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Abstract

Analytic advances are enabling more precise definitions of the molecular composition of key food 

staples incorporated into contemporary diets and how the nutrient landscapes of these staples vary 

as a function of cultivar and food processing methods. This knowledge, combined with insights 

about the interrelationship between consumer microbiota configurations and biotransformation of 

food ingredients, should have a number of effects on agriculture, food production and strategies 

for improving the nutritional value of foods and health status. These effects include decision-

making about which cultivars of current or future food staples to incorporate into existing and 

future food systems, and which components of waste streams from current or future food 

manufacturing processes have nutritional value that is worth capturing. They can also guide which 

technologies should be applied, or need to be developed, to produce foods that support efficient 

microbial biotransformation of their ingredients into metabolic products that sustain health.

Introduction

Historical analyses have emphasized how improved nutrition is a major contributor to the 

economic growth of societies, and have underscored the synergism between physiologic and 

technical improvements (Fogel, 2004). The rapid expansion of our human population, and 

the need to produce more food, more sustainably (e.g., Eshel et al., 2014), highlights a 

critical and present need: improve knowledge of what to eat and develop technologies to 

make affordable foods that promote wellness. Disappointingly, nutrition has been a 

neglected area of global health and development, accounting for less than 1 percent of global 

foreign aid (Action Against Hunger, 2013).
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The gut microbiota contains tens of trillions of microbial cells. Development of this 

microbial ‘organ’ is initiated at birth and in healthy individuals is largely completed within 

three years (e.g., Yatsunenko et al., 2012; Subramanian et al., 2014). A major function of the 

microbiota is to process food ingredients so that the products of their biotransformation can 

be utilized in beneficial ways to support myriad aspects of our human biology (Sharon et al., 

2014; Schroeder and Bäckhed, 2016; Koh et al., 2016). Well known examples include short 

chain fatty acids generated from fermentation of dietary polysaccharides, bioactive indole 

derivatives resulting from tryptophan metabolism, and modification of the pharmacologic 

properties of plant flavonoids (Zhang and Davies, 2016; Hubbard et al., 2015; Cassidy and 

Minhane, 2017). Of course, the relationship between microbiota and host should not be 

construed in an entirely host-centric fashion; members of the microbiota derive benefit from 

the products of one another's metabolism and from the processing of host-derived 

biomolecules (e.g., mucus glycans; bile acids) (Degnan et al., 2014; Pudlo et al., 2015; 

Wahlström et al., 2015; Wu et al., 2015).

For the past 10 years, Cell Host and Microbe has served as an important home for 

interdisciplinary studies describing interactions between diet and the gut microbiota. We 

believe that it is timely for the readers of the journal to now look forward to the next decade 

and envision how studies of the gut microbiota could provide a way to promote discovery 

and development efforts required to identify safe, affordable food products that enhance 

health. This ambitious goal requires interdisciplinary approaches focused on (i) identifying 

the specific members and expressed functions of the microbiota that are essential 

contributors to the health status of humans at different stages of life; (ii) determining 

whether these functional effects can be generalized within and across populations with 

different anthropologic features, and (iii) deciphering the biological impact of perturbations 

of these microbiota functions (Schroeder and Bäckhed, 2016; Sharon et al., 2014). 

Achieving this goal necessitates delineating the effects of current foods on the microbiota of 

its consumers. More fundamentally, it requires detailed biochemical characterization of 

components represented in the world's major food staples, including cultivars designed to 

have enhanced nutritional content, the effect of food processing and preparation on this 

component profile, and how these components, singly and in combination, alter properties of 

gut microbial communities (David et al., 2014; Hibberd et al., 2017).

We propose that defining these microbiota ‘structure-function’ relationships will enable the 

creation of ‘microbiota-directed’ foods (MDFs). In principle, MDFs can operate by altering 

the functional configurations of a consumer's gut microbial community, providing substrates 

for microbial transformation to biomolecules necessary for a healthy state, or by acting 

through a combination of these mechanisms. Designation as an MDF would reflect the fact 

that it contains components designed to deliberately manipulate a microbiota in a selective 

manner so as to benefit one or more facets of host biology, with resulting improvements in 

health status. A ‘prebiotic’ has been defined as “a nondigestible food ingredient that 

beneficially affects the host by selectively stimulating the growth and/or activity of one or a 

limited number of bacteria in the colon, and thus improves host health” (Gibson and 

Roberfroid, 1995; see also Hutkins et al., 2016). Here, we use the term MDF to represent a 

‘food’ composed of a variety of ingredients including one or more prebiotic components 

capable of being metabolized by microbes alone, and/or nutrients whose transformation by 
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microbes makes them available to the host for direct use or for further biotransformation, as 

well as components that do not require microbial metabolism for their effects on the host.

Developing MDFs should provide opportunities to forge (i) new types of alliances between 

microbial scientists and food scientists that extend far beyond traditional considerations/

definitions of nutritional content and food safety, (ii) new types of collaborative interactions 

between microbial and nutritional scientists that expand and deepen our understanding of the 

determinants of host biologic phenotypes, and (iii) new relationships between 

microbiologists, agricultural stakeholders, and policy makers that fundamentally change how 

food systems are designed and overseen. Perhaps, the most durable impact will be to 

catalyze new interdisciplinary educational programs for students so that they can contribute, 

in their unique ways, to solving the problem of how we and other inhabitants of our planet 

can survive and flourish in this phase of the Anthropocene epoch.

One approach for developing ‘microbiota-directed’ foods

One approach for discovering and developing MDFs is illustrated in Figure 1 and discussed 

here. A ‘preclinical gnotobiotic animal arm’ utilizes formerly germ-free animals colonized 

with human gut microbes - either sequenced collections of cultured microbial strains or 

intact, uncultured microbiota from donors representing biological phenotypes and consumer 

populations of interest. This arm is used to identify food ingredients that affect the 

representation and expressed functions of community members. Moreover, as knowledge of 

interpersonal variations in community structure/functional relationships expands, these 

preclinical models can help develop more refined views of what configurations provide 

benefit to specified host functions in specified dietary and microbiota contexts.

A ‘food science technology arm’ uses advanced analytical techniques to characterize and 

quantify the biochemical components of food ingredients before and after incorporation into 

food prototypes. These food prototypes are fashioned based on considerations of the 

biochemical characteristics, availability and affordability of their ingredients, how the 

ingredients might be processed in ways that do not deleteriously affect the integrity/

bioactivity of key nutrients, and whether the manufactured food products will have 

acceptable organoleptic properties. Food prototypes are then tested in the gnotobiotic animal 

models colonized with microbial communities sampled from members of the target human 

population so that the effect size on features of community and host biology, and their 

mechanisms of action, can be delineated and relevant biomarkers identified for follow-up 

human studies. Germ-free animals that are not colonized provide a reference control for 

definitively assigning microbiota and host contributions to the biotransformation of the food 

prototype and the effects of its metabolic products on host biology.

A ‘human studies arm’ captures the output of the gnotobiotic and food science arms to 

validate the effects of lead food prototypes in members of the very target population whose 

gut microbes were incorporated into the preclinical model. Put in a broader context, this arm 

helps address an important need in the field of human microbial ecology research; to directly 

assess the translatability of results from studies of microbiota in animal models to humans. 

For example, replication of human donor microbiota, while reproducible across recipient 
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gnotobiotic animals in a given treatment group, is not fully representative even for members 

of the domain Bacteria, with considerably less information available about capture of 

members of Archaea and Eukarya (and their viruses). Mice and humans have different 

nutrient requirements. The biochemical features of their mucus, which serves as a 

microhabitat for components of the microbiota, varies between humans and mice. Mucus 

provides glycans that community members can forage, a means to avoid their washout from 

the gut bioreactor, and opportunities to exchange metabolites with their syntrophic partners 

as well as to signal host mucosal epithelial and immune cell lineages. The immune systems 

of germ-free animals are incompletely developed and the extent of maturation that does 

occur is affected by the timing and duration of colonization. Consideration of these and 

other factors suggest that the selective pressures applied to a transferred human microbiota 

may be different from those experienced by the community in its native host habitat. The 

qualitative and quantitative effects of these differences on biotransformation of food 

ingredients can be ascertained through comparative studies of gnotobiotic animal models 

harboring the very microbial communities of the humans that are subjects of clinical studies.

We believe that consummating this marriage of preclinical models, food science and human 

studies is necessary and timely given the rapidly changing patterns of food preferences 

brought about by economic development/globalization, changes in food technology and food 

distribution systems that have produced dramatic changes in how and what we eat, as well as 

ongoing efforts to deploy various technologies to create new more nutritious foods or 

identify ways of capturing discarded nutrients from food waste streams (Parfitt et al., 2010).

An important consideration is how this pipeline can be linked to ongoing agricultural 

initiatives that focus on current food staples (e.g., yield improvements from selective 

breeding, genetic engineering, new fertilizers, or manipulations of the rhizophere), as well as 

potential future staples. In developed countries, the availability of animal sources of protein 

can provide sufficient amounts of essential amino acids for human diets. In developing 

countries, plants may account for a significant fraction of the protein intake (de Bruyn et al., 

2016; Schönfeldt and Gibson Hall, 2012). However, many of the staple cereal and legume 

crops grown in developing countries are deficient in essential amino acids; tryptophan, and 

methionine are most limiting in cereals and while methionine is deficient in legumes (Ufaz 

and Galli, 2008). In parts of sub-Saharan Africa where maize is the principal food staple 

accounting for up to 50% of daily energy intake (Nuss and Tanumihardjo, 2011), symptoms 

of tryptophan deficiency, including reduced growth, impaired bone development and 

neurological abnormalities can occur at intakes as little as 25% below the minimum 

requirement (Moehn et al., 2012). Tryptophan deficiency has also been associated with 

growth deficits and vaccine underperformance in children with environmental enteropathy 

(Kosek et al., 2016). Therefore, there is significant humanitarian and economic interest in 

bio-fortification approaches to enrich crops in these essential amino acids (Nuss and 

Tanumihardjo, 2011), as well as to address the ‘hidden hunger’ associated with wide-scale 

micronutrient deficiencies (Tang et al., 2009).

Another approach is illustrated by the African Orphan Crops Consortium (AOCC), whose 

goal is to sequence the genomes of crops that are not traded internationally and thus little 

studied by science but relied on by the 600 million people who live in rural Africa (http://
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africanorphancrops.org/). The consortium conducted an Africa-centric survey, with 

participation from African plant breeders, sociologists, anthropologists, nutritionists, policy 

makers, farmers, and various other stakeholders to identify 101economically important but 

also socio-culturally relevant crop and tree species that are important components of local 

diets (http://africanorphancrops.org/meet-the-crops/). The consortium's mission is to 

sequence, assemble and annotate the genomes of these crops; the resulting data will be 

available in open access format and offered free to plant breeders, seed companies and 

farmers on condition that it is not patented. It is anticipated that providing African plant 

scientists with the knowledge and tools to assess genetic diversity in crops and to support 

breeding programs through the AOCC's African Plant Breeding Academy will spawn 

biotechnology and breeding initiatives to develop more nutritious crops with superior yields, 

plus greater resiliency to pests and changing climate. Furthermore, the AOCC partnership 

seeks to mainstream orphan crops into food supply systems by making improved cultivars 

available to smallholder farmers throughout Africa, developing new markets, and supporting 

promotional activities to boost their wider production and consumption. If successful, this 

initiative provides a blueprint that could be expanded to other parts of the world.

The pipeline described in Figure 1 provides an opportunity to make a contemporaneous 

investment in determining how orphan crops themselves and various food prototypes 

constructed from them are processed by the gut microbiota of consumers representing 

different ages and different health states in the populations to which these foods might be 

distributed. These preclinical models could also be used to examine how the food prototypes 

derived from these staples affect various aspects of host physiology and metabolism, as a 

prelude to future human studies. In addition to providing practical knowledge for 

development of affordable foods that improve the nutritional status of consumers, this type 

of investment could yield basic knowledge. For example, which gut microbial proteases are 

expressed in response to exposure to foods containing different plant-derived proteins, and 

to what extent are levels of amino acids present in different regions of the gut and blood of 

these preclinical models a reflection of microbial proteolytic activity? Importantly, in the 

case of undernutrition, do distal gut microbial enzymatic activities have the potential to 

provide the host with a bioavailable source of essential amino acids from glycoproteins/

peptides that escape absorption in the upper gastrointestinal tract?

Defining the nutrient content of food: a key missing ‘ingredient’

Advances in biotechnology that are enabling characterization and manipulation of the 

genomes of cultivars of various crops are occurring contemporaneously with advances in 

analytical chemistry; as such, there is an opportunity to gain unprecedented insights into 

their biochemical composition. In particular, details of the carbohydrate structures in staple 

crops and how these vary as a function of cultivar and food processing methods have 

remained largely enigmatic until recently. However, analytical advances originally 

developed to study the human milk glycome (De Leoz et al., 2013; Totten et al., 2014) are 

poised to address this gap in knowledge.

Milk is a complex mixture of macronutrients and bioactive molecules, many of them 

extensively glycosylated (Ballard and Morrow, 2013). As nature's first food, human milk has 
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provided a blueprint to guide our understanding of the fundamental relationships between 

indigestible carbohydrates and the gut microbiota (Davis et al., 2016). Human milk 

oligosaccharides (HMOs), on a dry weight basis, are the third most abundant component of 

milk (5-15g/L), after lactose (70g/L) and lipids (40g/L) (Zivkovic et al., 2011). HMOs 

remain largely intact and unabsorbed during transit through the proximal gut (Engfer et al., 

2000; Bode, 2012), although recent reports have identified certain HMOs in serum and urine 

(De Leoz et al., 2013). HMOs have evolved to support the establishment of a select group of 

beneficial gut bacteria that are exquisitely adapted to consume these oligosaccharides in the 

gut environment of breastfed infants (Pacheco et al., 2015; De Leoz et al., 2015). Among 

these specialized, breast milk-adapted, early colonizers of the infant gut, Bifidobacterium 
longum subspecies infantis is unique in its prodigious capacity to digest and consume all of 

the known HMO structures; this capacity reflects its large repertoire of bacterial genes 

encoding an array of glycosidases and oligosaccharide transporters that are not found in 

other bacterial species (Underwood et al., 2015).

The ability to monitor, with quantitation, specific HMO structures has led to new 

understanding of the unique relationship between HMOs and the nascent gut microbiota of 

infants. Methods such as nano-liquid chromatography chip time-of-flight mass spectrometry 

(nano-LC chip-TOF MS), coupled with the development and implementation of 

comprehensive libraries containing fully characterized structures have enabled hundreds of 

structures to be identified and quantified in a single analysis (Wu et al., 2010, 2011; Totten et 

al., 2014). These analytical tools have re-defined the scope of HMO structural diversity from 

the millions of structures previously believed to exist, to a few hundred molecules whose 

abundances range over 4 to 5 orders of magnitude in human milk (Totten et al., 2014). 

Although HMOs are composed of a relatively small number of monosaccharides including 

glucose (Glc), galactose (Gal), N-acetylglucosamine (GlcNAc), fucose (Fuc), and sialic acid 

(NeuAc/Sia), the linkages and branching create a large diversity of structures. HMOs vary in 

size from three to 20 monosaccharides, built by the action of competing glycosyltransferases 

that produce branched and linear structures composed of lactose core, elongated by GlcNAc 

and Gal, and potentially capped by Fuc and Sia (Figure 2).

During the weaning process, the source of dietary carbohydrate shifts from breast milk-

derived oligosaccharides and glycoproteins to polysaccharides originating from cereals, 

fruits and vegetables that comprise complementary foods. The monosaccharide composition, 

glycosidic linkages and degree of polymerization of plant-derived polysaccharides exhibit 

tremendous diversity. Like HMOs, plant polysaccharides are often built from glucose and 

galactose monomers, but they generally lack fucose and sialic acid residues that are common 

in HMOs. In addition, plant polysaccharides contain fructose, arabinose, rhamnose, 

hexuronic acids, and other less abundant monosaccharides. Compared to HMOs, with a few 

exceptions, surprisingly little is known about many of the plant-derived carbohydrate 

structures that we consume in our diets. Unlike human milk, plants contain mixtures of 

polysaccharides that even when pure are more difficult to fully structurally elucidate because 

of their large size, linkages, branching and variable polymeric side chains. Plant 

polysaccharides are broken down in the distal intestine by microbes in the (weaning) gut 

microbiota whose genomes encode a large and diverse collection of carbohydrate esterases, 
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glycoside hydrolases, and polysaccharide lyases (collectively referred to as carbohydrate-

active enzymes or CAZymes; Bhattacharya et al., 2015) that are not encoded in our human 

genome. Henrissat and coworkers have developed, and are continuing to evolve, methods for 

predicting gene loci involved in glycan utilization by members of Bacteroidetes, one of the 

two most prominent human gut bacterial phyla (Terrapon et al., 2015), and the carbohydrate 

structures targeted by these different gene clusters. They, and others, are extending this work 

to glycan-utilization clusters in other bacterial taxa represented in the microbiota.

Coupling these in silico efforts with advances in analytic methods and the pipeline described 

in Figure 1, sets the stage for defining the glycan structures present in major food staples, 

determining how these structures are affected by food processing and by different 

consumers' microbiota, and characterizing how glycan processing influences the expressed 

functional properties of gut communities. Nonetheless, the complexity of the analytic 

challenge is great. To illustrate this point, Figure 3 shows the major polysaccharides that 

make up two important food staples; rice and potato. Rice is composed primarily of glucose 

polymers including amylose and amylopectin. Potato contains these two polymers but also 

includes arabinogalactan and rhamnogalacturonan. Amylose and amylopectin are composed 

of glucose polymers in a combination of mainly α(1-4) glucose linkages and some α(1-6) 

linkages. However, arabinogalactan and rhamnogalacturonan I contain other 

monosaccharides including rhamnose, arabinose, and galacturonic acids with their respective 

linkages. For a healthy gut microbiota to utilize these polysaccharides, appropriate 

CAZymes need to be available to process each monosaccharide with its associated 

linkage(s). Furthermore, the ability to quantitate each monosaccharide and its linkages, 

which significantly advanced our understanding of the structure and function of HMOs, is 

currently unavailable for polysaccharides, even those in rice and potato. In addition, 

carbohydrate structures in many other foods are poorly characterized, if at all. Adding to the 

analytic challenge is the critical impact of food processing technologies and methods of food 

preparation that result in various enzymatic and non-enzymatic structural modifications to 

the food matrix that can affect carbohydrate structure.

Processing may further increase the structural diversity by, for example, affecting the 

representation of oligosaccharides (di, tri- and tetrasaccharides), thereby altering the 

bioavailability of these compounds to members of the microbiota and host (Christiaens et 

al., 2016; Fardet, 2015). Therefore, development of more advanced analytical tools to 

characterize polysaccharides with improved quantitation, sensitivity, and significantly 

greater throughput is critical. Moreover, the general approach to food carbohydrate analysis 

should be realigned to focus on biological functions; since these functions are defined by 

monosaccharide compositions and linkages, a priority should be to elucidate these structural 

features with accurate quantitation.

Another facet of considering how microbes process plant glycans in foods involves the 

‘universe’ of small particles, representing fragments of plant-derived material (e.g. fibers), 

that exist in the distal gut. Development of higher throughput methods for imaging and 

quantifying the spatial distribution of different taxa within the gut (Tropini et al., 2017) 

would allow tests of the following concepts. These particles serve as an important site of 

attachment for saccharolytic organisms so that they can harvest particle-associated glycans 
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and share the products of their digestion with syntrophic partners who also reside on these 

particles. The physical proximity of primary and secondary consumers on the same particle 

facilitates nutrient sharing and metabolic exchange; as such, the food particle can be viewed 

as a functional unit in the gut ecosystem (a ‘center of commerce’). Other key parameters to 

explore from both a microbial community and food science perspective include; (i) the 

degree to which these food particles provide other nutrient resources to different members of 

attached microbes and the food webs that they support, (ii) the relationship between particle 

size, nutrient content, the on and off rates of organisms that have the adhesive apparatus 

needed to adhere to particles, and (iii) the size of the microbial population that a particle can 

support, and how this varies as a function of particle degradation. These questions 

encompass both the glycan and protein constituents of particles and prompt consideration of 

how particles of defined size and composition might be deliberately fabricated to promote 

processing by members of a consumer's microbiota. Comparing processing of these particles 

or other components of a diet in colonized versus germ-free animals provides a direct test of 

which products are generated through the metabolic activity of gut microbes, versus those 

that result from host digestive processes alone.

A holistic approach for developing more affordable nutritious foods

The discovery and development platform outlined in Figure 1 could fundamentally change 

the way we define the nutritional value of foods, how next generation food products are 

designed/ tested and, ultimately, national policies on nutritional recommendations. While we 

have focused our attention on human consumers and their microbiota, in principle the 

approach described could be applied to the microbiota of other species (for example, those 

that are important sources of animal protein such as fish), and involve different gnotobiotic 

host species, including those capable of supporting higher throughput early stage screens 

(e.g. zebrafish; Melancon et al., 2017). The pipeline could also be expanded to encompass 

an ‘abiotic’ component based on advances in in vitro bioreactor systems that support growth 

of gut microbial consortia (e.g., Kettle et al., 2015; Auchtung et al., 2015; Chung et al., 

2016; Kim et al., 2016).

A grand challenge will be to quantify the nutrient/biochemical content of the world's major 

food staples using advanced analytic methods of the type discussed above, with initial 

priority placed on food ingredients commonly consumed across populations, and the impact 

of commonly used procedures for processing these ingredients. To provide maximum utility, 

the results will need to be assembled in a systematically annotated, readily searchable, 

publicly accessible database that is regularly updated. This effort could be expanded to 

include different cultivars of a staple, prioritized according to their current or envisioned/

predicted incorporation into food systems, the sustainability of their supply chains, and the 

adoption of new processing technologies. The effort could be linked to the work of both 

governmental and nongovernmental organizations in monitoring and forecasting changes in 

patterns of food consumption, so that microbiota from representative consumer populations, 

both current and anticipated, can be incorporated into the pipeline described above. An 

additional focus would be on waste streams generated during food manufacture that, through 

the lens of the microbiota, may contain ingredients with high potential nutritive value 

(Gullon et al., 2013). Ideally, the outcome of applying this ‘choreography’ will be better 
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informed decisions about food ingredients and food manufacturing as they relate to the 

nutritional status and health of consumers. This capability, if implemented so that it could be 

deployed in a nimble fashion, would be timely based on the pressing challenges posed by 

population growth and climate change. However, until the ‘value proposition’ of this 

approach is established through human studies, economic and geopolitical factors may 

conspire to limit enthusiasm (and funding) for its adoption (e.g., Blanton et al., 2016).

In addition, development of microbiota-directed foods requires a holistic approach that 

proactively considers and thoughtfully addresses a number of biological, educational, 

cultural, and regulatory issues (Blanton et al., 2016); the consequence of failing to do so is 

vividly illustrated by the problems that have arisen with acceptance of genetically 

engineered food products. For example, the short- and long-term safety and efficacy of 

MDFs need to be established through rigorous clinical studies. Culturally-sensitive 

educational approaches will be needed not only to perform such studies, but also to inform 

the population, through a readily understood narrative, about the microbiota, what is known 

about its interaction with foods, and what this means to the health of consumers. The claims 

made for a MDF, including evidence for its safety and efficacy, will have regulatory 

implications, including whether that MDF is classified as a food, dietary supplement, 

medical food or drug (discussed further in Green et al., 2017). Classification, in turn, will 

affect labeling and advertising/marketing strategies. We hope that the readers of Cell Host 
and Microbe will not only observe with interest how these interdisciplinary studies and 

discussions take form and evolve, but will be active participants in guiding them.
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In this Perspective, Barratt et al. propose the integration of preclinical models, food 

science technologies and human studies to generate detailed knowledge of the 

biotransformation of food ingredients by consumers' gut microbiota. This could alter 

traditional definitions of nutrient content and inform global efforts designed to produce 

affordable, healthier foods.
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Figure 1. Pipeline for developing microbiota-directed foods (MDFs)
A ‘preclinical arm’ (highlighted in yellow) uses gnotobiotic animals colonized with 

members of microbial communities from the target human population; animals are fed 

complementary food ingredients to identify those combinations that affect the abundances 

and expressed beneficial functions of targeted microbial taxa. Effects of these MDFs on 

various facets of host biology are defined. A ‘food science arm’ (blue) incorporates 

affordable lead food ingredients with sustainable supply sources into MDF prototypes that 

have desired nutritional content and organoleptic properties. The ‘clinical arm’ (purple) 

begins with a series of pilot studies designed to validate the activities of various MDF 

prototypes observed in/forecast by the preclinical arm. Dashed lines indicate key points of 

interaction/feed-back/decision-making between the three arms of this dynamically operating 

pipeline.
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Figure 2. Structural compositions of human milk oligosaccharides (HMOs) in a ‘secretor 
individual’
Two HMO ‘phenotypes’ are apparent based on the presence/absence of specific fucosylated 

structures. Mothers that produce HMOs decorated with α(1,2)-fucose (Lewis b antigen) are 

termed ‘secretors’ and those that do not are termed ‘non-secretors’. While genetics underlies 

these differences in milk HMO structural composition, recent work has revealed differences 

in structural profiles and abundances associated with geography, maternal age, stage of 

lactation and body mass index (BMI) (McGuire et al., 2017). In this figure, the size of the 

circle designates the relative abundances of HMO structures. The colors correspond to 

subclasses of fucosylated (containing at least one fucose), sialylated (containing at least one 

sialic acid), and fucosylated and sialylated (at least one of each) and neutral (contains neither 

fucose nor sialic acid) HMO structures. Abbreviations of structures shown are based on 

Totten et al. (2014). LNT: lacto-N-tetraose, LNFP II: lacto-N-fucopentaose II, MFLNH III + 

MFLNH I: monofucosyllacto-N-hexaose III/ monofucosyllacto-N-hexaose I, DFLNH b: 

difucosyllacto-N-hexaose b, LNFP III: lacto-N-fucopentaose III, 3120: Hexaose(3) N-

Acetylglycosamine(1) Fucose(2), 3′SL: 3′-sialyllactose, LSTc: sialyllacto-N-tetraose c, 

LNnT: lacto-N-neotetraose, MFpLNH IV: monofucosyl-para-lacto-N-hexaose IV, LSTb: 

sialyllacto-N-tetraose b, DFLNO I: difucosyl-lacto-N-octose I, DFpLNH II: difucosyl-para-

lacto-N-hexaose II, 5130a: Hexaose(5) N-Acetylglycosamine(1) Fucose(3), 2′FL: 2′-
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fucosyllactose, DFLNnO II: difucosyl-lacto-N-neooctase II, 412Oa: Hexaose(4) N-

Acetylglycosamine(1) Fucose(2) a, IFLNH III: isofucosyl-lacto-N-hexaose III, LNH: lacto-

N-hexaose, 6′SL: 6′-sialyllactose, S-LNH: sialyl-lacto-N-hexaose, F-LSTc: fucosyl-

sialyllacto-N-tetraose c, 5230a + DFLNnO I/DFLNO II: Hexaose(5) N-

Acetylglycosamine(2) Fucose(3) a + difucosyl-lacto-N-neooctase I/ difucosyl-lacto-N-

octase II, TFLNH: trifucosyllacto-N-hexaose, LNnH: lacto-N-neohexaose, 3111a: 

Hexaose(3) N-Acetylglycosamine(1) Fucose(1) N-Acetyleneuraminic acid(1) a, F-LNO: 

fucosyl-lacto-N-octaose, 4021a + S-LNnH II: Hexaose(4) Fucose(2) N-Acetyleneuraminic 

acid(1) a + sialyl-lacto-N-neohexaose II, LNFP I: lacto-N-fucopentaose I, LDFT: 

lactodifucotetraose.
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Figure 3. Structural representation of polysaccharides found in rice and potatoes
Rice contains primarily amylose and amylopectin. Potatoes contain the same polymers but 

additionally arabinogalactan and rhamnogalacturonan I. These structures illustrate the 

challenge in characterizing food polysaccharides. The large sizes of the polymers (millions 

of Daltons), the heterogeneity in their monosaccharide compositions and linkages make 

analysis unlike any other biopolymer.
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