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Abstract

Synonymous codon choice can have dramatic effects on ribosome speed and protein expression. 

Ribosome profiling experiments have underscored that ribosomes do not move uniformly along 

mRNAs. We modeled this variation in translation elongation using a feedforward neural network 

to predict the ribosome density at each codon as a function of its sequence neighborhood. Our 

approach revealed sequence features affecting translation elongation and characterized large 

technical biases in ribosome profiling. We applied our model to design synonymous variants of a 

fluorescent protein spanning the range of translation speeds predicted with our model. Levels of 

the fluorescent protein in budding yeast closely tracked the predicted translation speeds across 

their full range. We therefore demonstrate that our model captures information determining 

translation dynamics in vivo, that we can harness this information to design coding sequences, and 

that control of translation elongation alone is sufficient to produce large, quantitative differences in 

protein output.
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Introduction

As the ribosome moves along a transcript, it encounters diverse codons, tRNAs, and amino 

acids. This diversity affects translation elongation and, ultimately, gene expression. For 

instance, exogenous gene expression can be seriously hampered by a mismatch between the 

choice of synonymous codons and the availability of tRNAs. The consequences of 

endogenous variation in codon use have been more elusive, but new methods have revealed 

that synonymous coding mutations, upregulation of tRNAs, and mutations within tRNAs can 

have dramatic effects on protein expression, folding, and stability1–3. Codon usage can 

directly affect the speed of translation elongation4. However, translation initiation has been 

considered the rate-limiting step in translation, implying that changes in elongation speed 

should have limited effects5. Recent work has suggested a relationship between codon use 

and RNA stability; slower translation may destabilize mRNAs and thus decrease protein 

expression6,7. These opposing viewpoints have yet to be fully reconciled, leaving us with an 

incomplete understanding of what defines a favorable sequence for translation.

With the advent of high-throughput methods to measure translation elongation in vivo, we 

can understand the functional implications of codon usage. Ribosome profiling measures 

translation transcriptome-wide by capturing and sequencing the regions of mRNA protected 

within ribosomes, called ribosome footprints8. Each footprint reflects the position of an 

individual ribosome on a transcript, and we can reliably infer the A site codon – the site of 

tRNA decoding – in each footprint (Fig. 1a). This codon-level resolution yields the 

distribution of ribosomes along mRNAs from each gene. We can use the counts of footprints 

on each codon to infer translation elongation rates: slowly translated codons yield more 

footprints, and quickly translated codons yield fewer (Fig. 1b). Analyses of ribosome 

profiling data have shown a relationship between translation elongation rate and biochemical 

features like tRNA abundance, wobble base pairing, amino acid polarity, and mRNA 

structure9–18. Expanded probabilistic and machine learning models have shown that the 

sequence context of a ribosome contributes to its elongation rate, both directly and through 

higher order features such as nascent protein sequence15–17,19. Computational modeling has 

also indicated that technical artifacts and biases contribute to the distribution of ribosome 

footprints18–21. However, it remains a challenge to distinguish experimental artifacts from 

the biological determinants of elongation rate. Here, we have used neural networks to model 

ribosome distribution along transcripts. The model captured both biological variation in 

translation elongation speed and technical biases affecting footprint count, which we 

confirmed experimentally. We have implemented a tool, Iχnos, that applies our model to 

design coding sequences, and used this to design sequences spanning a range of predicted 

translation elongation speeds. We found that the predicted elongation speeds accurately 

tracked protein expression, supporting a role for the elongation phase of translation in 

modulating gene expression.
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Results

Design and performance of a neural network model of translation elongation

First, we developed a regression framework to model the distribution of ribosomes along 

transcripts as a function of local sequence features. As our measure of ribosome density on 

individual codon positions, we calculated scaled footprint counts by dividing the raw 

footprint count at each codon position by the average footprint count on its transcript (Fig. 

1b). This normalization controls for variable mRNA abundances and translation initiation 

rates across transcripts. The scaled count thus reflects the relative speed of translation 

elongation at each position. We used a sequence neighborhood around the A site as the 

predictive region for scaled counts, and encoded this neighborhood as input to a regression 

model via one-hot encoding of the codons and nucleotides in this region (Supplementary 

Fig. 1). Then we learned a regression function with a feedforward neural network, trained on 

a large, high quality ribosome profiling data set from Saccharomyces cerevisiae22. We chose 

the top 500 genes by footprint density and coverage criteria, and sorted these into training 

and test sets of 333 and 167 genes, respectively.

We determined the sequence neighborhood that best predicted ribosome density by 

comparing a series of models ranging from an A-site-only model to a model spanning codon 

positions −7 to +5 (Fig. 1c). The identity of the A site codon was an important, but limited, 

predictor of the distribution of ribosome footprints (Pearson’s r = 0.28). Expanding the 

sequence context around the A site steadily improved the predictive performance, up to the 

full span of a ribosome footprint (codons −5 to +4). Additional sequence context beyond the 

boundaries of the ribosome did not improve performance. We also observed a large boost in 

predictive performance by including redundant nucleotide features in addition to codon 

features over the same sequence neighborhood, especially near the ends of the ribosome 

footprint (Fig. 1c, r = 0.53 for −5 to +4 model including nucleotide features, Δr = 0.08 

relative to no-nucleotide model). Linear regression models that only included codon features 

performed similarly to the neural networks we tested, but they did not improve with the 

inclusion of nucleotide features. This suggests that the neural network models learn a 

meaningful and nonlinear predictive relationship in nucleotide features, particularly toward 

the flanking ends of footprints, that makes them more successful than linear models.

Next we assessed the contribution of local mRNA structure to footprint distributions. We 

computed mRNA folding energies in sliding 30 nt windows over all transcripts, and trained a 

series of models that each included one window from nucleotide positions −45 to +72 

relative to the A site. Performance improved upon including structure scores at nucleotide 

positions −17, −16, and −15, i.e., the windows that span the actual ribosome footprint (Δr = 

0.03; Fig. 1c and Supplementary Fig. 2). No individual windows downstream of the 

footprint improved our predictions, and the maximum structure score over 30 sliding 

windows downstream of the ribosome had only a slight effect (Δr < 0.01) (Fig. 1c). Thus, 

our approach does not capture a conclusive effect of downstream mRNA structure on 

elongation rate. We were surprised to see an effect of structure within the ribosome, so we 

tested the direction of the effect and found that more structure in these windows led to lower 

predicted footprint counts. This suggests that stable mRNA structure in the footprint 
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fragments themselves is inhibiting their in vitro recovery in ribosome profiling experiments, 

and our model is capturing the bias that this introduces to the data.

Our best model incorporated a sequence window from codons −5 to +4 represented as both 

codons and nucleotides, as well as structure features of the three windows spanning the 

footprint. It captured sufficient information to accurately predict footprint distributions on 

individual genes (Fig. 1e), and yielded a correlation of 0.57 (Pearson’s r) between predicted 

and true scaled counts over all positions in the test set (Fig. 1d). Although our model 

performed well across a range of scaled counts, it had difficulty predicting very high scaled 

footprint counts at a small number of sites. These sites may represent ribosome stalling that 

is determined by biological factors encoded outside of this local sequence neighborhood16.

Our model was trained on highly expressed genes because abundant ribosome footprints 

enable more accurate sampling of ribosome positions. However, highly expressed genes can 

have biased codon usage23. To ensure that our model was accurately predicting translation 

on genes across the full range of expression and codon usage, we computed the correlation 

between the observed and predicted scaled counts for all yeast genes. Performance 

decreased with lower expression (Fig. 2a), but we hypothesized that the decreased 

performance reflected noisier observed footprint counts arising from less-abundant mRNAs, 

rather than differences in their codon composition. To test this, we downsampled the 

footprints for each of the 1000 highest-expression genes to match the average counts per 

codon of the 1000th gene, and repeated this procedure for the top 2000, 3000, and 4000 

genes. We then compared the predictions of our model, which had been trained on the full 

data from highly expressed genes, against the downsampled data. At each coverage level, 

our method performed equally well on high-expression genes and low-expression genes. 

Thus, our model had no decrease in performance on genes that tend to have less favored 

codon content, after controlling for data density.

We also compared the performance of our model against two earlier approaches that 

incorporate information from the sequence neighborhood of each codon to predict ribosome 

distributions: RUST, which computes the expected ribosome density at each codon based on 

its sequence window19, and riboshape, which uses wavelet decomposition to denoise the 

observed counts by projecting them into different subspaces at different levels of resolution 

(smoothness), and then predicts ribosome density after transformation into these 

subspaces15. To compare riboshape to our own method and to RUST, we evaluated how well 

its predictions in the highest resolution subspace (i.e., closest to the raw data) correlated with 

the observed footprint counts. Our model out-performed both models, with an average 

Pearson correlation per gene of 0.56 versus 0.48 (RUST) and 0.41 (riboshape) across all 

genes that were included in all three analyses (Fig. 2b). We also found that our predictions of 

the raw data were better than riboshape’s predictions of the transformed data at each 

resolution (Supplementary Table 1).

Sequences near the A site and at the ends of footprints contribute to footprint density

To quantify the influence of distinct positions in the sequence neighborhood on elongation 

rate, we trained a series of leave-one-out models that excluded individual codon positions 

from the input sequence neighborhood, and compared their performance to a reference 
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model that included all positions. We found that the A site codon contributed the most to 

predictive performance (Δr = 0.13), but we also saw contributions from the surrounding 

sequence context, including the P and E sites (Δr = 0.03 and 0.03) (Fig. 3a). Each codon 

position from −5 to +4, the span of a typical 28 nt ribosome footprint, improved 

performance of the full model, whereas positions outside the span of a footprint decreased 

performance. Contributions from the E and P sites suggest that the continued presence of 

tRNAs at these positions modulates elongation rate. In contrast, the large contribution of the 

+3 codon (Δr = 0.06), at the 3′ end of the footprint, likely reflects artifactual biases arising 

from the ribosome profiling process, corroborating previous reports of fragment end 

biases19,20.

We were also interested in understanding the relative influence of the A site codon and its 

immediate environment. Overall, the A site codon and its immediate environment predict 

ribosome density similarly well (Pearson’s r = 0.28 for the A site only, r = 0.26 for the 

codons from −3 to +2 excluding the A site). To identify A-site codons that tend to dominate 

the prediction, contributing relatively more than their context, we compared the performance 

of a −3:+2 model and a model with codons −3 to +2 but excluding the A site 

(Supplementary Fig. 4). We found that the presence of lysine codons AAA and AAG in the 

A site led to the strongest predictions, in agreement with a major effect of charged lysine 

residues on translation11. Conversely, we also identified a number of sequence contexts that 

tended to dominate the prediction, by looking at the sequence contexts of the positions with 

higher squared error arising from the A-site-only prediction at that position than the no-A-

site context (Supplementary Fig. 4).

Next, we examined what our model had learned about the relationship between sequence 

and ribosome density. The raw parameters of a neural network can be difficult to interpret, 

so we determined a score for each codon at each position by computing the mean increase in 

predicted scaled counts due to that codon (Fig. 3b and Supplementary Table 2). Time spent 

finding the correct tRNA is considered to be a main driver of elongation speed, and 

consequently footprint counts24. Indeed, the A site codon scores exhibited the widest range 

of codon scores, and scores at this position but not other positions correlated with tRNA 

Adaptation Index (tAI), a measure of tRNA availability25, as has been widely observed 

(Pearson’s r = 0.50; p = 0.0005 after Bonferroni correction). Our results highlighted the 

well-characterized slow translation of CCG (Pro), CGA (Arg), and CGG (Arg) codons at the 

A site26. Our data also underscore that sequences in the P site contribute to elongation speed. 

The CGA codon showed a particularly strong inhibitory effect in the P site, in keeping with 

recent results26,27. We noted that this codon forms a disfavored I:A wobble pair with its 

cognate tRNA, distorting the anticodon loop28, while the four fastest P site codons all form 

I:C wobble pairs (Fig. 3c). Overall, I:C base pairs in the P site contributed to faster 

translation (Mann-Whitney p = 0.014 after Bonferroni correction, Fig. 3c). From this, we 

concluded that the conformation of the tRNA:mRNA duplex can influence its passage 

through the ribosome, not just initial recognition in the A site.

We also observed strong sequence preferences at the 3′ end of ribosome footprints. 

Sequence bias has previously been noted in the 5′ and 3′ ends of ribosome footprints, and 

this bias has been suggested to arise from ligase preferences during library preparation19,20. 
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To compare features of ribosome profiling data generated in different experiments, we 

applied our model to a large ribosome profiling dataset that we generated from yeast using a 

standard ribosome profiling protocol29. Models trained on these data learned disconcertingly 

high weights for both the −5 and +3 codon positions (Fig. 3d). The -5 codon, i.e., the 5′ end 

of a footprint, was the single strongest predictor of footprint counts, exceeding even the A 

site. We found similarly large 5′ end contributions in published yeast and human datasets 

generated using similar protocols30,31 (Supplementary Fig. 5). These experiments, like our 

own, made use of CircLigase enzymes to circularize ribosome footprints after reverse 

transcription. In contrast, the experiment we first modeled used T4 RNA ligase to attach 5′ 
linkers directly onto ribosome footprint fragments22. To compare end sequence preferences 

between experiments, we trained models on only 28-nt footprints so that the ends of the 

footprints corresponded to the -5 codon position. Comparing the T4 ligase yeast data with 

CircLigase yeast data31, we observed no relationship between the scores learned at 5′ 
footprint ends (r = 0.05), but a high correlation between scores at the A site, where we would 

expect biological similarity (r = 0.86). In contrast, we observed a high correlation at the -5 

position between our CircLigase yeast data and the CircLigase-generated human data set30 

(r = 0.83, Fig. 3e), but no significant relationship at the A site, where we would expect 

species-specific codon bias (r = −0.21, p = 0.11, Fig. 3f). This suggested that the fragment 

end scores reflected experimental artifacts rather than in vivo biology.

To directly test the impact of enzyme biases on recovery of ribosome-protected fragments, 

we experimentally measured the ligation of synthetic oligonucleotides with end sequences 

shown to be favored or disfavored in our model. The relative ligation efficiency of each 

substrate closely mirrored the end sequence scores learned by our model for both CircLigase 

I and CircLigase II (Fig. 3g and Supplementary Fig. 6). The least-favored sequences were 

ligated by CircLigase II with only 20% the efficiency of the most-favored sequences, 

meaning that some ribosome footprints would be represented at five times the frequency of 

other footprints for purely technical reasons. This biased recovery of fragments could skew 

the results of ribosome profiling experiments, affecting estimates of elongation and overall 

per-gene translation.

Expression of synonymous reporters closely tracks predicted translation speeds

Our model captured the quantitative preferences of ligases for footprint end sequences and 

established that a substantial portion of the predictive information of these end regions is due 

to technical artifacts. However, the biologically sensible weights learned for codons in the A 

site showed that the model captured substantial biology as well. We reasoned that, if our 

model were capturing biological aspects of translation elongation, we could use the 

parameters learned by the model to design sequences that would be translated at different 

rates. We relied on the information found in the codons closer to the A site, to focus on the 

biological contributions and reduce the influence of biases from the ends of footprints 

(discussed further in Supplementary Note 1).

To test our model’s ability to predict translation, we expressed synonymous variants of the 

yellow fluorescent protein eCitrine in yeast (Fig. 4a). First, using the yeast ribosome 

profiling data from Weinberg et al., we trained a neural network model with a sequence 
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neighborhood extending from codon positions −3 to +2. Next, we designed a dynamic 

programming algorithm to compute the maximum- and minimum-translation-time 

synonymous versions of eCitrine based on our model. We defined the overall translation 

time (in arbitrary units) of a gene as the sum of predicted scaled counts over all codons in 

the gene. We also generated and scored a set of 100,000 random synonymous eCitrine CDSs 

and selected the sequences at the 0th, 33rd, 67th, and 99th percentiles of predicted 

translation time within that set (Fig. 4b). We used flow cytometry to measure the 

fluorescence of diploid yeast, each containing an eCitrine variant along with the red 

fluorescent protein mCherry as a control, and calculated relative fluorescence of each variant 

(Fig. 4c, Supplementary Fig. 7).

The expression of eCitrine in each yeast strain closely tracked its predicted elongation rate, 

with the predicted fastest sequence producing six-fold higher fluorescence than the predicted 

slowest sequence (Fig. 4c). However, the existing yeast-optimized yECitrine sequence32 

produced three-fold higher fluorescence than our predicted fastest sequence (Supplementary 

Fig. 8). To understand the source of this discrepancy, we measured eCitrine mRNA from all 

strains and found that sequences designed by our method had approximately equivalent 

mRNA levels, while yECitrine had five-fold more mRNA (Supplementary Fig. 8). 

Calculating translation efficiencies, or protein produced per mRNA, reconciled this 

disagreement. We observed a clear linear relationship between predicted elongation rate and 

translation efficiency (Fig. 4d).

Discussion

These experiments demonstrate that our model is able to predict large, quantitative 

differences in protein production, based only on information about translation elongation. 

The sequences we designed and tested have predicted translation speeds that span the range 

of natural yeast genes (Fig. 4b). This supports an effect of elongation rate on the translation 

efficiency and protein output of endogenous genes. Initiation rather than elongation is 

usually thought to be rate limiting for protein production of most endogenous genes5,24. 

Models have suggested that highly expressed trans-genes might deplete the effective supply 

of ribosomes, lowering initiation and thus causing elongation to be rate-limiting, but our 

reporter is expressed at the level of many endogenous genes and should represent well under 

1% of mRNA. It remains to determine how translation speed can control translation 

efficiency. One contribution could come from pileups behind stalled or slow-moving 

ribosomes, diminishing the maximum throughput of protein production17. In particular, 

codon choice near the beginning of a gene, affecting elongation speed, can interfere with 

translation initiation and therefore control protein output33. Although codon choice can also 

affect mRNA stability and thus total protein output6,7, our fast and slow predicted sequences 

have equivalent steady-state mRNA. Further, an effect arising purely from mRNA stability 

would affect protein output but not translation efficiency, counter to our observations. 

Instead, our results indicate that optimized elongation rates do result in more protein per 

mRNA, and this does not depend entirely on mRNA stability. The landscape of factors 

affecting codon optimality is complex34, and codon preferences vary across species, tissues, 

and conditions. Our approach can capture empirical information about codon preferences in 
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any system where translation can be measured by ribosome profiling, and apply it to design 

sequences for quantitative expression in that system.

Online Methods

Ribosome profiling

Yeast ribosome profiling was performed exactly according to McGlincy & Ingolia29 with the 

following modifications:

250 mL of YEPD media was inoculated from an overnight culture of BY474 to an OD600 of 

0.1. Yeast were grown to mid-log phase and harvested at an OD600 of 0.565. Lysis 

proceeded according to McGlincy & Ingolia29 except with no cycloheximide in the lysis 

buffer (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCl2, 1 mM DTT, 1% v/v Triton 

X-1000, 25 U/ml Turbo DNase I). To quantify RNA content of the lysate, total RNA was 

purified from 200 µL of lysate using the Direct-zol RNA MiniPrep kit (Zymo Research) and 

the concentration of RNA was measured with a NanoDrop 2000 spectrophotometer 

(ThermoFisher).

Lysate containing 30 µg of total RNA was thawed on ice and diluted to 200 µL with 

polysome buffer with no cycloheximide (20 mM Tris pH 7.4, 150 mM NaCl, 5 mM MgCl2, 

1 mM DTT). 0.1 µl (1 U) of RNase I (Epicentre) was added to the diluted cell lysate and 

then incubated at room temperature for 45 minutes. Digestion and monosome isolation 

proceeded according to McGlincy & Ingolia29, except with no cycloheximide in the sucrose 

cushion.

Purified RNA was separated on a 15% TBE/Urea gel, and fragments of 18–34 nt were gel 

extracted. Size was determined relative to RNA size markers NI-NI-800 and NI-NI-80129 

and NEB microRNA size marker (New England Biolabs). Library preparation proceeded 

according to McGlincy & Ingolia29. The library was made with downstream linker NI-

NI-811 (/5Phos/NNNNNAGCTAAGATCGGAAGAGCACACGTCTGAA/3ddC/) and a 

modified RT primer with a preferred CircLigase II substrate (AG) at the 5′ end (oLFL075, 

5′-/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/

GTGACTGGAGTTCAGACGTGTGCTC). Library amplification PCR used primers NI-

NI-798 and NI-NI-825 (Illumina index ACAGTG). The resulting library was sequenced as 

single-end 51 nt reads on an Illumina HiSeq4000 according to the manufacturer’s protocol 

by the Vincent J. Coates Genomics Sequencing Laboratory at the University of California, 

Berkeley.

Sequencing data processing and mapping

A custom yeast transcriptome file was generated based on all chromosomal ORF coding 

sequences in orf_coding.fasta from the Saccharomyces Genome Database genome 

annotation R64-2-1 for reference genome version R64-1-1 (UCSC sacCer3) for 

Saccharomyces cerevisiae strain S288C. A human transcriptome file was generated from 

GRCh38.p2, Gencode v. 22, to include one transcript per gene based on the ENSEMBL 

‘canonical transcript’ tag. For both human and yeast, the transcriptome file included 13 nt of 

5′ UTR sequence and 10 nt of 3′ UTR sequence to accommodate footprint reads from 
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ribosomes at the first and last codons. For yeast transcripts with no annotated UTR, the 

flanking genomic sequence was included. For human transcripts with no annotated UTR, or 

UTRs shorter than 13 or 10 nt, the sequence was padded with N.

Yeast ribosome profiling reads from Weinberg et al.22 (SRR1049521) were trimmed to 

remove the ligated 3′ linker (TCGTATGCCGTCTTCTGCTTG) off of any read that ended 

with any prefix of that string, and to remove 8 random nucleotides at the 5′ end (added as 

part of the 5′ linker). Yeast ribosome profiling reads generated in our own experiments 

(GEO accession GSE106572) were trimmed to remove the ligated 3′ linker, which included 

5 random nucleotides and a 5-nt index of AGCTA 

(NNNNNIIIIIAGATCGGAAGAGCACACGTCTGAAC). Human ribosome profiling reads 

from Iwasaki et al.30 (SRR2075925, SRR2075926) were trimmed to remove the ligated 3′ 
linker (CTGTAGGCACCATCAAT). Yeast ribosome profiling reads from Schuller et al.31 

(SRR5008134, SRR5008135) were trimmed to remove the ligated 3′ linker 

(CTGTAGGCACCATCAAT).

Trimmed fastq sequences of longer than 10 nt were aligned to yeast or human ribosomal and 

noncoding RNA sequences using bowtie v. 1.2.1.135, with options “bowtie -v 2 -S”. Reads 

that did not match rRNA or ncRNA were mapped to the transcriptome with options “bowtie 

-a --norc -v 2 -S”. Mapping weights for multimapping reads were computed using RSEM v. 

1.2.3136.

Assignment of A sites

A site codons were identified in each footprint using simple rules for the offset of the A site 

from the 5′ end of the footprint. These rules were based on the length of the footprint and 

the frame of the 5′ terminal nucleotide. For each data set, the set of lengths that included 

appreciable footprint counts was determined (e.g. Weinberg 27–31 nt.). For each length, the 

counts of footprints mapping to each frame were computed. The canonical 28 nucleotide 

footprint starts coherently in frame 0, with the 5′ end 15 nt upstream of the A site (citation). 

For all other lengths, rules were defined if footprints mapped primarily to 1 or 2 frames, and 

offsets were chosen to be consistent with over digestion or under digestion relative to a 28 

nucleotide footprint. Footprints mapping to other frames were discarded.

Scaled counts

For each codon, the raw footprint counts were computed by summing the RSEM mapping 

weights of each footprint with its A site at that codon. Scaled footprint counts were 

computed by dividing the raw counts at each codon by the average raw counts over all 

codons in its transcript. This controlled for variable initiation rates and copy numbers across 

transcripts. The resulting scaled counts are mean centered at 1, with scaled counts higher 

than 1 indicating slower than average translation. The first 20 and last 20 codons in each 

gene were excluded from all computations and data sets, to avoid the atypical footprint 

counts observed at the beginning and end of genes.

Genes were excluded from analysis if they had fewer than 200 raw footprint counts in the 

truncated CDS, or fewer than 100 codons with mapped footprints in this region. Then the 

top 500 genes were selected by footprint density (average footprint counts/codon). 2/3 of 
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these genes were selected at random as the training set, and the remaining 1/3 of genes were 

used as the test set.

Input features

The model accepts user defined sets of codon and nucleotide positions around the A site to 

encode as input features for predicting ribosome density. The A site is indexed as the 0th 

codon, and its first nucleotide is indexed as the 0th nucleotide, with negative indices in the 

5′ direction, and positive indices in the 3′ direction. Each codon and nucleotide feature is 

converted to a binary vector via one-hot encoding, and these vectors are concatenated as 

input into the regression models. The model also accepts RNA folding energies from the 

RNAfold package, and allows the user to define window sizes and positions to score RNA 

structure and include as inputs into the regression models.

In our best-performing model, codons −5 to +4 and nucleotides −15 to +14 were chosen, as 

well as folding energies from three 30-nt windows starting at nucleotides −17, −16, and −15.

Model construction

All models were constructed as feedforward artificial neural networks, using the Python 

packages Lasagne v. 0.2.dev137 and Theano v. 0.9.038. Each network contained one fully 

connected hidden layer of 200 units with a tanh activation function, and an output layer of 

one unit with a ReLU activation function. Models were trained using mini-batch stochastic 

gradient descent with Nesterov momentum (batch size 500).

Comparisons to other models

RUST19 was run via https://ribogalaxy.ucc.ie/ according to the authors’ instructions. First, 

we computed a codon metafootprint on the Weinberg dataset, aligned to the transcriptome as 

described above. We used an A-site offset of 15 and limited the analysis to 28-nt footprints 

(the most abundant), in keeping with the authors’ analysis. Then, we ran the “similarity of 

observed and expected profiles” analysis using that codon metafootprint and retrieved the 

correlation of the observed and expected footprint distribution for each individual gene.

Riboshape15 was downloaded from https://sourceforge.net/projects/riboshape/ on 2/1/2018. 

We generated the riboshape data structure according to the README file, with custom 

scripts (process_data.py and make_data_structure.m, available on GitHub), on our processed 

footprint counts data from the Weinberg dataset. We restricted the analysis to the 2170 genes 

present in both our transcriptome and the chxdata.mat data structure that is shipped with 

riboshape. We binned our genes by truncated lengths 100–210, 211–460, 461–710, 711–960, 

and 961–4871, which matched the bins in Liu and Song after accounting for our 20 codon 

truncation regions at either end of genes. Then we trained riboshape models on these bins, 

using σ parameters of 1, 3, 5, 12.5, 25, 37.5, 50, and 75. We report the per gene correlations 

between the true footprint data and their regression fits (waveforms) in their wavelet 

decomposition subspace with the least amount of denoising. The values in this subspace are 

closest to the observed footprint data, and their model trained for this subspace performs the 

best at predicting observed footprint density. We also report for each subspace the 
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correlation between their denoised footprint data and the regression fits in that subspace. The 

prior is more directly comparable to our work.

Feature importance measurements

A series of leave-one-out models was trained, excluding one codon position at a time from 

the sequence neighborhood. The importance of each codon position to predictive 

performance was computed as the difference in MSE between the reduced and full models.

The contribution of codon c at position i to predicted scaled counts was calculated as the 

average increase in predicted scaled counts due to having that codon at that position, over all 

instances where codon c was observed at position i in the test set. This increase was 

computed relative to the expected predicted scaled counts when the codon at position i was 

varied according to its empirical frequency in the test set (Supplementary Note 2).

Sequence optimization

The overall translation time of a coding sequence was computed as the sum of the predicted 

scaled counts over all codons in that coding sequence. This quantity corresponds to total 

translation time in arbitrary units. A dynamic programming algorithm was developed to find 

the fastest and slowest translated coding sequences in the set of synonymous coding 

sequences for a given protein, under a predictive model of scaled counts (Supplementary 

Note 3). This algorithm runs in O(CML) time, where C is the length of the coding sequence 

in codons, M is the maximum multiplicity of synonymous codons (i.e. 6), and L is the length 

in codons of the predictive model’s sequence neighborhood. This achieves considerable 

efficiency over the naive O(CL) model, by assuming that only codons within the sequence 

neighborhood influence scaled counts.

This algorithm was used to determine the fastest and slowest translating coding sequences 

for eCitrine, under a predictive model using a sequence window from codons −3 to +2, and 

using no structure features. Then 100,000 synonymous coding sequences for eCitrine were 

generated by selecting a synonymous codon uniformly at random for each amino acid. These 

coding sequences were scored, and the sequences at the 0th, 33rd, 67th, and 100th 

percentiles were selected for expression experiments.

Measuring circularization efficiency

We designed oligonucleotides that mimic the structure of the single-stranded cDNA 

molecule that is circularized by CircLigase during the McGlincy & Ingolia (2017) ribosome 

profiling protocol. These oligonucleotides have the structure:

/5Phos/AGATCGGAAGAGCGTCGTGTAGGGAAAGAG/iSp18/

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCACAGTCATCGTTCGCATTA

CCCTGTTATCCCTAAJJJ,

where /5Phos/ indicates a 5′ phosphorylation; /iSP18/ indicates an 18-atom hexa-

ethyleneglycol spacer; and JJJ indicates the reverse complement of the nucleotides at the 5′ 
of the footprint favored or disfavored under the model (oligos defined in Supplementary 

Table 3). Circularization reactions were performed using CircLigase I or II (Epicentre) as 
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described in the manufacturer’s instructions, using 1 pmol oligonucleotide in each reaction. 

Circularization reactions were diluted 1/20 before being subjected to qPCR using DyNAmo 

HS SYBR Green qPCR Kit (Thermo Scientific) on a CFX96 Touch Real Time PCR 

Detection System (Biorad). For each circularization reaction, two qPCR reactions were 

performed: one where the formation of a product was dependent upon oligo circularization, 

and one where it was not (oligos defined in Supplementary Table 3). qPCR data was 

analyzed using custom R scripts whose core functionality is based on the packages qpcR39 

& dpcR40 (qpcr_functions.R, available on github). The signal from the circularization 

dependent amplicon was normalized to that from the circularization independent amplicon, 

and then expressed as a fold-change compared to the mean of the oligonucleotide with the 

most favored sequence under the model.

Plasmid and yeast strain construction

Yeast integrating plasmids expressing either mCherry or a differentially optimized version of 

eCitrine were constructed. The differentially optimized versions of eCitrine were 

synthesized as gBlocks by Integrated DNA Technologies inserted into the plasmid backbone 

by Gibson assembly41. Transcription of both mCherry and eCitrine is directed by a PGK1 

promoter and an ADH1 terminator. To enable yeast transformants to grow in the absence of 

leucine, the plasmids contain the LEU2 expression cassette from Kluyveromyces lactis taken 

from pUG7342, which was obtained from EUROSCARF. To enable integration into the yeast 

genome, the plasmids contain two 300 bp sequences from the his3Δ1 locus of BY4742. 

Genbank files describing the plasmids are provided in Supplementary Data Set 1. To 

construct yeast strains expressing these plasmids, the plasmids were linearized at the SbfI 
site and ~1 µg linearized plasmid was used to transform yeast by the high efficiency lithium 

acetate/single-stranded carrier DNA/PEG method, as described43. Transformants were 

selected by growth on SCD -LEU plates, and plasmid integration into the genome was 

confirmed by yeast colony PCR with primers flanking both the upstream and downstream 

junctions between the plasmid sequence and the genome (oligos defined in Supplementary 

Table 3). PCR was performed using GoTaq DNA polymerase (Promega M8295). Haploid 

BY4742 and BY4741 strains expressing the eCitrine variants and mCherry, respectively, 

were then mated. For each eCitrine variant, eight transformants were mated to a single 

mCherry transformant. Diploids were isolated by their ability to grow on SCD -MET-LYS 

plates. Strains with sequence-confirmed mutations or copy number variation were excluded 

from further analysis.

Assessing fluorescent protein expression by flow cytometry

Overnight cultures of diploid yeast in YEPD were diluted in YEPD so that their optical 

density at 600 nm (OD600) was equal to 0.1 in a 1 mL culture, and then grown for six hours 

in a 2 mL deep-well plate supplemented with a sterile glass bead, at 30 °C with shaking at 

250 rpm. This culture was pelleted by five minutes centrifugation at 3000 × g and fixed by 

resuspension in 16% paraformaldehyde followed by 30 minutes incubation in the dark at 

room temperature. Cells were washed twice in DPBS (Gibco 14190-44) and stored in DPBS 

at 4 °C until analysis. Upon analysis, cells were diluted ca. 1:4 in DPBS and subject to flow 

cytometry measurements on a BD Biosciences (San Jose, CA) LSR Fortessa X20 analyzer. 

Forward Light Scatter measurements (FSC) for relative size, and Side-Scatter measurements 

Tunney et al. Page 12

Nat Struct Mol Biol. Author manuscript; available in PMC 2019 April 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(SSC) for intracellular refractive index were made using the 488nm laser. eCitrine 

fluorescence was measured using the 488 nm (Blue) laser excitation and detected using a 

505 nm Long Pass optical filter, followed by 530/30 nm optical filter with a bandwidth of 

30nm (530/30, or 515 nm-545 nm). mCherry fluorescence was measured using a 561 nm 

(yellow-green) laser, for excitation and a 595 nm long-pass optical filter, followed by 610/20 

nm band-pass optical filter with a bandwidth of 20 nm (or 600 nm – 620 nm). PMT values 

for each color channel were adjusted such that the mean of a sample of BY4743 yeast was 

100. 50000 events were collected for each sample. Flow cytometry data was analyzed using 

a custom R script (gateFlowData.R, available on github) whose core functionality is based 

on the Bioconductor packages flowCore44, flowStats, and flowViz45. In summary, for each 

sample, events that had values for red or yellow fluorescence that were less that one had 

those values set to one. Then, in order to select events that represented normal cells, we used 

the curv2filter method to extract events that had FSC and side-scatter SSC values within the 

values of the region of highest local density of all events as considered by their FSC and 

SSC values. For these events the red fluorescence intensity was considered a measure of 

mCherry protein expression and yellow fluorescence intensity a measure of eCitrine protein 

expression.

Measuring eCitrine and mCherry mRNA expression by qRT-PCR

Overnight cultures of diploid yeast in YEPD were diluted in YEPD so that their OD600 was 

equal to 0.1 in a 20 mL culture, and then grown at 30 °C with shaking at 250 rpm until their 

OD600 reached 0.4 – 0.6. 10 mL of culture was then pelleted by centrifugation for 5 minutes 

at 3000×g and snap frozen in liquid nitrogen. Total RNA was extracted from pelleted yeast 

cultures according to the method of Ares46. Thereafter, 10 µg of this RNA was treated with 

Turbo DNase I (ambion) according to the manufacturer's instructions, then 1 µg DNase 

treated RNA was reverse transcribed using anchored oligo dT and Protoscript II (NEB) 

according to the manufacturer's instructions. 1/20th of this reaction was then subjected to 

qPCR using the DyNAmo HS SYBR Green qPCR Kit (Thermo Scientific) on a CFX96 

Touch Real Time PCR Detection System (Biorad). For each reverse transcription reaction, 

two qPCR reactions were performed: one with primers specific to the mCherry ORF, and 

one with primers specific to the eCitrine variant ORF in question (oligos defined in 

Supplementary Table 3). qPCR data was analyzed using custom R scripts whose core 

functionality is based on the packages qpcR39,46 & dpcR40 (qpcr_functions.R, available on 

github). The signal from each eCitrine variant ORF was normalized to that from the 

mCherry ORF in the same sample, and then expressed as a fold-change compared to the 

median of these values for the MIN (fastest predicted sequence) eCitrine variant.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Design and performance of a neural network model of translation elongation
a, Each ribosome protects an mRNA footprint of approximately 28–29 nt. Sequence 

coordinates in a neighborhood around a ribosome are indexed relative to the codon in the A 

site of the ribosome. b, Read count rescaling. For each gene, the counts of footprints 

assigned to each A site codon are divided by the average counts per codon over that gene. 

The resulting scaled footprint counts are used for model training and prediction. c, Model 

performances (Pearson correlations between predicted and true scaled counts over the test 

set) for neural network and linear regression models over a range of sequence 

neighborhoods, with and without nucleotide features, as well as correlations for models that 

also incorporate structure scores of the three 30-nt windows overlapping the footprint region, 

or the maximum structure score within 59 nt downstream of the ribosome. Bars show the 

mean of 10 runs of each model; the 10 individual runs for each model are overlaid as gray 

points. d, True vs. predicted scaled counts for the test set, under a model with codon and 

nucleotide features spanning codon positions −5 to +4. Color scale shows density of data 

points. e, True scaled counts (gray bars) and predicted scaled counts (red line) for a highly 

translated gene.
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Figure 2. Performance comparisons on low coverage genes and with competing models
a, Top, per-gene correlations between true and predicted scaled counts, for all 4375 genes in 

our transcriptome that passed filtering criteria. Training set genes in blue (333/top 500 genes 

by footprint density). Loess curve on test set genes shown in red. Below, as above, with 

footprint counts on the top 1000, 2000, 3000, and 4000 genes subsampled to the density of 

footprint counts on the 1000th, 2000th, 3000th, and 4000th gene, respectively, and ‘true’ 

scaled counts recomputed. b, Comparison of Iχnos with similar models, RUST19 and 

riboshape15. Shown are per-gene correlations between true and predicted scaled counts, on 

1711 genes passing the filtering criteria from all three methods. Training set genes from 

Iχnos are excluded. Colored lines are loess curves, which are also compared in the bottom 

panel.
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Figure 3. Interpretation of models of translation elongation rates
a, Predictive value of codon positions in a yeast ribosome profiling dataset22. We computed 

Pearson correlations between true and predicted scaled counts on the test set, for a reference 

model including codon and nucleotide features from codon positions −7 to +5, and for a 

series of leave-one-out models, each excluding one codon position. Gray points show 

differences between Pearson’s r for 10 runs of each leave-one-out model and the mean r of 

10 runs of the reference model. Bars represent the mean of these values. b, Mean 

contributions to scaled counts by codon identity and position. c, P site codon contributions 

grouped by the codon:anticodon base pair formed by the third nucleotide of each codon. 
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Asterisks indicate p < 0.05 after Bonferroni correction, unpaired two-sided Mann-Whitney 

U test between each group and all other codons. I:C, p = 0.014. d, Predictive value of codon 

positions as in A, from a yeast ribosome profiling library we constructed using CircLigase II 

as described by McGlincy and Ingolia29. e, f, Contributions from (e) codon position -5, at 

the 5′ ends of footprints, and (f) the A site, in human ribosome profiling data30 versus our 

yeast ribosome profiling data, both using CircLigaseII. Analysis was limited to 28-nt 

footprints to avoid frame biases. g, Ligation efficiency of CircLigase II. Oligonucleotide 

substrates resembling ribosome footprints at the circularization step of the protocol, with 

different three-nucleotide end sequences, were ligated by both enzymes. Circularization was 

assayed by qPCR using primers spanning the ligation as compared to primers in a 

contiguous region of the oligo. Ligation was calculated relative to CircLigase I ligation of 

the best-ligated substrate. Each point represents the ratio of the means of three qPCR 

replicates; error bars represent the standard error of that ratio.
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Figure 4. Design of synonymous sequences shows elongation rate affects translation output
a, Six reporter constructs with distinct synonymous eCitrine coding sequences were inserted 

into the his3Δ1 locus of BY4742 yeast, and an equivalent construct with a constant mCherry 

coding sequence was inserted into the his3Δ1 locus of BY4741 yeast. The haploids were 

mated to produce diploid yeast with both reporters, whose fluorescence was then measured 

with flow cytometry. b, The synonymous eCitrine sequences included the fastest and slowest 

predicted sequences under our model (magenta and red), plus sequences with predicted 

translation elongation times at the 0th, 33rd, 67th, and 100th percentiles of a randomly 

generated set of 100,000 synonymous eCitrine sequences (blue, green, yellow, and orange, 

respectively). The score distribution of 100,000 random eCitrine sequences is shown in 

lavender. The scores of endogenous yeast genes, rescaled by length to compare with 

eCitrine, are shown in gray. c, eCitrine:mCherry fluorescence ratio, as measured by flow 

cytometry of 11,000–18,000 yeast, versus the predicted elongation time of each sequence. 

Each + symbol represents the median ratio of yellow and red fluorescence from one 

biological replicate of the given eCitrine strain. Eight biological replicates, each an 
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independent integration of the reporter construct, are included for each strain, except for the 

strains shown in blue and orange, which have seven, and the strain shown in green, which 

has three. Colors as in (b). d, Translation efficiency, or median eCitrine:mCherry 

fluorescence ratio divided by relative eCitrine:mCherry mRNA ratio (ratio of medians of 

three qPCR replicates), for each eCitrine variant, versus the predicted elongation time of 

each sequence. Purple, yECitrine sequence; other colors as in (b). Each point represents one 

biological replicate of the given eCitrine strain; three biological replicates were measured for 

each strain except two for the strain shown in red.
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