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Abstract 
Widely recognized in differential psychology, but less so in 
cognitive science, the positive manifold is the phenomena of 
all cognitive tests inter-correlating positively. Frequently 
demonstrated in people, it can also be observed in non-human 
species. With 217 Ecuadorian adult participants, who 
performed 11 cognitive tests, we show that all 55 pairwise 
inter-correlations are positive, and of large magnitude. 
Additionally, factor analysis revealed a single underlying 
general, or g factor, often identified as general intelligence. 
This robustly replicates the positive manifold in a non- WEIRD 
(Western, Educated, Industrialized, Rich, Democratic) context. 
We further demonstrate that tests of lexical knowledge, such as 
word pronunciation, have particularly high loadings on g. We 
explore explanations for the positive manifold, and the 
implications for understanding the mind as being composed of 
independent cognitive processing modules. We propose that 
the positive manifold reveals a neglected but important role of 
lexical-conceptual knowledge in high-level, top-down, 
domain-general cognitive processing. 

Keywords: intelligence; modularity; g factor; process overlap 
theory; crystalized ability; mental lexicon; vocabulary 

 

Introduction 
 
The Positive Manifold 
 
 

When sufficiently diverse groups of people are tested with 
multiple cognitive tests it is found that all of the test scores 
correlate positively (Jensen, 1986). That is, if a particular 
individual scores highly on one test, they are also likely to 
have scored highly on the other tests. The array of only 
positive associations is known as the positive manifold of 
correlations. Furthermore, the correlation values, in addition 
to being always positive, are generally of a large magnitude. 
This has been taken to indicate a general factor that 
contributes to all human cognitive processes. 

The presence of the positive manifold in large data sets of 
cognitive test performance means that factor analysis can 
always be used to extract a single factor. That factor is the 
general factor, or simply g. The concept of a “general 
intelligence”, that contributes to all cognitive functions has 
been an attractive and simple explanation for g (e.g., Carroll, 
1991). Furthermore, in humans, g is associated with a range 
of biological factors including nerve conduction velocity 
(Reed, Vernon, & Johnson, 2004), and brain size, which also 

appears to have a genetic basis (Lee et al., 2019). The positive 
manifold and g are also observed in other species. This 
includes non-human primates and rodents, where there is 
reliable evidence for g, and that it also positively correlates 
with brain size (Burkart, Schubiger, & van Schaik, 2017). 
These factors further support the concept of g as being a 
fundamental feature of neurocognitive processing. 

 
Modularity 
 
 

Nevertheless, although g is a statistical reality, across species, 
and is associated with a range of biological features, its actual 
physiological basis in the brain is elusive (Haier et al., 2009). 
Furthermore, the very concept of a general intelligence 
appears to be inconsistent with the concept of modularity of 
cognitive functions, such as that proposed in the classic 
theoretical work on human cognitive architecture provided 
by Fodor (1983). 

This contradiction between modularity on the one hand, 
and general intelligence on the other, is particularly 
problematic in the field of cognitive neuropsychology, in 
which modularity is a core assumption (Coltheart, 2001). 
That assumption underlies the methodology of double 
dissociation in which independence of cognitive process are 
ascertained by comparing patterns of observed cognitive 
impairments across neurological patients. The cognitive 
neuropsychological approach has been fruitful in identifying 
specific cognitive processes, particularly in regard to visual 
cognition, which appear to be independently susceptible to 
brain lesions. Consistently localizable areas of the brain are 
associated with impairments of recognition of very specific 
classes of stimuli, such as common objects, faces, places, or 
words, suggesting a substantial degree of both cognitive and 
neurobiological modularity in the human brain (Martinaud et 
al., 2012). Some theorists have gone as far to propose that the 
human mind is ‘massively modular’ (e.g., Carruthers 2006). 
How then can the accounts of general intelligence and of 
cognitive modularity be reconciled, given the reality of the 
positive manifold? 

 
Process Overlap Theory 
 
 

A recent suggestion that has been gaining support is known 
as Process Overlap Theory (Kovacs & Conway, 2016). This 
draws on studies that have suggested that g can be (nearly) 
perfectly explained by normal human variation in working 
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memory ability (Colom et al., 2004). A similar argument has 
been put forward for fluid intelligence being the basis of g, 
which is conceptualized as reasoning ability in novel 
situations. Statically derived latent variables of fluid 
intelligence also (almost) perfectly predict g (Kan et al., 
2011). A third version of this approach asserts that ‘cognitive 
control’, defined in terms of executive functions, is the basis 
of g (Chen et al., 2019), and hence the positive manifold. 

What these theories all have in common is that they argue 
that domain-general processes are related to the positive 
manifold. Process Overlap Theory which embraces these 
approaches, argues that various overlapping domain-general 
cognitive control functions produce a bottleneck on 
information processing. That limitation then influences all 
task performance. 

This theory is supported by cognitive neuroscience, from 
which several domain-general brain systems have been 
proposed. The different theories all propose more or less the 
same network of brain regions in the frontal lobes and 
posterior parietal lobes, which seem to be recruited 
independently of task content. Typical of these is the 
Multiple-demand System (Duncan, 2010), proposed as being 
a domain-general processing system that implements sub-
tasks to achieve goals and hence the coordination of fluid, 
intelligent action. The Multiple-demand System is argued to 
be the physiological basis of fluid ability and various 
executive functions, including inhibition, attention and 
working memory (Camilleri et al., 2018). It does this, 
supposedly, through acting as a domain-general processing 
hub for an otherwise largely modular neurocognitive system 
(Kovacs & Conway, 2016). This theory can, for the most part, 
explain the positive manifold, without invoking a singular 
general intelligence factor. It does this by arguing that all 
tasks require some form of the Multiple-demand System, 
even if it just to do with focusing on the task, or storing a 
verbal response to guide an answer to a question. 
 
Lexical Ability 
 
 

There are nevertheless some features of the positive manifold 
which are not so clearly explained by invoking high-level 
cognitive control mechanisms. In particular, the fact that 
crystalized intelligence, such as a person’s vocabulary or 
their general knowledge, typically predicts more variation in 
g (i.e., it has overall stronger correlations with other, non-
verbal cognitive tasks) than any other tests, including 
laboratory tests of working memory or fluid intelligence 
(Gignac, 2006). Crystalized intelligence is by definition 
highly dependent on education and culture, and by definition 
fluid intelligence is minimally influenced by education and 
culture. Crystalized intelligence is mainly composed of 
verbal ability, and knowledge, such as vocabulary, but it is 
the latter factor that is most closely linked to g (Schipolowski, 
Wilhelm, & Schroeders, 2014). Simply put, a person’s 
lexicon, as measured by their vocabulary, is a better predictor 
of their general intelligence than any other cognitive measure 
(Crawford et al., 1989; Jensen, 2001). As an example from 
clinical sciences, word pronunciation, with assessments such 

as the National Adult Reading Test (NART), is the principle 
method used to assess premorbid intelligence in patients with 
brain damage. This is because it is very highly correlated with 
intelligence test scores (Crawford et al., 1989), yet resistant 
to cognitive impairment. For explanations of the g factor 
which invoke high-level fluid mechanisms, this is the 
‘elephant in the room’. Why should vocabulary tests, which 
appear rather effortless to perform, be so highly g loaded, if 
the explanation for the g factor is based on effortful fluid 
processing? 

 
The Current Study 
 
 

We had two principal objectives. Firstly, to demonstrate the 
positive manifold, given its implications for interpreting 
theories in cognitive science that involve the concept of 
modularity. Further as most of the research on this has come 
from WEIRD countries, i.e., Western, Educated, 
Industrialized, Rich and Democratic (Henrich, Heine, & 
Norenzayan, 2010), we wished to assess the phenomenon in 
a non-WEIRD population. A demonstration here is also 
useful because it has didactic value, being much easier to 
conceptualize than a reified latent variable such as general 
intelligence. We therefore report a study of the positive 
manifold from 11 different cognitive tests completed by a 
large sample of Ecuadorian adults. Eight of these tests were 
from a standard intelligence test and together would be 
expected to produce a psychometric g if factor analyzed 
together. However, we also included three other tests that 
involve minimal active fluid processing, and measure 
acquired lexical knowledge of language. The aim is not to 
perform statistical null-hypothesis tests, but to investigate 
whether we could reproduce the strong g loadings that are 
frequently observed for lexical and verbal tasks.  In addition, 
to explore how the contribution of lexical tests fits with 
theories of the relationship between g and domain-general 
fluid ability, and how the relations can be reconciled with 
concepts of cognitive modularity.  
 

Method 
 

Cognitive Tests Used 
 
 

Eight different tasks that are part of the Wechsler Adult 
Intelligence Scale 4th Edition (WAIS-IV) Spanish version 
were used (Wechsler, 2012), all of which have substantial g 
loadings (Canivez & Watkins, 2010). These were Block 
Design (a manual visuospatial task using red and white 
colored blocks), Similarities (a verbal test requiring the 
identification of an abstract concept that links two different 
words), Digit span (a test of repeating aloud sequences of 
digits presented aurally), Digit sequencing (a test of orally 
sequencing strings of numbers delivered aurally), Arithmetic 
(a test mentally conducting calculations delivered aurally), 
Information (a test of general knowledge), Coding (a manual 
psychomotor test of transcribing abstract symbols), and 
Picture completion (a test of reporting the missing parts from 
a series of color drawings). Most of these tests are scored on 
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accuracy, however, Block design involves extra points for 
fast performance, and Coding is scored solely as the number 
of symbols correctly transcribed within 2 minutes. Evidence 
of the validity of the WAIS-IV as a measure of intelligence 
in Ecuador has been demonstrated by its large correlation 
with academic achievement (Pluck et al., 2016). 

We also used three tests of lexical ability. As this research 
was conducted in Ecuador, South America, these are all tests 
of Spanish lexical information. Importantly, all three tests 
appear to place very low demands on executive processes.  

The first was the Spanish Lexical Decision Task (SpanLex) 
in which participants are presented with three words, in 
which only one is a real word and the others are realistic 
looking nonwords, with the task being to pick the real word. 
Evidence for the validity and reliability of this as a measure  
of vocabulary, in Ecuador, is provided in Pluck (2020). The 
second lexical task was the Word Accentuation Test (WAT). 
This involves pronouncing low frequency words in which the 
word-stress information is not shown. It is equivalent to 
pronouncing English words that have irregular spellings, 
such as in the National Adult reading Test (NART; Crawford 
et al., 1989). Evidence for the reliability and validity of the 
WAT has been previously demonstrated in an Ecuadorian 
sample (Pluck et al., 2018). The third test was the Stem-
Completion Implicit Reading Test (SCIRT). This tests 
semantic knowledge through a form of confrontation naming. 
However, multiple primes (visual, phonemic and semantic) 
are given to minimize the need for strategies in the search of 
the lexicon for the word form. There is previous evidence 
from an Ecuadorian sample for the validity and reliability of 
this as a measure of crystalized semantic-lexical knowledge 
(Pluck, 2018). 
 
Participants and Procedure 
 
 

217 adult participants were assessed with all of the cognitive 
tests. All were Spanish speakers. Of the full sample of 217 
participants, 118 (54%) were female and the mean age was 
31.1 (SD = 16.7). The age range was from 17 to 93. Due to 
the wide age range, all raw cognitive test scores were adjusted 
for age, by entering them individually into linear regressions 
as dependent variables, with age as an independent variable, 
and saving the residuals. The mean years of formal education 
of the sample was 13.8 (SD = 3.1, range 2 – 26). The data 
was collected in four different Ecuadorian cities (Quito, n = 
137; Riobamba, n = 30; Guayaquil, n = 30; Manta, n = 20). 
The participants identified as mestizo (n = 166), white (n = 
19), indigenous (n =15), black (n = 12), or other (n = 5). 

Each participant was interviewed in one-to-one test 
sessions with a psychologist. All participants gave written 
informed consent and the protocol had approval from an 
appropriate research ethics committee.  
 

Results 
   

The age-adjusted scores, not raw scores, were used in all 
analyses. As a first step, Pearson correlation r values were 
calculated for each pair of the 11 different cognitive tests (55 

different pairs). As predicted, this produced a positive 
manifold in which all 55 correlations were positive and 
statistically significant at p < .001 (two-tailed). In addition, 
all 55 r values would be considered qualitatively large effects 
by a standard definition for individual differences research 
(Gignac & Szodorai, 2016). 

This positive manifold is shown in Table 1. The diagonal 
in this matrix has been used to show the mean correlation of 
each of the 10 different cognitive tests with the cognitive test 
in question. For example, of the correlations of Block design 
with each of the other ten tests, the r values ranged between 
.37 and .60, with a mean of .55. 

The strong inter-correlations shown in Table 1 suggest that 
a g factor will be extracted with factor analysis. Indeed, in the 
next step we used principal axis factoring with all 11 
cognitive tests and found only a single factor, with an 
eigenvalue of 5.92, which explained 54% of the variance. 
Factor loadings are shown in Table 2. The highest loading 
was .78 for the SCIRT test, a measure of semantic word 
knowledge. In fact, the highest four factor loadings (i.e., the 
correlations with the g factor) were for tests that would be 
considered to rely substantially on crystalized ability, that is, 
tests of word or general knowledge. In contrast, the five tests 
with the lowest factor loadings would all be considered tests 
of fluid ability in a general sense, as performance is not 
obviously linked to any acquired knowledge. This 
emphasizes the point made in the Introduction: knowledge-
based measures appear to be particularly associated with the 
psychometric g factor of cognitive test performance. 

Nevertheless, this could be because four of the tests clearly 
measure the contents of mental lexicons in some way 
(SCIRT, WAT, Similarities, SpanLex), and this commonality 
could potentially drive the association and overly weight 
lexical knowledge in the extracted latent g factor. To test this, 
the factor analyses were repeated, but only including one 
lexical test in each set, plus the 7 non-lexical WAIS-IV tasks. 
The resultant factor loadings are shown in Table 2. When the 
SCIRT was analyzed with the 7 non-lexical tasks, again only 
one factor was extracted, with an eigenvalue of 4.30, 
explaining 54% of the variance. And again, the SCIRT had 
the highest loading on that factor, in fact the rank order of the 
different cognitive tests is very similar to the previous factor 
analysis with all 11 tests. 

When the WAT was analyzed in this way, it was the second 
highest loaded on the single extracted factor (eigenvalue = 
4.23, variance explained = 53%). For the Similarities test, 
that was found to be the highest loaded on the single general 
factor extracted (eigenvalue = 4.30, variance explained = 
54%). So far, the lexical tasks have been shown to be highly 
g loaded, even when none of the other tests that they were 
factor analyzed with were lexical. For the SpanLex, the 
lexical decision task, this was no so highly loaded, having 
only the fourth highest rank on the extracted single factor 
(eigenvalue = 4.20, variance explained = 53%). Nevertheless, 
it had higher g loading than tests of working memory 
(Sequencing) and visuospatial processing (Block design), 
among other fluid ability tests. 
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 Table 1: Matrix of correlation r values for the intercorrelations of the 11 cognitive tests, with the mean r value for each 
test given in bold in the diagonal 

 

 
 

Discussion 
 

 

Our results clearly replicate the positive manifold, with all 
55 inter-correlations being positive, statistically significant, 
and qualitatively large effects. Although this is a recognized 
replicable effect, we point out that we have done so in a non-
WEIRD country (Henrich et al., 2010). A secondary aim was 
to explore the role of lexical tasks in the positive manifold, 
and implications for conceptualizations of the mind as being 
modular. 

Looking first at the positive manifold represented in Table 
1. The highest mean correlations for any tests, at mean r = .6, 
were those that would be considered to be of crystalized 
knowledge, these were the SCIRT and the WAIS-IV 
Similarities test. Both of these require knowledge of the 
meanings of words. The tests with next highest mean 
correlations would also be considered of crystalized ability, 
the WAT and the WAIS-IV Information test, assessments of 
lexical word pronunciation and general knowledge, 
respectively. 

Given the high level of inter-correlations in general, it is 
not surprising that in each factor analyses performed, only a 
single, general factor emerged. And as expected, lexical tasks 
were very highly loaded on the derived g factors. This held 
even when there was only a single lexical test included, 
suggesting that the lexical tests were all independently highly 
g loaded. This replicates previous research that has shown 
that lexical knowledge is very high on g (Crawford et al., 
1989; Gignac, 2006; Jensen, 2001). 

The question is, why should relatively simple tests of word 
knowledge be the best predictors of g, often taken to be 
general intelligence? Particularly considering theory that g is 
said to be a consequence of domain-general cognitive 
processes such as working memory (Colom et al., 2004). 
Here we briefly review some explanations that have 
previously been made for this phenomenon.  

One explanation is that language processing does in fact 
require domain-general processing, such as abstraction of 

meaning when deciding how words are similar (Chen et al., 
2019). However, this explanation may be specific to 
particular tasks such as the WAIS Similarities test, which 
superficially appears to be about declarative knowledge but 
actual has a substantial fluid reasoning component (Isingrini 
& Vazou, 1997). 

An alternative explanation is provided by the theory that 
the g factor is due to working memory, which could be argued 
to have a unique role in internally representing task goals or 
task monitoring (Colom et al., 2004). Working memory 
would then be involved in performance of any task, even 
simple word-based tasks. Theoretically this is supported by 
assumptions that semantic memory is accessed via short-term 
memory storage (Cerone & Pluck, 2021). Given these 
assumptions, a reasonable explanation could be that the short-
term/working memory contents drive the retrieval of 
crystalized declarative knowledge and use it to feed fluid 
reasoning, thus determining the fluid-crystalized duality that 
can be observed through the positive correlations expressed 
by the g factor. 

This may be a partial explanation for why the WAIS-IV 
similarities subtest was highly g loaded, and perhaps also for 
the SCIRT, which despite the various primes given to aid 
retrieval, must still involve actively searching semantic 
storage. However, can it explain why pronunciation of 
unaccented or irregular spelled words is so highly loaded? To 
be pronounced correctly, such words have to be read through 
a lexical route, not through a more attention-demanding 
grapheme-phoneme conversion process. Indeed, lexicon-
based word pronunciation feels rather effortless, and 
experimental evidence supports this. Increasing cognitive 
load actually improves performance on irregular word 
pronunciation, presumably because the increased load 
impedes the competing grapheme-phoneme conversion 
route, and indirectly biases towards the more appropriate 
lexical route (Paap & Noel, 1991). Further evidence is that 
damage to the brain’s frontal lobes, and thus the proposed 
Multiple-demand System, appears to impair executive 
functions, without any effect on lexical word pronunciation

 1 2 3  4 5 6 7 8 9 10 11 
1. Block design .55            
2. Similarities .59 .59           
3. Digit span .37 .52 .43          
4. Digit sequencing .55 .56 .57  .53        
5. Arithmetic .57 .61 .48  .59 .57       
6. Information .51 .63 .46  .58 .63 .58      
7. Coding .57 .58 .32  .48 .55 .54 .54     
8. Picture completion .55 .66 .38  .50 .60 .48 .54 .52    
9. SpanLex .59 .48 .41  .49 .50 .61 .59 .40 .54   
10. Word accentuation .55 .56 .42  .52 .59 .63 .66 .49 .68 .58  
11. SCIRT .60 .67 .40  .45 .57 .72 .57 .60 .61 .66 .59 
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Table 2: Factor loadings for the full set of 11 cognitive tests, as well as each lexical test (in bold) analyzed with the 7 non-
lexical tests from the WAIS-IV, all shown in rank order 

 
All 11 tests SCIRT + 7 WAT + 7 Similarities + 7 SpanLex + 7 

SCIRT .78 SCIRT .78 Arithmetic .77 Similarities .78 Arithmetic .76 
WAT .77 Arithmetic .77 WAT .75 Arithmetic .76 Information .74 
Information .76 Information .75 Information .73 Information .73 Coding .70 
Similarities .75 Block design .68 Coding .71 Coding .68 SpanLex .70 
Arithmetic .74 Coding .68 Sequencing .67 Block design .68 Block design .68 
SpanLex .73 Picture .64 Block design .65 Sequencing .66 Sequencing .67 
Coding .70 Sequencing .64 Picture .60 Picture .65 Picture .60 
Block design .67 Digit span .53 Digit span .53 Digit span .54 Digit span .54 
Sequencing .64         
Picture .62         
Digit span .53         
 

(Bright, Jaldow, & Kopelman, 2002). Working memory or 
other executive influences on word pronunciation cannot 
therefore explain why tests such as the WAT or the NART 
are strongly represented in the positive manifold, and hence 
the g factor.  

The other main proposition to explain why crystalized 
ability associates so highly with general intelligence is known 
as investment theory (Cattell, 1987). This argues that fluid 
ability, although itself culturally independent, allows people 
to learn lots of different skill and knowledge sets, and it is 
this culturally acquired information, including the mental 
lexicon, that yields crystalized intelligence. Or another way 
to put it, people with better domain general fluid ability learn 
more. Cattell (1987) argued that any associations between 
fluid reasoning skills and crystalized ability such as 
vocabulary are due to the effect of the former on the latter, 
but not vice versa. 

Although undoubtably domain-general processes such as 
working memory are very important in language learning, 
why a consequence of domain-general processing should be 
more highly associated with g than the processes themselves 
is not clear. Furthermore, as language learning will also 
involve substantial non-g variation due to environmental 
factors (e.g., education), any effect of g via fluid processing 
would be attenuated. 

A straightforward interpretation of investment theory thus 
would suggest that highly fluid processes such as working 
memory would be directly, and more strongly, linked to g 
than lexical knowledge which is apparently an indirect and 
impure measure of g. There is therefore no clear explanation 
of why lexical knowledge, such as vocabulary, or word 
pronunciation, contributes more to the positive manifold than 
other cognitive abilities. This is somewhat problematic for 
approaches such as Process Overlap Theory, which attempt 
to reconcile the concepts of modularity with the positive 
manifold. Although the theory can potentially explain why 
many modular processes could exist and still show the matrix 
of inter-correlates, it cannot be well extended to lexical tasks 
such as word pronunciation. 

Without convincing support for approaches such as 
Process Overlap Theory, the paradox of the g factor 

coexisting with cognitive modularity remains. However, we 
very tentatively suggest an explanation for why lexical ability 
dominates the positive manifold. The weakness of investment 
theory is that it implies a ‘blank slate’. However, it has been 
proposed that when children learn vocabulary, they already 
have a conceptual system that involves innate structure and 
processes, and that lexical entries are fitted into this 
conceptual system (Bloom, 2001; Jensen, 2001). The most 
extreme version of this was presented by Fodor (1975), and 
has been described as ‘radical concept nativism’. Although 
few people take such an extreme view, modern cognitive 
approaches tend to acknowledge both nativist and empiricist 
aspects of human language acquisition (Piantadosi & Jacobs, 
2016). 

Furthermore, vocabulary ability is highly heritable, in fact 
the most heritable of the tests used in intelligence batteries 
(Kan et al., 2013). It stands to reason that the actual lexical 
entries are learnt, not inherited. Therefore, the quality or 
efficiency of the underlying conceptual system appears to be 
the part under genetic transmission. In this sense, variation in 
lexical skill is somewhat heritable. 

Process Overlap Theory can explain most of the 
phenomena of the positive manifold, by suggesting a set of 
cognitive control mechanisms. If aspects of a partially innate 
conceptual system are integrated into those domain-general 
mechanism, then the depth of an individual’s lexical ability 
would also feature heavily in the positive manifold, which is 
what is found. Although highly speculative, this is actually 
consistent with the formulation of a core part of domain-
general processing, working memory. The most recent 
version of the Multi-component Working Memory Model 
(Baddeley, 2003) includes substantial interaction between 
‘fluid systems’ (i.e., working memory components) and 
‘crystalized systems’ (i.e., long-term memory, LTM). 
Furthermore, many memory researchers have proposed that 
all memory is essentially LTM, but that through a focus of 
attention, a small set of representations can be activated (e.g., 
Jonides et al., 2008). This further links conceptual-LTM 
systems to domain-general processing such as those 
commonly identified as working memory. Under such a 
scheme the on-line processing associated with ‘working 
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memory’ would be substantially integrated within 
conceptual-lexical stores. 

Additionally, the overlap of higher-level control systems 
envisaged in Process Overlap Theory could feasibly include 
cognitive control mechanisms operating within the language 
system. These appear to drive top-down lexical item selection 
and are somewhat interweaved with the functioning of 
ostensibly domain-general working memory (Bourguignon 
& Gracco, 2019). This, admittedly speculative, approach is 
more or less consistent with Process Overlap Theory, and 
thus inherits that theory’s ability explain both the positive 
manifold, and widespread cognitive modularity. 

In summary, we argue that lexical knowledge may vary 
within the population partly due to factors other than those 
proposed by investment theory. Some variation in lexical 
ability is due to the interaction of exposure to culture and 
inherited conceptual-language potential. Furthermore, 
conceptual information and fluid processing are often 
involved in the same cognitive processes. Individuals with 
better conceptual systems will likely have better lexical 
knowledge, and better fluid cognitive performance. 
Consequently, lexical ability correlates highly with many 
other cognitive skills, without being a sort of epiphenomenon 
of fluid processing. 

Some limitations of the current work should be recognized. 
Eight of the eleven tests that we employed were taken from a 
standard intelligence test (WAIS-IV), and so would be 
expected to inter-correlate. Thus, the demonstration of a 
positive manifold in the current research was quite 
predictable. Secondly, our observation that lexical tasks 
dominate the g loadings, is limited by the classification of 
lexical and non-lexical tasks, which is somewhat arbitrary. 
For example, Arithmetic could be said to be somewhat 
verbal, as could Digit Span, as both require manipulation of 
numbers. We can only argue that some of the tests, such as 
the WAT and SpanLex definitely require lexical processing, 
while some, such as Block Design and Coding, do not, on the 
surface, appear to. On the other hand, some vagueness in the 
classifications is actually consistent with our argument that 
the observed results are a consequence of conceptual 
knowledge systems and ostensibly fluid processing 
overlapping more than is generally recognized within 
differential psychology or cognitive science. 

Our use of factor analysis could also be seen as a limitation, 
given that some of the theories we explored propose a 
modular or network structure. Arguably, network analysis 
would be more appropriate (Kan, van der Maas, & Levine, 
2019). However, factor analysis and network analysis tend to 
produce the same information (Schmank et al., 2021). 
 
Conclusions and Future Work 
 

Here we replicated the positive manifold of cognitive test 
intercorrelations, which underlies g. This is not a novel 
finding, but still relevant, as it is a replication in a non-
WEIRD content. We further show that lexical tasks are 
substantially g loaded. Again, this has previously been noted, 
however, the phenomenon is frequently ignored, and raising 

this issue again here is justified. Further, the strong 
relationship of lexical ability to the g factor still lacks 
comprehensive explanation. Here, we propose that this may 
be due to the often overlooked, and considerable, interaction 
between conceptual and lexical information in LTM (i.e., 
semantic memory) with active domain general processing. 
This latter factor, in combination with a largely modular 
cognitive system may be responsible for the phenomenon of 
the positive manifold. We are currently exploring in silico 
simulations of the interactions between domain-general 
working memory processes and lexical information, and we 
hope that this may shed further light on the issues raised by 
the positive manifold. 
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