UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Modeling practice-related reaction time speedup using hierarchical Bayesianmethods: Evidence for a process-shift account

Permalink

https://escholarship.org/uc/item/2b92m3j5

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 41(0)

Authors

Lovelett, Jarrett Vul, Ed Rickard, Tim

Publication Date

2019

Peer reviewed

Modeling practice-related reaction time speedup using hierarchical Bayesian methods: Evidence for a process-shift account

Jarrett Lovelett

University of California San Diego, San Diego, California, United States

Ed Vul

University of California, San Diego, La Jolla, California, United States

Tim Rickard

University of California San Diego, La Jolla, California, United States

Abstract

In skill-learning tasks, reaction times (RTs) typically decrease with practice. For example, in alphabet arithmetic tasks (e.g. J + 7 = ?), learners respond correctly (e.g. Q) faster on later than on earlier trials. A number of mathematical models have been proposed to account for the functional form of practice-related RT speedup. We aim to evaluate which of two candidates better fits observed speedup data for individual learners across several tasks. In particular, we compare a process-shift account in which learners initially execute an algorithm in constant time, but as trials accumulate, exhibit power-law speedup as they directly retrieve a memorized solution to a delayed exponential model in which RTs decrease exponentially after learners eventually achieve insight into a task-appropriate strategy. Using hierarchical Bayesian models of each account (which can flexibly model learning in individual subjects), we show that the process-shift model better predicts out-of-sample data than the delayed-exponential model.