics from model and observations, and σ1 and σ2

are the computed standard deviations of the metrics from model and observations. In both cases

the score is calculated as

Score =
Z

Zcrit
. (2.13)

where Zcrit is the critical value of Z test and its value at 95% confidence level is 1.96. Therefore,

if the Z Score is large than 1.96, there is evidence to suggest the model and observations have

different means or probability, indicating that the model is in disagreement with observations. On

the other hand, if the normalized score is less than 1, we can’t reject the possibility that model and

observations have the same means or probability, and so the model is scored more highly.

2.8.2 Stanardized Precipitation Index (SPI) Calculation

SPI is calculated in accordance with Guttman (1999); McKee et al. (1993). The parameters of

gamma distribution are calculated separately for each month and then the resulting distribution is

employed to transform the accumulated precipitation to be normally distributed. To do so we first

compute ith accumulated precipitation (Pn,i,k) at month k using the ith monthly mean precipitation
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(Pi,k) via

Pn,i,k =
i∑

i=i−n

Pi,k. (2.14)

Since the non-zero Pn,i,k is nearly Gamma distributed at each month, we will transform month k

’s Pn,i,k to be normally distributed using the transform as following and calculate the probability

of non-zero values (Pn,i,k,nonzero) and zero values (Pn,i,k,zero) separately

⟨Probabilityzero,k⟩ =
⟨Number of samples with Pn,i,k ≤ 0⟩
⟨Total number of samples of Pn,i,k⟩

(2.15)

⟨Pn,i,nonzero,k⟩ =


Pn,i,k, if Pn,i,k > 0

NaN, if Pn,i,k ≤ 0

(2.16)

ak = logµk − logPn,i,nonzero,k, α = (1 +
√
1 + 4× ak/3)/(4× ak) βk = µk/αk (2.17)

Probabilityn,i,k,gamma = cdfgamma(Pn,i,k,nonzero, αk, βk) (2.18)

⟨Probabilityn,i,k⟩

=


Probabilityk,zero + ((1− Probabilityk,zero)× Probabilityn,i,k,gamma, if Pn,i,k > 0

Probabilityk,zero, if Pn,i,k ≤ 0

(2.19)

SPIn,i,k = ppfnormal(Probabilityn,i,k) (2.20)

where µk and σk are the mean value and standard deviation of Pn,i,k,nonzero at month k from

the model or observational data, αk and βk are factors in Gamma distribution at month k,
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logPn,i,k,nonzero is the mean of logPn,i,k,nonzero, Probabilityn,i,k,gamma is the probability of Pn,i,k,nonzero

under the Gamma distribution, Probabilityk,zero is the probability of zero values, Probabilityn,i,k

is the probability of all samples (including non-zero and zero values) at month k, cdfgamma is the

cumulative Gamma distribution function, ppfnormal is percent point function (inverse cdf) of the

Normal distribution, SPIn,i,k is the ith SPIn value at k month. In this paper, we use SPI6 and

SPI36 for capturing intermediate- and long-term meteorological droughts.

2.8.3 Sensitivity analysis of total score to study period

To confirm the period used here (1948-2014) is sufficient to evaluate models’ quality and perfor-

mance on simulating drought, we evaluated model performance using two shorter time periods: the

30-year period from 1970-1999, the 40-year period from 1970-2009, and the 50-year period from

1960-2009. By comparing all models’ total scores within California Region for each period (Fig.

2.23) we see that our evaluation scores are largely stable with more than 30 years of data. Model

scores are highly correlated among evaluation periods (between 0.88 and 0.93), with correlations

that increase with the duration of overlap. However, we also see that models tend to worsen uni-

formly over longer time periods, attributed to the short period (1970-1999) being relatively wet in

California (1.77 mm/day on average). However, both extended periods 2000-2014 and 1948-1969

contain extreme droughts with much lower mean precipitation (1.57 and 1.68 mm/day). These

prolonged dry periods skew the statistics towards dry conditions, which is less frequently simulated

in the GCMs. Nonetheless, 30 years of data appears to be sufficient to roughly assess the model’s

ability to simulate the multi-month droughts modeled with SPI6.

2.8.4 Sensitivity analysis of model performance to common grid resolution

By construction, the fractional drought coverage metric requires that all compared datasets must

have the same number of grid points and the same hydrologic boundaries. To enable comparison

between data products across scales, we interpolate all datasets onto a 1° grid. Considering all of our

metrics are computed at the regional scale, except for fractional drought coverage, we anticipate that

interpolation will not significantly impact the evaluation results and our conclusions. To confirm this
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is the case we conduct a sensitivity analysis of common interpolation grids and model performance.

Here both CMIP6 and CORDEX models are interpolated onto 0.44° and 0.22° grids (the resolutions

employed in the original CORDEX datasets) to assess the effect on model performance. The

results presented here are from the California Region, but the results of other hydrologic regions

are analogous.

CMIP6 over the California Region

CMIP6 interpolated to a 0.44° grid From Fig. 2.24 (as compared with Fig. 4), it’s apparent

that the different common grids have very small impacts on the total scores and most principal

metrics. The correlation between each model’s total score is 0.94 with only small deviations in

the magnitude of the score and resultant ranking. However, all CMIP6 models’ performance for

fractional drought coverage does universally deteriorate (with all models producing scores larger

than 2) if we interpolate CMIP6 into a 0.44° grid. This is perhaps not unexpected because of the

crude nature of the interpolation performed; an interpolation method that respected the underlying

spatial features of the region should be employed if the model is taken to high resolution.

CMIP6 interpolated to a 0.22° grid Analogous results are found if we instead interpolate

CMIP6 to a 0.22° grid (Fig. 2.25). Notably, the correlation between each model’s total score is still

high (0.92) which again demonstrates our evaluation is stable to the resolution of the common grid.

Notably, the fractional drought coverage scores are poor for all CMIP6 models, which indicates this

simple interpolation scheme applied to CMIP6 data does not capture the spatial features at fine

spatial scale.

CMIP6 performance with different interpolation resolution

From Fig. 2.26, we can directly see that the total scores are not sensitive to the interpolation

resolution used but fractional drought coverage will degrade because of poor representation of the

underlying spatial features.
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2.8.5 CORDEX over the California Region

The other concern related to the employ of a common 1° grid is that such a relatively coarse

grid might lead to degraded performance for high-resolution dynamical downscaling products

(CORDEX). Therefore we also interpolate CORDEX data onto 0.44° and 0.22° grids (the two

resolutions employed in the original CORDEX datasets) to examine if the finer common grids will

impact our conclusions regarding CORDEX.

CORDEX interpolated to a 0.44° grid

From Fig. 2.27, we can see that, compared with Fig. 9, the impacts from different common grids

are small for most principal metrics and the total score, which is unsurprising since most principal

metrics describe features at the region scale. When CORDEX models are interpolated into a 0.44°

grid, the range of total scores only changes from [4.67, 9.68] to [4.67, 9.69]. For each model, the

total score also does not change significantly, and the correlation between each model’s total score

is 0.93. Thus we claim our evaluation methodology is stable and model performance of CORDEX

models is largely unchanged at coarser resolution. We also find that if we interpolate CORDEX

towards a finer resolution, some advantage is seen in fractional drought coverage for CORDEX

models with finer resolution (0.22°). Again, this doesn’t mean that COREDEX model with finer

original resolution always outperform the coarser ones in other metrics and their total scores (Giorgi

and Mearns, 1999; Hall, 2014; Pontoppidan et al., 2018; Rummukainen, 2010; Switanek et al., 2017).

Regardless of the resolution, these models are further subject to well-documented biases in RCMs

when it comes to precipitation over mountainous topography (Caldwell et al., 2009; Maraun and

Widmann, 2015).

CORDEX interpolated to a 0.22° grid

The same results still emerge if we interpolate CORDEX to a 0.22° grid (Fig. 2.28). Namely, total

score changes little overall. Again the correlation between each model’s total score is still very large

(0.90), which again provides evidence supporting the choice of 1° grid for our combined analysis.
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As with the CMIP6 models, we notice that when interpolating to finer grids, CORDEX models

tend to produce a worse score in fractional drought coverage.

CORDEX performance with different interpolation resolution

Fig. 2.29 supports our findings that model performance is stable to interpolation to different

common grids, and the observation that fractional drought coverage scores do improve when models

are interpolated into a coarser resolution. This supports the robustness of our conclusions in this

study, and suggests that poor CORDEX model performance is more likely attributed to their

driving models and internal biases (Giorgi and Mearns, 1999; Hall, 2014; Pontoppidan et al., 2018;

Rummukainen, 2010; Switanek et al., 2017).
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Figure 2.2: Cross-correlation heatmap of all metrics calculated over the continental United States
from CMIP6 models (bold metrics are principal metrics selected by Principal Feature Analysis).

41



2.8. SUPPLEMENTS

A1. M
ean Precip.

B1. Season Precip.

C1. Frac. Cover.

D1. Dry Frac.

E1. Intensity

F1. Prob. Init.

F2. Prob. Term
.

Total Score

Tennessee Region

California Region

Lower Colorado Region

Lower Mississippi Region

South Atlantic-Gulf Region

Arkansas-White-Red Region

Pacific Northwest Region

Texas-Gulf Region

Mid Atlantic Region

New England Region

Ohio Region

Great Basin Region

Rio Grande Region

Upper Mississippi Region

Missouri Region

Great Lakes Region

Upper Colorado Region

Souris-Red-Rainy Region

0.30 0.38 0.68 0.72 0.72 0.06 0.45 3.32

0.75 0.43 0.58 0.42 0.84 0.37 0.07 3.45

0.56 0.47 0.96 0.44 0.84 0.12 0.19 3.58

0.77 0.48 0.60 0.22 0.97 0.28 0.46 3.79

1.13 0.46 0.53 0.73 0.56 0.41 0.02 3.83

0.58 0.51 1.24 0.40 0.92 0.35 0.23 4.23

0.75 0.49 1.77 0.32 1.06 0.18 0.03 4.60

0.49 0.45 1.04 0.57 1.27 0.61 0.38 4.81

0.62 0.41 0.89 1.03 1.20 0.47 0.25 4.86

0.64 0.33 1.13 0.88 1.55 0.64 0.06 5.23

0.98 0.46 2.04 0.57 1.16 0.56 0.25 5.97

1.18 0.59 1.64 0.42 1.82 0.47 0.24 6.37

0.77 0.52 1.60 0.58 1.60 0.80 0.67 6.55

0.86 0.55 1.51 1.34 1.26 0.28 0.77 6.56

1.35 0.86 1.38 1.40 1.21 0.78 0.09 7.07

1.58 0.73 2.75 1.19 1.33 0.86 0.08 7.77

1.63 0.69 2.32 1.43 1.21 0.52 0.55 8.04

1.90 0.91 2.09 1.40 1.12 0.63 0.37 8.32

4

5

6

7

8

To
ta

l S
co

re
0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Pr
in

cip
al

 M
et

ric
s

Figure 2.3: Principal metrics and total score of ERA5 reanalysis data over all eighteen hydrologic
regions over CONUS (the performance is identified as good when individual metric scores less than
1, and total scores less than 7 are indicated in black font (and white font otherwise)).
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Figure 2.4: Principal metrics and total score of CMIP6 datasets over the California Region (the
performance is identfiied as good when individual metric scores less than 1, and total scores less
than 7 are indicated in black font (and white font otherwise)).
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(g). All CMIP6 models' average C1. Frac. Cover. with Regional Mean Elevation over all hydrologic regions

Figure 2.5: Scatter plots where correlations appear between model’s and region’s characteristics
and evaluation results. (a). Each CMIP6 model’s C1. Frac. Cover. score versus its original
resolution in the California Region, (b). Each CMIP6 model’s total score versus Taylor score in
the California Region, (c). Each CMIP6 model’s C1. Frac. Cover. versus its original resolution
in the Lower Mississippi Region, (d). Each CMIP6 model’s total score versus Taylor score in the
Lower Mississippi Region, (e). Each CMIP6 model’s C1. Frac. Cover. score versus its original
resolution in the New England Region, (f). Each CMIP6 model’s total score versus Taylor score
in the New England Region, (g). The average scores of all CMIP6 models’ C1.Frac. Cover. scores
versus evaluation region’s elevation mean over all eighteen CONUS hydrologic regions
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Figure 2.6: Taylor diagram of CMIP6 datasets over three hydrologic regions, which is based on
each grid point’s monthly mean precipitation. Models are labeled starting from 1 based on their
Taylor scores from the highest to the lowest; so the index 1 corresponds to the model with highest
Taylor score and best performance identified by Taylor diagram. (a). Over the California Region.
(b). Over the Lower Mississippi Region. (c). Over the New England Region.
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Figure 2.7: Principal metrics and total score of CMIP6 datasets over the Lower Mississippi Region
(the performance is identfiied as good when individual metric scores less than 1, and total scores
less than 7 are indicated in black font (and white font otherwise)).
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B1. Season Precip.
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Figure 2.8: Principal metrics and total score of CMIP6 datasets over the New England Region (the
performance is identfiied as good when individual metric scores less than 1, and total scores less
than 7 are indicated in black font (and white font otherwise)).
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Figure 2.9: Principal metrics and total score of CORDEX datasets and CMIP5 drivers over the
California Region (the performance is identfiied as good when individual metric scores less than 1,
and total scores less than 7 are indicated in black font (and white font otherwise)).
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2.8. SUPPLEMENTS

Figure 2.10: Taylor diagram of CORDEX datasets and their drivers over the three hydrologic
regions (CMIP5 drivers are bolder). (a). Over the California Region. (b). Over the Lower
Mississippi Region. (c). Over the New England Region.
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Figure 2.11: Principal metrics and total score of CORDEX datasets and CMIP5 drivers over the
Lower Mississippi Region (the performance is identfiied as good when individual metric scores less
than 1, and total scores less than 7 are indicated in black font (and white font otherwise)).
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Figure 2.12: Principal metrics and total score of datasets and CMIP5 drivers over the New England
Region (the performance is identfiied as good when individual metric scores less than 1, and total
scores less than 7 are indicated in black font (and white font otherwise)).
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Figure 2.13: Principal metrics and total score of LOCA datasets over the California Region (the
performance is identfiied as good when individual metric scores less than 1, and total scores less
than 7 are indicated in black font (and white font otherwise)).
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Figure 2.14: Taylor diagram of LOCA datasets over three hydrologic regions. (a). Over the
California Region. (b). Over the Lower Mississippi Region. (c). Over the New England Region.
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Figure 2.15: The number of principal components versus variance explained (the red dash line
indicates 95% cumulative variance explained).
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Figure 2.16: Cross-correlation heatmap of all metrics over the California Region from CMIP6
models (bold metrics are principal metrics selected by Principal Feature Analysis).
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Figure 2.17: Principal metrics and total score from the CMIP5 dataset over the California Region
(individual metric scores less than 1, and total scores less than 7 are indicated in black font, while
scores not meeting this criteria are indicated in white).
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Figure 2.18: Principal metrics and total score from the CMIP5 dataset over the Lower Mississippi
Region.
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Figure 2.19: Principal metrics and total score from the CMIP5 dataset over the New England
Region.
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Figure 2.20: Taylor diagram of CMIP5 datasets over three hydrologic regions. (a). Over the
California Region. (b). Over the Lower Mississippi Region. (c). Over the New England Region.
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Figure 2.21: Principal metrics and total score from LOCA datasets over the Lower Mississippi
Region.
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Figure 2.22: Principal metrics and total score from LOCA datasets over the New England Region.
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Figure 2.23: Total score of CMIP6 over the California Region during different time periods (the
number in bracket indicates each model’s rank of the total score, 1 represents the best one).
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Figure 2.24: Principal metrics and total score of CMIP6 datasets (interpolated to a 0.44° grid) over
the California Region.
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Figure 2.25: Principal metrics and total score of CMIP6 datasets (interpolated to a 0.22° grid) over
the California Region.
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Figure 2.26: Total score and fractional drought coverage of CMIP6 datasets with different interpo-
lation resolution over the California Region (the number in bracket indicates each model’s rank of
the total score, 1 represents the best one).
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Figure 2.27: Principal metrics and total score of CORDEX datasets (interpolated to a 0.44° grid)
over the California Region.
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Figure 2.28: Principal metrics and total score of CORDEX datasets (interpolated to a 0.22° grid)
over the California Region.

67



2.8. SUPPLEMENTS

5

6

7

8

9

To
ta

l S
co

re

0.22 0.44 1
Resolution (degree)

0.5

1.0

1.5

2.0

2.5

3.0

C1
. F

ra
c.

 C
ov

er
.

CCCma-CanESM2.CCCma-CanRCM4.22 (19)
CCCma-CanESM2.CCCma-CanRCM4.44 (22)
CCCma-CanESM2.OURANOS-CRCM5.22 (7)
CCCma-CanESM2.SMHI-RCA4.44 (11)
CCCma-CanESM2.UQAM-CRCM5.22 (1)
CCCma-CanESM2.UQAM-CRCM5.44 (2)
CNRM-CERFACS-CNRM-CM5.OURANOS-CRCM5.22 (24)
GFDL-ESM2M.ISU-RegCM4.22 (30)
GFDL-ESM2M.ISU-RegCM4.44 (25)
GFDL-ESM2M.NCAR-WRF.22 (27)
GFDL-ESM2M.NCAR-WRF.44 (26)

HadGEM2-ES.ISU-RegCM4.22 (10)
HadGEM2-ES.ISU-RegCM4.44 (6)
HadGEM2-ES.NCAR-WRF.22 (31)
HadGEM2-ES.NCAR-WRF.44 (28)
ICHEC-EC-EARTH.DMI-HIRHAM5.44 (17)
ICHEC-EC-EARTH.SMHI-RCA4.44 (14)
MPI-ESM-LR.NCAR-RegCM4.22 (23)
MPI-ESM-LR.NCAR-RegCM4.44 (16)
MPI-ESM-LR.UA-WRF.22 (20)
MPI-ESM-LR.UA-WRF.44 (13)

MPI-M-MPI-ESM-LR.OURANOS-CRCM5.22 (21)
MPI-M-MPI-ESM-LR.UQAM-CRCM5.22 (12)
MPI-M-MPI-ESM-LR.UQAM-CRCM5.44 (18)
MPI-M-MPI-ESM-MR.UQAM-CRCM5.22 (9)
MPI-M-MPI-ESM-MR.UQAM-CRCM5.44 (8)
NOAA-GFDL-GFDL-ESM2M.OURANOS-CRCM5.22 (29)
UQAM-GEMatm-Can-ESMsea.UQAM-CRCM5.22 (15)
UQAM-GEMatm-Can-ESMsea.UQAM-CRCM5.44 (3)
UQAM-GEMatm-MPI-ESMsea.UQAM-CRCM5.22 (4)
UQAM-GEMatm-MPI-ESMsea.UQAM-CRCM5.44 (5)

Figure 2.29: Total score and fractional drought coverage of CORDEX datasets with different in-
terpolation resolution over the California Region. The number in bracket indicates each model’s
rank of the total score with 1 representing the best model under this metric.
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Chapter 3 Changing trends in drought pat-

terns over the Northeastern U.S.

using multiple large ensemble datasets

3.1 Introduction

Although a general wetting trend is projected to continue over NEUS due to increases in pre-

cipitation, risk from extremely dry conditions does not disappear and short-term extreme droughts

are even projected to become more frequent in the future (Frumhoff et al., 2007; Hayhoe et al.,

2007; Krakauer et al., 2019). Evidence has also emerged that flash droughts, characterized by

short-term lack of rainfall and abnormal evaporative demand associated with high temperature,

are an increasing threat for this region (Moser et al., 2008; NIDIS/NOAA, 2021; Otkin et al., 2018;

Pendergrass et al., 2020; Trenberth et al., 2014). Recent examples of such rapid-onset droughts

like the 2016 and 1999 droughts, having occurred during the growing season and leading to severe

impacts for local agriculture and related sectors (Lombard et al., 2020; NIDIS/NOAA, 2017, 2021).

Unlike traditional drought, which is common in dry regions (Kogan, 1997; Mishra and Singh, 2010),

flash droughts can often occur in areas with dense vegetation, as plants can enhance evapotran-

spiration by drawing on water that is deeper in the soil (Chen et al., 2021; Mo and Lettenmaier,

2016; Pendergrass et al., 2020). In examining hydroclimatic trends in this region, it is clear that

water resource managers will be expected to deal with several impending challenges brought by the

warming climate such as increased risk of wildfire, heatwaves, and drought (Frumhoff et al., 2007;

Hayhoe et al., 2007). Historical data also may not be sufficiently reliable for future projections
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due to loss of stationarity, more intense extreme weather events, and enhanced climate variabil-

ity (Armal et al., 2018; Milly et al., 2008; Stryker et al., 2018; Yu et al., 2018). Consequently,

there remains a need for high-quality climate information to inform regional adaptation strategy

(AghaKouchak et al., 2015; Milly et al., 2008).

Earth-system models (ESMs) are commonly employed for projecting the impacts of climate

change on water resources and the hydrologic cycle (Frumhoff et al., 2007; Kharin et al., 2007;

Wagener et al., 2010). In particular, these models allow us to better understand the dynamic nature

of drought under climate change (Christian et al., 2019; Joetzjer et al., 2012; Strzepek et al., 2010;

Yuan et al., 2019). Although climate models have improved largely over the past several decades,

in the process incorporating more complex representations of the atmosphere–land–ocean–sea ice

system and its interactions (Bonan and Doney, 2018; Rodgers et al., 2015), large and persistent

uncertainties limit our ability to produce reliable projections (Xie et al., 2015; Xue and Ullrich,

2021a). As one of the three main sources of such climate projection uncertainty, internal variability

arises from the unforced natural variability of the climate system and is magnified by coupled model

processes (Deser et al., 2012; Hawkins and Sutton, 2009; Xie et al., 2015). It potentially accounts

for half of the inter-model spread in near-surface variables such as precipitation and temperature

over North America over the next 50 years (Deser et al., 2014, 2020). Due to drought’s low

frequency and its relatively long duration, internal variability has meant that traditional studies

attempting to characterize drought from only one or several future realizations have had difficulty

drawing statistically significant conclusions (Deser et al., 2012; Hawkins and Sutton, 2009; National

Academies of Sciences, Engineering, and Medicine and others, 2016; Xie et al., 2015). Consequently,

projections of drought have largely remained ambiguous (Taylor et al., 2013; Trenberth et al., 2014;

Van Loon, 2015), suggesting a need for a large number of realizations to extract a signal from the

noise (Taylor et al., 2013). Fortunately, this awareness has lead to the development of datasets

such as the Multi-Model Large Ensemble Archive (MMLEA), which presently includes 7 CMIP5-

class climate models with at least 16 (and up to 100) ensembles with slightly different initial

conditions. This resource and analogous datasets have proven immensely useful for quantifying

internal variability, especially at regional scales (Deser et al., 2020; Kay et al., 2015).
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All 7 Large Ensemble (LE) models presently available through the MMLEA are used in this

study, so as to sample both internal variability and structural uncertainty. Meteorological droughts

are identified using both the Standardized Precipitation Index (SPI) and Standardized Net Precip-

itation Index (SNPI). SNPI is analogous to SPI but uses net precipitation (i.e., precipitation minus

evapotranspiration) instead of precipitation, and so represents the net moisture input to the land

surface. These indices are employed at multiple temporal scales over the historical (1950-2000) and

future (2050-2100) periods, with the latter using the RCP 8.5 emission scenario. Several recent

studies have shown that plant response to increases in carbon dioxide need to be accounted for

to properly understand future droughts, as vegetation plays an essential role in modulating evap-

otranspiration, surface hydrological conditions and the development of the flash droughts (Bonfils

et al., 2017; Dai et al., 2018; Knauer et al., 2017; Pendergrass et al., 2017; Swann et al., 2016; Weiss

et al., 2012). Consequently, indices such as SPI, SPEI and PDSI, which do not directly account

for plant response, may not reliably capture the nature of future droughts (Bonfils et al., 2017; Dai

et al., 2018; Mankin et al., 2019; Swann et al., 2016; Yang et al., 2019). Therefore, in this study,

we principally rely on SNPI to project the change of water availability and its underlying factors in

this region, whereas SPI is used to project dry conditions without considering water demand.Short-

term, intermediate-term and long-term droughts are analyzed using three-month (SPI3/SNPI3),

six-month (SPI6/SNPI6) and and 24-month (SPI24/SNPI24) drought indices (M. Svoboda and

Wood, 2012; Svoboda and Fuchs, 2016; Thomas et al., 2015; Wilhite, 2005). Additionally, our

focused investigation of flash droughts uses SNPI1 (which is based on 1-month temporal scale).

With the MMLEA at our disposal, in this study we address the following questions: How are

droughts of different temporal scales changing over the NEUS? Will flash droughts become more

intense and frequent over the NEUS? What are the underlying factors that affect flash drought in

this region?
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3.2. DATA AND METHODS

3.2 Data and methods

Data

In this study, our analysis uses data from the historical period (1950-2000) and future period

(2050-2100) under the RCP 8.5 emission scenario (note that MPI-ESM only has data through

2099, so its future period is 2050-2099). All 7 Large Ensemble (LE) CMIP5 models provided by the

US CLIVAR Working Group on Large Ensembles are employed (National Center for Atmospheric

Research, 2020). As shown in Table 3.1, the LE models have at least 16 and up to 100 ensemble

members. Among the 7 LE models, 5 of them capture plant response to increasing CO2, and 6 of

them account for future increases in total vegetation (Hazeleger et al., 2010; Jeffrey et al., 2013;

Kay et al., 2015; Kirchmeier-Young et al., 2017; Maher et al., 2019; Reick et al., 2021; Rodgers

et al., 2015; Sun et al., 2018). We further use the aggregated set or the multi-ensemble mean of all

ensembles of each model to make projections and estimate uncertainty for our projections. Note

that without specific annotation, analysis is based on each models’ aggregated set of all ensembles.

By using large ensembles from multiple models, we are able to incorporate structural uncertainties

in our sample. Further, enough realizations are employed to compensate for the internal variability,

while the 51-year study period provides a long enough window to capture longer droughts. Drought

and its impacts often occur at the watershed scale, and water management decisions are usually also

made at this level as well (Diaz, 1983; Mishra and Singh, 2010; Wilhite, 2000; Wilhite and Glantz,

1985). Furthermore, surface water balance is primarily valid at the watershed scale (Arnell, 1999;

Gleick, 1987; Peel et al., 2010; Wang and Dickinson, 2012), and so our analysis focuses on regional

monthly mean data over the New England Region defined by the Watershed Boundary Dataset

(WBD) (Survey and US Department of Agriculture, 2013). All datasets are first interpolated to 1

°× 1 ° by conservative interpolation (Schulzweida, 2019) before masking to ensure each dataset has

the same boundary.
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3.2. DATA AND METHODS

Methods

Standardized Precipitation Index (SPI). As one of the most widely used drought indices,

the Standardized Precipitation Index (SPI) is a flexible drought indicator designed to capture

the magnitude of meteorological drought conditions at different temporal scales (Guttman, 1999;

McKee et al., 1993; Svoboda and Fuchs, 2016). Intuitively, the value of SPIn represents how much

the accumulation of the past n months’ precipitation departs from average conditions. The value

of the index is then used to classify droughts following Table 2.1. Here, we specifically use SPI3,

SPI6, and SPI24 to quantify short-term, intermediate-term, and long-term droughts, following a

number of past studies (M. Svoboda and Wood, 2012; Svoboda et al., 2012; Thomas et al., 2015;

Wilhite, 2005).

SPI must first be calibrated before use, which entails estimation of the arguments of the gamma

distribution for a given region and realization. This procedure allows us to use the inverse CDF to

transform precipitation data to be normally distributed. For each ensemble member, the historical

period is used for this calibration. SPI values given here will then use the same calibration for the

historical period (1950-2000) and the future period (2050-2100) to illustrate the impacts of climate

change on drought conditions. If the future climate has the same drought statistics as the historical

period, future SPI should follow the standard normal distribution, as in the historical period. On

the other hand, any departure from normality is evidence of changing drought patterns. Note that

for SPI, values are clipped to the range of -3.09 to 3.09 (corresponding to normal probabilities of

0.001 and 0.999) as suggested by Guttman (1999).

Although SPI is widely used in practice and research (Hayes et al., 2002; Svoboda and Fuchs,

2016; Wilhite, 2005), and is recommended by World Meteorological Organization (WMO) (M. Svo-

boda and Wood, 2012; Svoboda et al., 2012) to assess meteorological droughts, it does have some

known shortcomings (Dai, 2011; Vicente-Serrano et al., 2010, 2012). For instance, SPI only relies on

precipitation, under the argument that precipitation is the primary driver of drought and is more

variable than other relevant quantities (Hayes et al., 2002; McKee, 1995; McKee et al., 1993). As

such, it does not account for intensification in evapotranspiration brought on by a warming climate
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(Frumhoff et al., 2007; Lyon et al., 2005; Seager et al., 2012) and associated enhancement in drought

conditions (Dai, 2011; Vicente-Serrano et al., 2010, 2012). As a result, SPI is unable to detect flash

droughts primarily driven by enhanced evaporative demand (Otkin et al., 2013; Pendergrass et al.,

2020). This has led to the use of alternate drought indices, such as the Standardized Precipita-

tion Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) and Palmer Drought Severity

Index (PDSI) (Palmer, 1965), which rely on the potential evapotranspiration (PET) derived from

offline empirical equations like the Penman–Monteith equation. Although in the Penman–Monteith

equation, the plant resistance is considered, assuming over a reference plant, the PET equations do

not consider the change of physiological plant response to increasing CO2, a potentially essential

factor in estimating future surface water balance: It is known that increases to atmospheric CO2

will enhance photosynthesis efficiency – namely, by reducing their stomatal conductance, plants

can decrease transpiration (water losses) per unit of carbon gain, then further mitigate plant water

stress and increase soil moisture (Field et al., 1995; Milly and Dunne, 2016; Swann, 2018; Swann

et al., 2016). Consequently, several studies have argued that capturing the transpiration response

from plants to rising CO2 enables more reliable drought projections (Bonfils et al., 2017; Dai et al.,

2018; Milly and Dunne, 2016; Swann et al., 2016). This suggests that indices that employ PET will

overestimate drought intensification under a warming climate (Betts et al., 2007; Milly and Dunne,

2016; Roderick et al., 2015; Sellers et al., 1996; Yang et al., 2019), and so may not be appropriate

for investigations of drought under climate change. Moreover, vegetation has been shown to be

an essential factor for determining surface hydrology and estimating evapotranspiration, and so

increases in evapotranspiration driven by more vegetation in the growing season can potentially

trigger flash drought (Knauer et al., 2017; Otkin et al., 2018; Pendergrass et al., 2017, 2020; Weiss

et al., 2012; Zhang et al., 2015). This emphasizes the importance of a correct representation of

vegetation in climate projections, which is otherwise absent in traditional PET calculations (Frank

et al., 2015; Knauer et al., 2017; Weiss et al., 2012, 2014; Zhang et al., 2015).

Standardized Net Precipitation Index (SNPI). As the actual evapotranspiration from

ESMs is internally consistent with other meteorological and hydrologic variables, we argue that
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it can also be used to better quantify surface water balance in a warming climate. Additionally,

the actual evapotranspiration in ESMs almost always incorporates the physiological effect of CO2

on plants and increases in vegetation due to GHG (Table. 3.1), which is important for correctly

modeling surface moisture fluxes (Bonan and Doney, 2018; Milly and Dunne, 2016; Swann, 2018;

Swann et al., 2016). Therefore, in this study, we will employ a modified SPI (referred to as SNPI)

based on net precipitation: that is, precipitation minus actual evapotranspiration, with both quan-

tities taken directly from the calculation used in the ESMs. As such, SNPI is primarily for use with

ESMs where actual evapotranspiration is computed from a comprehensive land component model.

The physical interpretation of SNPI is also analogous to Table 2.1. Calibration and calculation of

SNPI is otherwise performed in a similar manner to SPI except for a constant adjustment to ensure

all net precipitation data is larger than zero (See detailed calculation below). Specifically, the net

precipitation will be adjusted to be positive via

Adjusted Net Precipitationn,i = Net Precipitationn,i −min (Net Precipitation) + 0.01. (3.1)

This adjustment is necessary since the gamma distribution cannot be used for negative quantities.

As with the calculation of SPI (Guttman, 1999; McKee, 1995; McKee et al., 1993), the adjusted

net precipitation is fitted to a gamma distribution and subsequently transformed to be normally

distributed. Since in this study we will compare drought conditions defined by SPI/SNPI, fitting

the data to the same distribution makes the comparison more straightforward. However, we have

also confirmed that the fit of the gamma distribution to the the adjusted net precipitation is as

good as its fit to precipitation, and superior to the log-logistic distribution (see Supplement 3.6.4).

Because the calibration of SPI is sensitive to the length of data employed (e.g., Guttman

(1999); McKee et al. (1993)), more than 50 years data is recommended. In our study, we calibrate

both historical and future SNPI/SPI based on the historical period which includes 51 years (1950-

2000). That is, the gamma distribution parameters used in transforming the precipitation and

adjusted net precipitation of both periods from a gamma distribution to a normal distribution are

all calculated based on the historical data. Only the historical period is used as calibration to avoid
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future projections impacting the SPI/SNPI of the historical droughts, and so that differences in

the future can be identified departures from normality.

SNPI has several notable advantages which make it a desirable index for our study. First, net

precipitation is a robust and interpretable quantity representing the net moisture input from atmo-

sphere and reflecting the actual water balance locally; in similar terms, drought can be considered

as a long-term imbalance between precipitation and evapotranspiration (Wilhite, 2000). Water

balance can be modeled by the equation

dW(t)

dt
+R(t) = P (t)− E(t), (3.2)

where
dW(t)
dt

is the change of land water storage, P(t) is the regional precipitation, E(t) is the

regional evapotranspiration, and R(t) is the regional runoff (Crowley et al., 2006; Hayhoe et al.,

2008; Wang and Dickinson, 2012). In this context, precipitation minus evapotranspiration repre-

sents fluctuations in the local water availability for agriculture or other purposes (Arnell, 1999;

Gleick, 1987; Mintz and Serafini, 1992). Consequently, net precipitation can be a rough indica-

tor for the sum of soil moisture and runoff. Second, at the regional scale, the strong correlation

between net precipitation and runoff or soil moisture has been confirmed from observational and

modeled data (Cassano et al., 2007; Crowley et al., 2006; Dai et al., 2018; Gleick, 1987; Hayhoe

et al., 2008; Teuling et al., 2009; Van Loon, 2015; Wilhite, 2005). Finally, since surges in water

demand from crops and vegetation during the growing season serve as a primary driver of flash

drought (Christian et al., 2019; Otkin et al., 2018; Pendergrass et al., 2020), the fact that SNPI

incorporates the change of physiological plant response to increasing GHGs makes it a particularly

useful tool for identifying potential trends in flash drought under global warming. We do admit

that because of using the actual evapotranspiration which can also be influenced by the land-use

changes, the SNPI might not distinguish the impacts from land-use changes and climate change.

Further study will be done to distinguish these two impacts on drought.

Drought duration and magnitude. Drought intensity in a certain month can be easily quan-

tified using the value of SPI/SNPI in that month, with more negative values indicative of more
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intense drought conditions. Although dryness exists on a continuum, and so the exact start and end

dates of a drought are difficult to ascertain, here we define a drought as initiating when SPI/SNPI

drops below -1 and terminating when SPI/SNPI is next above 0 (Guttman, 1999; McKee et al.,

1993). The duration of the drought is then the number of months between its start and end points

(including the start month, but not the end month). The accumulated drought magnitude (DM)

of each drought event is defined as the absolute value of accumulated SPI/SNPI during a drought

event:

DM = −
∑

month i

SPIi. (3.3)

where the index i is taken over all months of the drought (Guttman, 1999; McKee et al., 1993).

Defining flash drought and extreme flash drought Although flash drought is an increasingly

popular topic in the literature, there is not yet consensus on the best methods for characterizing

these events. However, studies generally agree that flash drought should be characterized by its

rate of intensification (Ford and Labosier, 2017; Otkin et al., 2013, 2018) and that the variables

used to represent the magnitude of flash drought should reflect the short-term water demand

from evapotranspiration, e.g. soil moisture, evaporative stress, and potential evapotranspiration

(Christian et al., 2019; Osman et al., 2021; Otkin et al., 2016, 2018; Pendergrass et al., 2020; Zhang

and Yuan, 2020). Given its relationship with water demand, in this study we propose to use SNPI1

to identify and measure the monthly flash drought. The flash drought is generally defined as sub-

seasonal drought event (Christian et al., 2021; Pendergrass et al., 2020). Although weekly flash

droughts may occur, most infamous flash drought events over CONUS are monthly flash droughts

such as the 2012 US Midwest flash drought and 2017 US Northern Great Plains flash drought (Hoell

et al., 2020; Hoerling et al., 2012; Otkin et al., 2021). Also, only monthly data is currently available

for calculation of the SNPI from the MMLEA and there is some danger in considering drought

on time scales shorter than a month: the weekly time scale is often insufficient for meteorological

drought to drive significant drying of soil (Tallaksen and Van Lanen, 2004; Van Loon, 2015).
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Therefore, we represent the development speed of drought (DSD) at month i via

DSDi = −(SNPI1i − SNPI1i−1). (3.4)

Since flash drought is characterized by rapid development and extremely dry conditions after de-

velopment (Otkin et al., 2018; Pendergrass et al., 2020), herein we define flash drought in month

i as DSDi ≥ 2 and SNPI1i ≤ −2. Intuitively, this means that, at the very least, “extremely dry

conditions” (SNPI1 ≤ −2) should develop from conditons that are at least neutral (SNPI ≥ 0) in

only one month. We also define a notion of “extreme flash drought”, since extreme events of this

nature have the potential to result in enormous damage, particularly to agriculture (Otkin et al.,

2018; Pendergrass et al., 2020). Herein, extreme flash drought is defined as drought with DSDi ≥ 4

and SNPI1i ≤ −2, indicating extremely dry conditions develop from from extremely wet condi-

tions in only one month. Because flash drought is strongly associated with enhanced evaporative

demand, previous studies of flash droughts usually exclude the winter season (Ford and Labosier,

2017; Otkin et al., 2018; Pendergrass et al., 2020). Herein we will also ignore the winter season

when we analyze trends for flash droughts.

3.3 Results

3.3.1 Result 1: A general wetting trend is undeniable in the mean

The significant wetting trend expected for the NEUS shows up clearly in Fig. 3.1 as a rightward

shift of the mean of each model’s probability distribution. This trend is overwhelming in the SPI at

all temporal scales, and for all LE models. However, the shift in SPI is unsurprising as this index

only takes precipitation as input, and there is high confidence from both historical observations

and climate models that annual mean precipitation is presently increasing (and will increase) over

the NEUS (Demaria et al., 2016; Frumhoff et al., 2007; Guilbert et al., 2015; Hayhoe et al., 2008;

Huntington et al., 2004). As for the SNPI, even when increases in evapotranspiration are taken

into account, a long-term wetting trend remains in most models (5 out of 7), confirming a clear

tendency towards wetting of the NEUS. Moreover, for both SPI and SNPI, this wetting trend is
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more obvious at longer temporal scales. Examining the ratio of the frequency density in Fig. 3.2,

we see that long-term dry conditions (SPI24 < −1) are projected to become clearlyly less frequent

(occurring ∼90% less often), while long-term pluvial conditions (SPI24 ≥ 2) are between 2 and 100

times more likely.
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Figure 3.1: SPI/SNPI density of the future period (2050-2100) for all 7 LE models. Each vertical
line indicates the mean value from that model.

81



3.3. RESULTS

3 2 1 0 1 2 3

1

10

Fr
eq

ue
nc

y 
De

ns
ity

 R
at

io

SPI1 Frequency Ratio
EC-Earth
CanESM2
CSIRO-MK36
CESM1-CAM5
GFDL-CM3
GFDL-ESM2M
MPI-ESM

3 2 1 0 1 2 3

SNPI1 Frequency Ratio

3 2 1 0 1 2 3

1

10

100

Fr
eq

ue
nc

y 
De

ns
ity

 R
at

io

SPI3 Frequency Ratio

3 2 1 0 1 2 3

SNPI3 Frequency Ratio

3 2 1 0 1 2 3
0.1

1

10

100

Fr
eq

ue
nc

y 
De

ns
ity

 R
at

io

SPI6 Frequency Ratio

3 2 1 0 1 2 3

SNPI6 Frequency Ratio

3 2 1 0 1 2 30.001

0.01

0.1

1

10

100

1000

Fr
eq

ue
nc

y 
De

ns
ity

 R
at

io

SPI24 Frequency Ratio

3 2 1 0 1 2 3

SNPI24 Frequency Ratio

Future / Historical Frequency Density Ratio for SPI and SNPI
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3.3.2 Result 2: More extremely wet conditions, with greater magnitude

The tendency towards wetter conditions is most obvious at the extreme right tail of Fig. 3.1 and

3.2 (namely, “extremely wet” months), with both more frequent conditions with SPI/SNPI ≥ 2,

and larger average SPI/SNPI for months in this category (as well as more months at the right

boundary 3.09). This accords with the continued intensification of extremely wet conditions over

the NEUS (Donat et al., 2016; Melillo et al., 2014; Pfahl et al., 2017). Using SNPI, all LE models

favor an increase in the frequency of extremely wet conditions and greater SNPI values within this

category. For example, the multi-model mean probability of extremely wet months surges from

0.018 to 0.069 (for SPI1) and from 0.019 to 0.048 (for SNPI1). More significantly, exceptionally

wet conditions (SPI1/SNPI1 equal to 3.09) will become 19 and 12 times more frequent, using SPI1

and SNPI1 respectively. These changes suggests greater challenges for water management in this

region, as well as increased risk and intensity of flooding.

3.3.3 Result 3: More short-term extreme droughts and intensified evapotran-

spiration

While these two prior results may seem to suggest abundant water resources in the future, this

general wetting trend does not imply that drought will disappear entirely. Although short-term

extreme precipitation droughts (months with SPI3 ≤ -2) are projected to be less frequent in all LE

models, nearly all models (6 out of 7) agree that short-term net precipitation droughts (SNPI3 ≤ -2)

are projected to increase largely in frequency (Fig. 3.2). Further, short-term exceptional droughts

(SNPI3 is equal to -3.09) are expected to be more frequent in all models. This increase in short-term

extreme drought appears to be driven by concordant increases in two factors: evapotranspiration

and precipitation variability (Pendergrass et al., 2017). Because of evapotranspiration’s essential

role in the water cycle (as the second-largest component in the water balance formula after precip-

itation (Melillo et al., 2014)) and its significance in producing drying over land (A. Dai and Chen,

2018; Wilhite, 2000; Zhao and Dai, 2015), increases of evapotranspiration need to be accounted for

when projecting the changing trends of droughts under a warming climate. Increasing precipitation
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Figure 3.3: Each LE model’s density plot and density difference of precipitation, surface air tem-
perature, evapotranspiration and net precipitation.

variability, on the other hand, is associated with an increase in the frequency of both months with

extremely low precipitation and high precipitation (and corresponding signals in streamflow), as

has been documented in several past studies (Demaria et al., 2016; Frumhoff et al., 2007; Hayhoe

et al., 2007; Van Loon, 2015). As discussed later, increases in the frequency of extremely low values

of SPI/SNPI in Figs. 3.1 and 3.2 are strongly related to a flattening of the probability density of

precipitation / net precipitation intensity around the mean in Fig. 3.3 (Zhao and Dai, 2015). This

flattening suggests less frequent “normal conditions” and more frequent extremes. It is quantified

by the departure from unity (the standard deviation of SPI/SNPI under a normal distribution) of

the multi-model mean standard deviations of SPI1/SNPI1 to 1.16/1.20 in the future.

84



3.3. RESULTS

3.3.4 Result 4: More flash drought with faster initiation and greater intensity

Because of the strong seasonality of flash drought (Christian et al., 2019; Otkin et al., 2018; Pen-

dergrass et al., 2020), each LE model’s projections for the development speed of flash drought in

each season except the winter season is shown in Fig. 3.4 (here MAM indicates the spring season,

JJA indicates the summer season and SON indicates the autumn season). Although there are dis-

crepancies among seasons and models, several significant trends are apparent. The most concrete

among these being that nearly all LE models agree that the frequency of flash drought is projected

increase significantly in all seasons (except for CanESM2 and CESM1-CAM5 in JJA). The average

increase in the probability of flash drought is about 106%, indicating that flash drought could occur

with more than twice as frequently in the future period. Further, flash drought is also projected

to initiate faster and with greater severity, as suggested by the smaller values of the median, third

quartile, and lower whiskers of the DSD. Note that the p-values in Fig. 3.4 indicates the statistical

significance of the t-test about whether the future and historical periods have the same average

Delta SNPI1 instead of if they have the same average flash drought frequency.

3.3.5 Result 5: Significant trends towards more extreme flash drought, partic-

ularly in the spring

Comparing Fig. 3.4 to the corresponding plot for extreme flash drought (Fig. 3.5), it’s apparent

that into the future extreme flash drought frequency tends increase even more than flash drought

frequency. The average return period of extreme flash drought (defined as the multi-model mean

years needed to occur once) drops from 65.9 years historically to 16.2 years in the future. By

contrast, the return period for all flash droughts decreases from 6.3 years to 2.9 years. This

historical flash drought return period agrees with previous work by Ford and Labosier (2017),

which is based on an examination of surface soil water content. Extreme flash drought also has

a strong seasonality, with intensification being much more significant during the growing season,

particularly in the spring (MAM). This poses substantial risk for agricultural productivity, and

suggests the possibility of more frequent crop failure (Otkin et al., 2018; Pendergrass et al., 2020).
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The development speed of extreme flash drought is also trending higher, producing the possibility

that extremely dry conditions may immediately follow extremely wet conditions (DSDi ≥ 4). Such

rapid development of intense drought would be unprecedented and hard to predict, and contrary

to the traditional view of drought as a slowly evolving extreme weather event.

3.3.6 Result 6: No clear consensus on intermediate-term drought

As depicted by the Fig. 3.1, for intermediate-term drought, there are substantial disagreements of

future change among LE models and between the two drought indexes (SPI6/SNPI6). Although

nearly all models indicate that the magnitude of exceptional intermediate droughts (SPI6/SNPI6 at

the lowest boundary of −3.09) are projected to increase, SPI and SNPI show significant divergence

at this timescale. All LE models agree that monthly intermediate-term dryness tends to become

less frequent (months with SPI6 ≤ -1) and general wetness (the average SPI6) tends to increase;

however, when looking at SNPI6, only 4 out of 7 models project such increases. Therefore, to

better describe the changing patterns of intermediate drought, we compare three essential drought

features – drought duration, frequency, and magnitude.

From Fig. 3.6, we can see that, as a result of significant increases in precipitation, all LE models

project decreases in SPI6-derived intermediate drought frequency, average duration, maximum

duration, average magnitude and maximum magnitude. On the other hand, for the SNPI6-derived

intermediate drought, most LE models suggest that intermediate-term droughts tend to be more

frequent (6 out of 7) but with shorter average duration (5 out of 7). However, the mean and

maximum intermediate-term drought magnitude exhibits a wide spread between periods with little

agreement between models, suggesting no statistically significant change.

3.4 Discussion

Flash drought and unprecedented extreme flash droughts are projected to be a major challenge

into the future, with faster initiation and greater intensity; this result holds especially true in the

spring season, and is certainly projected to threaten local agricultural production. At meanwhile,

the underlying causes of flash drought intensification is still ambiguous thus we will further explore
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the potential drivers of increasing flash droughts. In this study, we have used SNPI1 and its

change over subsequent months to quantify frequency and intensity of flash droughts, that is,

rapidly developing water shortage related to precipitation, temperature, and evaporative demand

(Taylor et al., 2013). By construction, changes to the frequency and character of flash drought

are projected to be brought about through changes to net precipitation, i.e., precipitation inputs

minus evapotranspiration outputs. In this section, we turn our attention to explaining future

trends in drought and flash drought through a detailed examination of precipitation, temperature,

evapotranspiration, leaf-area index, and their associated relationships. In general, we note that

increasing monthly precipitation variability affects the inputs to the net precipitation, while P/E

anti-correlation modifies the outputs. Consequently, these modifications to net precipitation drive

a clear intensification of flash droughts over the NEUS, particularly in the spring season.

3.4.1 More precipitation and more variable precipitation in the NEUS

In Fig. 3.3 (left column), a clear positive shift in mean precipitation intensity is observed in all

models, along with a flattening of the frequency density and subsequent increase in the frequency

in both tails. This change is indicative of the well-known shift to increased precipitation vari-

ability under global warming, driven by increasing moisture and mitigated by weaker atmosphere

circulation (Pendergrass et al., 2017). With that said, precipitation change over the NEUS has a

significant seasonal pattern (Frumhoff et al., 2007; Hayhoe et al., 2007) that necessitates a deeper

examination of each season separately. To that end, Fig. 3.7 shows precipitation mean and stan-

dard deviation of each LE model. From here it’s quickly apparent that nearly all LE models project

that precipitation exhibit a significant increase in its mean and variance over all seasons, in agree-

ment with historical observations of increasing annual mean precipitation and intensified extreme

precipitation events (Demaria et al., 2016; Frumhoff et al., 2007; Pendergrass et al., 2017). Among

the 7 LE models, the relative change between historical (1950-2000) and future periods (2050-2100)

of the mean ranges from 7.57% to 15.70%, while the increase in the standard deviation ranges from

14.10% to 35.90%.

Increasing regional mean precipitation is certainly the main driver behind the general wetting
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trend in this region; however, the increase is not uniform over four seasons. As depicted in Fig. 3.7,

winter (DJF) and spring (MAM) produce a greater precipitation increase, with multi-model mean

relative change of 20.36% and 16.75%, significantly exceeding increases in the summer (4.38%)

and autumn (3.31%). This seasonal dependency agrees with previous studies examining GCM

projections (Frumhoff et al., 2007; Hayhoe et al., 2008; Xue and Ullrich, 2021b). Similarly, increases

in precipitation variability in the winter and spring seasons are also larger than corresponding

increases in summer and autumn. Notably, each LE model’s mean and standard deviation are

strongly correlated in almost all seasons: correlation in winter, spring, and autumn is 0.95, 0.96,

and 0.74; however, this correlation is not significant in summer (0.04), suggesting this season is

dominated by different processes. This synchronization is a topic for potential future exploration.

In conjunction with warmer temperatures shifting snowfall to rainfall, particularly in the spring, it

is clear that these two seasons may experience more extreme precipitation and flooding (Xue and

Ullrich, 2021b). On the other hand, as shown in Fig. 3.3, 6 out of 7 models agree that months with

nearly zero monthly precipitation (monthly precipitation less than 0.5 mm/day) tend to be more

likely in the future, thus supporting an increase in the occurrence of flash droughts.

3.4.2 Evapotranspiration is energy-limited within the humid NEUS

Increased precipitation variability is one of the primary drivers behind possibility of emerging

flash drought; however, this single factor is insufficient to explain why spring is at the greatest

risk for increased flash drought, while it does not have the greatest increase in variability. To

understand this discrepancy, it is necessary to additionally consider evapotranspiration’s role in the

development of flash droughts. Evapotranspiration depends on the water and energy availability,

and so it is important to ascertain whether particular regions are energy-limited or water-limited

(Roderick et al., 2009a,b; Teuling et al., 2009). Put simply, the amount of available energy can limit

evapotranspiration in regions where water is abundant, whereas water supply limits it in regions

of abundant energy. As not all LE models provide radiation data, here we employ surface air

temperature and precipitation to quantify the supply of energy and water, respectively. While other

factors are important for estimating evapotranspiration, such as surface wind, relative humidity and
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vegetation, changes in these factors under global warming are modest compared with changes in

precipitation and temperature (Held and Soden, 2006; Lâıné et al., 2014; Ma et al., 2016; Trenberth

et al., 2014).

In the NEUS, all LE models exhibit very strong correlations between the multi-ensemble mean

surface air temperature and evapotranspiration. Correlations range from 0.92 to 0.99 (with p-values

much less than 0.05 which indicates that the correlation is statistically significant at 95% confidence

level), with the mean of 0.95 during the historical period (1950-2000). This trend is even more

significant in the spring season with a mean correlation of 0.97 (with p-values much less than 0.05).

Consequently, it is safe to say that evapotranspiration over the NEUS is primarily energy-limited.

On the other hand, correlations between evapotranspiration and precipitation vary among models,

with a mean correlation of 0.04 (with all p-values less than 0.05). To further confirm that surface

air temperature increases are the primary driver of evapotranspiration differences, we calculate the

correlation of each ensemble’s average deltas of precipitation, evapotranspiration, and surface air

temperature between the historical and future periods over all LE members. As in the historical

data, the correlations between the deltas of evapotranspiration and surface air temperature are

obvious, with the multi-ensemble mean ranging from 0.15 to 0.83 (5 out of 7 models have p-

values less than 0.05). However, examining the correlations between deltas of evapotranspiration

and precipitation does not produce robust relationship, with the multi-ensemble mean correlations

varying from -0.24 to 0.65 with a multi-model mean of 0.07 (only 1 model has p-value less than

0.05).

3.4.3 Differences in the trends of precipitation and evapotranspiration variabil-

ity

From Fig. 3.3, we see that the density plots of surface air temperature and evapotranspiration

essentially all shift to the right while maintaining the same “shape” of the distribution. This

is in contrast to precipitation, which exhibits both an increase in its mean and a widening of

its distribution. Although evapotranspiration and precipitation show increases in the multi-model

mean of 13.76% and 11.43% over the NEUS, the relative change of the standard deviation of surface
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air temperature (0.77%) and evapotranspiration (-0.96%) are essentially negligible compared when

compared with that of precipitation (22.86%). Note that the small decrease in evapotranspiration

variability appears to primarily emerge from a decrease in the frequency of low evapotranspiration

months. Nonetheless, net precipitation is subject to both a shift in its mean (with a multi-model

mean increase of 7.52%) and an increase to its variability (with a multi-model mean increase

of 20.16%). Namely, while the regional climate becomes wetter, there will be an increase in the

frequency of both the extremely dry and wet conditions that is clearly apparent in the fourth column

of Fig. 3.3. Looking more closely into each season, the variability increase is much more significant

in the spring as a result of greater precipitation variability in these seasons; however, MAM and SON

evapotranspiration variability actually decreases slightly (with multi-model mean relative change

of -3.11% and -2.43%). MAM is projected to produce the most discrepant variability trends,

with reduced evapotranspiration variability and simultaneously greater precipitation variability.

Consequently, the spring tends to have the largest increases in the variability of net precipitation.

The disparate behavior of precipitation and evapotranspiration leads to increasing anti-correlation

of these processes, which we investigate next.

3.4.4 Increasing anti-correlation of evapotranspiration and precipitation

In the NEUS, where evapotranspiration is energy-limited, there is a very strong positive correla-

tion between monthly mean surface air temperature and evapotranspiration that occurs in all 7 LE

models over the historical period; however, correlations between precipitation and evapotranspira-

tion vary largely across the 7 LE models, ranging from -0.29 to 0.65 (with p-values less than 0.05).

Under future global warming, the positive correlations between surface air temperature and evap-

otranspiration continue to be evident, with a multi-model mean correlation of 0.92 (with p-values

less than 0.05). In the spring season, these correlations even reach a multi-model mean value of

0.98 (with p-values less than 0.05). On the other hand, the correlations between precipitation and

evapotranspiration become increasingly negative into the future over all seasons (with an average

decrease of 0.24). This trend is even more significant in the spring (with an average decrease of

0.46). Annually, 6 out of 7 LE models project that these correlations will be far more negative in
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the future, compared with the historical period. For the only model that shows an increased cor-

relation, CSIRO-MK36, precipitation and evapotranspiration in the future spring season remains

negative (-0.34) (with p-value less than 0.05). Across all models, multi-model mean historical cor-

relations between precipitation and evapotranspiration are roughly zero annually (0.04) and in the

spring season (-0.04); in the future they decrease to -0.21 and -0.50 respectively. Such a negative

shift in correlation indicates that, during future periods of low precipitation, evapotranspiration

will be more likely to be greater than under analogous historical circumstances, in turn magnifying

the local moisture deficit. Similarly, when precipitation is high, evapotranspiration is not expected

to be obviously larger than is mean state as what it would have been historically. These two ef-

fects, in turn, exacerbate extreme events such as flash drought and the extremely wet conditions,

as apparent in both tails of density plots of Fig. 3.8.

To better illustrate how P/E anti-correlation impacts flash drought, we define anti-correlated

low moisture conditions as the months with precipitation no larger than 50th percentile and evapo-

transpiration larger than 50th percentile which experience the subnormal moisture input but above

normal moisture output, and provide appropriate conditions for the flash drought. In Fig. 3.9, we

normalize each model’s multi-ensemble regional monthly mean precipitation and evapotranspiration

within the range of 0 and 100 in historical and future periods via

⟨Data⟩i =
⟨Rank of Data⟩i × 100

⟨Total Number of Data⟩i
. (3.5)

The points of anti-correlated low moisture condition we are interested in are located at the upper

left corner of the figure. Indeed, we see that 6 out of 7 models project a large increase of such

anti-correlated low moisture conditions in the spring with a multi-model mean relative increase

of 54.80%, with little doubt that this shift is attributed to P/E anti-correlation. As a result of

increasing P/E anti-correlation, anti-correlated high moisture conditions (precipitation larger than

50th percentile and evapotranspiration no larger than 50th percentile) will also increase, providing

favorable moisture conditions for floods.

In the next section we explore the processes underlying these shifts and argue that an earlier
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onset (spring) of growing seasons is a likely culprit (Backlund et al., 2008; Christiansen et al., 2011).

3.4.5 Modified evapotranspiration partitioning brought by the extension of

growing season

Several previous studies have shown that changes in vegetation are a key factor behind trends in

evapotranspiration (Peel et al., 2010; Zhang et al., 2015, 2001), while intensified water demand

from plants in the growing season also plays an essential role in the development of flash drought

(Otkin et al., 2018; Pendergrass et al., 2017, 2020). These processes have certain implications for

the regional hydroclimate of the NEUS, as this region is predicted to experience a longer growing

season with denser vegetation under a warming climate (Christiansen et al., 2011; Frumhoff et al.,

2007; Xue and Ullrich, 2021b). Indeed, we now argue that this is the primary factor driving the

increasing P/E anti-correlation in the spring (and to a lesser degree in the autumn). Specifically,

we argue that the modified partitioning of evapotranspiration brought on by a prolonged growing

season directly drives this anti-correlation and, consequently, flash droughts.

Total evapotranspiration is defined as the sum of evaporation from soil and surface water (Esoil),

the evaporation from water intercepted by plants (Eplant), and the plant transpiration (Tplant) (Fer-

guson and Veizer, 2007; Lee et al., 2010; Wang and Dickinson, 2012). Of these, transpiration is

the largest contributor, although all three are captured in modern ESMs (Dirmeyer et al., 2005;

Lawrence et al., 2007). A number of past studies have used observations and models to demon-

strate the impacts of interannual shifts in vegetation on evapotranspiration that occur through

modification of its partitioning into these categories (Gong et al., 2007; Jung et al., 2010; Lawrence

et al., 2007; Lawrence and Chase, 2009; Wang and Dickinson, 2012; Wang et al., 2010). It has been

noted that soil evaporation can only occur if it acquires water at the surface level, because of the

disconnect between surface and deep soil layers, especially during the dry season and over bare soil

(Heitman et al., 2008; Wang and Dickinson, 2012); however, transpiration from plants can extract

water from deeper soil through their rooting systems. As a result, most soil evaporation occurs

along with or shortly following precipitation, while transpiration can exhibit a lagged response to

precipitation and is associated more with biological processes and energy available (solar radiation)
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(Wang and Dickinson, 2012; Williams et al., 2004). As a direct consequence of increased vegetation

in the NEUS, particularly in the spring, there’s good reason to believe vegetation changes (might

be caused by climate change induced land cover change or by land-use change) plays a greater

role in driving surface evapotranspiration. Namely, evapotranspiration tends to draw more water

from the rooting zones instead of surface soil, and so will be more weakly associated with recent or

concurrent precipitation. In turn, there is an increasing anti-correlation of evapotranspiration and

precipitation.

To further confirm this hypothesis, we employ the large ensemble CESM1 model, the only LE

model that provides three evapotranspiration components (Esoil, Eplant and Tplant) and Total Leaf

Area Index (TLAI), to examine changing trends in vegetation and evapotranspiration partitioning.

We also introduce the Plant Transpiration Component Ratio (PTCR), which is defined as the

ratio of plant transpiration to the soil evaporation. PTCR is employed as a metric to quantify

the increasingly noteworthy role of plants in driving surface evapotranspiration. From Fig. 3.10,

we observe a clear increase in ensemble mean TLAI over the next century, which is particularly

significant in the spring season. Namely, compared with the historical period (1950-2000), the

future period (2050-2100) TLAI is projected to be 33.42% larger over all seasons and 45.24% larger

over the spring season only. Annual mean PTCR is highly associated with more vegetation (TLAI)

(with a correlation of 0.75 (with a p-value less than 0.05) over all seasons and 0.91 (with a p-value

less than 0.05) during the spring season). It has risen continuously since the 1950s, indicative of

how transpiration from plants is becoming a greater component of surface total evapotranspiration.

The relative change of PTCR in the spring (39.54%) is much larger than the relative change during

all season (10.35%) and other individual seasons, supporting our conclusion that the extension of

growing season is the main driver of P/E anti-correlation in the spring. We do recognize that

the land-use change might be a driver of the change of TLAI; however, it is unclear if changes in

vegetation types accross the region could explain the seasonility in the TLAI changes we observed

in this analysis. Note that the TLAI has a faster increase than PTCR, which is potentially caused

by the increasing water use efficiency which has been illustrated by the observations (Keeling et al.,

2017; Keenan et al., 2013; Swann et al., 2016).
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Although changes to evapotranspiration partitioning in the growing season and its downstream

effect on the increasing P/E anti-correlation is well-supported by past studies and CESM1-CAM5

data, one could hypothesize that the increasing P/E anti-correlation is instead related to the in-

creasing soil moisture brought by earlier snowmelt in the growing season (Frumhoff et al., 2007;

Xue and Ullrich, 2021b). To demonstrate this is not the case, we employ all LE models which

provide the soil moisture data (CESM1-CAM5, CSIRO-MK36, GFDL-CM3, and MPI-ESM) and

examine if soil moisture is higher in the spring season into the future. While this would, in turn,

provide more water for evapotranspiration (see Supplement 3.6.5), it is notable that evapotran-

spiration is primarily energy-limited in this region (as discussed earlier). However, even if this

was the case, these models actually exhibit soil drying in the spring season: although there are

some discrepancies among the four models, they all agree that the topsoil moisture (defined as the

average soil moisture of the first 0.1-meter soil) will decrease into the future. Indeed, 3 out of 4

models agree that such a decrease also occur within all soil layers. This indeed supports the claim

that snowmelt’s influence on springtime soil moisture is not the primary driver of the observed

P/E anti-correlation. Importantly, we find that all models agree that the correlation between the

ensemble mean soil moisture and net precipitation is much larger than the correlation of ensemble

mean soil moisture and precipitation, again illustrating the role of net precipitation in driving soil

moisture.

We note that CSIRO-MK36 is the only model among the LE models which does not produce an

increased P/E anti-correlation into the future. This is also the only model among those analyzed

which does not account for changes in vegetation into the future. This lends credence to our theory

of vegetation being the primary driver of increasing anti-correlation. Also, we need to clarify that

although some models project that there exists a negative correlation between precipitation and

evapotranspiration in the future MAM, it does not mean that relatively high precipitation directly

determines the relatively low evapotranspiration and also does not suggest that the region is water-

limited. Instead, this is caused by different monthly changing trends brought by various factors.

For example, the precipitation will increase more in March (0.81 mm/day) instead of May (0.26

mm/day) in the future, which we believe is mainly driven by more warming in cold months (also

94



3.5. CONCLUSIONS

shown above) due to the snow-albedo feedback (Xue and Ullrich, 2021b). Meanwhile, compared

with March, May will experience a stronger growing season extension because the length of growing

season is usually defined by the threshold based on daily minimum temperature (Christiansen et al.,

2011). Therefore, a stronger growing season extension makes May have a larger transpiration in-

crease compared with March, as we can see the CESM1 multi-ensemble plant transpiration increase

is much larger in the May (0.28 mm/day) compared with March (0.06 mm/day). More warming in

March and larger growing season extension in May make evapotranspiration have an even increase

in the March, April and May with multi-model means of 0.44, 0.39 and 0.35 mm/day. Therefore,

the evapotranspiration will not have the same monthly changing trend as the precipitation which

partially induces their negative correlations in the future. Note that the projection of flash drought

is based on monthly scale in this study and may ignore the flash drought and its development

within sub-monthly scale. And the examine of SNPI1 as a flash drought index is only examined

over NEUS and US Midwest at monthly scale (see Supplement). A comprehensive examination of

SNPI1 in capturing development of flash drought need to and will be put forward before its wide

and practical usage. Also, the LENS models used are imperfect and process uncertainties especially

in land surface processes thus corresponding study of projected changes in actual soil moisture are

needed.

3.5 Conclusions

To better understand trends in drought character and frequency over the NEUS, we have applied

both the Standardized Precipitation Index (SPI) and Standardized Net Precipitation Index (SNPI)

to 7 large ensemble model datasets. These two indices have subsequently enabled insight into shifts

in this region’s precipitation characteristics and atmospheric water demand characteristics, respec-

tively. Short-term, intermediate-term, and long-term droughts are explored with SPI3/SNPI3,

SPI6/SNPI6, and SPI24/SNPI24, while our study of flash drought employs SNPI1, which captures

drought events that are characterized by rapid development. A clear rightward shift in the SPI

probability distributions indicates that the NEUS will experience significant wetting as a result

of precipitation increases, particularly at longer time scales. Even in light of similarly increasing
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mean evapotranspiration, most models (5 out of 7) still project a positive trend in overall water

availability. Flattening of the frequency distribution of SPI/SNPI among all LE models indicates

more frequent extremes, particularly wet extremes, at the expense of more moderate periods. For

example, the multi-model mean frequency of exceptionally wet months (SPI1/SNPI1 equal to 3.09)

is predicted to increase by 19 times (using SPI1) and 12 times (using SNPI1). Consequently, more

frequent and intense flooding is expected to become a growing concern for local water management.

This wetting trend does not imply that the drought is a purely historical concern, however. In light

of surging evapotranspiration and increasing precipitation variability, 6 out of 7 models suggest

that short-term extreme droughts (SNPI3 ≤ −2) is also projected to be much more frequent in

the future. Moreover, flash droughts (as indicated by SNPI1) will see a 106% increase in frequency,

dropping the average return time from 6.3 years to 2.9 years, with faster development. Extreme

flash drought, where SNPI1 drops by at least 4 points to below -2, is projected to exhibit a drop in

return period from 65.9 years to 16.2 years. This increase in frequency for both flash droughts and

extreme flash droughts is most pronounced in the spring season, and will likely drive significant

challenges to the agriculture and ecosystem. Although the LE models don’t provide a clear con-

sensus on intermediate-term drought, most models agree that intermediate-term drought tends to

be more frequent, with a lower average duration. The projected changes in flash drought, particu-

larly during the spring season, are attributed to an increase in precipitation variability that is not

matched by evapotranspiration; consequently, these two fields become increasingly anti-correlated.

Increasing precipitation variability has been well-studied, and is generally attributed to increased

atmospheric moisture counteracted by a weakening circulation. We confirm that the increasing

anti-correlation, which is strongest in the spring, is largely a result of the extension of the growing

season and attributed to increase in leaf area index (i.e., more vegetation). Namely, direct soil

evaporation is typically highly correlated with precipitation because it draws from moisture in the

surface soil; however, rooting enables plants to derive soil moisture from deeper in the soil. As

a result, we argue that increased vegetation in the NEUS, which is associated with the shift to a

warmer, moister climate is expected to increase the risk of the sudden drying episodes explored in

this work.
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3.6 Supplement

The contents of the supplement are as follows. In subsection 3.6.1, the map of study region is

provided. In subsection 3.6.2 and 3.6.3, we conduct case studies of flash drought based on ERA5,

a high quality reanalysis dataset, and all ensembles of CESM1-CAM5. In subsection 3.6.4, we

justify the calculation of SNPI. In subsection 3.6.5, we provide an analysis of total soil moisture

(i.e., the total all phases water over all soil layers) and topsoil moisture (i.e., the top 0.1 meter of

soil) over the NEUS based on the ensemble mean of the four LE models that provide the necessary

soil moisture data (CESM1-CAM5, CSIRO-MK36, GFDL-CM3, and MPI-ESM). Additionally, we

examine the correlation of soil moisture with precipitation and net precipitation to illustrate the

strength of this latter relationship. This result confirms that the net precipitation can capture

soil moisture trends and thus validates that SNPI is a good metric for examining drought. The

supporting figures show the map of study regions (Fig. 3.11), the evolving process of flash droughts

in the ERA5 over NEUS (Fig. 3.12-3.15) and the CESM1-CAM5 (Fig. 3.16-3.20), the evolving

process of flash droughts in the ERA5 over Kansas (Fig. 3.21-3.23), Q-Q plots of all LE models

in each month (Fig. 3.24-3.35), and each model’s ensemble average long-term monthly mean soil

moisture over the NEUS over historical and future periods (Fig. 3.36-3.39). The supporting table

shows correlations between monthly mean soil moisture and topsoil moisture with precipitation, net

precipitation and evapotranspiration in the historical and future periods (Table 3.2-3.3). Although

the SNPI1 is designed as a metric in capturing rapidly developing droughts (flash droughts at one-

month interval), we can still see that it performs well in the flash drought case studies conducted.

3.6.1 The study region and grid cells included

As we mentioned, this study is conducted over the New England Region, defined by the Watershed

Boundary Dataset (Survey and US Department of Agriculture, 2013). All LE models have been

interpolated onto a 1◦ grid by conservative interpolation to make sure all models have the same

boundaries. This process has been shown to have a little impact on climate models’ projection

on the drought in our previous study (Xue and Ullrich, 2021a). As shown in Fig. 3.11, the New
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England Region is located in the northeastern US and covers 23 grid cells.

3.6.2 A case study of rapidly developing drought based on ERA5 over North-

eastern US

In order to examine if the net precipitation and SNPI1 are good indicators for detection of rapidly

developing drought and rapid decrease in soil moisture, here we firstly employ the 6-hourly ECMWF

Reanalysis 5th Generation (ERA5) from 1950 to 2000 (the historical period in the main paper),

which is a next-generation reanalysis product that replaces the ERA-Interim reanalysis (European

Centre for Medium-Range Weather Forecasts, 2020; Hersbach et al., 2020). As the most advanced

reanalysis data to date, ERA5 has improved data assimilation, core dynamics, model physics,

temporal and spatial resolution. Consequently, the ERA5 has demonstrable performance at rep-

resenting low-frequency variability and producing more accurate meteorological variables. It has

also been shown to be better at simulating extreme weather events like droughts (Dullaart et al.,

2020; Hersbach et al., 2020; Tarek et al., 2020). We do not directly use observational dataset since

there does not exist a comprehensive observational dataset providing all variables needed. Also, the

focus of this study is not to confirm that SNPI is successful when applied to observational datasets

because the “observed” actual evapotranspiration itself usually comes from estimations based on

the satellite remote sensing data (which relies on algorithms) or empirical equations (Garćıa et al.,

2013; Li et al., 2016; Wu et al., 2021). Therefore, here we will examine the evolving processes of

SNPI1, precipitation, actual evapotranspiration, net precipitation and root zone soil moisture (the

top 40 cm soil moisture according to previous study (Ford and Labosier, 2017)) when the significant

root zone soil moisture drops quickly.

From Fig. 3.12 we can see that, from the annual mean SNPI6, the 1960s drought is the most

extreme drought event over the historical period, and is deemed as the most extreme one over

the NE in the past century (Janes and Brumbach, 1965; Palmer, 1965). Also, the annual mean

SNPI6 fits the root zone soil moisture well and it is highly correlated with annual mean root zone

soil moisture (correlation is 0.70 and p-value is 1.92 × 10−8). Note that to represent each year’s

drought condition, we use the annual mean SNPI6 and because SNPI itself already consider the
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accumulation of drought conditions so that we choose an intermediate-term SNPI (SNPI6).

Following Ford and Labosier (2017), here we simply define rapid root zone soil moisture decrease

as when the monthly root zone soil moisture decrease larger than the 20th percentile (e.g., the root

zone soil moisture drops from its 40th percentile to 20th percentile). Since SNPI/SPI is standardized

within each month to eliminate seasonality, the soil moisture percentile here is also calculated within

each month so that the fast root soil moisture drops will not be limited to soil moisture’s strong

seasonality (i.e., soil moisture tends to hugely decrease in the summer and then get recharged).

We examine whether the rapidly developing drought events detected by our definition have such

a large decrease in root zone soil moisture. Overall, there are 7 rapidly developing drought events

detected using SNPI1, and 6 of these months possess rapid root zone soil moisture decrease larger

than 20th percentile in that month or the following month. Among these 7 months, the 1999 April

experienced both the largest SNPI1 decrease (DSD) and root zone soil moisture drop (in percentile).

From Fig. 3.13, we can see that the large DSD and negative net precipitation directly causes the

rapid drop in root zone soil moisture, and even in the dry months with subnormal soil moisture,

the net precipitation is still negative. The soil moisture is recharged when the net precipitation

becomes positive. It also confirms the ability of SNPI1 in capturing the flash drought over NEUS.

This historical 1999 NEUS drought itself is not only deemed as the considerable one after

the 1960s NEUS drought but also has an unusually fast development (Blaine Friedlander , 2000;

National Center for Environmental Information, 2022a,b) and is one of the most severe short-term

droughts in the past century (Paulachok et al., 2000). At the beginning of 1999, the precipitation

was abnormal in January and March, which caused the about normal groundwater levels over the

NEUS (Paulachok et al., 2000); however, the rainfall deficits and intensified evapotranspiration

made the drought initiated rapidly (Dupigny-Giroux, 2001). As its fast development during the

spring and summer, the impacts of water shortage became evident in shallow-rooted vegetation

like flowers and grasses (Dupigny-Giroux, 2001). And the extreme heatwave in the summer further

aggravated the drought conditions (Blaine Friedlander , 2000; National Center for Environmental

Information, 2022a) with the emergence of record low streamflow and groundwater levels over the

NEUS (Paulachok et al., 2000). In a word, although the year 1999 started with above-average
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rainfall, fast drought development made the April-July period the second driest such period in the

past century (Blaine Friedlander , 2000; Dupigny-Giroux, 2001; National Center for Environmental

Information, 2022a). Consequently, the agriculture losses were more than 1 billion over NEUS

(Morehart et al., 1999; National Center for Environmental Information, 2022b). In Fig. 3.14 and

3.15, the development of flash drought over NEUS from 1999 March to April is well observed.

3.6.3 Case studies of rapidly developing drought based on CESM1-CAM5 over

Northeastern US

To further examine if net precipitation and SNPI1 are good indicators to detect rapidly developing

drought and fast decreases in soil moisture, here we employ all forty CESM1-CAM5 ensembles

during the historical period (1950-2000), as CESM1-CAM5 is one of four LE models providing the

soil moisture data.

Here we simply follow the analysis in the section above. The only difference is that here we

use the surface soil (the top 0.1-meter soil) moisture instead of root zone soil moisture because LE

models can only provide the average surface soil moisture or the average total soil moisture (the

total soil usually has thickness larger than 2 meter which makes it have a longer response time).

Overall, there are 369 rapidly developing drought events in forty CESM1 ensembles, as indicated

by our rapidly developing drought definition based on SNPI1, and 311 of them possess the rapid

surface soil moisture decrease larger than 20th percentile in the identified month or the following

month. Also, we find that the Development Speed of Drought (DSD, which is used to define rapidly

developing drought in this paper) is a good indicator of large surface soil moisture drop. Among

the top 40 months with the largest surface soil moisture percentile decrease, 38 of them have DSD

larger than 2 (the threshold of DSD we used to define rapidly developing drought).

To better illustrate how an evolving drought manifests in relevant variables, we look into the

SNPI1, precipitation, actual evapotranspiration, net precipitation and surface soil moisture (in

percentile) in the years having months with the largest surface soil moisture decrease (Fig. 3.16 to

3.20). It’s obvious that the significant surface soil moisture decreases occur in months with large

DSD (which is much larger than 2), subnormal precipitation, abnormal evapotranspiration and
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negative net precipitation. On the other hand, increasing SNPI1 and abnormal net precipitation

indicate recharging of surface soil moisture. Therefore, we further confirm that the SNPI1 and net

precipitation are good indicators of soil moisture conditions even during rapid drying events.

3.6.4 A case study of infamous 2012 US Midwest flash drought based on ERA5

As we already demonstrated the ability of SNPI1 in capturing the soil moisture and rapidly develop-

ing drought development in ERA5 and CESM1, in this section we aim to examine the performance

of SNPI1 in real-world flash drought events. A particularly positive example is the most infamous

flash drought event to occur over the US – the 2012 US Midwest flash drought which happened

over the predominant agricultural lands of the central US and brought losses more than $30 billion

(Hoell et al., 2020; Hoerling et al., 2012; National Center for Environmental Information, 2021;

Otkin et al., 2021; Pendergrass et al., 2020). The 2012 US Midwest flash drought started in April

with north-central Kansas as its epicenter and then developed across large portions of the Central

US with considerable impacts to agriculture and water resources (Basara et al., 2019; DeAngelis

et al., 2020; Otkin et al., 2016).

Note that, to cover this flash drought event, here we employ the ERA5 from 1950 to 2020. The

2012 flash drought evolving process over the epicenter (Kansas) is shown in Fig. 3.21. We can see

that SNPI1 dropped from below 0 in April to below -2 in May with Delta SNPI1 larger than 2,

which exactly satisfies our definition of flash drought. Then SNPI1 remained below 0.05 in the rest

months except April, which indicated subnormal net precipitation and further aggravated drought

conditions. Correspondingly, the regional mean root zone soil moisture dropped from 54th in April

to 10th percentile in May with a decrease much larger than 20th percentile (the threshold we used

to define rapid root zone soil moisture decrease) and then kept below the 10th percentile over the

whole growing season (until October). This explains why the 2012 flash drought brought such

extensive agricultural losses. Moreover, in Fig. 3.22 and 3.23, we can see that over the Kansas,

the SNPI1 indicated neutral or wet conditions in April but a sudden drop below 2 in the central

Kansas, which indicates the initiation of 2012 US Midwest flash drought. We further find that

the flash drought development from April to May was brought by the considerable decrease in
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precipitation of May but, more importantly, the exceptionally intensified evapotranspiration from

April to May. Namely, in Fig. 3.16 to 3.20, the annual evapotranspiration peak is usually from

June to August; however, the peak lasted between April and May in 2012 over Kansas, which

not only demonstrates the importance of evapotranspiration in the development of the 2012 flash

drought but also illustrates the advantage of SNPI1 as a metric considering both precipitation and

evapotranspiration in capturing flash drought.

3.6.5 Justification of SNPI calculation

This section illustrates our reasons for not using the log-logistic distribution (which is used in

calculating Standardized Precipitation Evapotranspiration (SPEI)), and demonstrates that the ad-

justed net precipitation is fitted well by the gamma distribution. Although the three-parameter

log-logistic distribution used in calculating SPEI (Vicente-Serrano et al., 2010) can be employed

for negative values, there are several arguments to support the use of the gamma distribution for

transforming SNPI. Firstly, this paper projects the changing trends of SPI and SNPI droughts. As

the most widely used drought index, the SPI is suggested to be fitted to gamma distribution. There-

fore, to compare droughts with and without actual evapotranspiration, fitting the net precipitation

to the same distribution can make the comparison more straightforward. More importantly, we

conduct a comprehensive examination of the goodness-of-fit of precipitation, adjusted net precipita-

tion and net precipitation to the gamma distribution and three parameters log-logistic distribution

respectively. From Fig. 3.24 to 3.35, we provide Quantile-Quantile (Q-Q) plots to demonstrate

goodness-of-fit for a certain distribution. Namely, we plot the quantiles of samples and prescribed

distribution against each other, if the points approximately lie on the line y = x then we can

claim the samples fit the distribution well. We can see that for all LE models in all months, both

the precipitation and adjusted net precipitation fits well to the gamma distribution and are much

better than the fit of net precipitation to log-logistic distribution. To further quantify the fit, we

conduct the Kolmogorov–Smirnov Test (K-S Test) in each case and provide corresponding p-values

in Fig. 3.24 to 3.35. In all cases, the K-S Test p-values of precipitation and adjusted net precipita-

tion, when compared to the gamma distribution, are much larger than 0.05, which means that at
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more than 95% confidence level we cannot reject the null hypothesis that the samples come from

the prescribed distribution; however, the K-S Test p-values of net precipitation to the log-logistic

distribution are less than 0.05 in some cases. Therefore, regardless of the ability of the log-logistic

distribution to capture negative values, the better fit for adjusted net precipitation by the gamma

distribution justifies its use in this study.

3.6.6 The soil moisture analysis

In order to determine if snowmelt-driven increases in soil moisture are responsible for increases in

P/E anti-correlation in the spring season, here we analyze the soil moisture from all four LE models

that provide the needed data. First, recall from the analysis in the main paper that all LE models

except CSIRO-MK36 detected a P/E anti-correlation in the spring season. From Fig. 3.36-3.39,

we find that three of the four models also agree that both the total soil column and topsoil actually

contain less moisture in the spring in the future period. The exception, GFDL-CM3, projects an

increase in total soil moisture in both winter and spring seasons; however, this result appears to be

the exception, and so it appears that there is insufficient evidence to support snowmelt-driven soil

moisture as the reason for P/E anti-correlation.

We further examine the correlations between each model’s multi-ensemble mean total soil mois-

ture and topsoil moisture with precipitation, net precipitation and evapotranspiration (Table 3.2-

3.3). From these results it’s evident that the correlations between net precipitation and both total

soil and topsoil moisture are far larger than precipitation’s, which confirms the strong linkage be-

tween net precipitation and soil moisture. This result validates that SNPI is a good metric for

assessing agricultural and rapidly developing drought within our region, as both of these types of

drought are associated with deficient soil moisture over our study region. Similarly, the evapotran-

spiration shows a significant negative correlation with soil moisture, illustrating that evapotranspi-

ration can represent the evaporative demand within our study region.
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Table 3.2: Correlations between each model’s ensemble mean total soil moisture and precipitation,
net precipitation and evapotranspiration.

Model Precipitation Net precipitation Evapotranspiration Period

CESM1-CAM5 0.30 0.67 -0.58 Historical
CESM1-CAM5 0.43 0.81 -0.71 Future
CSIRO-MK36 0.60 0.78 -0.67 Historical
CSIRO-MK36 0.53 0.86 -0.75 Future
GFDL-CM3 0.48 0.70 -0.62 Historical
GFDL-CM3 0.71 0.67 -0.32 Future
MPI-ESM -0.04 0.85 -0.70 Historical
MPI-ESM 0.05 0.83 -0.56 Future

Table 3.3: Correlations between each model’s ensemble mean topsoil (top-0.1m) moisture with
precipitation, net precipitation and evapotranspiration.

Model Precipitation Net precipitation Evapotranspiration Period

CESM1-CAM5 0.32 0.96 -0.87 Historical
CESM1-CAM5 0.52 0.98 -0.85 Future
CSIRO-MK36 0.38 0.89 -0.89 Historical
CSIRO-MK36 0.27 0.85 -0.88 Future
GFDL-CM3 0.47 0.89 -0.95 Historical
GFDL-CM3 0.87 0.95 -0.50 Future
MPI-ESM -0.28 0.93 -0.84 Historical
MPI-ESM 0.23 0.93 -0.76 Future
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Figure 3.4: Development speed of flash drought for each season (except winter) and model. The
black bold numbers above each box plot indicate the average frequency within each period (51
years). The red bold numbers indicate the p-values obtained from a t-test of the Delta SNPI1
mean between historical and future periods.
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Figure 3.5: Development speed of extreme flash drought for each season (except winter) and model.
The black bold numbers above each box plot indicate the average frequency within each period
(51 years). The red bold numbers indicate the p-values obtained from a t-test of the Delta SNPI1
mean between historical and future periods.
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Figure 3.6: Duration and magnitude of intermediate-term droughts derived from (left) SPI6 and
(right) SNPI6. For duration, the black bold numbers above each box plot indicate the average
frequency (the number of dry months per 51 years). The red bold numbers indicate the p-values
obtained from a t-test of the drought duration mean between historical and future periods. For
drought magnitude (the accumulated SPI6/SNPI6 during each drought event), the black bold
numbers above each box plot indicate the mean drought magnitude. The red bold numbers indicate
the p-values obtained from a t-test of the drought magnitude mean between historical and future
periods.
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Figure 3.7: Mean and standard deviation of each LE model’s precipitation during historical and
future periods. The bold numbers above each bar indicate the value of the standard deviation.
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Figure 3.8: Frequency plots of net precipitation in each season for (top) the historical period and
(middle) the future period, along with (bottom) their difference.
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Figure 3.9: Model-ensemble average normalized regional monthly mean precipitation and evap-
otranspiration in the spring during historical and future periods. Data are normalized to their
percentiles within historical and future period respectively.
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Figure 3.10: Ensemble mean annually averaged monthly Plant Evapotranspiration Component
Ratio and Leaf Area Index from CESM1-CAM5 during all seasons and the spring season.
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Figure 3.11: The study region (New England Region) and grid cells within it.
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Figure 3.12: The annual average SNPI6, root zone and total soil moisture in ERA5 from 1950-2000.
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Figure 3.13: Evolving drought conditions in 1999 from ERA5.
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Figure 3.15: SNPI1 in 1999 April from ERA5.
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Figure 3.16: Relevant fields during an evolving drought from CESM1 r20i1p1 in 1974 (which
experiences the largest surface soil moisture drop).
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Figure 3.17: Relevant fields during an evolving drought from CESM1 r19i1p1 in 1997 (which
experiences the second largest surface soil moisture drop).
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Figure 3.18: Relevant fields during an evolving drought from CESM1 r29i1p1 in 1998 (which
experiences the third largest surface soil moisture drop).
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Figure 3.19: Relevant fields during an evolving drought from CESM1 r34i1p1 in 1951 (which
experiences the fourth largest surface soil moisture drop).
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Figure 3.20: Relevant fields during an evolving drought from CESM1 r38i1p1 in 1954 (which
experiences the fifth largest surface soil moisture drop).
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Figure 3.21: Relevant fields during the evolving process of 2012 US Midwest flash drought over
Kansas from ERA5 (which is the most infamous flash drought over CONUS).

121



3.6. SUPPLEMENT

SNPI1

1.8

1.2

0.6

0.0

0.6

1.2

1.8
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Figure 3.23: SNPI1 in 2012 May from ERA5.
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Figure 3.24: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted
to corresponding distributions, and their p-values of K-S Test within all ensembles of CanESM2
(January to June).
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Figure 3.25: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of CanESM2 (July
to December).
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Figure 3.26: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of CESM1-CAM5
(January to June).
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Figure 3.27: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of CESM1-CAM5
(July to December).
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Figure 3.28: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of CSIRO-MK36
(January to June).
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Figure 3.29: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of CSIRO-MK36
(July to December).
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Figure 3.30: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted
to corresponding distributions, and their p-values of K-S Test within all ensembles of EC-Earth
(January to June).
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Figure 3.31: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of EC-Earth (July
to December).

130



3.6. SUPPLEMENT

5 10 15 20 25
Theoretical Quantiles

5

10

15

20

25
Sa

m
pl

e 
Qu

an
til

es p-value: 0.7

Precipitation in Jan
(Fitted to Gamma Distribution)

5 10 15 20 25 30
Theoretical Quantiles

5

10

15

20

25

30

p-value: 0.989

Adjusted Net Precipitation in Jan
(Fitted to Gamma Distribution)

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Theoretical Quantiles

0.5

1.0

1.5

2.0 p-value: 0.539

Net Precipitation in Jan
(Fitted to Log-Logistic Distribution)

5 10 15 20 25
Theoretical Quantiles

5

10

15

20

25

Sa
m

pl
e 

Qu
an

til
es p-value: 0.833

Precipitation in Feb

5 10 15 20 25 30
Theoretical Quantiles

5

10

15

20

25

30

p-value: 0.813

Adjusted Net Precipitation in Feb

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Theoretical Quantiles

0.5

1.0

1.5

2.0 p-value: 0.43

Net Precipitation in Feb

20 30 40 50 60
Theoretical Quantiles

20

30

40

50

60

Sa
m

pl
e 

Qu
an

til
es p-value: 0.614

Precipitation in March

40 50 60 70 80
Theoretical Quantiles

40

50

60

70

80
p-value: 0.895

Adjusted Net Precipitation in March

0.8 1.0 1.2 1.4
Theoretical Quantiles

0.8

1.0

1.2

1.4
p-value: 0.444

Net Precipitation in March

10 15 20 25 30 35 40
Theoretical Quantiles

10

20

30

40

Sa
m

pl
e 

Qu
an

til
es p-value: 0.991

Precipitation in April

5 10 15 20 25 30
Theoretical Quantiles

5

10

15

20

25

30

p-value: 0.776

Adjusted Net Precipitation in April

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Theoretical Quantiles

0.5

1.0

1.5

2.0 p-value: 0.364

Net Precipitation in April

40 50 60 70 80
Theoretical Quantiles

40

50

60

70

80

Sa
m

pl
e 

Qu
an

til
es p-value: 0.952

Precipitation in May

15 20 25 30 35 40 45
Theoretical Quantiles

20

30

40 p-value: 0.991

Adjusted Net Precipitation in May

0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
Theoretical Quantiles

0.50

0.75

1.00

1.25

1.50

1.75

2.00

p-value: 0.616

Net Precipitation in May

15 20 25 30 35 40 45 50
Theoretical Quantiles

20

30

40

50

Sa
m

pl
e 

Qu
an

til
es p-value: 0.801

Precipitation in June

5 10 15 20 25 30
Theoretical Quantiles

5

10

15

20

25

30
p-value: 0.677

Adjusted Net Precipitation in June

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
Theoretical Quantiles

0.5

1.0

1.5

2.0 p-value: 0.518

Net Precipitation in June

Q-Q Plots of GFDL-CM3 in Each Month (from Jan to June)

Figure 3.32: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of GFDL-CM3
(January to June).
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Figure 3.33: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of GFDL-CM3
(July to December).
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Figure 3.34: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of GFDL-ESM2M
(January to June).
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Figure 3.35: Q-Q plots of precipitation, adjusted net precipitation and net precipitation fitted to
corresponding distributions, and their p-values of K-S Test within all ensembles of GFDL-ESM2M
(July to December).
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Figure 3.36: CESM1-CAM5’s ensemble average long-term monthly mean total soil moisture and
topsoil moisture over New England region in the historical (1950-2000) and future (2050-2100)
period.
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Figure 3.37: CSIRO-MK36’s ensemble average long-term monthly mean total soil moisture and
topsoil moisture over New England region in the historical (1950-2000) and future (2050-2100)
period.
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Figure 3.38: GFDL-CM3’s ensemble average long-erm monthly mean total soil moisture and topsoil
moisture over New England region in the historical (1950-2000) and future (2050-2100) period.
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Figure 3.39: MPI-ESM’s ensemble average long-term monthly mean total soil moisture and topsoil
moisture over New England region in the historical (1950-2000) and future (2050-2100) period.
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Chapter 4 A retrospective and prospective ex-

amination of the 1960s U.S. North-

east Drought

4.1 Introduction

The Northeastern United States (NEUS) is the most economically developed and populated

region in the US, accounting for about 20% of US GDP and population but only 5% of its land

area (Hobbs, 2008; US Bureau of Economic Analysis, 2016). Here, extreme weather events –

primarily floods, droughts and snowstorms – result in disproportionate socioeconomic damage.

One of the most well known examples of extreme weather in this region was the 1962-66 drought,

which had pronounced implications for agriculture and water management practices (Barksdale,

1968; Janes and Brumbach, 1965; Namias, 1966). Although the direct economic damage was not

extensive (DeGaetano, 1999), this event has since framed water resource planning in the NEUS.

Consequently, a return of the water stresses from this period would have enormous implications.

To this end, it’s important to understand how would such an extreme drought’s characters change

under future climatological conditions? Notably, the unprecedented 1960s drought was followed by

a long wet period that continued through today (Seager et al., 2012). Both historical observations

and climate models show continued increase in precipitation over NEUS (Frumhoff et al., 2007);

however, this should not imply that droughts here are things of the past. In fact, there is evidence

that the risk of potentially even more severe droughts remains (Burns et al., 2007; Frumhoff et al.,

2007; Hayhoe et al., 2007). Advances in climate models have made it possible to improve our

confidence in these projections, and so it is timely to revisit the nature of drought in this region.

Pseudo-global warming (PGW) is a demonstrably effective method for simulating the effects
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of global warming. This method not only reduces large-scale model biases and ensures that dy-

namical conditions are consistent with a historical analogue, but also allows us to directly estimate

differences between current and future climatological conditions (Kimura et al., 2007; Ullrich et al.,

2018). Using PGW, global climate model (GCM) projections are used to modify the meteorological

boundary conditions of the historical 1961-1967 period to reflect the impact of climate change on

dry and moderate periods, and speculate on the characteristics of such an extreme drought at the

beginning-of-century (2021-2027), mid-century (2041-2047) and end-of-century (2091-2097). This

study thus focuses on how the dynamical conditions of this period would manifest in a warming

climate.

This study focuses on trends in hydroclimatic variables and the consequences for society and

agriculture. Perhaps the most obvious trend being that there will be significant warming, which is

observed to be particularly strong over the wintertime at higher latitudes. This causes a decrease

in the number of freezing days, early spring snowpack melt and areas of seasonally frozen ground

essentially disappearing by the end-of-century. Further, this warming drives a surge in the number

of extreme hot days (those with regional mean heat index larger than 41°C). Even with subsequent

increases in evapotranspiration, net precipitation increases over most of the NEUS. Using 24-

month long-term standardized precipitation index (SPI24) of net precipitation we project mean

meteorological conditions of these future drought analogues to be nearly normal, wet and extremely

wet at the beginning, middle and end-of-century. However, the short-term SPI (SPI1) of net

precipitation indicates this general wetting trend is primarily manifest during moderate months, and

so net precipitation variability increases and is responsible for exacerbating the discrepancy between

dry and moderate periods. By end-of-century, an extreme drought could potentially develop in only

one month from extremely wet conditions.

Other risks also emerge that threaten water resources in this region. For instance, unprece-

dented extreme precipitation events will emerge during moderate periods. The 99th percentile of

precipitation will increase by more than 50% by the end-of-century compared with analogous years

in the 1960s. Widespread flood events are expected to become more frequent, and are likely to

impact aging infrastructure. Further, early melt of snowpack will lead to less runoff recharge in
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the early spring. And degradation of frozen ground will lead to more infiltration of water from

surface runoff to soil. In conjunction, by end-of-century these factors will reduce March surface

runoff to below half of historical levels, with impacts for the growing season. These changes have

likely consequences for both ecosystems and agriculture in the region.

4.2 The record-setting 1960s drought

The 1960s drought, which occurred from late 1962 to 1966, has been deemed as the most severe

drought in the Northeastern US over last century. Its prominence in the region’s water resource

planning emphasizes that drought is not only limited to commonly dry regions (Barksdale, 1968;

Cook and Jacoby, 1977; Janes and Brumbach, 1965; Lyon et al., 2005; Seager et al., 2012). The

drought affected millions of people, and covered an area from New England to Virginia and from

the Atlantic Coast to Ohio (Barksdale, 1968). As seen in Fig. 4.1, meteorological dryness was the

primary driver of the drought, as temperatures were anomalously low over this period (Namias,

1966). These low temperatures spared the region from potentially more severe impacts (Janes and

Brumbach, 1965; Namias, 1966). In the New England Region, negative Palmer Drought Severity

Index (PDSI) values, associated with drought conditions, began in 1962 and ended at 1966; however,

1962’s annual average PDSI was nearly 0 as the drought’s effects only manifested in the latter half of

the year. Therefore, in this study, we refer to the years 1963-1966 as “dry” years and 1961, 1962 and

1967 as “moderate” years. This distinction is important as we will contrast future impacts for dry

and moderate periods. The most negative PDSI and lowest soil moisture level of the climatological

record occurred in 1965, exemplifying the intensity of the drought and the importance of 1965 as

the year with the most pronounced impacts. Therefore, our study uses 1965 as the exemplar dry

year and 1961, a year with the largest positive precipitation anomaly of the 1960s, as the exemplar

moderate year. Notably, the 1960s drought was at its most severe in the growing season (Barksdale,

1968; Barksdale et al., 1966; Namias, 1966). While the exact dynamical drivers of the drought is

still an open question, some suggest the 1960s was driven by precipitation suppression from a low

pressure anomaly over the North Atlantic Ocean and a descending, northerly flow over the NEUS

(Namias, 1966; Seager et al., 2012), and some demonstrate it was closely linked to the North Pacific
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mode (Barlow et al., 2001).

At the beginning of 1962, there was little indication that the NE was descending into a drought

state. Precipitation in the early spring of this year was nominal, but after the 6 months of below-

average precipitation that followed, a water shortage gradually began to emerge that depleted the

soil being used for irrigation (Barksdale, 1968). By late 1962, most observations of runoff and

groundwater were below normal levels, and pronounced impacts to agricultural productivity were

being felt in states like New York (Barksdale et al., 1966).

Dryness persisted beyond 1962, and although heavy precipitation occurred in late 1963 and

early/late 1964, outside of the growing season this did little to prevent the spread of drought

(Barksdale, 1968; Barksdale et al., 1966). Consequently, the growing season of 1964 was recorded

as the driest of the last century (Janes and Brumbach, 1965). The drought intensified further in

1965 and spread over a wider swath of the northeast. Besides limiting water use, the drought also

had an impact on water quality (Barksdale, 1968), as previously unused and polluted water sources

began being used to counter water shortages. Rivers’ pollutant concentration increased due to

insufficient dilution, and sea water intrusion threatened coastal freshwater quality.

Strict rules on water conservation and better management helped greatly in managing the

water shortage from 1965 to 1966 such as limitations of air conditioning, swimming pools, domestic

water usage, automobile washing and temporary shutdown of some industries and commercial

establishments (Barksdale, 1968; Barksdale et al., 1966). At last, the drought ended with abundant

precipitation in September 1966 (Barksdale, 1968), with regional mean PDSI rising above zero for

the first time in four years.

4.3 Uncertainty of a return to drought conditions under climate

change

Large uncertainty remains for future trends of drought in the NEUS. Studies generally conclude

that although the region is becoming wetter, drought – especially short-term drought – will occur

more frequently and intensely under climate change (Demaria et al., 2016; Frumhoff et al., 2007;

Hayhoe et al., 2008). Nonetheless, drought is an emergent feature that is affected by changes in
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Figure 4.1: Palmer Drought Severity Index (PDSI) and the anomalies of precipitation, temperature
and soil moisture from 1948 to 2010 over the New England Region. PDSI data from NCAR (Dai
et al., 2004). Soil moisture data from CPC Soil Moisture (Van den Dool et al., 2003). Precipitation
and temperature from CERA-20C R7 (European Centre for Medium-Range Weather Forecasts,
2016).
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thermodynamics (e.g. increases in atmospheric water vapor), hydrology (e.g. precipitation phase,

runoff, related land surface variables, and surface-atmosphere fluxes) and dynamical conditions

(shifts in the frequency, intensity or duration of meteorological patterns). Overall, both historical

observations and model projections indicate an upward trend in average temperature (0.3°C/0.5°F

per decade since 1970, with wintertime warming of 0.7°C/1.3°F per decade) and a slight increase

in average runoff and evapotranspiration (Frumhoff et al., 2007; Hayhoe et al., 2007; Seager et al.,

2012). This has meant more extreme heat days, early melt dates, a lower snowfall-rainfall ratio, and

a longer growing season along with more water demand (Burns et al., 2007; Frumhoff et al., 2007;

Hayhoe et al., 2007; Seager et al., 2012). Although increased precipitation has meant that drought

indices such as SPEI and SPI are shifting towards more positive values, indicative of generally

wetter conditions, the spread of these indices is also increasing; consequently, the probability of

extreme drought is largely unchanged in both observational data and models (Krakauer et al.,

2019).

Water resource planning in the NEUS is highly reliant on a model drought based off of the 1960s

drought period (1962-1966). Given subsequent climatic shifts (and foreseeable climatic shifts), there

are concerns with the use of a model drought from more than a half century ago (Moser et al.,

2008). Consequently, NEUS water management agencies agree that this model drought should be

revisited in light of climate change. In the future, earlier snowmelt dates and reduced wintertime

snowpack will certainly impact seasonal availability of water (Burns et al., 2007; Frumhoff et al.,

2007; Huntington et al., 2004). Future warming will lead to a longer growing season and enhanced

evaporation, thus enhancing consumption of available freshwater, particularly in spring and summer

(Frumhoff et al., 2007; Lyon et al., 2005; Seager et al., 2012). While the 1960s drought is notable

for its severe water shortage in these seasons, its socioeconomic impacts were also tampered by low

temperatures. Capturing these factors under climate change motivates the use of a comprehensive

model-based study of this period.
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4.4 A simulation of present and future analogues of the 1960s

drought

Having motivated the purpose of our study, we now present our methodology and results from

our simulations using pseudo-global warming, including temperatures, precipitation, evapotranspi-

ration, snowpack, soil moisture, runoff, and drought indices.

4.4.1 Methodology

In this study the Weather Research and Forecasting (WRF) Model (Powers et al., 2017; Ska-

marock et al., 2008) is used for simulating the regional hydrometeorological and drought conditions

of the NEUS during the returned historical 1960s drought periods. WRF is one of the most

commonly-employed regional climate modeling systems currently available, incorporating many

widely-recognized physical parameterizations. Thousands of research studies have been conducted

with WRF worldwide, demonstrating WRF’s utility for robust simulation of regional climate. With

an appropriate choice of parameterizations, WRF has been shown in past studies to accurately re-

produce the hydroclimatology of the NEUS (Ganetis and Colle, 2015). In this study WRF 3.9.1

is used with the parameterization suite given in Table 4.1. The land surface model employed is

the Community Land Model 4 (CLM 4) (Oleson et al., 2010), which is the most complicated and

expensive of the available options in WRF, and one that shows reasonable performance across a

variety of geographies (Case et al., 2008; Jin et al., 2010; Ullrich et al., 2018). Extensive validation

was performed on our simulation to ensure good model performance (see Supplement 4.6.4).

The parameterization sets all come from the Community Earth System Model (CESM) (Hurrell

et al., 2013; NCAR, 2019) and are chosen because, in this model, they have been shown to be

robust and work well across regions and scales. These parameterization sets were also employed

in our previous study on the 2012-2016 California drought (Ullrich et al., 2018) and have been

demonstrated to exhibit good performance in other studies (Bretherton and Park, 2009; Jiménez

et al., 2012; Neale et al., 2010; Zhang and McFarlane, 1995).
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Table 4.1: Physical parameterizations used in our WRF simulations.

Process Parameterization

Microphysics CAM V5.1 two-moment five-class (Neale et al., 2010)
Radiation RRTMG (Iacono et al., 2008)
Surface layer Revised MM5 similarity theory (Jiménez et al., 2012)
Land surface model CLM4 (Oleson et al., 2010)
Planetary boundary layer UW (Bretherton and Park, 2009)
Cumulus parameterization ZM (Zhang and McFarlane, 1995)

Simulation period and domain

Our simulations in this study cover four time periods: historical (1960s) (1960-1967), present-day

(2020s) (2020-2027), mid 21st century (2040s) (2040-2047) and late 21st century (2090s) (2090-

2097). In each simulation the first year serves as the spin-up period to ensure hydrologic and

meteorological conditions have stabilized. Two nested domains are used (Fig. 4.2). The outer

and inner domains have 105 × 89 and 187 × 133 grid points, with resolutions of 18 and 6 km,

respectively. Due to the long duration of the simulation, spectral nudging is employed (with the

default relaxation timescale) so as to reduce internal model drift. In our simulations the 30-arc

second (∼ 1 km) resolution United States Geological Survey-based land use and land cover and

topography datasets are interpolated to the model grids as geographical input.

Although most of our analysis focuses on the inner domain (Fig. 4.2), some detailed analyses

are conducted within the southern New England subregion (defined as 41N to 43N latitude and

74W to 70W longitude). This location comprises the most populated and developed areas of the

NEUS.

Modified forcing from pseudo-global warming

Lateral forcing data for this historical period is from the 6-hourly Coupled ECMWF Re-Analysis

system of the 20th-century (CERA-20C) R7 interpolated to 0.5° resolution. CERA-20C is a coupled

reanalysis dataset with global coverage from 1901-2010, designed to capture low-frequency climate

variability (European Centre for Medium-Range Weather Forecasts, 2016). This dataset is chosen

because of its relatively high spatial and temporal resolution, and because its precipitation amounts
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Figure 4.2: Our WRF domain setup for all simulations in this study. Shading indicates the surface
height. Grid spacing in the outer (inner) domain is 18 km (6 km).
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best match observations of mean precipitation over the NEUS. After comparing the performance

across all 10 CERA-20C ensembles, we selected the CERA-20C R7 ensemble as it again provided

the highest performance among ensembles. More details on the evaluation protocol are provided

in the Supplement section 4.6.2.

Anticipated future changes to lateral forcing under climate change are derived from Coupled

Model Intercomparison Project phase 6 (CMIP6) projections under SSP585 with the socioeconomic

assumption of fast economical and technical development and low population (O’Neill et al., 2014,

2017). This scenario is widely used and assumes high greenhouse gas emissions, illustrating the

high risks and challenges under a fossil-fuelled rapid development (O’Neill et al., 2017; Riahi et al.,

2017). End-of-century conditions under lower emission scenarios can be approximated with our

early or mid-century PGW simulation results. In this study we use data from the multi-model

mean of four CMIP6 models with demonstrably good performance in the NEUS region (namely,

CESM2, MRI-ESM2-0, CNRM-ESM2-1 and GFDL-CM4), as identified by Srivastava et al. (2020).

Following Ullrich et al. (2018), the spatially averaged monthly mean projections are used to calcu-

late the difference between each of the 2020s, 2040s, and 2090s periods against the 1960s period.

Both temperature and relative humidity are assessed in this manner. The resulting temperature

differences as a function of month and altitude are depicted in Fig. 4.21. We observe a positive tem-

perature delta throughout the troposphere (up to around 100 hPa altitude), with a local maximum

occurring around 350 hPa over the summer, and at the surface over winter. There is a negative

temperature delta in the stratosphere, as anticipated under climate change. The magnitude of the

temperature delta (both positive and negative) clearly increases from the 2020s to the 2040s and

the 2090s, although the patterns are consistent. Relative humidity differences are small and so are

not shown.

Lateral forcing data for the future simulations are the same as historical, except with the tem-

perature delta (Fig. 4.21) added over the entire domain, on constant pressure surfaces. Based on

our observation of essentially negligible changes in relative humidity, relative humidity is held fixed

(resulting in enhancement to specific humidity). Sea surface temperatures are analogously modified

using the multi-model mean of the selected CMIP6 models to accord with the change to air temper-
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atures. Finally, greenhouse gas concentrations are modified in WRF’s radiation parameterization

in accordance with the RCP8.5 emission scenario.

4.4.2 Overview of simulations

By comparing our historical simulation with its driver (CERA-20C) and other reliable, finer-

resolution datasets – in this case, the Climate Prediction Center unified gauge-based analysis pre-

cipitation data (CPC) (NOAA Physical Sciences Laboratory, 2020) and the ECMWF Reanalysis

v5 (ERA5) (European Centre for Medium-Range Weather Forecasts, 2020) – we conclude that our

simulation generally captures surface temperature, precipitation, and soil moisture over the his-

torical period. From Fig. 4.3, we see historical regional monthly mean precipitation is similar to

these products over both the inner domain and the subregion. Correlations between simulated and

CERA-20C regional monthly mean precipitation are 0.91 over the inner domain and 0.84 over the

subregion. Correlations between simulated and CPC/ERA5 precipitation over the inner domain

are 0.81 and 0.77. However, our simulation does tend to underestimate wintertime temperatures in

regions of rugged topography and generally overestimates summertime precipitation over coastal

regions (Fig. 4.28 and 4.29). With regards to the temperature underestimation, this can be par-

tially explained because of better resolution of topographic effects (Heikkilä et al., 2011; Zhu et al.,

2020). Inaccuracy in summertime precipitation is likely because our grid spacing within the inner

domain does not permit resolution of some convective features (Li et al., 2014). Examining the

spatial structure of the bias, we see that precipitation is overestimated over coastal regions and

underestimated over the inland regions and the Great Lakes (Fig. 4.30).

Soil moisture appears to be captured well after initial spin-up; since there is little change

in the soil moisture structure thereafter, the 9 month spin-up period appears sufficient. This is

likely because our domain is relatively small and the simulation is initialized from reanalysis data

(Cosgrove et al., 2003; Leduc and Laprise, 2009). (See Supplement 4.6.4 for the detailed information

and more figures). In general, there is good agreement between the historical simulation and

observational datasets; while some differences are apparent, we assume that these biases are largely

independent of the simulated time period (that is, dominated by structural error) and so will not
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significantly affect conclusions related to future change.

Simulated annual mean temperature and precipitation over our subregion for each year of the

drought period is depicted in Fig. 4.4. Historical data comes from CERA-20C R7 and simulations

are corrected by the regional mean difference between historical data (1961-1967) and WRF 1960s

simulation. This plot also gives us a quick glimpse of how the climate of this region is projected to

change: Whereas all years of the 1960s were below the 50th percentile of precipitation and most

were below the 50th percentile of temperature, each simulated year of the 2040s and 2090s is above

the 99.9th percentile of temperature, and all years of the 2090s are well above the 95th percentile

of precipitation. This figure clearly highlights the significant regional shift towards a future warmer

and wetter climate.

4.4.3 Temperature

From the CMIP model ensemble, the average warming rate over land from the 1960s period to

2090s period is 0.052°C per year, which is higher than the observed global warming rate over land

and ocean since 1981 (0.018°C per year) (Lindsey and Dahlman, 2020). Simulated warming of this

magnitude is not unreasonable, as warming is expected to be much stronger over land and at higher

latitudes (Hoegh-Guldberg et al., 2018). Fig. 4.5 shows the spatial pattern of 2m temperature from

historical and its corresponding change. In general the magnitude of warming intensifies from the

2020s drought to the 2040s and the 2090s droughts, in accordance with expectations from the

CMIP6 models under SSP585. However, the spatial and seasonal distributions of warming are

uneven, with a stronger warming trend in winter (DJF) and at higher latitudes, where historical

temperatures are lower; for example, regional mean change over land in 2045 DJF (4.14°C) is 1.52°C

larger than 2045 JJA (2.62°C). From Fig. 4.6, a clear correlation between future 2m temperature

change and historical mean temperature at each grid point emerges, with enhancement of the

change in the winter season and under increased forcing; for example, the correlation over the

2095 winter (-0.62) is much larger than over the 2095 summer (-0.53), the winter of 2045 (-0.50),

and the winter of 2025 (-0.43). This trend suggests that cold regions will be warming faster than

warm regions, indicative of some homogenization of temperatures over seasons and regions. Thus
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Figure 4.3: Simulated regional monthly mean 2-meter temperature (°C) and precipitation
(mm/day), and reference from CERA-20C R7, ERA5 and CPC within the inner domain and
subregion.
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temperature spatial and temporal variability are reduced, in turn driving earlier snowmelt and

intensified evapotranspiration.

Do these trends also hold for moderate periods? Although the lateral temperature deltas of

both the dry periods (1963-1966) and moderate periods (1961, 1962 and 1967) are the same, the

simulations produce greater regional warming during moderate periods than dry periods (although

the difference is small). Further, some differences in spatial distribution of temperature change

persist: From Fig. 4.5 (fourth row), we can see that during the moderate wintertime period, the

regions with highest temperature change are along the southern extent of New England; however,

dry years have the greatest warming along northern extent of the New England (Fig. 4.5, second

row). These wintertime spatial differences have consequences for dry years and non-dry years, such

as shifts in the number of freezing days and snowmelt (touched on later).

Extreme temperatures

It is well known that shifts in mean temperatures will have a disproportionate influence on the

frequency of extreme temperatures. From Fig. 4.7, there is a clear increase in the mean annual

maximum 2m temperature at all grid points, with more extremely hot days in the future; however,

there is essentially no change in the annual variance of temperatures. With that said, both the mean

and outliers of annual maximum daily temperature increase more in dry years rather than moderate

years, which consequently drives an increase in evaporation and risk of flash drought. Frequency

of extreme heat days are assessed using the Heat Index (HI) (Rothfusz and Headquarters, 1990)

to better distinguish extremely hot days with potential for significant socioeconomic impact (see

Supplement 4.6.3 for the detailed definition of the Heat Index).

As defined by NOAA, values of HI larger than 41°C indicate dangerously hot conditions which

may trigger sunstroke, heat cramps and heat exhaustion (NOAA, 2020). Fig. 4.8 shows changes

in the number of extreme heat days for each period for the subregion. Compared with historical

conditions (noting that this was a relatively cool period), the number of extreme hot days increases

from 6 in 1965 to 27 in 2045 and 56 at 2095. It’s clearly the case that extreme heat will be a major

public health concern in the NEUS going forward.
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Figure 4.5: Average daily 2m temperatures (in degrees Celsius) over June-July-August (JJA) and
December-January-February (DJF) in 1965 and 1961 (and their future analogues), exemplary of
dry and moderate years.
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Figure 4.8: The number of regional mean extreme heat days (regional mean Heat Index larger than
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The warming climate will also reduce the number of freezing days (days with daily 2m temper-

ature minimum less than 0°C) significantly in both dry year and moderate year (Fig. 4.9). The

change in freezing days is highly correlated with change in wintertime T2 (Fig. 4.5). Further, the

spatial distributions of the change in freezing day count differs significantly between our exemplar

dry year (1965) and moderate year (1961), in accord with their associated temperature deltas and

historical number of freezing days. Higher latitudes produce greater decreases of freezing days,

where historical freezing days are more common and warming is larger. In these regions, we thus

expect degradation of frozen ground (Zhang et al., 2003), which we will revisited later.

4.4.4 Precipitation

Fig. 4.10 depicts seasonal mean daily precipitation over the historical and projected periods.

Increasing precipitation is apparent in most regions, especially along the southeastern coasts during

winter and in the southwest during summer. These increases are expected because of an intensified

hydrological cycle in the warming climate (Huntington et al., 2004; Pfahl et al., 2017). In the

literature, the rule-of-thumb of warming climates ‘wet becomes wetter’ (Chou and Neelin, 2004;

Donat et al., 2016; Seager et al., 2010) has been often employed to explain precipitation change

over the ocean (Byrne and O’Gorman, 2015); nonetheless, it also applies here (especially in the

winter season). In Fig. 4.10 regions with greater precipitation increase coincide with regions of
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Figure 4.9: The number of freezing days in 1965 and 1961 (and their future analogues), defined by
daily minimum 2m temperature less than 0°C.

larger historical mean wintertime precipitation, with pattern correlation in 2025 DJF, 2045 DJF

and 2095 DJF of 0.51, 0.55 and 0.50, respectively (FIG. 4.26). This result also applies for all

other dry and moderate years, with even higher correlations of 0.8 in some cases (e.g. 2043 and

2093 DJF). The applicability of this rule of thumb to the inland NEUS is likely a consequence of

a relative abundance of water vapor in the region from the Atlantic Ocean and Gulf of Mexico.

What’s more, unlike the dry period, the moderate period doesn’t experience more precipitation in

the northeastern part of the inner domain; however, as we will discuss later, this region experiences

a significant soil moisture increase during the moderate period.

Although this study is focused on drought, the dramatic increase in future precipitation deserves

some discussion. Extreme precipitation is notorious for its disastrous impacts on society, and has

been increasing in frequency across the continental US. This increase is particularly pronounced over

the NEUS (Hayhoe et al., 2007; Huntington et al., 2004), where the most intense daily precipitation

events (99th percentile daily precipitation) have increased by more than 70% from 1958 to 2012

(Melillo et al., 2014). Our simulations also indicate that more extreme precipitation events will

occur here in the future. Fig. 4.11 shows that both absolute and relative precipitation percentiles

will increase, with greater increases from the 2020s to the 2090s. In particular, the 99th percentile
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Figure 4.10: Seasonal mean precipitation distribution and change in the exemplar 1965 dry year
and 1961 moderate year (mm/day).
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of precipitation will increase more than 50% in both dry and moderate periods in 2090s versus the

1960s. Examining inner domain grid points’ annual maximum precipitation (Fig. 4.12), the mean

and upper tail of the annual maximum precipitation distribution both increase into the future.

We expect unprecedented extreme precipitation (daily precipitation larger than 160 mm/day) may

occur (especially in non-dry years) that will challenge the capacity of flood control equipment in

NEUS.

4.4.5 Evapotranspiration

Enhanced evapotranspiration can directly reduce the net input of water from atmosphere to land,

decrease runoff and soil moisture, and increase water demands for agriculture and ecosystems. Fig.

4.13) shows that our future analogues exhibit greater summertime evapotranspiration compared

to winter, in accord with the spatial and temporal distribution of historical precipitation (Fig.

4.10). Of course, this is unsurprising as evapotranspiration amounts are closely related to water

available. Evapotranspiration also increases more toward higher latitudes because of the warming

effect, especially in wintertime. These trends hold for all dry and moderate years (Fig. 4.10). Mod-

erate periods producing stronger evapotranspiration intensity are likely caused by more significant

warming and more abundant precipitation.

As noted earlier, precipitation increases correlate with historical precipitation. Considering

the strong relationship between the evapotranspiration and precipitation change, this inspires the

question “how does a net precipitation (precipitation minus evapotranspiration) change emerge?”

Fig. 4.14 shows that although evapotranspiration increases, precipitation increases more rapidly,

thus producing an overall increase of net precipitation. Consequently, our earlier use of “wet

becomes wetter” also applies to net precipitation, especially in winter months where correlations

are more than 0.6 (and up to 0.87) between historical net precipitation and its change during

both dry and moderate periods. It’s further clear that the dry period summertime has much less

net precipitation than the moderate period, suggesting that net precipitation is valid for indicating

drought conditions. Note that the wet conditions of 1965 DJF was caused by a short-term abundant

historical precipitation event.
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Figure 4.11: Regional mean precipitation change at different percentiles. Only daily precipitation
events larger than 1 mm/day are included.
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Figure 4.12: Annual maximum precipitation distribution of all grid points within the inner domain.

4.4.6 Snowpack

Due to its connection to the hydrologic cycle, water supply and ecosystems in the NEUS, an

understanding of future snowpack is necessary for water resource planning. Fig. 4.15 shows a clear

and rapid decrease in snowpack in this region in DJF and MAM in response to warming. Within

the inner domain, seasonal regional mean snow water equivalent (SWE) was 20.56 kg/m2 in 1965

DJF; however, 2095 DJF only produced 7.16 kg/m2 of SWE (a 61% decline). This decrease is

most pronounced in the spring season (MAM); 2095 MAM exhibits a 94% drop in SWE over 1965

MAM (Fig. 4.16). Lower latitudes are most strongly impacted as here snow is more sensitive to

temperature increases. The result is a loss of spring snowmelt contribution to runoff (Fig. 4.15).

Although there is a greater absolute SWE loss over the moderate period, the relative change

in the 1961 moderate year (Fig. 4.15) is still much smaller than in the 1965 dry year (Fig. 4.15).

Notably, during the 1965 dry period there is practically no historical snow accumulation in spring

over the northeastern states of the NEUS (Fig. 4.15), a result of low precipitation. The depleted

wintertime snowpack was a major reason for the seriousness of the drought in springtime; without

snowmelt the surface runoff reached record lows. Over the northeastern corner of the domain the

absolute change in SWE between 1965 and its future analogue is thus fairly small, because there

is essentially no snow to remove (Fig. 4.15). On the other hand, during the moderate periods this
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Figure 4.13: Seasonal mean evapotranspiration (mm/day) over the 1965 dry exemplar and 1961
moderate exemplar,and projected changes in their future analogues for the JJA and DJF seasons.
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Figure 4.14: Seasonal mean net precipitation (mm/day) over the 1965 dry exemplar and 1961
moderate exemplar,and projected changes in their future analogues for the JJA and DJF seasons.
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Figure 4.15: Seasonal mean snowpack absolute change (kg/m2) over the 1965 dry exemplar and
1961 moderate exemplar,and projected changes in their future analogues for the JJA and DJF
seasons.

region has a healthy snowpack, which is severely depleted in the future (Fig. 4.15).

4.4.7 Soil moisture and runoff

Soil moisture and runoff are two essential hydrologic variables and indicators of drought and water

supply. In WRF-CLM4, soil moisture is accumulated over 10 layers; we focus on the average column

soil moisture, which is the average soil moisture in each layer weighted by its thickness. Seasonal

mean soil moisture over the 1965 and 1961 exemplar years (and differences in their future analogues)

are depicted in Fig. 4.17. Simulated runoff is directly output by WRF and its seasonal means and
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Figure 4.16: Seasonal mean snow water equivalent and its relative change over the 1965 dry exem-
plar and 1961 moderate exemplar,and projected changes in their future analogues for the JJA and
DJF seasons.
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future change shown in Fig. 4.18. Unsurprisingly, soil moisture trends upwards in accordance with

net precipitation, and the long term monthly mean soil moisture will keep increasing for every month

during both moderate and dry period from historical period to the end of this century (2090s). Both

dry and moderate periods have more soil moisture near the coast, however a significant increase can

also be found during the moderate periods to the northeast. Although both net precipitation and

soil moisture are generally increasing, surface runoff exhibits a decreasing trend in some regions,

particularly during the dry periods, which we attribute to increasing snowmelt and frozen ground

degradation and not obviously increased net precipitation (as discussed in section 4.4.5).

Frozen ground degradation

Degradation of frozen ground is apparent for both the soil moisture and runoff fields regardless of

time period. Frozen ground refers to permanently or seasonally frozen soil moisture, and can be

assessed in terms of the number of freezing days (Zhang et al., 2003). Freezing of soil moisture drives

up soil impermeability and reduces hydraulic conductivity, leading to a decline in soil infiltration

and increase in surface runoff (more information on soil permeability in WRF-CLM4 is given in

supplement 4.6.1). On the other hand, frozen ground degradation increases soil infiltration and

reduces surface runoff. Frozen ground degradation is triggered by a loss of snowpack and reduction

in freezing days, both of which are anticipated in a warmer climate. We argue that, particularly in

DJF and MAM, frozen ground degradation is even more important for affecting soil moisture and

runoff than net precipitation.

First, we observe that, compared with the dry years (Fig. 4.15 and 4.14), moderate years

experience a significant summertime net precipitation decrease and soil moisture increase simulta-

neously in the northeast (particularly in Canada). Certainly this would appear contradictory if net

precipitation was the only driver of soil moisture change. However, the discrepancy can instead be

explained by increases in snowmelt accompanied by frozen ground degradation, leading to greater

infiltration to soil. Because historical snowpack was essentially zero in this region during the dry

period, absolute decreases in snowpack and and their recharge to soil moisture are also low in the

future periods (Fig. 4.15). But during the moderate period, abundant historical snowpack was
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present over the same region (Fig. 4.15), resulting in far more snowmelt in spring and summer,

and greater soil recharge and surface runoff under a warming climate. This extra recharge from

snowmelt also explains why, during the moderate period, the surface runoff decrease is much smaller

than during the dry period (Fig. 4.18). It also illustrates why over the northeast, dry periods have

a greater net precipitation increase but lower soil moisture increase.

What’s more, our hypothesis that frozen ground degradation has essential impacts on moistening

of the soil is evinced with the fact that there exists a pretty strong negative correlation between

regional mean soil moisture change and freezing days change (-0.88) that is even larger than its

correlation with regional mean net precipitation change (0.79) during the winter season of dry

periods over the inner domain. And in a multivariate linear regression model, freezing degree days

and net precipitation change are together strong predictors of soil moisture delta (R2 > 0.85).

Shifting runoff seasonality

In general, regions whose historical temperatures are just below 0°C are the most vulnerable to

frozen ground degradation, as any enhancement in temperature would prevent freezing of soil

moisture. As the soils of these regions then permit greater infiltration, they are also the regions in

our simulations that experience the greatest decrease in surface runoff. As a result, frozen ground

degradation leaves a clear seasonal signature in the runoff field: In Fig. 4.18 it is apparent that

the regions with the most surface runoff decrease do overlap with regions of historically seasonally

frozen soil, at lower latitudes in DJF and higher latitudes during MAM.

The most obvious decrease in runoff under dry conditions occurs in our New England subregion,

also the most populated subregion of our domain (Fig. 4.18), and one with significant surface water

demand . Loss of snowpack and frozen ground degradation here can be implicated in producing

lower runoff and more infiltration, especially in the late winter and early spring. Examination of

the long term monthly mean runoff change (Fig. 4.19) confirms our claim that the largest runoff

decrease is in early spring when SWE and frost days are most reduced into the future. Over the dry

period, the inner domain produces the largest historical regional monthly mean runoff in March due

to abundant recharge from snowmelt; however, by end-of-century, March monthly mean runoff is
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reduced from 0.330 to 0.155 µm/day (more than a 50% loss). In fact, by end-of-century the surface

regional runoff in the dry period peak moves from March to August in response to increasing

summer precipitation. The springtime decrease in runoff is even more obvious within the New

England subregion (Fig. 4.27), where reductions in frozen days and snow water equivalent are more

pronounced (Fig. 4.16). Shifting of surface runoff away from spring has important consequences

for agriculture – as discussed in section 4.2, the water shortage from the 1960s drought was at is

most severe in the early spring due to agricultural demands.

4.4.8 Drought indices

From our earlier analysis, a generally warming climate with greater precipitation, evaporation and

snowmelt are likely for a future analogue to the 1960s drought. However, overall wetter mean

conditions doesn’t necessarily imply that such a drought comes with fewer challenges. After all,

the impacts of drought are complex and the product of multiple variables. Given wetter conditions

are accompanied by increased temperatures and evapotranspiration, which in turn magnify the

need for water, it’s important to consider compound indices of drought as applied to historical and

future conditions.

Standardized Precipitation Index (SPI) is a widely used family of drought indicators designed

to capture the intensity of meteorological drought conditions (Hayes et al., 2002; Svoboda and

Fuchs, 2016). Specifically, the metrics SPIn quantify the accumulated departure from the mean of

n consecutive months’ accumulated precipitation. Smaller values of n are relevant for short-term

droughts and larger values for long-term droughts. However, a key limitation of the basic SPI metric

is that it cannot account for evapotranspiration, preventing it from capturing moisture demand, and

making it unsuitable for detecting flash droughts. Therefore, here we examine a modified version

of SPI which instead uses net precipitation in place of actual precipitation (hereafter referred to as

standardized net precipitation index, SNPI). We choose not to employ Standardized Precipitation

Evapotranspiration Index (SPEI) (Vicente-Serrano et al., 2010) since WRF-CLM4 provides an

accurate and internally-consistent version of evapotranspiration directly (Lawrence et al., 2011; Xu

et al., 2020), whereas SPEI would require an empirical calculation of potential evapotranspiration
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Figure 4.17: Seasonal mean soil moisture change (%) over the 1965 dry exemplar and 1961 moderate
exemplar,and projected changes in their future analogues for the MAM, JJA, and DJF seasons.

169



4.4. A SIMULATION OF PRESENT AND FUTURE ANALOGUES OF THE 1960S DROUGHT

40°N

45°N 1965MAM historical period Abs. change from 1965 to 2025 MAM Abs. change from 1965 to 2045 MAM Abs. change from 1965 to 2095 MAM

40°N

45°N 1965JJA historical period Abs. change from 1965 to 2025 JJA Abs. change from 1965 to 2045 JJA Abs. change from 1965 to 2095 JJA

40°N

45°N 1965DJF historical period Abs. change from 1965 to 2025 DJF Abs. change from 1965 to 2045 DJF Abs. change from 1965 to 2095 DJF

40°N

45°N 1961MAM historical period Abs. change from 1961 to 2021 MAM Abs. change from 1961 to 2041 MAM Abs. change from 1961 to 2091 MAM

40°N

45°N 1961JJA historical period Abs. change from 1961 to 2021 JJA Abs. change from 1961 to 2041 JJA Abs. change from 1961 to 2091 JJA

40°N

45°N

80°W 75°W 70°W

1961DJF historical period

80°W 75°W 70°W

Abs. change from 1961 to 2021 DJF

80°W 75°W 70°W

Abs. change from 1961 to 2041 DJF

80°W 75°W 70°W

Abs. change from 1961 to 2091 DJF

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.4 0.2 0.0 0.2 0.4 0.6

Seasonal Mean Surface Runoff ( m/day)

Figure 4.18: Seasonal mean runoff change (mm/day) over the 1965 dry year and 1961 moderate
year, and projected changes in their future analogues for the MAM, JJA, and DJF seasons.
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Figure 4.19: Regional long-term monthly mean runoff within the inner domain during dry years
and moderate years.

(ET0). Past work has also illustrated that over sufficiently wet regions SNPI and SPEI are largely

indistinguishable (Begueŕıa et al., 2014; Joetzjer et al., 2012). Details on the calculation of SNPI

are provided in section 3.2. Our interpretation of SNPI values is analogous to the interpretation

of SPI given in Table 2.1 (Guttman, 1999). Note that in this study, the calibration of SNPI is

based on the historical data from 1910 to 2010. Our rationale for only using the historical period

to calibrate the SNPI is to prevent our future drought projections from impacting the SNPI of

the historical drought. To ensure our simulation data are consistent with CERA-20C R7, WRF-

CLM4 simulations are corrected by adding the regional mean differences between CERA-20C R7

and WRF over the historical period (1961-1967).

To begin, trends of long-term drought conditions are examined using SNPI24. The reason why

we use SNPI24 here is to examine changes in long-term drought first, since the extended drought

period is the most significant feature of the historical 1960s drought. Then we will then use SNPI1

to examine the short-term features and questions around the emergence of flash droughts. A

similar analysis has been performed using SNPI6 and SNPI12 and conclusions analogous to those
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of SNPI24. The 1960s drought is clearly visible in Fig. 4.20 (top), and appears as the driest period

in the past 100 years. The year 1965 exhibits the lowest annual mean SNPI24 value, in accord

with the claim that 1965 was the driest of the past century. These results validate the use of

SNPI and its effectiveness for identifying drought conditions. Looking to the future, although both

precipitation and evapotranspiration increase substantially, annual mean regional SNPI24 at 2025

is only about -1, barely classifying as a drought. Under further warming, 2045 actually becomes

anomalously wet – with SNPI24 in 2041 actually surpassing any historical value of SNPI24. At the

end of this century (2090s), SNPI24 in every year is larger than 2, indicative that even under the

same dynamical conditions of the 1960s, the climate will be unprecedented compared to historical.

These results generally suggest that the threat from long-term meteorological drought over the next

century will be greatly diminished.

Although the climatological shift towards wetter conditions will mitigate long-term drought, we

can still ask if extreme drought conditions are similarly mitigated on shorter time scales? In fact,

our simulations suggest the answer is “probably not.” Specifically, we calculate the SNPI1 of 1960s

historical drought period (1963-1966) with that of the three future drought scenarios. Fig. 4.20

(bottom) clearly shows that even as wetter months experience enhanced net precipitation, short-

term extreme drought conditions persist. In fact, in the most extremely dry months (e.g. May 1964

and 1965), dryness is largely unchanged. Although the mean of SNPI1 during this period rises from

-0.33 to 0.61, in accord with the general wetting trend, the standard deviation of SNPI1 also soars

from 0.95 to 1.31, indicative of enhanced drought variability. This reflects enhanced climatological

differences between dry and wet periods. More importantly, drought tends to happen more quickly

– that is, a likely increase in the frequency flash drought (Christian et al., 2019). For example,

April 2094 has a SNPI1 larger than 2 followed by a sudden drop to less than -3 in May; extremely

dry conditions develop from extremely wet conditions in only one month! Suddenly adapting to

dry conditions in such a short time would be an immense challenge for the region’s water managers

and stakeholders.
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Figure 4.20: Regional annual mean SNPI24 and monthly mean SNPI1 within the New England
subregion over historical and future periods.
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4.5 Conclusions

In this study, the unprecedented 1960s NEUS drought is simulated as it occurred historically and

subject to anticipated climate change from the early (2020s), middle (2040s) and late (2090s) 21st

century. To do so, the pseudo-global warming methodology is employed in WRF-CLM4: dynamical

boundary conditions are identical to the historical period, while thermodynamics (atmospheric

temperature, sea surface temperature and greenhouse gas concentration) are modified using the

mean of four highly performant CMIP6 models under SSP585. Overall, our simulations reveal

that although there is a significant wetting trend due to the overall increase in net precipitation

(precipitation minus evapotranspiration) and moistening of the soil, this wetting is only apparent

during non-dry months, while dry months with negative net precipitation are generally unchanged.

This enhanced hydrologic variability has the potential to accelerate the development of drought,

and make it possible for an extreme flash drought to rapidly emerge from wet conditions. Further,

additional socioeconomic challenges will arise because of surges in extreme hot days, unprecedented

extreme heavy precipitation events, obvious shifts of climate patterns, and far less runoff in early

spring as a result of frozen ground degradation and loss of snowpack. Our main findings are as

follows:

• Compared to the 1960s period, the annual regional warming overland is 1.92-2.01°C in the

2020s, 3.16-3.27°C in the 2040s, and 6.74-6.87°C in the 2090s. Regional inhomogeneities in

warming are primarily caused by snow-albedo feedback, which causes cold regions to warm

faster than warm regions, particularly in the winter season. Extreme heat days surge in

frequency in all years, from less than 10 historical, to 7-30 in the 2020s, 14-40 in the 2040s,

and 52-79 in the 2090s. Further, drier years tend to experience greater increases in mean and

extreme annual maximum daily temperature.

• A clear positive trend in annual mean precipitation emerges (Fig. 4.4), with increases of

15%, 27% and 70% per year in the 2020s, 2040s, and 2090s compared to historical. These

precipitation increases are highly correlated to historical precipitation totals. Even accounting

for increased evapotranspiration, most regions maintain a positive net precipitation change.
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However, extremely dry conditions remain a problem in the future as precipitation increases

are only apparent in wet months. Net precipitation variability increases also lead to greater

risk of sudden onset or flash drought, which poses significant risks for agriculture and could

require greater lead times when it comes to water planning.

• Increases in precipitation amount and variability are indicative of increased risk from extreme

storm events. Probability of annual maximum precipitation in excess of 100 mm/day increases

from 7.16% (6.28%) in the 1960s to 25.19% (36.45%) in the 2090s during dry (moderate)

periods. We observe 99th percentile regional mean precipitation intensifies by more than

58% and 51% by end of century during moderate and dry periods, respectively. Extreme

precipitation brings with it a high risk of flooding, and suggests a need for investments in

protective infrastructure.

• Wintertime warming in the region leads to 60% fewer freezing days and 75% less snow water

equivalent when comparing the 2090s to the 1960s. This in turn drives frozen ground degra-

dation, which produces increased soil infiltration and reduced surface runoff. The transition

from snow to rain further leads to spring snowpack essentially disappearing by the end of

century, and further reduces spring surface runoff and water availability.

• Although net precipitation increases are also a culprit in increased soil moisture and sur-

face runoff, we argue that frozen ground degradation plays a larger role here. Supporting

this claim, summers of the moderate period feature a northeastern region with lower net

precipitation in the future, but a significant increase in soil moisture. However, if only net

precipitation were implicated in moister soil we would expect a decrease in soil moisture.

Nonetheless it’s clear that reduced snowpack and fewer freezing days permit greater infil-

tration from snowmelt – in fact, during the winter season of dry periods, a strong negative

correlation (-0.88) emerges between the change in the regional mean number of freezing days

and soil moisture.

• Surface runoff is projected to decrease in the winter and spring because of reduced snowmelt

and greater soil infiltration from frozen ground degradation. March surface runoff is expected
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to decrease more than 50% in the 2090s dry period, which may cause issues from insufficient

early spring water supply. Our results suggest the growing season will be the most vulnerable

to anticipated future changes, particularly if coupled with exceptionally warm temperatures.

This study primarily focuses on seasonal and regional scale changes, but ignores the conse-

quences of particular weather events that occur on finer temporal and spatial scales. Given that

the finest spatial and temporal resolution of our simulation is 9 km and 6 hours, our dataset could

enable deeper exploration into specific events, along with their underlying process drivers. For

example, this data could enable a better understanding of the strongest hurricane during 1960s pe-

riod – Hurricane Donna – and its manifestation in the future in this region. Questions also remain

about the potential for flash drought in this region under more general dynamical conditions, and

how the 1960s drought compares to potentially more extreme droughts of the future for this region.

Finally, given the simplifications made in CLM, there are substantial uncertainties in historical

and projected surface and groundwater hydrology in these simulations; consequently it would be

insightful to examine the response of a process-based hydrologic model to forcing data from these

simulations.

4.6 Supplement

4.6.1 Soil degradation in WRF-CLM4

In the land model we used (WRF-CLM4), the soil infiltration factor is defined by equation (4.1).

We can see that, when there are fewer freezing days, for each soil layer i, the ice contents (wice,i)

will decrease and the liquid water contents (wliq,i) will increase. Consequently, the impermeable

fraction ffrz,i will decrease as well, indicating that the soil layers are less impermeable and there

will be more infiltration to recharge the soil moisture (Oleson et al., 2010).

ffrz,i =
exp[−α(1− wice,i

wice,i+wliq,i
)]− exp(−α)

1− exp(−α)
(4.1)

where ffrz,i is the impermeable fraction which impacts the infiltration capacity, wice,i and wliq,i

(kg×m−2) are the ice and liquid water contents of soil layer i. α = 3 is a scale-dependent parameter.
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Table 4.2: Basic information for each reanalysis dataset investigated.

Product Time coverage Temporal resolution Spatial resolution
The Japanese 55-year Reanalysis (JRA55) 1958-2012 3 hours 0.5625°× 0.5625°
The Coupled ECMWF Re-Analysis system of the 20th-century (CERA-20C) 1901-2010 3 hours 1.125°× 1.125°
NOAA-CIRES 20th Century Reanalysis version 2c (20CRv2c) 1851-2012 3 hours 2°× 2°
NCEP/NCAR Reanalysis I 1948-present 6 hours 2.5°× 2.5°
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Figure 4.21: Vertical profiles of multi-model regional monthly mean temperature delta between
2020s (2020-2028), 2040s (2040-2048) and 2090s (2090-2098) periods versus the 1960s historical
periods (1960-1968) based on 4 CMIP6 models with RCP8.5 emission scenario.

4.6.2 Historical reanalysis precipitation data performance

In order to provide reliable historical lateral conditions, here we evaluate the performance of 4 re-

analysis datasets (shown as Table 4.2) which cover the 1960-1967 period in simulating the historical

monthly precipitation compared with CPC observed data. Note that here we use the multi-ensemble

mean of all 10 CERA-20C ensembles to represent CERA-20C and will evaluate the performance

of each of CERA-20C’s ensembles later. All analysis in this section is based on monthly regional

mean precipitation over the NEUS region (here defined as the land region within 285 ≤ longitude

≤ 290 and 40 ≤ latitude ≤ 45).

From the histogram of monthly precipitation during the overlap period (1958-2005) of the CPC

observed data and the four models (Fig. 4.22) and the monthly time series precipitation during

the drought (1960-1967) (Fig. 4.23), it’s obvious that CERA-20C and JRA55 have much better
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Figure 4.22: Histogram of regional monthly mean precipitation from reanalysis. The dashed line
denotes the mean of the reanalysis, while the solid line denotes the mean of CPC observed data.
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Figure 4.23: Regional monthly mean precipitation from 1960 to 1967 from various reanalysis prod-
ucts.
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performance in simulating the mean of historical precipitation, the precipitation distribution and

the historical precipitation during the 1960s period. Also, as indicated in Table 4.2, CERA-20C and

JRA55 have higher spatial and temporal resolution among available products; however, because

the time coverage of JRA55 is much shorter than CERA-20C, and CERA-20C is a more recent

product, we choose to use CERA-20C instead of JRA55 to provide the boundary conditions of our

simulations.

CERA-20C has in total 10 ensembles (R0 to R9) with different initial conditions. Because

computational capacity limits us to only run simulations with a single set of lateral conditions, we

downselect to a single CERA-20C ensemble. From Fig. 4.24, we can see that all ensembles have very

similar and good performance compared with CPC observed data. In order to select one for use, we

define dry months as those with regional mean precipitation less than the 10th percentile of regional

monthly precipitation of CPC observed data. Then we calculate each ensemble’s dry months during

1950-2005 period and calculate each ensemble’s absolute difference with CPC observed data (Fig.

4.25), we find CERA-20C R7 has the most similar number of dry months as CPC observed data.

Therefore, CERA-20C R7 is selected to provide historical boundary conditions in our simulations.

4.6.3 Heat Index equation

In the Heat Index equation (4.2), both Heat Index and T (nominally ambient dry-bulb temperature,

although here we use regional mean daily maximum 2m temperature) are in degrees Celsius and R

is relative humidity in percentage value (from 0 to 100).

⟨Heat Index⟩ = 8.78469475556 + 1.61139411T + 2.33854883889R (4.2)

− 0.14611605TR− 0.012308094T 2 − 0.0164248277778R2

+ 0.002211732T 2R+ 0.00072546TR2 − 0.000003582T 2R2
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Figure 4.24: Histogram of each CERA-20C ensemble’s regional monthly mean precipitation. The
dashed line is the mean of each CERA-20C ensemble and the solid line the mean of the CPC
observations.
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Figure 4.26: The relationship between historical precipitation and precipitation delta in the future
at each grid point.
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Figure 4.27: Regional long term monthly mean runoff within our subregion.
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4.6.4 Simulation and Spin-up Validation

In this section, we briefly assess model performance versus historical reanalysis data to validate

the historical simulation and verify sufficiency of 1-year spin-up period. Fig. 4.28 depicts mod-

erate (1961, 1962 and 1967) and dry (1963 - 1966) periods’ wintertime (DJF) and summertime

(JJA) 2-meter temperatures from our historical simulation and corresponding reanalysis driver

data (CERA-20C R7). Generally, our simulation produces a temperature climatology that matches

closely with the reanalysis driver, but with a much higher resolution and detailed profiles. Due to

our simulation’s much finer resolution (6km) compared with the CERA-20C (125km), we notice

that our simulation displays more detailed geographic profiles and better captures the spatial dis-

tribution of temperature. For example, we can see from Fig. 4.28 that our simulation produces

significantly lower temperatures over mountainous regions like the Mt Marcy, Mt Washington and

Mt Grandfather. Similarly, Fig. 4.29 depicts moderate and dry periods’ seasonal average pre-

cipitation from model output and CERA-20C. Modeled precipitation tends to match closely with

reanalysis data. Although some discrepancies exist, we believe they are largely a product of the

higher spatial resolution of topographic features. If we look at the regional scale, we can find

that over the inner domain and subregion, the 2-meter temperature and precipitation are both

well simulated, and highly correlated with reanalysis data. The correlations of regional monthly

mean temperatures are more than 0.99, while precipitation correlations are more than 0.91 and

0.84 within the inner domain and subregion. This demonstrates that the meteorological features

of the historical period are well represented in our simulations and validates the spin-up period we

used and our future projections.

As argued above, the meteorological fields of our simulations are well represented even during

the spin-up period (1960) with the help of spectral nudging; however, the soil system generally

develops slowly and requires longer time to get equilibrium. And that’s why we use more than

1 year spin-up period (1959 December and 1960). As in several analogous studies (Huang et al.,

2016; Ullrich et al., 2018; Xu and Yang, 2012; Yang et al., 2011; Zhuo et al., 2019), a one year

spin-up period is typical in Community Land Model (CLM) and WRF simulations to make the soil
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reach equilibrium. For the reanalysis data we used – CERA-20C – only one or two years’ spin-up

period is used to initialize the land and ocean (Laloyaux et al., 2018). Moreover, several past

studies have argued that small domain size and high-quality initialization data will significantly

reduce the spin-up period (Cosgrove et al., 2003; Leduc and Laprise, 2009). Considering that our

domain has a limited regional scale and our simulations are initialized from CERA-20C reanalysis

data, a one year spin-up appears sufficient to initialize the soil moisture. Indeed, we can see from

Fig. 4.31 that our simulation appears to capture a soil moisture distribution similar to that of

CERA-20C. Note that because CERA-20C uses the proportion of land as the land-mask instead of

0 or 1 (ECMWF, 2019), the coastal regions are masked for having less than a 0.5 land proportion.

Notably, some detailed geographic features are captured like the high soil moisture the downstream

of the Lake Champlain. Although some biases are present, we argue that within both the inner

domain and subregion, the regional mean soil moisture are well simulated compared with CERA-

20C (Fig. 4.32). The correlations between our simulation and reanalysis data are 0.86 and 0.81 over

these two regions. It needs to be said that the difference between simulation and CERA-20C over

the inner domain is partially caused the different land-mask definitions of WRF and CERA-20C

(ECMWF, 2019) so that lake and coastal regions’ data cannot be well identified, as shown in Fig.

4.31. However, our simulation can still capture the historical soil moisture trend after one year and

one month spin-up. Notably, there is little change in the mean soil moisture over the duration of

the simulation period, indicative that a longer spin-up period would likely have little effect on the

quality of the simulation.
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Figure 4.28: Simulated seasonal average 2-meter temperature (°C) and reference from CERA-20C
R7 during moderate and dry periods.
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Figure 4.29: Simulated seasonal average precipitation (mm/day) and reference from CERA-20C
R7 during moderate and dry periods.
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Figure 4.30: Simulated regional monthly mean 2-meter temperature (°C) and precipitation
(mm/day) within the inner domain and subregion, along with reference data from CERA-20C
R7, ERA5 and CPC.
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Figure 4.31: Simulated seasonal average soil moisture (%) and reference from CERA-20C R7 during
moderate and dry periods. 188
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Chapter 5 Conclusion

This thesis aims to understand the drought nature under global warming and build a regional

drought projection framework to provide extensive and more sound regional projections for pol-

icymakers and stakeholders. Overall, we put forward a drought feature-based evaluation system

to help people easily examine the performance of climate models in capturing droughts over re-

gions of interest. And we find the performance of climate models in simulating droughts varies

significantly from climate datasets and study regions thus further illustrating the importance of

choosing suitable climate models in drought projections. In exploring drought’s changing trends

over NEUS, although the current general wetting trend will continue, especially at a long-term scale,

the short-term droughts and flash droughts are projected to be more frequent and magnified in the

future, due to intensified evapotranspiration, increasing climate variability, and anti-correlation

of precipitation and evapotranspiration. We also conclude that the extended growing season and

consequent changing evapotranspiration partitioning are the main drivers of flash drought inten-

sification. In simulating the returned 1960s drought under a warming climate, in contrast to the

historical 1960s drought, similar dynamical conditions will generally produce more precipitation,

increased soil moisture and evapotranspiration, and reduced snowpack. However, we also find that

although wet months get much wetter, dry months may become drier, meaning that wetting trends

are most significant in wet months but are essentially negligible for extremely dry months with

negative monthly mean net precipitation. For these months, the trend towards wetting conditions

provides little relief from the effects of extreme dry months. These conditions may even aggravate

water shortages due to a rapid transition from wet to dry conditions. Other challenges emerge for

residents and stakeholders in this region, including more extreme hot days, record-low snowpack,

frozen ground degradation, and subsequent decreases in surface runoff.
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Zhuang, J., Dussin, R., Jüling, A., and Rasp, S.: JiaweiZhuang/xESMF: v0.3.0 Adding

ESMF.LocStream capabilities, https://doi.org/10.5281/zenodo.3700105, 2020.

Zhuo, L., Dai, Q., Han, D., Chen, N., and Zhao, B.: Assessment of simulated soil moisture from

WRF Noah, Noah-MP, and CLM land surface schemes for landslide hazard application, Hydrol-

ogy and Earth System Sciences, 23, 4199–4218, 2019.

219


	Introduction
	A Comprehensive Intermediate-Term Drought Evaluation System and Evaluation of Climate Data Products over the Conterminous United States 
	Introduction
	Datasets
	Climate Prediction Center (CPC) unified gauge-based analysis precipitation data
	The fifth and sixth phase of Coupled Model Intercomparison Project (CMIP5/6) model data
	The North American Coordinated Regional Climate Downscaling Experiment (NA-CORDEX) dynamical downscaled data
	Localized Constructed Analogs (LOCA) statistical downscaling data
	The Watershed Boundary Dataset (WBD)
	Data preprocessing
	Hydrologic regions

	Statistical Methods
	Scoring individual metrics
	Principal Feature Analysis (PFA)
	Total Score

	Drought Metrics
	Monthly means
	Seasonality
	Spatial character
	Drought frequency
	Drought intensity
	Probability of drought
	Taylor Diagram and Taylor Score

	Results
	Principal Metrics Employed
	The validation of our evaluation system
	CMIP6 Performance
	CMIP5 Performance
	CORDEX Performance
	LOCA Performance

	Conclusions
	Acknowledgements
	Supplements
	Statistical hypothesis testing
	Stanardized Precipitation Index (SPI) Calculation
	Sensitivity analysis of total score to study period
	Sensitivity analysis of model performance to common grid resolution
	CORDEX over the California Region


	Changing trends in drought patterns over the Northeastern U.S. using multiple large ensemble datasets 
	Introduction
	Data and methods
	Results
	Result 1: A general wetting trend is undeniable in the mean
	Result 2: More extremely wet conditions, with greater magnitude
	Result 3: More short-term extreme droughts and intensified evapotranspiration
	Result 4: More flash drought with faster initiation and greater intensity
	Result 5: Significant trends towards more extreme flash drought, particularly in the spring
	Result 6: No clear consensus on intermediate-term drought

	Discussion
	More precipitation and more variable precipitation in the NEUS
	Evapotranspiration is energy-limited within the humid NEUS
	Differences in the trends of precipitation and evapotranspiration variability
	Increasing anti-correlation of evapotranspiration and precipitation
	Modified evapotranspiration partitioning brought by the extension of growing season

	Conclusions
	Supplement
	The study region and grid cells included
	A case study of rapidly developing drought based on ERA5 over Northeastern US
	Case studies of rapidly developing drought based on CESM1-CAM5 over Northeastern US
	A case study of infamous 2012 US Midwest flash drought based on ERA5
	Justification of SNPI calculation
	The soil moisture analysis


	A retrospective and prospective examination of the 1960s U.S. Northeast Drought 
	Introduction
	The record-setting 1960s drought
	Uncertainty of a return to drought conditions under climate change
	A simulation of present and future analogues of the 1960s drought
	Methodology
	Overview of simulations
	Temperature
	Precipitation
	Evapotranspiration
	Snowpack
	Soil moisture and runoff
	Drought indices

	Conclusions
	Supplement
	Soil degradation in WRF-CLM4
	Historical reanalysis precipitation data performance
	Heat Index equation
	Simulation and Spin-up Validation


	Conclusion 



