Lawrence Berkeley National Laboratory

Recent Work

Title

THE PREPARATION AND CHARACTERIZATION OF RADICAL-CATION SALTS DERIVED FROM PERFLUOROBENZENE, PERFLUOROTOLUENE AND PERFLUORONAPTHALENE


Permalink

https://escholarship.org/uc/item/2b98036c

Authors

Richardson, T.J. Tanzella, F.L. Bartlett, N.

Publication Date

BL-20810

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

Materials & Molecular Research Division

RECEIVED LAWRENCE BERKELEY LABORATORY

HEB 24 1986

Submitted to the Journal of the American Chemical Society

LIBRARY AND DOCUMENTS SECTION

THE PREPARATION AND CHARACTERIZATION OF RADICAL-CATION SALTS DERIVED FROM PERFLUOROBENZENE, PERFLUOROTOLUENE AND PERFLUORONAPTHALENE

T.J. Richardson, F.L. Tanzella, and N. Bartlett

January 1986

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. The Preparation and Characterization of Radical-Cation Salts Derived from Perfluorobenzene, Perfluorotoluene and Perfluoronapthalene

T. J. Richardson, F. L. Tanzella, and Neil Bartlett

Department of Chemistry, University of California, and the Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Berkeley, California 94720.

Abstract

The salts $C_6F_6^+AsF_6^-$ (yellow), $C_6F_5CF_3^+AsF_6^-$ (lime green), and $C_{10}F_8^+AsF_6^-$ (dark green) may be prepared by electron-oxidation of the appropriate perfluoro-aromatic molecule using $0_2^+AsF_6^-$. Other 0_2^+ salts can be similarly employed as can the more strongly oxidizing transition-metal hexafluorides, but salts of the latter are more labile than their AsF_6^- relatives. $C_6F_6^+AsF_6^-$ is a convenient electron-oxidizer ($C_6F_6AsF_6 + C_{10}F_8 \rightarrow C_{10}F_8AsF_6 + C_{10}F_8AsF_6$ C_6F_6) since that remaining from reaction decomposes at room temperature to volatile products ($2C_6F_6AsF_6 \rightarrow C_6F_6 + 1, 4C_6F_8 + 2AsF_5$). Magnetic susceptibilities for $C_6F_6AsF_6$ and $C_{10}F_8AsF_6$ approximate to Curie law behavior and <u>g</u> values are close to free-electron values. X-ray diffraction data (single crystal) show $C_6F_6AsF_6$ to be primitive rhombohedral with $a_0 = 6.60(1)^{\circ}$, $\alpha = 106.0(1)^\circ$, V = 246.1 A3 , Z = 1, probable space group R3, and (powder data) $C_{10}F_8AsF_6$ to be tetragonal with $a_0 = 8.27(5)$; $C_0 = 18.57(s)A$, V = 1270A, Z = 4. Salts derived from the monocyclic perfluoro-aromatics are thermally unstable but can be kept below -15°. The perfluoronaphthalene salts are indefinitely stable at room temperatures. All hydrolyse rapidly. The products of thermal decomposition of the hexafluoroarsenates of the monocyclic-cation salts parallel

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00093.

the products of the attack by F⁻. The latter reaction products are in the molar ratios indicated by the equations: $2 C_6 F_6^+ + 2 F^- \rightarrow C_6 F_6 + 1,4-C_6 F_8;$ $2 C_6 F_5 CF_3^+ + 2 F^- \rightarrow C_6 F_5 CF_3 + 1,3-C_6 F_7 CF_3$. The 1,3-C_6 F_7 CF_3 isomerises to a 1:1 mixture with 1,4-C_6 F_7 CF_3 over several days in the presence of fluoroacids. Mechanisms for the formation of the dienes are discussed.

Introduction

Radical cations derived from perfluoro-aromatic molecules were first described by Bazhin <u>et al</u>^{1,2}. The species were made in super acid or oleum solutions and were unambiguously characterized by e.s.r. spectroscopy¹⁻⁵. Such species have also been proposed as intermediates in the oxidative fluorination of aromatic molecules by high valent metal fluoride⁶ such as cobalt trifluoride, by bromine trifluoride⁷ and by xenon difluoride⁸. They have also been invoked in the electrochemical fluorination⁹ of aromatic molecules in the presence of F⁻. Salts of such radical-cation species were unknown prior to the synthesis of $C_6F_6^{+}AsF_6^{-}$ in these laboratories^{10,11}.

An earlier attempt by Jha^{12} to prepare $C_6F_6^+PtF_6^-$ from C_6F_6 and PtF_6 yielded a promising orange-yellow solid at low temperatures. A similar material obtained¹¹ using IrF_6 , decomposed well below 0°C. Kinetically stable salts sufficiently stable to be manipulated at room temperatures were first obtained^{10,11} by exploiting dioxygenyl salts as oxidizers:

> $C_6F_6 + O_2ASF_6 + C_6F_6ASF_6 + O_2$ $C_6F_6 + O_2Sb_2F_{11} \rightarrow C_6F_6Sb_2F_{11} + O_2$

The range of salts has been extended since the preliminary report¹⁰. Utilization of the low melting solvent SO_2CIF has improved yields and provided access to less thermally stable perfluoro-aromatic radical-cation salts. Less powerful oxidizers than O_2^+ salts are needed for the synthesis of $C_{10}F_8^+$ and polycyclic-cation salts which have much higher thermal stability than their monocyclic relatives. The preparation and characterization of monocation salts derived from C_6F_6 , C_6F_5 CF_3 and $C_{10}F_8$ is reported here. The preparation and some properties of the pentafluoropyridine radical-cation salts have been described elsewhere¹³.

Particular attention has been given to the products of thermal decomposition of the radical-cation salts and the products of F⁻ attack, since the sets of products are related. Salts of the single-ring aromatics are thermally unstable at room temperature but can be kept below -15°. Their thermal decomposition gives an equimolecular mixture of the parent fluoro-aromatic and a perfluoro-cyclohexadiene. The initial diene product is a specific isomer. This provides clean high-yield syntheses for those dienes and provides insight into the reaction mechanisms.

Results and Discussion

<u>Composition of the Salts and Structural and Magnetic Properties</u>. The high ionization potential of C_6F_6 (~10eV)¹⁴ requires anions of very high ionization potential to stabilize the $C_6F_6^+$ cation in a salt. Clearly both PtF₆ (as shown earlier by Jha¹²) and IrF₆ (as shown in this study) bring about salt formation. If these salts have the composition $C_6F_6^+MF_6^-$ (which is probable), the lattice

energies would be¹⁵ approximately -115 kcal mole⁻¹. The electron affinities of IrF_6 and PtF_6 have been determined^{16,17} to be 160 and 184 kcal mole⁻¹ respectively, which means that the enthalpy of formation from the gaseous reactants:

$$\Delta H^{\circ}(C_{6}F_{6} + MF_{6} \rightarrow C_{6}F_{6}^{\dagger}MF_{6}^{-})$$
(1)

should be -45 and -69 kcal mole⁻¹ respectively for the IrF_6^- and PtF_6^- salts. These anticipated reaction enthalpies are greatly in excess of those required to offset the unfavorable entropy change¹⁸ associated with (1). The inability of OsF_6^- or the less powerfully oxidizing hexafluorides to form $C_6F_6^-MF_6^-$ salts is a consequence of their lower electron affinities (≤ 130 kcal mole, see below). The instability of $C_6F_6^-MF_6^-$ (M = Ir, Pt) appears to be due to the relative ease of transfer of F⁻ from the anion to the cation in such instances (see below). Indeed this is a general problem in the stabilization of cations of the monocyclic perfluoro cations and the AsF_6^- , SbF_6^- and $Sb_2F_{11}^-$ anions appear to provide the best kinetic stability for such salts.

The first effective synthesis¹¹ of $C_6F_6AsF_6$ employed O_2AsF_6 as the oxidizer of C_6F_6 dissolved in liquid WF₆. This solvent not only provided the desirable diluent effect for this hot reaction but its relatively high heat capacity also aided in preservation of a lower temperature. These are essential requirements for high yield syntheses of $C_6F_6AsF_6$ and its monocyclic relatives, since all are thermally unstable at ordinary temperatures In more recent work sulfuryl chloride fluoride has been used as the diluent and moderator and the low working temperatures have resulted in greatly improved yields. Nevertheless, even with SO_2ClF , pyrolysis products from the salts are always observed

and a quantitative yield has never been obtained for any of the monocyclic cation salts. For these and other reasons¹⁹ the salt composition in each case has been determined from the stoichiometry of the salt pyrolysis prod-ucts and other reaction stoichiometries.

The spontaneous interaction of nitric oxide with $C_6F_6AsF_6$ is in harmony²⁰ with the ionization potentials (I(NO) = 213, I(C_6F_6) = 230 kcal mole⁻¹) and lattice energies¹⁵ ($C_6F_6AsF_6$ = -115, NOAsF₆ = -130 kcal mole⁻¹).

$$NO + C_6 F_6 AsF_6 \rightarrow C_6 F_6 + NOAsF_6$$
(2)

When this reaction is carried out by admitting nitric oxide very slowly to the $C_6F_6AsF_6$, the thermal decomposition products are present only in traces. Then the yield of NOAsF₆ is almost quantitative on the basis of the salt formulation $C_6F_6AsF_6$. This salt stoichiometry is also indicated by the ¹⁹F nmr spectra of the pyrolysis products. The spectra show C_6F_6 and 1,4- C_6F_8 to be present in 1:1 stoichiometry consistent with the reaction:

$${}^{2}C_{6}F_{6}AsF_{6} + C_{6}F_{6} + 1,4-C_{6}F_{8} + 2AsF_{5}$$
 (3)

The product distribution in the decomposition of the perfluorotoluene cation salt similarly indicates that the stoichiometries are as follows:

$$2 C_6 F_5 CF_3 AsF_6 + C_6 F_5 CF_3 + 1,3 - C_6 F_7 CF_3 + 2 AsF_5.$$
 (4)

With extension of the π systems from one ring to two there is a large decrease in ionization potential¹⁴ (I, $C_{10}F_8 = 204$ kcal mole⁻¹) and as the system becomes more extended the ionization enthalpy approaches that of graphite.

But the lattice energy of salts of all of these cations must depend primarily upon the closest approach of cation and anion, and since all of the cations have essentially the same thickness (that of the van der Waals distance²¹ between nearest-neighbor rings, which is ~ 3.3 Å), the lattice energy probably does not decrease as much as the greater size of the more extended cations would suggest. By comparison with C₆F₆ and C₆F₅CF₃ therefore, the electron oxidation of C₁₀F₈ and polycyclic aromatic relatives²² is comparatively easy. Not surprisingly then, C₁₀F₈AsF₆ can be prepared from the C₆F₆AsF₆ salt:

$$C_{10}F_8 + C_6F_6ASF_6 \rightarrow C_{10}F_8ASF_6 + C_6F_6$$
 (5)

Since the thermal decomposition products of $C_6F_6AsF_6$ are all volatile whereas the $C_{10}F_8AsF_6$ is thermally stable and involatile at room temperature, a quantitative conversion of $C_{10}F_8$ to the salt can be achieved. This has settled the composition as $C_{10}F_8AsF_6$. It is not, however, necessary to employ $C_6F_6AsF_6$ as the oxidizer. A convenient, clean synthesis uses a mixture of AsF_5 and F_2 in SO_2C1F_3 :

$$C_{10}F_8 + AsF_5 + \frac{1}{2}F_2 + C_{10}F_8AsF_6$$
 (6)

Perfluoronapthalene is also oxidized by AsF₅ alone according to the equation:

$$2 C_{10}F_8 + 3 AsF_5 \rightarrow 2 C_{10}F_8 AsF_6 + AsF_3$$
 (7)

This reagent is unable to oxidize the monocyclic perfluoro-aromatics because the electron $affinity^{23}$

$$-\Delta H^{\circ} (3/2AsF_{5(g)} + e^{-} \rightarrow AsF_{6(g)} + \frac{1}{2}AsF_{3(g)}) \approx 120 \text{ kcal mole}^{-1} \qquad (8)$$

is too low. Nor, for similar reasons, will the hexafluorides of tungsten (E = 81 kcal mole⁻¹)²⁴ rhenium (E = 106 kcal mole⁻¹)²⁵ or osmium (E = 130 kcal mole⁻¹)²⁵ oxidize the single-ring perfluoroaromatics. In the case of $C_{10}F_8$, however, ReF₆ rapidly and quantitatively oxidizes it:

$$C_{10}F_8 + ReF_6 \rightarrow C_{10}F_8ReF_6$$
 (9)

although WF_6 is unable to do so. It is therefore probable that AsF_5 or ReF_6 , although not particularly powerful oxidizers, will generate radical-cation salts from any of the multi-ring perfluoro (or perhydro) aromatics.

Although the crystal structure of $C_6F_6AsF_6$ has not been defined with satisfactory precision because of the degradation of single crystals in the X-ray beam (even at -130°), the structure has a hombohedral unit cell containing one formula unit, $C_6F_6AsF_6$. The probable space group is R³ and the site symmetry for each ion is D_{3d} . Indeed the cation could be essentially of D_{6h} symmetry in this lattice but the anticipated Jahn-Teller distortion should generate D_{2h} symmetry. The latter distortion could be present and masked by a random placement of the distorted species in the cation sites. The structural arrangement is one of cesium chloride type with each ion surrounded by a rhombically distorted cube of ions of the other kind. Unfortunately Raman spectra were not obtained for the $C_6F_6AsF_6$ salt and the infrared spectra are confused by the presence of

pyrolysis products. The infrared spectra do indicate AsF_6^- (v_3 and v_4 are observed) and fit a slightly modified C_6F_6 behavior consistent with the cationic formulation. Others have observed²⁶ a Jahn-Teller distortion in $C_6F_6^+$ but there is nothing to indicate that such a distortion is present in crystalline $C_6F_6AsF_6$.

The thermal stability of C_6F_5 CF_3AsF_6 is even lower than that of the perfluorobenzene relative and because of this it is even less well characterized structurally, but the similarity of the g value from the e.s.r. spectrum, to that of $C_6F_6AsF_6$, points to the magnetic behavior being similar to that salt. The g value for the broad unresolved resonance observed for crystalline $C_6F_6AsF_6$ was centered at 2.0063. A septet similar to that reported earlier by Bazhin $\underline{et} \ \underline{al}^2$ for $C_6 F_6^+$ in superacid solutions was observed for a dilute solution of $C_6F_6^+$ Sb_2F_{11} in SbF_5 at 77°K with a <u>g</u> = 2.003 also in agreement with the value given by the earlier workers. These free electron-like g values are in harmony with the simple Curie-Law paramagnetism observed for $C_6F_6AsF_6$. Although the presence of thermal decomposition products in the samples prevented reliable determination of the magnetic moment, the susceptibility dependence upon temperature followed the simple Curie This shows that the radical cations, which are well separated and Law. screened from one another in the $C_6F_6AsF_6$ lattice, are not interacting measurably at 4°K. The same Curie Law behavior is also observed in $C_{10}F_8AsF_6$, where the magnetic interactions between the cations must again be negligible.

Even though $C_{10}F_8AsF_6$ is readily soluble in anhydrous HF and other solvents, all efforts to grow single crystals have failed. The X-ray powder data, however, was indexed and indicates a tetragonal unit cell (see EXPERIMENTAL). The dimensions of this cell suggest that the cations are aligned with their long axes parallel to the long axis of the unit cell, two such molecules being related by a 4_2 screw axis parallel to the long axis. The exact arrangement of cations and anions is not known but packing and symmetry considerations indicate that the anions must be symmetrically placed between facing cations and the cations thus screened well from one another, in accord with the observed simple paramagnetism.

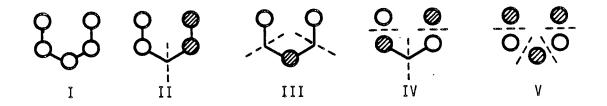
In none of the $C_{10}F_8^+$ salt syntheses was there any indication of the existence of a polymeric-cation salt analogous to the $(C_{10}H_8)_2^+$ PF $_6^$ salt described by Fritz and his coworkers²⁷. Face to face bonding of $C_{10}F_8$ with $C_{10}F_8^+$ appears not be energetically favorable. This may be a consequence of the repulsive interaction of the electron-rich F ligands (particularly because of those electrons occupying the orbitals²⁸ of carbon-fluorine π -bonding character). The failure of the partially occupied π orbitals of the perfluoroaromatic cations to provide for effective bonding of the cations to one another has great impact on the physical properties of the salts. Thus the perfluoro-cation salts are electrical insulators (and simple paramagnets) whereas perhydropolycyclic relatives,²² and such salts²⁷ as $(C_{10}H_8)_2^+$ PF $_6^-$, are metallic.

: بالتي -

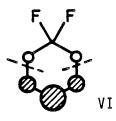
1944 - 1 1944 - 1

7

11. J


<u>Relationship of Thermal Degradation to F⁻ Attack Products</u>. That the interaction of the radical cations with nucleophiles has the potential of providing a special derivative chemistry is indicated by the products of F⁻ attack found in this work. One specific diene is obtained in quantitative yield in each instance. The thermal degradation of the salts yields the same fluorocarbon products as the F⁻ attack, indicating that the first step of the pyrolysis involves F⁻ transfer from anion to cation.

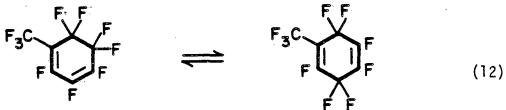
The interaction of F^- with the radical cation Ar^+ (see Figure 1) involves²⁹ interaction of the HOMO of the F^- with the SOMO of the cation and electron transfer from the former to the latter. The subsequent step is equivalent to the interaction of F^+ radical with the aromatic molecule Ar. In this the interaction is strongest at the atom which makes the largest contribution to the LUMO. This initiates formation and location of the new C - F bond.


The ¹⁹F nmr spectra of the reaction products from the attack on $C_6F_6AsF_6$ by F⁻ show that the fluorocarbon products are C_6F_6 and the 1,4 diene in 1:1 molar ratio. These products are exactly the same as in the pyrolysis of the salt. The production of equimolar quantities of C_6F_6 and the diene C_6F_8 in both of these reactions is in harmony with rapid transfer of an electron from the addition product radical, C_6F_7 , to another $C_6F_6^+$ ion ³⁰:

$$C_6F_7 + C_6F_6^+ \rightarrow C_6F_7^+ + C_6F_6$$
 (10)

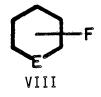
The nature of the diene formed in the interaction of a second F⁻ with the $C_6F_7^+$ is determined by the LUMO of the latter. The <u>m</u> system of the cyclohexadienyl cation is essentially that of a pentadienyl entity. The <u>m</u> orbitals of an idealized pentadienyl system, simply represented, are:

In the cation, the non-bonding orbital (III) is the LUMO. However, the situation is a little more complex in the case of $C_6F_7^+$ because of the high electronegativity of the carbon atom of the CF_2 group which causes the nodes to be swung towards the electronegative center. This amounts to a mixing of I and III and the LUMO has the form VI.



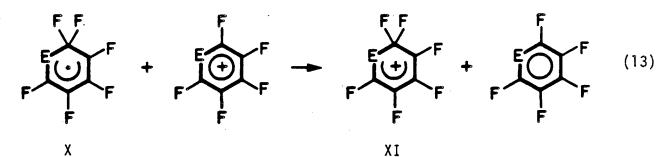
Thus the interaction of F^- with the $C_6F_7^+$ is strongest at the carbon atom para to the CF_2 group. This accounts for the 1,4 diene product.

In the case of the perfluorotoluene-cation salts, both F⁻ attack and pyrolysis again yield half a mole of the parent fluoroaromatic molecule and half a mole of diene. But now the diene is wholly the 1,3 diene. These findings are essentially the same as those for the perfluoropyridine radical-cation salts, 13 where F⁻ attack and pyrolysis produce half a mole each of C_5NF_5 and 1,3 C_5NF_7 . With representation of the more electronegative centers (C·CF₃ and N) by E, the interaction is:

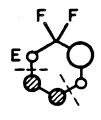


That there must be strict electronic control of the reaction course which leads to the 1,3 diene is indicated by the observation that the diene subsequently isomerises in the toluene case³¹ to a 1:1 mixture of 1,3 and 1,4 dienes:

Unlike the $C_6F_6^+$ case, the site of F^- attack at the cation $C_5EF_5^+$ is crucial to the determination of which diene can subsequently form. The SOMO of $C_5EF_5^+$ has the form VII:

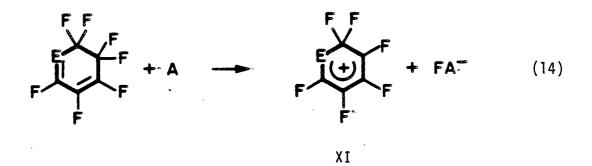


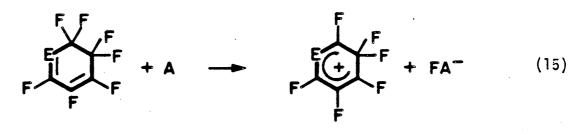
and this means²⁹ that the early transition state has F^- adding to $C_5 EF_5^+$ as in VIII. The subsequent electron transfer from F^- HOMO to $C_5 EF_5^+$ SOMO is followed by F orbital interaction with the $C_5 EF_5$ LUMO. The latter has the form IX:



Since the node in SOMO VII determines the early-transition state geometry VIII, the F orbital (now SOMO) interaction with IX is determined by the large coefficients for the atoms <u>ortho</u> to E. This leads to radical X. This radical must lose an electron to another $C_5EF_5^+$:

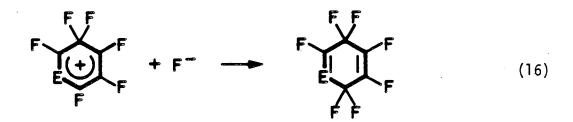
The nature of the $C_5 EF_6^+$ LUMO of XI determines the site of the subsequent F^- attachment. That LUMO differs markedly from VI.

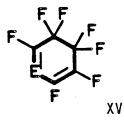

Because of the high electronegativity and excellent π -bonding character of the ring atom at E the nodes of the LUMO are swung towards E relative to their situation in (VI) and the LUMO has the form XII.


XII

The preference for F^- attachment at the site <u>ortho</u> to CF_2 and meta to E accounts for the formation of the 1,3 diene.

Since the isomerization of the 1,3-to the 1,4-diene represented by equation 12 leads to an approximately 1:1 mixture, these isomers must be of comparable thermodynamic stability. It appears that the isomerization requires the presence of a fluoro acid, A (AsF_5 was present in twofold molar excess of the original 1,3-diene), hence it is likely that the first step in the isomerization involves F^- abstraction. Formation of cation XI:


should lead to re-formation of the 1,3-diene for the reasons previously given. On the other hand, abstraction of F^- to generate cation XIII:


XIII

provides a new pentadienyl system. Since E is at the node of the idealized LUMO III, its influence is minimal and the LUMO of XIII closely resembles the $C_6F_7^+$ LUMO, VI. Therefore F⁻ attachment at cation XIII should occur preferentially

at the site \underline{para} to the CF_2 group, thus providing for the observed 1,4-diene:

Of course F^{-} abstraction from the 1,4 diene XIV at the CF_{2} ortho to E merely provides for repetition of the process in equation 16. In the case of F^{-} abstraction from the 1,4-diene XIV at the CF_{2} meta to E, cation XII is formed and this again gives rise to the original 1,3-diene. Thus by F^{-} abstraction from each of the dienes, followed by F^{-} addition, each of the two observed dienes would be generated. There is no provision in these mechanisms for the formation of the other possible 1,3-diene XV. It is

not observed as a reaction product from the $C_5 EF_5^+$ salts and its synthesis via radical-cation salts would appear to be ruled out.

The thermal decomposition of the monocyclic-cation salts must occur as a consequence of F⁻ transfer from anion to cation. Clearly, for the highest thermal stability, the best fluoride ion acceptors must be employed. These are SbF₅ (for SbF₆⁻, Sb₂F₁₁⁻ and Sb₃F₁₆⁻ salts) and AsF₅ (for AsF₆⁻ salts).

Experimental Section

All manipulations were carried out in Kel-F, Teflon FEP, or fused silica reaction vessels attached to a stainless steel or Monel fluorine-type vacuum system and/or in a Vacuum Atmospheres inert atmosphere Dri-lab. Hexafluorobenzene, octafluorotoluene, octafluoronapthalene (PCR Inc., Gainesville, FL), sulfur dioxide, anhydrous hydrogen fluoride (Matheson, E. Rutherford, NJ), cesium fluoride (ROC/RIC, Sun Valley, CA), trifluoroacetic acid (Aldrich, Milwaukee, WI), tungsten hexafluoride, arsenic pentafluoride and antimony pentafluoride (Ozark-Mahoning, Inc., Tulsa, OK) were used as received after checking their purity by infrared spectroscopy. Dioxygenyl salts³² and rhenium³³ and iridium³⁴ hexafluorides were prepared by literature methods. Sulfuryl chloride fluoride (Ozark-Mahoning) was distilled from 0_2AsF_6 before use to convert the $S0_2Cl_2$ impurity to $S0_2ClF$, with elimination of Cl_2 .

Infrared spectra were obtained using Perkin-Elmer 337 and 597 infrared spectrophotometers. Raman spectra were recorded using a J-Y Ramanor HG-2S double monochromator in conjunction with Spectra-Physics 165 Kr-ion and Coherent Radiation Ar-ion lasers. ¹⁹F nmr spectra were recorded using a Varian Associates NV-14 nmr spectrometer. Debye-Scherrer X-ray powder photographs of samples contained in dry thin-walled quartz capillaries (Charles Supper Co.) were obtained using a General Electric Powder Camera utilizing Ni-filtered Cu radiation. Precession photographs of single crystals of $C_6F_6AsF_6$ were taken using a Polaroid cassette on an Enraf-Nonius precession camera with Zr-filtered Mo radiation. Magnetic susceptibility measurements were carried out using a Princeton Applied Research vibrating sample magnetometer. Esr spectra were recorded using Varian Associates V4500 and E-3 spectrometers.

Syntheses of Perfluoroaromatic Radical Cation Salts:

<u>Hexafluorobenzene Hexafluoroiridate(V)</u>. Hexafluorobenzene (2.6 mmol) dissolved in tungsten hexafluoride (2 ml) in a fused silica reactor to give a yellow-green solution. Iridium hexafluoride (2 mmol) was condensed into the reactor at 77K. At about 273K, the reaction mixture melted, and a bright orange solid rose to the surface of the WF₆. The solvent and excess C_6F_6 were removed under vacuum at 298K. The dry orange solid decomposed rapidly, producing volatile carbon fluorides. Some of the iridium was reduced to the metal.

<u>Hexafluorobenzene and Octafluorotoluene Hexafluoroarsenates(V)</u>. The bright yellow monocyclic cation hexafluoroarsenates were typically prepared (17)

$$Ar + 0_2 AsF_6 \rightarrow Ar^T AsF_6 + 0_2$$
(17)

by co-condensing at 77K approximately 2 mmol of the aromatic species with 2 ml of either tungsten hexafluoride or sulfuryl chloride fluoride on to 1.5 mmol of dioxygenyl hexafluoroarsenate in a pre-passivated fused silica reaction vessel equipped with a Whitey 1KS4-SS valve. The vessel was warmed slowly. The vigorous reaction, which ensued as soon as the solvent began to melt, was complete at 273K in WF_6 , or at 233K in SO_2 CIF. Neither the dioxygenyl salt nor the product is soluble in either solvent; hence the product is a very fine powder. In order to ensure complete removal of unreacted reagents and volatile by-products (these were found to be minimized by the use of SO_2 CIF) the reaction vessel was evacuated at 273K, then cooled to 195K for storage. Purification of the hexa-fluoro arsenates was achieved by rapid evacuation of the storage vessel at room temperature.

<u>Hexafluorobenzene Fluoroantimonates</u>. Fluoroantimonate salts, prepared in a similar manner from O_2SbF_6 and $O_2Sb_2F_{11}$ proved to be somewhat more thermally stable than the hexafluoroarsenates, although partial decomposition of the

former gave materials of mixed composition due to formation of bridged poly-anions $\text{Sb}_2\text{F}_{11}^{\text{T}}$ and $\text{Sb}_3\text{F}_{16}^{\text{T}}$ by reaction with SbF_5 formed in the thermal degradation reaction. Yields were generally about 60% but were strongly dependent upon the effectiveness of the heat dissipation; local heating caused decomposition of the product in each case.

<u>Octafluoronapthalene Hexafluoroarsenate(V)</u>. Emerald green $C_{10}F_8AsF_6$ (m.p. 395K) was prepared directly from O_2^+ salts (as above), by metathesis (18), from arsenic pentafluoride (19), or from a mixture of arsenic pentafluoride and elemental fluorine (20).

CO 03 F

$$S0_2C1F$$

 $C_{10}F_8 + C_6F_6AsF_6 - C_{10}F_8AsF_6 + C_6F_6$ (18)

$$2C_{10}F_8 + 3AsF_5 \longrightarrow 2C_{10}F_8AsF_6 + AsF_3$$
 (19)

$$C_{10}F_8 + AsF_5 + \frac{1}{2}F_2 \longrightarrow C_{10}F_8AsF_6$$
 (20)

The last was found to be the most effective route to this octafluoronapthalene salt, but is inapplicable to the syntheses of the monocyclic salts due to their relative instability at the temperatures required to maintain the starting materials in solution. $C_{10}F_8AsF_6$ was prepared in quantitative yield by metathesis: $C_{10}F_8$ (2.3 mmol) was added to $C_6F_6AsF_6$ (excess) in SO_2ClF . The reaction was complete in 30 minutes at 233K. Unreacted $C_6F_6AsF_6$ was decomposed at 298K, and the decomposition product pumped away, leaving pure $C_{10}F_8AsF_6$ (2.3 mmol).

<u>Octafluoronapthalene Hexafluororhenate(V)</u>. Octafluoronapthalene (0.42 mmol) was dissolved in dry trichlorofluoromethane (0.5 ml) at 273K in a fused silica

vessel. A slight excess of rhenium hexafluoride was admitted to the reaction vessel, causing the deep green octafluoronapthalene hexafluororhenate(V) to precipitate at the vapor-liquid interface. The reaction was complete in less than one minute. The reaction vessel was evacuated at 295K to remove the solvent and unreacted rhenium hexafluoride, leaving the dry, free-flowing product, $C_{10}F_8ReF_6$ (0.42 mmol, 100% yield).

<u>Solvents for Radical-Cation Salts</u>. All of the perfluoroaromatic cation salts are readily soluble in anhydrous hydrogen fluoride, antimony and iodine pentafluorides, and in dry sulfur dioxide. The marked dependency of solubility in HF on temperature provided for the formation of crystals useful for single-crystal X-ray diffraction studies in the case of $C_6F_6AsF_6$. The freshly-prepared salt was dissolved in anhydrous HF at room temperature and the solution cooled slowly to 195K, when amber-colored needle-like crystals formed. Solvation by SO_2 prevented its use in growing single crystals of this and other radical-cation salts. Poorly crystalline materials were recovered from SbF_5 and IF_5 solutions perhaps because of the loss of solvent of crystallization from the first formed crystals.

Reactions of Perfluoroaromatic Cation Salts.

Nitric Oxide. The reaction:

$$C_6F_6^{+}AsF_6^{-} + NO \rightarrow NO^{+}AsF_6^{-} + C_6F_6^{-}$$
 (21)

was always accompanied by some decomposition due to local heating. The controlled reduction of $C_6F_6^+$ salts with nitric oxide was, however, useful in establishing the stoichiometry of these materials. Freshly-prepared $C_6F_6AsF_6$ (0.66 mol) was exposed to dry NO gas in a fused silica reactor, producing NOAsF₆ (0.64 mol,

identified by its Raman spectrum and X-ray powder pattern) and C_6F_6 (0.68 mol), identified by nmr spectroscopy). The octafluorotoluene salt behaved similarly. $C_{10}F_8AsF_6$ did not react with NO.

<u>Thermal Decomposition</u>. $C_6F_6AsF_6$ decomposes smoothly at room temperature with a half-life of 15-20 minutes to arsenic pentafluoride and a colorless liquid, shown by infrared and ¹⁹F nmr spectroscopy to be a 1:1 mixture of hexafluorobenzene and octafluoro-1,4-cyclohexadiene, C_6F_8 .³⁵

 $C_6F_5CF_3AsF_6$ decomposes in a similar fashion to give arsenic pentafluoride and initially a 1:1 mixture of octafluorotuluene and 1,2,3,5,5,6,6-heptafluoro-4-(trifluoromethy)-1,3-cyclohexadiene, $C_6F_7CF_3$ [nmr shifts³⁶ relative to internal $CC1_3F$: 58.8(3), 104.1(2), 113.5(2), 114.9(1), 153.2(1), 159.0(1)]. This 1,3diene isomerized over a period of three days at room temperature in the presence of trifluoroacetic acid and AsF_5 to a 1:1 mixture of the 1,3-diene and 1,2,3,3,4,6,6-heptafluoro-5-(trifluoromethy1)-1,4 cyclohexadiene³⁷ [58.4(3), 110.0(1), 118.2(2), 125.9(2), 150.4(1), 152.1(1)].

 $C_{10}F_8AsF_6$ is stable at room temperature, melting with slow decomposition at 395K. The products of thermal decomposition are arsenic pentafluoride, octa-fluorotoluene, and a complex residue containing traces of decafluoro-1,4-dihydro-napthalene, $C_{10}F_{10}$ (identified by its ¹⁹F nmr spectrum).³⁸

<u>Cesium Fluoride</u>. Closely related to the thermal decomposition reactions are the interactions of the aromatic cation salts with cesium fluoride (see Discussion). $C_6F_6AsF_6$ in HF solution reacts rapidly with excess cesium fluoride, producing cesium hexafluoroarsenate and the 1:1 mixture of C_6F_6 and $1,4-C_6F_8$ described above.

 $C_{10}F_8AsF_6$ reacts more slowly with CsF, the green color of the radical cation persisting for up to one hour. The products found were the same as in the thermal decomposition.

<u>Hydrolysis of $C_{10}F_8AsF_6$ </u>. Octafluoronapthalene hexafluoroarsenate (1:1 mmol) reacted with excess water in the presence of CCl₄ (5 ml) to give a yellow solid. The ¹⁹F nmr of this solid dissolved in methanol and benzene (1:1) showed it to be a 1:1 mixture of octafluorotoluene and hexafluoro-1,4-napthalenedione, $C_{10}F_6O_2$.³⁹

Vibrational Spectra. Infrared spectra were obtained by pressing the freshlyprepared powders between silver chloride plates. In the case of $C_6F_6AsF_6$ products of thermal decomposition were present in each spectrum. By recording spectra at successive stages of decomposition, however, it was possible to distinguish those features due to the radical cation salt. In addition to the characteristic absorptions due to AsF_6^- , two strong bands appeared at 1490 cm⁻¹ and 1030 cm⁻¹, which correspond to similarly strong absorptions at 1530 $\rm cm^{-1}$ and at 1019 and 994 cm⁻¹ in neutral hexafluorobenzene. The infrared spectrum of $C_6F_5CF_3AsF_6$ was too complex to allow absorption due to the cation to be distinguished from those due to decomposition products. Intense fluorescence and thermal instability of the monocyclic cations prevented the recording of their Raman spectra even at very low temperatures. The Raman spectrum of $C_{10}F_8AsF_6$ was obtained by employing a Teflon rotating sample cell with a sapphire window. While the majority of vibrational modes in the cation are shifted only slightly in frequency from those in the neutral molecule, the relative intensities of some IR absorptions and Raman lines are greatly changed. In addition, the most intense feature in the

Raman spectrum of $C_{10}F_8AsF_6$ (the band at 420 cm⁻¹) has no observed counterpart in $C_{10}F_8$. The absence in the Raman spectrum of $v_1 AsF_6^-$ (which is ordinarily a strong band) hints at absorption enhancement of the cation Raman spectrum. On the whole, however, the overall framework of the molecule appears to be altered little by ionization. Moreover, the mutual exclusion of the IR and Raman activity appears to hold for the $C_{10}F_8^+$ ion (see Table I). Therefore it is likely that the cation is at least approximately centrosymmetric in its lattice site. It may retain the \underline{D}_{2h} symmetry of the parent molecule.

<u>Magnetic Susceptibility and ESR Spectra</u>. The magnetic susceptibility of $C_6F_6AsF_6$ (Table II) obeys the Curie Law down to 3.8K. The low effective moment of 1.3 B.M. is probably due, at least in part, to decomposition of the pressure-and temperature-sensitive compound during manipulation, to the degradation products which are diamagnetic. A higher moment was obtained for the more stable $C_{10}F_8AsF_6$, which also exhibits Curie Law behavior over the range 74 to 5.8K. For that salt μ (eff) = 1.68 B.M.

Esr spectra of dilute solutions of $C_6F_6Sb_2F_{11}$ in SbF₅ at 77K consist of a septet (J = 20 Hz) centered at g = 2.003, in agreement with results reported by Bazhin, <u>et al</u>.¹ for solutions of C_6F_6 in super-acid media. Esr spectra of $C_{10}F_8AsF_6$ in anhydrous HF or SbF₅ at 4K were unresolved, symmetrical resonances with g = 2.004.

<u>X-Ray Diffraction</u>. The Debye-Scherrer X-ray powder pattern of $C_6F_6AsF_6$ is given in Table III. Single crystals of $C_6F_6AsF_6$ were grown as described above. Due to thermal degradation and resultant fragmentation of these crystals, it proved impossible to collect sufficient high-quality diffractometer data for

a complete structure determination. Precession photographs did, however, establish the identity of the crystals and the bulk powder from which they were prepared. The data are consistent with a rhombohedral unit cell: $a = 6.60 \text{ Å}(1) \alpha = 106.0^{\circ}(1), \nu = 246.1 \text{ Å}, Z = 1.$ Efforts to grow single crystals of $C_{10}F_8AsF_6$ were unsuccessful. The powder diffraction pattern, however, has been indexed (Table IV) on the basis of a tetragonal unit cell: (293K) $a_0 = 8.30(1), c_0 = 18.76(1), V - 1292 A^3; (213K) a_0 = 8.26(1), c_0 =$ 18.57(3), V = 1267 \mathbb{A}^3 . Since AsF₆ has an effective volume of $\sim 105 \mathbb{A}^3$ and the effective packing volume of $C_{10}F_8$ in its crystal⁴⁰ is 226 Å, the anticipated formula unit volume for the 1:1 salt is ${\sim}330$ ${\mathbb A}^3$. The observed unit cell volume is therefore consistent with four formula units. Moreover, the dimensions of the unit cell indicate that the $C_{10}F_8^+$ species may be aligned with its long molecular axis⁴¹ (~ 9.6 Å) parallel to <u>C</u>. (The c_o dimension is consistent with the molecules being arranged head to tail on a fourfold axis 4_2 .) The X-ray powder data for $C_{10}F_8ReF_6$ has not been fully indexed and is given in Table V. Similarity of the low angle \underline{d} spacings with the data for $C_{10}F_8AsF_6$ suggests a close structural relationship but the salts are not isomorphous.

Acknowledgment.

The authors thank Professor J. C. Tatlow and Dr. R. Stephens of the University of Birmingham, U.K. for infrared spectra of the 1,3-and 1,4-C₆F₈ dienes which were helpful particularly in the early stages of this study. Professor R. Chambers and his coworkers, of the University of Durham, U.K. provided various samples of perfluoroaromatics essential to the research. Lessons in Frontier Orbital Theory, and detailed discussion of the course of the $Ar^+ + F^-$ interaction, were provided by our colleague Professor Andrew Streitwieser, Jr., to whom we are greatly indebted. The work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Science Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

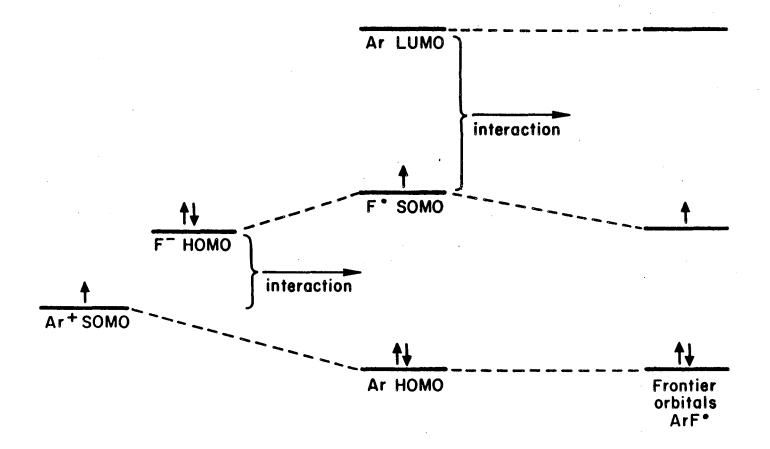
REFERENCES

- Bazhin, N. M.; Akhmetova, N. E.; Orlova, L. V.; Shteingarts, V. D.;
 Shchegoleva, L. N.; Yakobson, G. G. <u>Tett. Lett</u>. 1968, 4449-4452.
- (2) Bazhin, N. M.; Pozdryakovich, Yu. V.; Shteingarts, V. D.; Yakobson,
 G. G. <u>Bull. Acad. Sci. USSR, Div. Chem. Sci</u>. 1969, <u>10</u>, 2146-2147.
- (3) Thompson, C.; MacCulloch, W. J. <u>Tett. Lett</u>. 1968, 5899-5900.
- (4) Shastnev, P. U.; Zhidomirov, G. M.; Chuvylkin, N. D. <u>J. Struct. Chem</u>.
 1969, <u>10</u>, 885-890.
- (5) Thompson, C.; MacCulloch, W. J. Molecular Physics 1970, 19, 817-832.
- (6a) Chambers, R. D.; Clark, D. T.; Holmes, T. F.; Musgrave, W. K.; Ritchie, I.;
 J. Chem. Soc. (Perkin I) 1974, 114-125. (6b). Burdon, J.; Parsons, I. W.
 <u>Tetrahedron</u> 1975, <u>31</u>, 2401-2422.
- (7) Bastock, W.; Harley, M. C.; Pedler, A. E.; Tatlow, J. C. <u>J. Fluorine Chem</u>.
 1975, <u>6</u>, 331-355.
- (8) Shaw, M. J.; Hyman, H. H.; Filler, R. <u>J. Org. Chem</u>. 1971, 36, 2917-2922.
- (9) Rozhkov, I. N. Russian Chem. Reviews 1976, 45, 615-629.
- (10) Bartlett, N.; Richardson, T. J. <u>J.C.S. Chem. Comm.</u> 1974, 427-428.
- (11) Richardson, T. J. Ph.D. Thesis, University of California, Berkeley, 1974.
- (12) Jha, N. K. Ph.D. Thesis, University of British Columbia, 1965.
- (13) Zuchner, K.; Richardson, T. J.; Glemser, O.; Bartlett, N. <u>Angewandte</u> Chemie, Int. Ed. 1980, 19, 944-945.
- (14) Levin, Rhoda D.; Lias, Sharon G. "Ionization Potential and Appearance Potential Measurements" 1971-1981, NSRDS-NBS 71, U.S. Dept. of Commerce, October 1982, Superintendent of Documents, U.S. Govt. Printing Office, Washington D.C. 20402.

- (15) In their study of the fluoride ion affinities of various fluoroacids Mallouk <u>et al</u> (Mallouk, T. E.; Rosenthal, G. L.; Muller, G.; Brusasco, R.; Bartlett, N. <u>Inorg. Chem. 1984</u>, <u>23</u>, 3167-3173) employed the linear dependence of lattice energy upon the inverse of the cube root of the formula unit volume to determine the lattice energies of salts of unknown structure. From that empirical relationship which is U_L (kcal mole⁻¹) = 556.3 (molar volume in A^3)^{-1/3} + 26.3, U_L ($C_6F_6AsF_6$) = 115 and U_L ($C_{10}F_8AsF_6$) = 108 kcal mole⁻¹.
- (16) Bartlett, N.; Yeh, S.; Kourtakis, K.; Mallouk, T. <u>J. Fluorine Chem</u>. 1984, <u>26</u>, 97-116.
- (17) Nikitin, M. I.; Sidorov, L. N.; Korobov, M. W.; <u>Int. J. Mass. Spec</u>. 1981, <u>37</u>, 13-16.
- (18) The standard entropies of a large number of simple AB salts have been shown to be in simple relationship to the formula unit volume, the relationship being S° (cal mole⁻¹K⁻¹) = 0.44 x molar volume (in \mathbb{A}^3). From this S° ($C_6F_6MF_6$) is estimated to be ~108 cal mole⁻¹ K⁻¹. The standard entropies of gaseous MF₆ are <u>ca</u>. 80 cal mole⁻¹K⁻¹ [N.B.S. Technical Notes 270-3, 1968, and 270(4), 1969, and JANAF Tables to 1971 (Dow Chem. Co., Michigan)] and that of $C_6F_6(gas)$ is 92 cal deg⁻¹K⁻¹ (Counsell, J. F.; Green, J. H. S.; Hales, J. L.; Martin, J. F. <u>Trans Faraday Soc</u>. 1965, <u>61</u>, 212-218. This means that Δ S° ($C_6F_6(g)$ + MF₆(g) $\stackrel{\rightarrow}{\rightarrow}$ $C_6F_6MF_6(c)$) \approx -64 cal mole⁻¹K⁻¹, and, at 300K, T Δ S° \approx -19 kcal mole⁻¹.

- (19) Fluoro-arsenates are notoriously difficult to analyse because of the kinetic stability of AsF_6^- , which persists even in aqueous solution in the presence of H_2S reagent. In addition the C-F bond is a very stable one and conventional combustion analysis cannot normally be applied to such fluorocarbon materials as these.
- (20) The entropy change for the reaction represented in equation (2) is approximately zero, but the enthalpy change could be less exothermic than indicated by these ionization potentials and lattice energies. The lattice energy given here for $C_6F_6AsF_6$ may have underestimated the dispersion energy contribution by as much as 5 kcal mole⁻¹ bringing the $C_6F_6AsF_6$ lattice energy to a possible value of ~120 kcal mole⁻¹.
- (21) The face to face contact between aromatic hydrocarbons such as that which occurs in the $(C_{10}H_8)_2PF_6$ structure (<u>loc. cit.</u>) of 3.2Å and that in TCNQ complexes of 3.24Å (Fritchie, C. J. Jr. <u>Acta Cryst</u>. 1966, <u>20</u>, 892-898 and Kobayachi, H. <u>Bull. Chem. Soc., Japan</u> 1975, <u>48</u>, 1373-1377) is comparable with the sheet to sheet separation in graphite of $\sim 3.3Å$.
- (22) Coronene and other polycyclic hydrocarbons are electron-oxidized by $C_6F_6AsF_6$, and weaker oxidizers such as AsF_5 , to yield highly conducting salts (e.g. $C_{24}H_{12}^+AsF_6^-$). Richardson, T. J.; Tanzella, F. L.; Bartlett, N., to be published.
- (23) Rosenthal, G. L.; Mallouk, T. E.; Bartlett, N. <u>Synthetic Metals</u> 1984, <u>9</u>, 433-440.

- (24) George, P. M.; Beauchamp, J. L. Chem. Phys. 1979, 36, 345-351.
- (25) On the basis of the electron oxidizing properties of the sequence of third transition series hexafluorides it has been argued (see Bartlett, N. <u>Angewandte Chemie, Int. Ed</u>. 1968, <u>7</u>, 433-439) that the electron affinity increases approximately by leV (23.06 kcal mole⁻¹) for each unit increase in atomic number from WF₆ to PtF₆. With WF₆ (ref. 24) and PtF₆ (ref. 17) as fixed points, the increment becomes approximately 25 kcal mole⁻¹ and this yields $E_a(ReF_6) \approx 106$ and $E_a(OsF_6) \approx 130$ kcal mole⁻¹.
- (26) Bondybey, V. E.; Miller, T. A.; English, J. H. <u>J. Am. Chem. Soc</u>. 1979, <u>101</u>, 1248-1252 and Sears, T. J.; Miller, T. A.; Bondybey, V. E. <u>J. Chem. Phys</u>. 1981, <u>74</u>, 3240-3448.
- (27) Fritz, H. P.; Gebauer, H.; Friedrich, P.; Schubert, U. <u>Angewandte Chemie</u> 1978, <u>90</u>, 305-6.
- (28) Hexafluorobenzene has two sets of $\underline{\pi}$ orbitals: the lowest energy set (six orbitals) is primarily of C-F $\underline{\pi}$ -bonding character and is fully occupied; the higher energy set (six orbitals) are C-F π -antibonding but the occupied orbitals (three) also have ring $\underline{\pi}$ -bonding character (see Yim, M. B.; Wood, D. E. <u>J. Am. Chem. Soc</u>. 1976, <u>98</u>, 2053-2057 and Brundle, C. R.; Robin, M. B.; Kuebler, N. A. <u>J. Am. Chem. Soc</u>. 1972, <u>94</u>, 1466-1475. for evidence on the relative energies of the molecular orbitals).
- (29) We are indebted to Professor A. Streitwieser, Jr. for pointing out the details of the transition state for the $Ar^+ + F^-$ interaction, which are crucial to the understanding of the F^- addition <u>ortho</u> to E in the interaction with $C_5 EF_5^+$.


- (30) Arsenic pentafluoride is a strong fluoride-ion acceptor (ref. 15) with ΔH° (AsF_{5(g)} + $F_{(g)}^{-} \rightarrow AsF_{6(g)}^{-} = -111 \pm 4$ kcal mole⁻¹) whereas $C_{6}F_{7}^{\circ}$ must be a very weak acid. Hence the F⁻ transfer from AsF₆⁻ to $C_{6}F_{7}$ can be ruled out.
- (31) It may be that comparable isomerization of the 1,3 diene derived from the perfluoropyridine cation is prevented by the formation of a stable N-adduct with the AsF_5 .
- (32a) Shamir, J.; Binenboym, J. <u>Inorg. Chim. Acta</u> 1968, <u>2</u>, 37-38.
 (32b) McKee, D. E.; Bartlett, N. <u>Inorg. Chem</u>. 1973, <u>12</u>, 2738-2740.
- (33) Malm, J. G.; Selig, H. <u>J. Inorg. Nucl. Chem</u>. 1961, <u>20,</u> 189-197.
- (34) Ruff, O.; Fischer, J. Z. Anorg. Allgem. Chem. 1929, 179, 161-185.
- (35) Burdon, J.; Whiffen, D. H. <u>Spectrochim. Acta</u> 1958, <u>12</u>, 139-142 and Hoehn, H. H.; Pratt, L.; Watterson, K. F.; Wilkinson, G. <u>J. Chem. Soc</u>. 1961, 2738-45.
- (36) Integrated relative intensities in parentheses. Peak assignments and multiplicities are as follows: CF₃ (doublet of triplets),
 5-F (multiplet), 6-F (quartet), 3-F (multiplet), 2-F (septet),
 1-F (multiplet).
- (37) Integrated relative intensities in parentheses. Peak assignments and multiplicities are as follows: CF₃(triplet), 4-F (multiplet), 6-F (multiplet), 3-F (triplet, 1-F (quartet), 2-F triplet).
- (38) Feast, W. J.; Hughes, R. R.; Musgrave, W. K. R. <u>J. Fluorine Chem</u>. 1977, <u>10</u>, 585-604.
- (39) Blum, Z.; Nyberg, K. <u>Acta Chem. Scandinavica</u> 1979, <u>B33</u>, 73-75.

(40) Del Pra, A. <u>Acta Cryst</u>. 1972, <u>B28</u>, 3438-3439.

(41) Potenze, J.; Mastropaolo, D. <u>Acta Cryst</u>. 1975, <u>B31</u>, 2527-2529.

١

μ

	^C 10 ^F 8	(Solid)	C ₁₀ F ₈ ⁺ in A	sF ₆ Salt
Assignment ^a	IR	Raman	IR	Raman
		166 mw		164 w
				190 w
^v 28 ^{(b} 3g ⁾		291 m		284 w
v ₈ (a _g)		301 sh		
ν ₂₃ (b _{1u})	317 w			
₄₃ (b _{3g})		339 mw		331 w
v ₁₅ (b _{1g}), v ₂₇ (b _{2g})		375 vs		382 m
$v_7(a_g)$		394 sh		396 m
₃₄ (b _{2u})	405 m			
				420° vvs
		432 vw	434 w	432 sh
y ₆ (a _g)		512 s		517 ms
^{42(b} 3g)		528 vw		540 w
22 ^{(b} lu)	531 mw			
<i>.</i>		577 vw		580 w
26 ^{(b} 2g ⁾		601 mw	·	646 6
₄₅ (b _{3u})	670 mw	642 vw	675 w	646 s
$v_{25}(b_{2g}), v_{41}(b_{3g})$		758 m		750 m
23 ^{(b} 2u ⁾	784 s		790 s	784, 792 mw
	803 sh			-
^{21 (b} 1u)			040	
20 ^{(b} lu ⁾	946 s		940 vw	
	970 vw		977 s	
	1022 vw 1044 vw			

Table I. Vibrational Frequencies of $C_{10}F_0^+$

Table I. (Continued)

$v_5(a_g)$		1071 w		
v ₄₀ (b _{3g})		1083 vw		1097 mw
v ₃₂ (b _{2u})	1120 s		1118 vw	1122 m
	1145 vw		1135 w	. •
	1160 w		1170 s	
v ₁₉ (b _{1u})	1203 s	1198 w		
v ₄ (a _g)		1236 w	1245 s	
v ₃ (a _q)		1370 s	1380 s	1374 w
v y		1394 vw	1400 sh	1396 w
v _{l8} (b _{lu})	1413 s		1415 w	1411 s
10 14	1430 m		1450 sh	1451 m
v ₃₀ (b _{2µ})	1480 s		1465 s	
00 Lu	1547 w		1545 s	1556 m
		•	1580 s	
v _l (a _g)	1619,1624	m		1629 m
v ₁₇ (b _{1u})	1660 s		1690 m	
	1705 w		1725 w	

s = strong, m = medium, w = weak, sh = shoulder

^a Assignments after A. Girlando, B. Tamburini and C. Pecile, J. Chem. Soc. Faraday II, <u>1974</u>, 70, 6. Table II. Magnetic Susceptibility Data for $C_6F_6AsF_6$ and $C_{10}F_8AsF_6$

T (K) $1/xm (cgs units)$ 3.816.55.622.98.337.610.250.514.773.118.691.923.9116.429.3136.438.5196.545.6255.051.8297.571.5375.7	C ₆ F ₆ AsF ₆	C ₆ F ₆ AsF ₆
5.6 22.9 8.3 37.6 10.2 50.5 14.7 73.1 18.6 91.9 23.9 116.4 29.3 136.4 38.5 196.5 45.6 255.0 51.8 297.5	<u>т (к)</u>	<pre>l/xm (cgs units)</pre>
8.337.610.250.514.773.118.691.923.9116.429.3136.438.5196.545.6255.051.8297.5	3.8	16.5
10.250.514.773.118.691.923.9116.429.3136.438.5196.545.6255.051.8297.5	5.6	22.9
14.773.118.691.923.9116.429.3136.438.5196.545.6255.051.8297.5	8.3	37.6
18.691.923.9116.429.3136.438.5196.545.6255.051.8297.5	10.2	50.5
18.691.923.9116.429.3136.438.5196.545.6255.051.8297.5	14.7	73.1
29.3136.438.5196.545.6255.051.8297.5	18.6	91.9
38.5196.545.6255.051.8297.5	23.9	116.4
45.6255.051.8297.5	29.3	136.4
51.8 297.5	38.5	196.5
•	45.6	255.0
71.5 375.7	51.8	297.5
	71.5	375.7

C₁₀F8^{AsF}6

C10F8AsF6

<u>т (к)</u>	<u>1/x m (cgs units)</u>
5.8	19.5
15.8	52.9
30.5	99.0
45.6	147.0
60.0	192.0
74.0	231.0

Table III. X-Ray Powder Data for $C_6F_6AsF_6$

Rhombohedral unit cell: $a_0 = 6.60(1)$ Å, $\alpha = 106.0(1)^\circ$, V = 246.1Å³, Z = 1, Probable Space Group R³; Hexagonal Unit Cell: $a_0 = 10.55(1)$, $C_0 = 7.66(1)$ Å, V = 738.4Å, Z = 3 (for observed reflections -h + k + 1 = 3n)

Hex. hkl	Rhomb. hkl	d _{hke}	10 ⁴ /d ² (calc)	$10^4/d^2(obs)$	Relative Intensity
101	010	5.84	290	293	W
110	011	5.29	359	357	vvs
021	111	3.294	650	650	S
012	110	3.532	802	802	vs
211	021	3.151	1009	1007	٧S
300	121	3.054	1078	1072	vvw ,
202	020	2.948	1161	1151	vw
122,003	121,111	2.550	1520,1534	1537	W
131	122	2.408	1728	1725	W
113	120	2.308	1893	1877	VVW
312	031	2.118	2239	2229	m
321	032	2.021	2447	2448	W
303	030	1.955	2612	2615	w

Table IV. X-Ray Powder Data for $C_{10}F_8AsF_6$ (CuK_a, Ni Filter) (Tetragonal Unit Cells with: (20°) $a_0 = 8.30(1)$, $c_0 = 18.76(1)$; (-60°) a = 8.26(1); $c_0 = 18.57(2)$ ^A

Data for Sample at $\sim 20^{\circ}$ C Data for Sample at -60°C I/_Io $\frac{1}{d^2} \times 10^4$ $\frac{1}{d^2} \times 10^4$ <u>hk</u>1 calc. obs. calc obs W 146.5 m 159* VVW m ٧W ٧W m 372* ٧W [401 [404 [408 [409 S ШM 502* W S VW S 641* VVW ٧S ٧S VVW

[847 [849 [836 [836 212 mw VW VW VW

* These lines are not indexable on the basis of a tetragonal cell and could be due to an impurity.

Table IV. Continued

Table V.	X-Ray	Powder	Data	for	C10FoReF6	(CuK	,NiFilter)	at 20°C.
----------	-------	--------	------	-----	-----------	------	------------	----------

I/ _I o	$1/d^2 \times 10^4$	I/ _{Io}	$1/d^2 \times 10^4$
vw	119	W	1760
vs	142	mw	1814
S	245	W	1922
w	276	W	1993
m	301	. m	2128
S	394	m	2227
vw	440	W	2356
S	480	m	2475
S	583	W	2580
S	658	W	2678
vs	731	m	2765
S	792	m	2964
ms	832	W	3177
m	905	W	3387
m	1114	VW	3713
W	1221	٧W	3801
W	1277	VW	4100
W	1324	W	4531
W	1359	VW	4815
W	1473	WV	5148
W	1530	W	5853
vw	1657	· ,	

I/ _I o	$\frac{1}{d^2} \times 10^4$ (obs.)	(cont'd)	
vw	119	W	1760
VS	142	mw	1814
S	245	W	1922
W	276	W	1993
m	301	m	2128
S	394	m	2227
VW	440	W	2356
S	480	m	2475
s, br	583	W	2580
S	658	W	2678
VW	731	m	2765
S	792	m	2964
ms	832	W	3177
m	905	W	3387
m, br	1114	VW	3713
W	1221	VW	3801
W	1277	. VW	4100
W	1324	W	4531
W	1359	VW	4815
W	1473	VW	5148
W	1530	VW	5853
VW	1657		

Table V. X-Ray Powder Data for $C_{10}F_8ReF_6$ (CuK_a Ni Filter)

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

.