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Abstract

The field of nutritional psychiatry has generated observational and efficacy data supporting a role for healthy dietary patterns
in depression onset and symptom management. To guide future clinical trials and targeted dietary therapies, this review
provides an overview of what is currently known regarding underlying mechanisms of action by which diet may influence
mental and brain health. The mechanisms of action associating diet with health outcomes are complex, multifaceted,
interacting, and not restricted to any one biological pathway. Numerous pathways were identified through which diet could
plausibly affect mental health. These include modulation of pathways involved in inflammation, oxidative stress,
epigenetics, mitochondrial dysfunction, the gut microbiota, tryptophan—kynurenine metabolism, the HPA axis, neurogenesis
and BDNF, epigenetics, and obesity. However, the nascent nature of the nutritional psychiatry field to date means that the
existing literature identified in this review is largely comprised of preclinical animal studies. To fully identify and elucidate
complex mechanisms of action, intervention studies that assess markers related to these pathways within clinically diagnosed

human populations are needed.

Introduction

The field of Nutritional Psychiatry has generated observa-
tional and efficacy data supporting a role for healthy dietary
patterns in depression risk and symptom management [1-4].
Dietary patterns including the Mediterranean diet and an
‘anti-inflammatory’ diet are associated with a reduced risk
of depression in both cross-sectional and prospective studies
[3]. There are also observational data showing similar
associations for anxiety [5] and bipolar disorder [6]. Asso-
ciations between diet quality and mental health outcomes
appear to be present across the lifespan including in chil-
dren and adolescents, [7] and are also seen in inter-
generational studies investigating the role of maternal diet
on childhood mental health [8].

Intervention studies also support the use of adjunctive
dietary interventions in improving clinical depression and
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depressive symptoms. A meta-analysis of 16 studies in
primarily non-clinical populations concluded that dietary
interventions can effect a small reduction in depressive
symptoms [4]. However, larger effects from dietary inter-
ventions may be observed in samples with higher baselines
levels of depression, as three recent randomised controlled
trials (RCTs) in adults with current depression have
observed consistently moderate-to-large improvements in
symptoms from Mediterranean diet-based interventions
compared to control conditions. First, The SMILES trial [2]
and The Healthy Eating for Life with a Mediterranean Diet
(HELFIMED) trial [9] reported significant reductions in
depressive symptoms following adjunctive Mediterranean
diet interventions in adults with depression compared to
control conditions. Similar findings were subsequently
found in an independent trial conducted in young adults
with current depression [10]. Furthermore, dietary inter-
ventions have also been applied within broader collabora-
tive care programmes for adults with comorbid obesity
which similarly produce significant reductions in depressive
symptoms [11]. Data are less clear for the role of dietary
change in the primary prevention of clinical depression. For
instance, while the large PREDIMED trial suggested that a
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Mediterranean diet supplemented with tree nuts may pre-
vent incident depression in patients with type 2 diabetes, the
recent MoodFood trial observed no preventive benefit of a
behavioural activation intervention focused on dietary
improvement [12, 13]. However, the minimal dietary
change in the intervention group from the MoodFood trial
highlights some of the challenges of conducting
dietary interventions in populations with mental health
conditions.

While the emerging efficacy data supporting adjunctive
dietary interventions for mental health are promising, many
questions remain unanswered, including what works for
whom and under which circumstances. Such questions, and

Fig. 1 Overview of the role of
diet quality on implicated
mechanisms of depression.
This figure details the identified
pathways implicated in
depression that may be
amenable to dietary
manipulation. The black arrows
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the optimal design of studies required to answer them,
ideally require an understanding of the key biological
mechanisms underpinning the relationship. With a focus on
key pathways in the pathology of depression that have been
identified in prior reviews [14-18], here we provide an
overview of what is currently known regarding underlying
mechanisms of action by which diet may affect mental and
brain health (Fig. 1). While most human research to date has
focused on the role of diet in depression, this review will
also draw on the evidence of mechanistic pathways from
conditions that share pathophysiologic characteristics and
risk pathways with depression, including anxiety, bipolar
disorder and schizophrenia.
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Inflammation

Around 25% of patients with neuropsychiatric conditions,
including mood disorders and schizophrenia, exhibit
increased levels of inflammation [19, 20]. Such hyper-
activation of the immune system is induced by diverse
factors. It is commonly induced by stress, where different
types of stressors, such as psychosocial stress or early life
adversities as well as physiological and lifestyle sources
(e.g. physical inactivity and smoking), are capable of eli-
citing increases in inflammatory activity in a manner that
may promote depressive symptoms [14, 21]. Upon exposure
to stressors, a typical inflammatory response consists of
three major components: (i) inflammatory inducers (e.g.
pathogen- or damage-associated molecular patterns); (ii)
sensors detecting the inducers (e.g. receptors expressed by
immune cells); and (iii) inflammatory mediators induced by
the sensors, including cytokines, chemokines and pros-
taglandins [19]. Once activated, these inflammatory mole-
cules can influence physiological domains relevant to mood
disorders, such as neurotransmitter metabolism, neu-
roendocrine function, and functional brain activity [21].
Moreover, administration of cytokines for medical purposes
(e.g. interferon alpha infusions) can cause changes in
emotions and behaviour, such as low mood, fatigue, anxi-
ety, sleep disturbances, anhedonia, and cognitive dysfunc-
tion, all of which closely resemble symptoms of depression
[22-24]. Furthermore, a recent meta-analysis concluded that
anti-inflammatory agents, such as cytokines inhibitors, non-
steroidal anti-inflammatory drugs, and antibiotics including
minocycline, may be efficacious adjunctive treatments for
depressive disorders [25].

Healthy dietary patterns (and individual dietary com-
ponents) have demonstrated anti-inflammatory properties
that may be relevant to mental health disorders. Both
longitudinal observational studies and clinical trials in
populations with chronic metabolic disease show that
adoption of healthy dietary patterns, such as the Medi-
terranean diet, reduces systemic inflammation [26-28].
Observational studies have also recently confirmed that
individuals with severe mental illness have substantially
higher levels of ‘dietary inflammation’ than the general
population, i.e. greater intakes of pro-inflammatory foods
(such as refined carbohydrates and trans fats) and lower
intakes of anti-inflammatory nutrients (primarily derived
from whole foods and plants) [29]. Furthermore, recent
meta-analyses of longitudinal studies provide compelling
evidence that individuals with a more inflammatory diet-
ary pattern have greater risk of developing depression
over time [3]. Thus, modifying the pro-inflammatory diets
typically associated with mental illness towards a more
Mediterranean or otherwise anti-inflammatory dietary
pattern could present a novel strategy for counteracting

the inflammatory status associated with the onset and
severity of mental disorders.

There are many nutritional components of a healthy
dietary pattern. Some are of particular interest due to their
ability to reduce inflammation. Among them, phytochem-
icals such as polyphenols, present in blueberries, cocoa and
curcumin, amongst others, have strong anti-inflammatory
properties that might be beneficial for a variety of neu-
ropsychiatric disorders [30]. Omega-3 fatty acids eicosa-
pentaenoic acid and docosahexaenoic acid, polyunsaturated
fatty acids that are found in high concentrations in marine
food products such as salmon, have anti-inflammatory
properties and can improve clinical outcomes [31], and
delay onset of cytokine-induced depression [32]. Baseline
inflammation also appears to be a predictive marker of
clinical response to omega-3 fatty acid treatment in people
with depression [33]. Furthermore, research in animal
models suggest that omega-3 fatty acids can mitigate
inflammation-induced reductions in neurogenesis to a
similar magnitude as antidepressants [34].

Oxidative stress

Oxidative stress, the imbalance of oxidative and antioxidant
processes, can result in cellular injury to lipids, proteins,
and DNA. Persistent oxidative stress has been implicated as
a potential mechanistic pathway in depression and other
mental health disorders [35]. A meta-analysis of 115 studies
reported that people with depression had elevated oxidative
stress markers, such as malondialdehyde and 8-F,-iso-
prostanes, as well as lower antioxidant markers, such as
total antioxidant capacity, when compared to healthy con-
trols [36]. Furthermore, oxidative stress markers were
reported to decrease after antidepressant treatment, sup-
porting a causal relationship [36]. Post-mortem studies also
show elevated oxidative stress markers in the brains of
people with depression, bipolar disorder, and schizophrenia
compared to healthy controls [37, 38]. In addition to the
direct effect of oxidative stress on cellular injury, increased
production of reactive oxygen and nitrogen species can
lead to mitochondrial dysfunction, inflammation, and
altered tryptophan metabolism, which are all implicated in
mental health disorders [35].

Diet can both exacerbate and ameliorate oxidative stress
by either depriving or increasing the supply of dietary
compounds with antioxidant properties. Animal studies
suggest that high-fat Western-style diets can increase mar-
kers of oxidative stress such as protein oxidation and lipid
peroxidation within the brain as well as peripherally
[39, 40]. Due to the high oxidative stress load reported in
people with mental disorders [35], increasing dietary quality
may be a viable intervention for replenishing depleted
antioxidant defences. A nutrient-dense diet is rich in a range
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of compounds with both direct and indirect antioxidant
properties that are associated with reduced oxidative stress
markers such as F2-isoprostanes and plasma oxidised low-
density lipoprotein [41-43]. Vitamins such as ascorbic acid
(vitamin C) and alpha tocopherol (vitamin E) have direct
free radical scavenging properties [44]. Nutrients such as
selenium, zinc and cysteine are cofactors for antioxidant
systems such as glutathione peroxidase and superoxide
dismutase. There is also preliminary evidence to indicate
that supplementation with antioxidant compounds such as
n-acetyl cysteine may improve depressive symptoms [45].
Preclinical studies suggest that polyphenols may also reduce
oxidative stress, via upregulation of antioxidant defence
systems including induction of nuclear factor erythroid-
related factor (Nrf)-2 and modulation of the inflammatory
pathways nuclear factor kappa B (NFkB) and mitogen-
activated protein kinase (MAPK) [46].

The gut microbiota

A rapidly growing body of literature has implicated the gut
microbiota in regulating physiological processes, including
cognitive function, neuropsychiatric disorders, and beha-
viour, via the microbiota—gut-brain axis [47]. As the gut
microbiome is one of the first bodily systems to interact
with consumed food, many other implicated mechanisms in
depression pathophysiology (e.g. inflammation [48],

HPA Axis function

Cortisol regulation

Promotes neurogenesis

neurogenesis [49], tryptophan metabolism [50]; see Fig. 2)
may, at least in part, be modulated by the gut microbiome.
Further support for this comes from animal models that
suggest a direct link between diet, microbiota and
mechanisms implicated in depression [51, 52]. The gut
microbiota thus presents a potentially critical mediating
pathway in the connection between diet and brain health
[53]. Data from animal models support this; diet-driven
alterations in gut microbiota can contribute to behavioural
changes that mimic symptoms of common mental disorders
such as anxiety and depression. A high-fat, Western-style
diet, for example, resulted in an increased Firmicutes/Bac-
teroidetes ratio as well as reduced exploratory behaviour,
increased anxiety-like behaviour, and decreased memory in
rodent models [54, 55]. Other preclinical studies demon-
strated that high calorie diets increased the abundance of
Clostridiales, Ruminococcaceae, and Bacteroidales, and
resulted in poorer cognitive flexibility, as well as impaired
social and object recognition [56, 57]. Prebiotic supple-
mentation (fructo- and galactooligosaccharide) reversed
chronic stress-induced alterations in the gut microbiota, by
preventing the reduction of beneficial microbes such as
Bifidobacterium or Lactobacillus and normalised chronic
stress-induced pro-inflammatory cytokines and depressive
like behaviours in mice [58]. Although the exact mechan-
isms are still being elucidated, multiple direct and indirect
pathways have been proposed by which the gut microbiota
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can modulate brain function and behaviour, including
microbial metabolites (e.g. short-chain fatty acids from
bacterial fermentation of fibre), neuronal pathways (e.g.
vagus nerve), neuroactive pathways (neurotransmitters such
as serotonin, and neuroactive metabolites), the
hypothalamus—pituitary—adrenal (HPA) axis, immune and
endocrine pathways [59] as well as direct neuroactive
metabolic potential of the microbiota [60].

Both short-term nutrient intake and long-term dietary
patterns are recognised as influential factors in shaping gut
microbiota diversity, composition, and metabolic function
[61, 62]. Interestingly, animal studies have reported that
transferring the microbiota from animals exposed to a high-
fat diet can result in behavioural changes such as explora-
tory and cognitive behaviour in the absence of the diet [63].
To date, there are few human data with only one uncon-
trolled dietary intervention study to have demonstrated that
a diet high in inulin-rich vegetables increased Bifido-
bacterium and led to improvements in satiety and levels of
intrapersonal competence (but no difference in mood or
perceived stress) [64]. Similarly, a recent study demon-
strated that bacterial taxa enriched by a 1-year Mediterra-
nean dietary intervention in elderly participants were
associated with improved cognitive function and reduction
of the inflammatory markers C-reactive protein and
interleukin-17 [65]. The effect of individual nutrients (e.g.
fibre, polyunsaturated fatty acids and polyphenols) on brain
health may also be mediated by their direct effects on the
microbiota [66, 67]. For example, short-chain fatty acids
that are produced by fermenting dietary fibre by the gut
microbiota have been shown to have important immuno-
modulatory functions. This relationship may also be bi-
directional, with the gut microbiota implicated in enabling
the bioavailability of these compounds [68].

Manipulating the gut microbiota via dietary supplements
(probiotics and prebiotics) and dietary strategies (e.g. fer-
mented foods such as kimchi, yoghurt and sauerkraut) as a
means of modulating the microbiota—gut-brain axis has
thus garnered much attention [69]. The introduction of
living microorganisms—a Lactobacillus spp. alone or in
combination with Bifidobacterium spp.—may improve both
depression and anxiety, yet evidence for an impact of pro-
and prebiotics on mental health is limited and highly vari-
able [70]. The limited evidence-base is particularly relevant
for prebiotic interventions as demonstrated by a recent
meta-analysis that reported no significant difference in
depression or anxiety symptoms following prebiotic sup-
plementation compared to control [70]. However, this was
in a limited sample (n =4-5 trials) of largely non-clinical
participants, and in general, biological interventions are
likely to show efficacy in clinical rather than non-clinical
participants. Fermented foods, containing functional
microorganisms, prebiotics, and biogenics, are another food

group with the potential to manipulate the gut-brain com-
munication [71]. Although strong clinical evidence is
lacking to date, some studies have shown promise in
improving mood outcomes following fermented foods
consumption [71]. Because of the viability and variable
colonising ability of probiotics, which may account for the
inconsistent efficacy between species/strains and combina-
tions thereof [72, 73], dietary patterns that include a diverse
range of plant food sources may be preferential for pro-
moting the consumption of various prebiotic substrates and
probiotic strains.

Microbiota may also mediate the connection between
diet and brain health through food hypersensitivity. Self-
reported food allergy is more common in those with
depression than in healthy controls (13% vs. 9%) [74],
although these rates are much higher estimates compared
with prevalence data that use appropriate diagnostic criteria
[75]. In the case of true food allergy, IgE sensitisation of
mast cells in the gastrointestinal mucosa become triggered
by the dietary allergen, resulting in a cascade of inflam-
matory mediators that can impair intestinal permeability
[76]. Increased intestinal permeability has been associated
with enhanced translocation of gram-negative Enter-
obacteria and immune activation [77] which may contribute
to systemic inflammation, including neuroinflammation,
[74] a characterising feature in depression [14]. Further
large-scale studies of individuals with true food allergy are
needed to clarify its contribution to the development of
depression. Research into non-IgE mediated food hyper-
sensitivity (i.e. food intolerance), such as to gluten [78], and
casein [79], may also reveal insights into how diet-induced
changes to the gut microenvironment may affect mood.

The hypothalamic-pituitary-adrenal (HPA) axis

The HPA axis, comprising the brain (hypothalamus),
pituitary and adrenal glands, regulates glucocorticoid pro-
duction and has been implicated in the pathophysiology of
neuropsychiatric disorders. More than 60% of people with
depression exhibit excessive cortisol production or other
disturbances to the HPA system such as altered response to
dexamethasone suppression testing and adrenocorticotropic
hormone levels [80]. Normalisation of some measures of
altered HPA-axis activity is observed after clinical recovery,
suggesting a role in disease pathophysiology [80]. Fur-
thermore, early childhood trauma can result in permanently
dysregulated HPA axis, resulting in increased risk of mental
health disorders across the lifespan [80]. For example,
animals exposed to maternal deprivation have altered HPA
response to stress in adulthood and memory impairment
[80].

Clinical intervention trials with nutrients such as vitamin
C reported a reduction in cortisol reactivity to acute
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physiological stress in healthy adults [81]. Omega-3 fatty
acid intervention studies also demonstrated improved cor-
tisol levels in healthy adults as well as people with
depression [82, 83]. Similarly, intervention studies using
polyphenol-rich foods such as pomegranate juice and dark
chocolate have reported a reduction in cortisol levels in
healthy individuals [84, 85]. For example, a recent 4-week
trial in healthy participants found that total daily cortisol,
morning cortisol, and the cortisol/cortisone ratio were sig-
nificantly reduced in participants that received high-
flavonoid dark chocolate [84]. Although the mechanisms
by which these dietary factors influence cortisol and other
HPA-axis related measures is unclear, this influence may be
mediated via modulation of the pro-inflammatory response
to hypothalamic activation following psychological stres-
sors [86]. In contrast, a small (N = 12) 3-day feeding study
found that a high-glycaemic index diet was associated with
a small increase in cortisol secretion [87]. Due to the
emerging role of the gut-brain axis in mental health, pro-
biotics have also been explored as potential interventions
targeting the HPA axis. In animal studies, probiotics ame-
liorated enhanced basal HPA-axis activity induced by
maternal separation stress in rats and mitigated elevations in
serum corticosterone levels induced via the water avoidance
stress test, a non-invasive method to induce psychological
stress [88]. Preliminary clinical intervention studies in
healthy adults corroborate these results. For example, in a
double-blind, randomised, controlled trial, a multi-strain
probiotic intervention improved 24 h urinary-free cortisol
and self-reported stress outcomes compared to placebo in
healthy individuals [89]. However, in a similar probiotic
clinical trial in 60 people with depression, there was no
significant difference in blood cortisol levels between
groups [90].

Adult hippocampal neurogenesis and brain-derived
neurotrophic factor (BDNF)

The hippocampus is a critical component of the limbic
system and has a central role in learning, memory formation
and mood [91]. In rodents, functional studies have shown
that the level of neurogenesis in the adult hippocampus is
directly linked to cognition and mood [92]. For example, in
mice, increased neurogenesis in the hippocampus is asso-
ciated with improved learning and memory abilities,
whereas a decrease is often associated with behaviours
modelling certain aspects of depression [93]. BDNF is a
neurotrophin that is highly expressed in the hippocampus
and is involved in critical cellular functions such as synaptic
plasticity and cell metabolism underlying normal behaviour
and its neuropsychiatric aberrations. Indeed, BDNF is the
prototypical molecule epitomised to explicate the action of
diet, exercise, and antidepressant therapeutics on

SPRINGER NATURE

depressive- and anxiety-like behaviours. Lowered levels of
serum BDNF has been described in patients with major
depression [94], and the protective action of BDNF against
the pathogenesis of depressive disorders has received some
experimental support [95, 96].

There is compelling evidence that BDNF and adult
hippocampal neurogenesis regulation can be modulated
through diet [97]. Animal models have demonstrated that
Western-style diets high in fat and sucrose can impair
neurogenesis and lower BDNF levels within the hippo-
campus and adversely impact cognitive performance [98].
In contrast, a considerable body of research in animal
models suggest a beneficial effect of dietary components
such as omega-3 fatty acids, probiotics, and vitamins
[99, 100]. Individual polyphenol compounds such as
resveratrol, blueberries, green tea, curcumin, and cacao
have also been shown to reverse adverse changes and pre-
serve the integrity of adult hippocampal neurogenesis under
conditions of psychopathology, ageing and disease [101].
Furthermore, animal models suggest that other dietary
parameters including calorie intake, meal frequency, and
meal texture may modulate hippocampal neurogenesis
[102].

Observational studies provide further evidence with
reported direct associations between healthy dietary patterns
and larger hippocampal volume, independent of a wide
range of explanatory factors (e.g. age, gender, education)
[103-105]. In a subgroup analysis of participants that had
depression at baseline in the PREDIMED study, partici-
pants that were randomised to a Mediterranean diet sup-
plemented with nuts had a higher level of plasma BDNF at
the 3 year timepoint compared to the control intervention
[106]. However, the relationship between systemic and
central levels of BDNF is not straightforward and circulat-
ing levels may be influenced by sample processing methods
and storage conditions as well as other peripheral sources of
BDNF (e.g. blood platelets) [107, 108]. Additional dietary
paradigms, such as caloric restriction via a consistent
reduction of total daily food intake or intermittent fasting
(e.g. every-other-day feeding), may also influence BDNF
expression [109]. In contrast, recent human intervention
studies suggest that Western-style diets can impair
hippocampal-dependent learning and memory [110, 111].
Finally, neurogenesis can be modulated via other pathways
included in this review such as via the gut microbiota and
inflammatory pathways, suggesting that additional dietary
factors may indirectly influence neurogenesis via modula-
tion of these secondary pathways.

Tryptophan-kynurenine metabolism

Tryptophan, an essential amino acid that must be supplied
in the diet, is an important building block for a number of
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key neuroactive molecules [112]. The focus on tryptophan
availability and metabolism in psychiatry has largely
centred on its conversion into serotonin, the therapeutic
target for the vast majority of antidepressants and first line
anxiolytics [113]. However, the dominant physiological
pathway for tryptophan is along the kynurenine pathway,
which leads to the production of the neurotoxic quinolinic
acid and the neuroprotective kynurenic acid [114]. There is
increasing recognition of the importance of peripheral
mechanisms leading to increased kynurenine production
and that the metabolites produced along this pathway are
vital neurobiological mediators in a range of neurological
and psychiatric disorders, including but not limited to
depression [115] and schizophrenia [116]. Moreover, the
initiation of this metabolic cascade can arise due to either
stress [117] or following activation of the immune system
and inflammatory pathways [118]. This makes the avail-
ability of tryptophan for metabolism along this pathway an
important consideration in the management of mental
health.

Tryptophan is found in a wide variety of foods including
chicken, tuna, oats, peanuts, bananas, milk, cheese, and
chocolate [119]. Although the majority of tryptophan
derived from ingested protein is absorbed in the small
intestine, significant amounts may also reach the colon,
where the gut microbiota plays a key role in its fate and
activity [120, 121]. In the context of using dietary inter-
ventions for mental health prevention and treatment,
understanding tryptophan availability and metabolism may
be important. For example, increased protein intake can lead
to increased tryptophan availability, variations in carbohy-
drate intake can impact on free tryptophan levels, and non-
esterified fatty acids can physiologically displace trypto-
phan from albumin [122, 123]. Fluctuations in the avail-
ability of other amino acids that compete with tryptophan
for transport across the blood brain barrier can also affect
the central nervous system metabolic pool [122]. Direct
tryptophan supplementation has been trialled as an inter-
vention in people with depression as a way to improve
serotonergic signalling [112]. These studies have provided
mixed results and where there is activated metabolism of
tryptophan along the kynurenine pathway (e.g. as a con-
sequence of stress or immune activation), this may result in
an increased production of the neurotoxic quinolinic acid.

In addition to the role of dietary tryptophan on kynur-
enine metabolism, there is an emerging body of research
that has investigated the role of dietary interventions in
modulating kynurenine metabolism via other means
including the modulation of indoleamine 2,3 dioxygenase
(IDO) activity [124, 125]. In vitro and animal models have
reported individual dietary components such as curcumin
[126] and green tea [127] as well as dietary regimens
including a ketogenic diet [128] and fasting [129] to

modulate kynurenine pathway activity. Preliminary inter-
vention studies also suggest that dietary regimens such as
caloric restriction [130] and individual dietary components
including probiotic interventions, resveratrol, and black tea
may modulate kynurenine metabolism [90, 131, 132]. For
example, in a recent trial of 60 participants with depression,
a probiotic intervention significantly decreased kynurenine
levels and increased 3-hydroxykynurenine levels compared
to placebo [90].

Mitochondrial dysfunction

Depression, like other primary psychiatric disorders
including bipolar disorder and schizophrenia, is associated
with mitochondrial dysfunction [133]. Indeed, many core
symptoms of depression such as fatigue and cognitive
complaints are concordant with both central and peripheral
mitochondrial dysfunction and decreased biogenesis [134].
Disrupted oxidative phosphorylation and impaired mito-
chondrial ATP production may lead to dysfunctional neu-
ronal plasticity and reduced neurogenesis, both of which are
core elements of the neurobiology of depression [133]. A
novel piece of evidence supporting a mitochondrial element
in the pathophysiology of depression comes from a recent
study showing that mitochondrial transplantation in mice
restored ATP production in the hippocampus and reversed a
lipopolysaccharide-induced model of depression [135].
Considerable preclinical evidence suggests that poor diet
may contribute to mitochondrial dysfunction [136]. A high-
fat diet is associated with abnormal mitochondrial biogen-
esis, which is also associated with increased free radical
production, inflammation and insulin resistance [137-139].
A hypercaloric high-carbohydrate diet drives similar path-
ways [140], as well as a high salt diet [141]; these are core
constituents of a poor quality Western-style diet. It is also
possible that there is trans-generational inheritance of
mitochondrial dysfunction induced by poor diet [142]. In
humans, there are discrepant data on the potential beneficial
impact of caloric restriction on mitochondrial function.
Some human studies have shown increased markers of
mitochondrial biogenesis with caloric restriction [136].
Another study showed increased levels of citrate synthase, a
marker of mitochondrial content, [143] and other animal
research suggests enhanced mitochondrial uncoupling pro-
tein activity [144]. To date, there are no studies of caloric
restriction in depression that have measured mitochondrial
dysfunction. One dietary model that has been proposed to
reverse mitochondrial dysfunction, especially the shift from
aerobic to glycolytic energy generation in depression, is the
ketogenic diet, although clinical trials assessing this
hypothesis in humans are still awaited [145]. A ketogenic
diet increases both the activity and levels of mitochondrial
uncoupling proteins [146]. The extent to which alteration in
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mitochondrial biogenesis mediates the beneficial effects of a
healthy Mediterranean type diet in depression is yet to be
determined. Some food derivatives also have a putative role
in increasing mitochondrial biogenesis, with quercetin, N-
acetylcysteine and resveratrol each having some supportive
evidence [147, 148].

Epigenetics, early life and maternal/paternal diet
exposure

Epigenetics describes the molecular mechanisms that control
gene activity and enable development to occur, in the absence
of changes to the underlying DNA sequence [149]. For
example, epigenetic processes can influence DNA methyla-
tion age, which has been associated with depression in adults
[150] as well as a number of other neurodevelopmental out-
comes and comorbidities including cognitive function [151],
alcohol dependence [152], bipolar disorder [153], and reduced
hippocampal volume [154], but not schizophrenia [155]. Very
few studies have evaluated the effect of nutritional interven-
tions on methylation age, but those that have, found evidence
for its deceleration [156-158]. Epigenetic state is influenced
by genetic sequence, internal and external environments, and
stochastic processes that occur during development. Envir-
onmental influence during the sensitive periods of prenatal
development, gamete formation, and adolescence has been
linked with risk for chronic diseases that share common
pathways with depression, including cardiometabolic and
neurodevelopmental disorders [159]. This phenomenon is
referred to as the ‘developmental origins of health and dis-
ease’ (DOHaD) [160, 161].

Nutrition has been the most studied environmental
influence on epigenetics in the DOHaD context [162, 163].
Studies examining the effects of the Dutch famine demon-
strated the involvement of epigenetic dysregulation in adult
disease risk owing to nutritional adversity during early
development [164]. Few observational human studies have
assessed the role of epigenetic change in mediating the
effect of early life nutrition on neurodevelopmental out-
comes, and most are cross-sectional in nature. A recent
review concluded that some evidence exists that certain
early life nutritional exposures such as breastfeeding and
maternal obesity can influence epigenetic state, which in
turn may mediate child and adolescent psychopathology
such as internalising and externalising behaviours [165].
One example is the Barbados Nutrition Study, which found
adults hospitalised in infancy due to protein and energy
undernutrition exhibited DNA methylation changes in
neuropsychiatric risk genes [166]. In vitro cell culture
experiments and rodent studies have shown that restriction
or surfeit of macronutrients have reproducible effects on
multiple epigenetic mechanisms on many different genes
including those involved in metabolism and behaviour
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[167, 168]. Metabolic perturbations are becoming known as
a driving force for genomic and epigenomic alterations by
which the effects of diet are saved in the genes [169].
Components of nutrient-rich dietary patterns including
vitamins such as folate, biotin, B6 and B12; polyphenols
such as curcumin, resveratrol and genistein [170]; and
omega-3 fatty acids [171] have all been shown to influence
epigenetic state through multiple mechanisms. In addition,
butyrate, typically considered a beneficial microbial meta-
bolite that is produced during fermentation of dietary fibre,
can also influence epigenetic state of host cells [172].

Obesity as cause and consequence of mood
disorders

The multifactorial relationship between diet, mood dis-
orders and obesity is bi-directional and complex [173].
Meta-analytic data show that both men and women with
obesity have a 55% increased risk of developing depression,
while individuals with depression have a 58% increased risk
of developing obesity [174]. A recent review reported
several interconnected pathways that may be involved in the
relationship between diet, mood disorders, and obesity
[175]. One such pathway includes the HPA axis, with its
dysregulation, hyperactivation, and excessive synthesis and
secretion of glucocorticoids being implicated in both mood
disorders and obesity. [175] In addition, reduced levels of
various neurotransmitters involved in regulating neurolo-
gical reward circuitry, mood, and dietary intake are reported
following exposure to a high-fat diet, including serotonin
and dopamine [175]. In an attempt to mitigate stress-related
anxiety—and due to phenomena known as emotional eating
and comfort food—chronic stress and HPA-axis hyper-
activation may lead to the overconsumption of Western-
style food and subsequent obesity [176].

Higher levels of inflammation and related cytokines have
been reported in both mood disorders and obesity, sug-
gesting another common link between their underlying
aetiology [177, 178]. A mediating role of obesity in the
association between depression and inflammatory markers
(i.e. interleukin-6 and C-reactive protein) was reported in a
cross-sectional study, with the inferred causal nature of
relations leading from depression to increased adiposity to
elevated inflammatory markers [179]. This inflammatory
effect of obesity may, in turn, drive the observed relation-
ships between weight gain and higher rates of relapse [180]
and impeded recovery [181] in individuals treated for a
mental illness. Promisingly, caloric restriction and weight
loss diets may be a reliable method for reducing inflam-
matory status [182, 183] and depressive symptoms in
overweight individuals [184]. At the same time, findings
from the SMILES clinical trial showed that a 12-week
Mediterranean dietary intervention was efficacious for
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lowering symptoms of clinical depression in the absence of
weight change [2]. Similarly, prospective observational
studies have repeatedly reported evidence of associations
between diet quality and common mental disorders that are
independent of measures of body weight (e.g. [185]).

Conclusion

Growing evidence supports the potential use of dietary
interventions as an adjunctive treatment for mental disorders.
This review has identified numerous pathways through which
diet could plausibly affect mental health. These include
modulation of pathways involved in inflammation, oxidative
stress, mitochondrial dysfunction, the gut microbiota,
tryptophan—kynurenine metabolism, the HPA axis, neuro-
genesis and BDNF, epigenetics, and obesity (Fig. 2). We do,
however, acknowledge that there are numerous other potential
mechanisms implicated in depression pathophysiology that
were not captured in this paper but that may be modulated by
dietary intervention (e.g. effect of diet on leptin, adiponectin,
mitochondrial biogenesis and insulin/blood sugar balance)
[18]. Furthermore, while the interplay between diet, obesity,
and depression was discussed, diet may also affect depression
via other chronic diseases not included in this review that are
commonly comorbid with depression including diabetes,
metabolic syndrome, and cardiovascular disease [186, 187].

Mechanisms of action associating diet with health out-
comes are complex, multifaceted, interacting, and not
restricted to any one biological pathway. Dietary interven-
tions can include nutrient interventions (e.g. zinc, omega-3
fatty acids), food interventions (e.g. green tea, olive oil),
and whole diet interventions (e.g. Mediterranean diet). The
wide range and diversity of bioactive compounds found
within various dietary interventions, as well as the pleio-
tropic properties of these compounds, makes their effects
and the study of these effects inherently complex. Further
complicating this is the lack of research that has investi-
gated the comparative efficacy of the wide array of poten-
tially therapeutic dietary interventions (e.g. Mediterranean
diet vs. ketogenic diet vs. caloric restriction), which greatly
differ in macro- and micro-nutrient composition.

The nascent nature of the Nutritional Psychiatry field to
date means that the existing literature identified in this
review is largely comprised of preclinical animal studies. To
fully identify and elucidate complex mechanisms of action,
intervention studies that assess markers related to these
pathways within clinically diagnosed human populations
are needed. Further research is also needed to identify
individual demographic (e.g. age, BMI, comorbid medical
conditions), behavioural (e.g. motivation to change), and
biological (e.g. oxidative stress, inflammation) factors that
might influence the appropriateness of dietary interventions

as well as dietary treatment response. In particular, due to
the disparity in the prevalence of depression between men
and women, there is a need to explore sex differences in
treatment response. While animal models exploring sex
differences are lacking, a recent meta-analysis suggests that
dietary interventions may benefit women more than men
[4]. A further meta-analysis reported that obesity decreased
the risk of depression in men while the risk was increased in
women [188]. There are likely a number of bio-behavioural
mechanisms responsible for this potential gender-specific
effect that require further investigation. First, women may
have a greater ability to alter their fat or glucose metabolism
in response to a dietary intervention [189]. Second, men
have been shown to be more pleasure oriented in their food
choices—potentially owing to differences in dopamine
receptors—making adherence to healthier diets more diffi-
cult [190]. Third, men are more likely to prefer foods
associated with masculinity (e.g. red meat) above fruits and
vegetables that are considered more ‘feminine’ [191, 192].
Further investigation of factors that may influence treatment
response is also required in order to guide novel interven-
tions and clinical guidelines for mental health patients. The
expansion of the field of Nutritional Psychiatry research,
affording an understanding of what works for whom under
which circumstances, has the potential to result in new and
targeted strategies for those affected by mental illness.
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