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Eric M. Dunham
Department of Physics, University of California at Santa Barbara, Santa Barbara, California, USA
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J. M. Carlson
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Abstract. We investigate the ground motion produced by rupture propagation through
circular barriers and asperities in an otherwise homogeneous earthquake rupture. Using
a three-dimensional finite-difference method, we analyze the effect of asperity radius, strength,
and depth in a dynamic model with fixed rupture velocity. We gradually add complex-
ity to the model, eventually approaching the behavior of a spontaneous dynamic rup-
ture, to determine the origin of each feature in the ground motion. A barrier initially
resists rupture, which induces rupture-front curvature. These effects focus energy on and
off the fault, leading to a concentrated pulse from the barrier region and higher veloc-
ities at the surface. Finally, we investigate the scaling laws in a spontaneous dynamic
model. We find that dynamic stress drop determines fault-parallel static offset, while the
time it takes the barrier to break is a measure of fracture energy. Thus, given sufficiently
strong heterogeneity, the prestress and yield stress (relative to sliding friction) of the bar-
rier can both be determined from ground-motion measurements. In addition, we find that
models with constraints on rupture velocity have less ground motion than constraint-
free, spontaneous dynamic models with equivalent stress drops. This suggests that kine-
matic models with such constraints overestimate the actual stress heterogeneity of earth-
quakes.

1. Introduction

Heterogeneity plays an important role in earthquake rup-
ture propagation. Stored stress, strength, and frictional
properties on the fault plane conspire to yield a complex
rupture process. Numerous kinematic inversions of wave-
form data indicate that earthquake ruptures follow complex
paths and have heterogeneous slip distributions [Hartzell
and Heaton, 1983; Archuleta, 1984; Beroza and Spudich,
1988; Wald and Heaton, 1994; Cotton and Campillo, 1995].
The purpose of this paper is to examine aspects of ground
motion in the context of simple but heterogeneous ruptures.

Kinematic inversions employ the dislocation model, which
describes the earthquake as propagating slip along a fault
plane. The displacement u recorded by a seismograph on
the surface can then be written as

ui(�x, t) =

∫ t

0

∫
Σ

∆uj(�ξ, τ ) Gij(�x − �ξ, t − τ ) d�ξ dτ, (1)

where ∆u is the slip on the fault surface Σ, and G is the
Green’s function for a point dislocation and a given fault and
crustal structure. Note that matching u(�x, t) on the surface
does not guarantee that the slip propagation is physical. For
example, simple dislocation models can produce infinite ac-
celerations and infinite stress drops [Madariaga, 1978]. In
addition, this is an underdetermined problem, as ∆u on the
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fault is not unique for a given u on the surface. The dis-
placement u is only known at a limited number of stations,
and their proximity to the fault limits the frequency resolu-
tion of ∆u. In the far-field, the inverse problem is unstable,
as slip distributions with arbitrarily different L2 norms can
produce identical radiation [Kostrov and Das, 1988]. Con-
straints must be introduced into the inverse problem to over-
come this instability. Consequently, most kinematic inver-
sions that use the dislocation model assume constant rup-
ture velocity or constrain the rupture velocity to be slowly
varying [Olson and Apsel , 1982; Hartzell and Heaton, 1983].

While the kinematic approach specifies slip everywhere on
the fault, dynamic modeling of an earthquake is formulated
as a mixed boundary-value problem, with slip and stress
specified on different parts of the fault. In the case of a
highly nonuniform rupture velocity, this mixing of boundary
conditions prevents the linearization of the dynamic inverse
problem. While nonlinear dynamic inversions have been at-
tempted [Peyrat et al., 2004], they require extensive compu-
tational resources and currently have poor resolution. Thus,
kinematic modeling remains the most widely used tool with
which to match observed waveforms.

As dynamic inversions are not yet practical, it is ex-
tremely important to understand the dynamic effects as-
sociated with heterogeneities. Do kinematic inversions cap-
ture heterogeneity in a way that is compatible with what
we know about dynamic, physically realistic rupture prop-
agation? What type of radiation do we expect to see from
inhomogeneities in dynamic rupture? Since kinematic in-
versions are poorly constrained, forward modeling is needed
to ensure that dynamic effects are captured in a physically
consistent way.
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In this paper, we analyze the radiation produced by cir-
cular barriers and asperities in an otherwise homogeneous
rupture. The terms “barrier” and “asperity” are widely
used in a variety of contexts, but in this paper we define
them as in Madariaga [1983], in reference to the dynamic
parameters on the fault. We define a barrier as a region
that has a higher frictional strength (yield stress) than the
surrounding fault. Real-life barriers can be regions with dif-
ferent material properties or changes in the fault geometry
that hinder rupture propagation. An asperity is a region
with a higher prestress than the surrounding fault, while
an anti-asperity has a lower prestress. Note that the term
“asperity” is used in the kinematic-modeling community to
denote a region with high slip, but here we use it to re-
fer to stress level. Asperities may be regions that remained
unbroken during a previous earthquake and thus are closer
to failure. Asperities and barriers produce different ground
motion, as barriers delay rupture but asperities do not. A
region can, of course, have both an increased prestress and
yield stress, and be both an asperity and a barrier in this
sense.

Das and Kostrov [1983] first studied the breaking of a sin-
gle circular asperity and found that rupture initially circled
the edges of the asperity before collapsing inward. Later,
Fukuyama and Madariaga [2000] also analyzed the single as-
perity with higher resolution. In recent work, Dunham et al.
[2003] studied the spontaneous, dynamic propagation of rup-
ture around a barrier and an anti-asperity. While both of
these obstacles delay rupture, they interact quite differently
with the rupture front. In the case of the barrier, this region
initially resists rupture, slowing down the rupture front. The
rupture front surrounds the region, focusing waves into the
barrier. This phenomena, in which a curved rupture front
focuses waves, is termed rupture-front focusing [Fukuyama
and Madariaga, 2000]. This focusing can eventually cause
the barrier region to rupture. In some cases the barrier
failure can initiate supershear rupture, in which the rupture
velocity exceeds the shear wave speed [Dunham et al., 2003].
This is an important test case because it isolates the inter-
actions between heterogeneities and the rupture front that
lead to phenomena that would not be captured without a
complete, dynamic description. While the work of Dunham
et al. [2003] focused on the propagation of the rupture on

20 km

0+τ bτvr

d

10 km

10 km
τ0

Fault Plane

Free Surface

R

Figure 1. Reduced model parameters. Rupture is ini-
tiated on a vertical patch at the left side of the right-
lateral strike-slip fault plane. The rupture front travels
to the right with a fixed rupture velocity of vr, eventually
reaching a circular heterogeneity of radius R at a depth
d. Most of the fault has a prestress of τ0, while the cir-
cular region in the center of the fault has a prestress of
τ0 + τb.

the fault, in this paper we will primarily be investigating the
ground motion produced by these heterogeneities.

In order to better understand the radiation associated
with the dynamic breaking of a barrier or asperity, we de-
velop a series of models with increasing levels of complex-
ity. These models have various assumptions, designed to
capture and separate the key phenomena observed in fully
dynamic simulations. In this way, the effects of rupture ve-
locity, rupture front curvature, and time to break the barrier
– all of which arise in the fully spontaneous, dynamic, in-
homogeneous rupture – can be separated and studied. The
models are summarized in Table 1 and are of two varieties:
reduced and spontaneous, as described below. The medium
surrounding the fault is isotropic and linear elastic, with
identical material properties on each side. The shear mod-
ulus is µ = 30 GPa, the S-wave speed is cs = 3.46 km/sec,
and Poisson’s ratio is 1/4. We constrain slip to be hori-
zontal, which renders the frictional dynamics insensitive to
the absolute level of stress. This allows us to measure all
stresses with respect to sliding friction. This convention is
used hereafter; for example, the terms prestress and yield
stress refer to the difference between these values and slid-
ing friction. The fault is 20 km long and extends from the
free surface to 10 km depth. The heterogeneity is located
10 km along strike.

We initially analyze several reduced models in terms of
their effects on ground motion. These models are reduced
in the sense that the rupture velocity is constrained, so that
they are not spontaneous. They are, however, dynamic, as
we specify shear traction on the slipping part of the fault.
The first model, Model A, constrains the rupture velocity to
be constant everywhere, even in the zone of heterogeneity.
The only heterogeneity in this model is the extra stress drop
in the circular zone. Also, the rupture front is straight, as
shown in Figure 1. In the second reduced model, Model B,
the breaking of the heterogeneity is delayed, as is seen in
spontaneous, dynamic models [Das and Aki , 1977]. The cir-
cular zone, which is now more like a barrier, ruptures in the
same manner as in Model A (with a straight rupture front
within the heterogeneity), but at a later time. In Model
C, we better approximate the way in which the barrier fails
by adding curvature to the rupture front, which enhances
rupture-front focusing. Finally, we analyze the spontaneous,
fully dynamic model, complete with the effects of variable
rupture velocity and rupture-front focusing. In this model,
Model D, we find that with sufficient resolution of only two

Table 1. Models at various stages of complexity.

Model Description Effects
A Dynamic model with fixed

rupture velocity through-
out, even in barrier.

Additional displacement
proportional to R2τb.

B Dynamic model with fixed
rupture velocity. Barrier
ruptures at a later time,
but in identical manner to
Model A.

Stopping phases from bar-
rier lead to initial arrest of
ground motion, followed
by larger peak velocities
on surface when barrier fi-
nally breaks.

C Dynamic model with fixed
rupture velocity and barrier
time delay. Barrier rup-
tures with curved rupture
front.

Curved rupture front fo-
cuses energy, leads to
more well-defined barrier
pulse.

D Spontaneous dynamic
model (rupture velocity is
no longer fixed). Can now
vary prestress and yield
stress independently.

Similar to Model C, but
with increased focusing ef-
fect. Also, unconstrained
rupture velocity leads to
more radiation than with
non-spontaneous models.
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(a) Station Locations (b) Effect of Asperity Prestress
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Figure 2. Effect of asperity prestress, radius, and depth for a model with fixed rupture velocity and no
barrier time delay (Model A) at three stations. The asperity pulses are most cleanly seen on the fault-
parallel and vertical components, as the fault-normal components of the homogeneous rupture are larger,
tending to drown out the barrier signal. Model A is linear, so the additional displacement due to the
asperity scales with τb and R2. In addition, the velocity pulse width increases with R and d. Note that
the polarity of the fault-perpendicular and vertical asperity pulses give the location of the asperity: for
example, in the fault-perpendicular record the first motion is towards the fault in the backwards direction
from the asperity and away from the fault in the forward direction of the asperity on the right-moving
block.

parameters in the ground motion, the prestress and frac-
ture energy of the heterogeneity can be determined. This is
in contrast to the general case in real, fully heterogeneous
ruptures, where due to nonuniqueness we can invert for pre-
stress or fracture energy, but not both independently ev-
erywhere [Peyrat et al., 2001; Guatteri and Spudich, 2000].
In addition, we find that Model D – free of constraints on
the rupture velocity – produces larger pulses in the ground
motion than the reduced models with an equivalent stress
drop. This is explained further in Section 3.

2. Reduced Models

In Models A, B, and C, we follow the method of An-
drews [1985] to constrain rupture velocity to be constant in
the context of a dynamic source representation. We want
to keep the fault locked ahead of the rupture front, spec-
ify dynamic stress drop behind the rupture front, and solve
for slip. We numerically regularize this singular problem
by specifying frictional strength for each point on the fault
as a function of time and position. This is similar to the
cohesive-zone model of Palmer and Rice [1973]. Frictional
strength for a given point at horizontal distance x from the

nucleation zone and at time t is given by

τy =
{

0 if |x| < tvr, and
τ0

2∆x
(|x| − vrt) if |x| > tvr,

(2)

where vr is the rupture velocity, τ0 is prestress, and ∆x =
100 m is the grid spacing. The slip-time function is not con-
strained as in a kinematic model. Rather, this is a dynamic
(though not spontaneous) model that constrains rupture ve-
locity, specifies stress, and solves for slip. Note that in this
formulation stress drops linearly with distance on the fault,
not with displacement, as with a slip-weakening friction law.

We parametrize the problem as follows: We specify the
background prestress τ0 = 5 MPa, barrier prestress τ0 + τb,
barrier radius R, and barrier depth d, as shown in Figure
1. We specify a rupture velocity of 0.8 times the Rayleigh
wave speed, which is a typical rupture velocity seen in real
earthquakes [Geller , 1976; Somerville et al., 1999]. Rupture
begins along a vertical patch at one side of the fault.

In the first reduced model, Model A, the rupture velocity
is constant everywhere on the fault, including in the circular
heterogeneity itself. The heterogeneity in Model A is similar
to an asperity rather than a barrier, as it does not delay the
rupture front. Synthetic seismograms for this model with
various values of τb, R, and d are shown in Figure 2, along
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with the seismograms for a homogeneous rupture (no asper-
ity) for comparison. The default parameters for the asperity
in Figure 2 are τb = 35 MPa, R = 1 km, and d = 5 km,
unless otherwise stated. After subtracting off the displace-
ments from the homogeneous rupture, this model cleanly
shows that all components of additional displacement are
proportional to R2 and τb, for all points on the surface, at
all times. This is to be expected as Model A is linear in
the displacement and stress fields. Since the rupture front
is always in the same location as in a homogeneous rupture,
we can superpose the displacement from the homogeneous
rupture with the displacement from the additional stress
drop in the asperity region to give us the ground motion
for Model A. Thus R2τb is the effective force of the asperity
[Kostrov and Das, 1988]. The scaling relationship for depth
is more complicated, but this parameter has the most in-
fluence on surface displacement directly above the asperity.
In addition, this model shows that velocity pulse width is

0 5 10 15
0

2

4

6

8

10

G
b
/G

0

c st b/2
R

Figure 3. Scaling for barrier break time for a sponta-
neous, dynamic model with periodic boundary conditions
in the vertical direction (no free surface) and constant
prestress everywhere on the fault.

independent of τb. The width of the asperity velocity pulse
does increase with R and d, most notably in the forward
direction from the asperity.

The pulses from the asperity are most easily seen in the
fault-parallel and vertical records, as the background radia-
tion in the fault-perpendicular records obscures them. One
can use the height of the pulse to constrain R and τb, and
the width of the pulse to constrain d and R. In addition,
the polarity of the fault-perpendicular asperity pulses gives
the location of the heterogeneity, as the first motion is to-
wards the fault in the backward direction from the asper-
ity and away from the fault in the forward direction from
the asperity on the right-moving block. Directly above the
asperity, asymmetry of the fault-normal component in the
fault-parallel direction causes this pulse to vanish. The ver-
tical records also show a reversal of polarity. If the asperity
is large enough to resolve in the perpendicular or vertical
component and there are enough near-field stations, the hor-
izontal location of the heterogeneity can be determined by
looking at the polarity of the asperity pulse relative to sta-
tion location, as well as the pulse’s absence in stations above
the asperity.

In our second reduced model, Model B, we include an
effect seen in spontaneous, dynamic models: a barrier time
delay. Before we discuss the results of Model B, we first
motivate this model by discussing results from spontaneous
dynamic models, in which we find that the barrier breaks
only after a time delay that increases with the additional
resistance of the barrier. To quantify this effect, we first
study the problem in the simple whole-space geometry (to
remove the effects of the finite fault width and free sur-
face) using a slip-weakening fracture criterion [Ida, 1972;
Palmer and Rice, 1973; Andrews, 1976]. The initial rupture
is bilaterally expanding with a straight front under mode
II conditions (numerically accomplished by placing periodic
boundary conditions in the vertical direction, as in Dunham
et al. [2003]), and is perturbed into mixed-mode conditions
as it encounters the barrier. We define the break time tb

as the difference between the time at which the rupture ar-
rives at the closest point on the edge of the barrier and the
time at which the last point within the barrier breaks. To
quantify the resistance of the barrier, we take the fracture
energy of the barrier Gb = τ b

ydc and scale it by the energy
release rate of a static mode II crack having half-length L
(measured to the center of the barrier) G0 = (π/2)τ 2

0 L/µ.
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(b) Fault−parallel velocity (m/s) 
for Simple Asperity Model (Model A)
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(c) Fault−parallel velocity (m/s) 
for Model with Time Delay (Model B)
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Figure 4. Fault-parallel velocity on the surface at 0.56 second intervals for several models with constant
rupture velocity. The homogeneous rupture (a) has no stress heterogeneity and is shown as a reference.
The additional burst of radiation due to the heterogeneity can be seen in Model A (b). The barrier time
delay of 0.28 seconds in Model B (c) initially arrests the ground motion, producing arrest waves visible
in the second panel, followed by a more dramatic pulse when the barrier fails. These features are most
easily seen in the fault-parallel components. In the fault-perpendicular records, the homogeneous pulses
dominate the motion, as seen in Figure 2. In these plots τb = 35 MPa, R = 1 km, and d = 5 km. Note
that the color scale is clipped for points close to the fault.
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The break time is scaled by the time it takes a shear wave to
cross the barrier 2R/cs. In these expressions, cs is the shear
wave speed, dc is the slip-weakening displacement, τ0 is the
prestress (which is constant everywhere), and τ b

y is the yield
stress of the barrier.

Figure 3 shows the results of 150 numerical experiments,
revealing that the break time scales linearly with Gb/G0.
This result arises from a balance between the energy driv-
ing the rupture (proportional to G0) and that resisting it
(proportional to Gb). This balance of energies has been dis-
cussed by Madariaga and Olsen [2000] and Gb/G0 is, up to
a constant, equal to the inverse of their parameter κ, which
has been shown to determine the rupture dynamics of homo-
geneous faults. A linear fit between the nondimensionalized
break time and resistance of the barrier yields

tb =
2R

cs
(1 + 0.6

Gb

G0
). (3)

In Section 3, we extend this analysis to the case of a finite
fault bounded on top by a free surface.

Returning to Model B, we specify that the heterogeneity,
now more like a barrier, again fails with a straight rupture
front, but at a later time. This delay time makes the ground
motion more dramatic: As the rupture front passes around
the unbroken barrier, the stress within it increases, partic-
ularly at the edges of the unbroken region. As the barrier
rupture delay approaches infinity, the stress buildup in the
barrier approaches the initial conditions of the Das-Kostrov
asperity model, in which the rest of the fault is broken [Das
and Kostrov , 1983]. Due to the additional stored stress, the
barrier in this model breaks more violently than in the first
model without the time delay.

Figure 4 shows the changes in ground motion introduced
by a time delay of 0.28 seconds. Unlike in Model A, the
barrier in Model B, which is initially locked as the rupture
front surrounds it, first arrests the ground motion produc-
ing a stopping phase visible in the second panel. When the
barrier does fail, it produces a pulse that reaches the surface
at a later time than in Model A. The peak velocity in this
pulse is higher than in Model A as well. Thus the time de-
lay leads to larger velocities in the seismograms, not because
the initial conditions of the models are different (they are
not – the prestress is the same in Model A and Model B)
but due to the additional stress stored in the barrier region
as the rupture front surrounds it.

In Model C, the final reduced model, we attempt to more
closely match the spontaneous breaking of the barrier. Due
to the increased stress around the edge of the barrier, in the
spontaneous case the barrier collapses inward with a curved
rupture front [Das and Kostrov , 1983]. The curved rup-
ture front focuses the energy to a point, so that the barrier
breaks with a well-defined pulse. To mimic this, we specify
the rupture front as an arc with the same radius of curvature
as the barrier itself, moving in the forward direction across
the barrier with a fixed rupture velocity vr. This model
also has a barrier time delay. In comparison to Model D,
we find that the motion on the fault is similar, although
in the spontaneous dynamic case the radius of curvature of
the rupture front decreases as the barrier breaks. Thus in
the spontaneous dynamic case there is even more focusing,
leading to a very well-defined pulse as the last area of the
barrier fails. The spontaneous dynamic results are discussed
more completely in Section 3.

3. Spontaneous Dynamic Model

Finally, we consider Model D, a fully spontaneous, dy-
namic model governed by a linear slip-weakening friction
law [Ida, 1972; Palmer and Rice, 1973; Andrews, 1976]. We

specify a slip-weakening displacement of dc = 0.47m. A cir-
cular heterogeneity with radius 1 km is located 10 km along
strike and at a depth of 5 km. In this model, the rupture
velocity is allowed to vary. The dynamic model also allows
a different degree of freedom, for both the yield stress and
prestress are specified at each point. Outside the hetero-
geneity, we choose a background prestress of 5 MPa and a
yield stress of 10 MPa. Rupture is initiated by raising the
prestress along a vertical patch at one side of the fault.

The dynamic parameters in the heterogeneity can be
tuned to make an asperity-like model (high prestress) or
a barrier-like model (high yield stress). For the “represen-
tative” asperity rupture in the following figures we choose
an asperity prestress of 35 MPa and an asperity yield stress
of 40 MPa. The examples plotted of a barrier rupture use a
barrier prestress of 5 MPa and yield stress of 50 MPa.

For asperity-like models, the ground motion is very sim-
ilar initially to the reduced models without a time delay.
However, a sufficiently large prestress can initiate supershear
rupture, forming a second pulse on the free surface. Barrier-
like models have a similar rupture history to the reduced
models with time delay. However, we find that in both cases,
the dynamic models produce more ground motion than the
reduced models with similar rupture history and equivalent
stress drop. The change in ground motion introduced by
constraining rupture velocity can be seen in Figure 5. The
black seismograms in this figure show the fault-parallel ve-
locity from a fully dynamic, spontaneous rupture (Model D).
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Figure 5. The effect of a rupture-velocity constraint at
a station 0.5 km off-fault from the surface point directly
above the heterogeneity. The nondimensional parameter
γ is a measure of the amount of variation in rupture ve-
locity that is allowed. (A complete description is given
in the text.) The black lines are velocity seismograms
for a spontaneous, dynamic rupture (Model D) with no
rupture-velocity constraint for a rupture with an asper-
ity (a) and a barrier (b). The rupture history of these
runs can be approximated by a constrained model shown
in gray. As we constrain the rupture velocity to be more
constant (and decrease γ), the barrier and asperity pulses
shrink, until we reach the red line, which shows a fully
constrained model where rupture velocity is constant ev-
erywhere and the rupture front is straight (Model A).
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To understand the remaining seismograms in Figure 5, first
consider a point on the fault a horizontal distance x from
the nucleation zone in Model D that has a rupture time of t′.
In a fully constrained model with constant rupture velocity
(Model A), this point has a rupture time of x/vr. Therefore
x/vr−t is the time perturbation necessary to force the point
in the constrained model to rupture at the same time as it
does in the spontaneous rupture. We can approximate the
spontaneous rupture with a constrained model by consider-
ing t in Equation 2 a function of position. If we make the
substitution t → t+ γ(x/vr − t′) for each point on the fault,
when γ = 1 we have a constrained rupture that approxi-
mates the rupture history of the fully dynamic, spontaneous
rupture. As we decrease γ, the rupture velocity is more and
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Figure 6. Comparison of fault-parallel velocity for two
spontaneous, dynamic models (Model D). The horizontal
black line in each diagram represents the fault trace on
the surface. Above this line, fault-parallel velocity is plot-
ted on the free surface. Below this line, fault-parallel par-
ticle velocity on the fault plane is shown. (These planes
are perpendicular to each other as shown in Figure 1.)
Note that the color scale is logarithmic.

more constrained, until γ = 0, giving a constant rupture-
velocity and a straight rupture front (Model A, shown in
red). Note that the red seismograms for the asperity and
barrier ruptures are different due to the difference in pre-
stress within the heterogeneities between the two models.
Figure 5 shows that in both the asperity and barrier cases,
the more constrained the rupture velocity, the smaller the
pulses from the heterogeneity, even though for a given case
(asperity rupture or barrier rupture), the prestress is the
same in both the constrained and in the spontaneous mod-
els. This is true even though the perturbation to the rupture
time x/vr − t′ is positive in the asperity region and negative
in the barrier region. The result is the same – constraints
in rupture velocity (in this case, limits on both rupture-
front curvature and variations in rupture velocity) lead to
less ground motion. This suggests that a kinematic model
that introduces such a constraint would give an upper limit
on τb. Smoothing about a particular rupture velocity in an
inversion, in effect, sets a scale for stress. This leads to an
overestimation of stress heterogeneity on the fault.

Figure 6 shows fault-parallel particle velocity (half of the
slip rate) on the fault plane as well as fault-parallel velocities
on the free surface for two Model D ruptures. The first panel
is shown 3.75 seconds after nucleation, and subsequent pan-
els are plotted at 0.69 second intervals. The rupture with an
asperity has a very different rupture history than the rup-
ture with a barrier, and this causes differences in the ground
motion as well. The asperity rupture produces a large super-
shear pulse traveling ahead of the (original) rupture front.
This happens in the barrier case as well, but the supershear
pulse is much smaller and dies out quickly. In the asperity
rupture, the supershear rupture leads to a Mach front that is
visible on the surface further down the fault. The breaking
of the barrier produces a very well-defined interface wave
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Figure 7. Seismograms and isochrones for two sponta-
neous, dynamic models. The blue seismograms show the
radiation produced for a point 2 km off-fault from the
point directly above the center of the heterogeneity. The
red seismograms are from a homogeneous rupture with
the same background prestress and yield stress as the het-
erogeneous ruptures and are shown as a reference. The
lower plots show S-wave isochrones for the heterogeneous
ruptures at this particular station. The contours are plot-
ted at 0.5 second intervals. The vertical blue line shows
the projection of the station location onto the fault, and
the gray circle shows the location of the heterogeneity.
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that travels unhindered along the previously broken regions
of the fault. In the asperity rupture, there is less rupture-
front focusing, and thus the asperity pulse is less well-defined
than the barrier pulse. The main differences in the ground
motion can be seen in the wave arrival times and the stop-
ping phase from the initial delay in rupture of the barrier
region. In particular, a large asperity can produce extremely
high fault-parallel velocities. The signature of a barrier is
most clearly seen in the rupture history on the fault, and
thus, in wave arrival times on the surface.

Sample seismograms and their corresponding S-wave
isochrones for Model D are shown in Figures 7 and 8. The
isochrones show which parts of the fault are contributing to
the ground motion seen at various times for a given station
[Bernard and Madariaga, 1984; Spudich and Frazer , 1984].
Radiation is quite different for the asperity and barrier rup-
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Figure 8. Seismograms and isochrones for two sponta-
neous, dynamic models in the format of Figure 7. Here
the seismograms and isochrones are shown for a point
2 km from the fault and 5 km in the forward direction
from the heterogeneity. The vertical blue line in the bot-
tom panels shows the projection of the station location
onto the fault.
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Figure 9. Contours of barrier break time (a) and final
fault-parallel offset (b) for spontaneous, dynamic mod-
els (Model D). The contours for static offset are plotted
0.5 km off-fault from the point directly above the barrier
center. The lowest data point in these plots represents a
homogeneous rupture, where the barrier region has the
same prestress and yield stress as the background. The
vertical contours for the static offset show that offset is
a function of prestress alone. Also, since the contours for
the break time have a different slope, break time and
static offset can be used together to constrain prestress
and yield stress.

tures. In the barrier rupture, the barrier initially resists
rupture, and this can be seen in the isochrones and in stop-
ping phases visible in the seismograms. The highly loaded
asperity, however, generates supershear rupture velocities,
which dramatically alter the isochrones in the forward di-
rection from the asperity. Also, the asperity pulse width is
much greater than the barrier pulse width due to rupture-
front focusing in the barrier rupture.

One can invert for the prestress and yield stress of the
heterogeneity, relative to friction, from only two parame-
ters: the break time of the heterogeneity and the final fault-
parallel offset on the surface. The break time, which can be
found from a kinematic inversion or simple timing of wave
arrivals, increases with fracture energy. The fault-parallel
static offset at all points on the surface is a monotonically
increasing function of dynamic stress drop. Contours for
each of these parameters for different levels of prestress and
yield stress in the barrier are shown in Figure 9. This plot
shows the results of 45 numerical experiments, each with a
different prestress and yield stress for the barrier. Note that
the static-offset contours are drawn for a particular point on
the surface, 0.5 km off-fault from the point directly above
the barrier center. However, the contours were found to be
similar for all near-field points. Any one station is suffi-
cient for this constraint, for all stations have offsets that are
increasing functions of prestress alone.

Note that in Figure 9, displacement is no longer a linear
function of prestress (that is, the contours for prestress are
not spaced evenly), as in the reduced models. Also, bar-
rier time delay is no longer proportional to fracture energy,
as found in the simpler case with periodic boundary con-
ditions and constant prestress (Figure 3). However, since
final displacement is independent of yield stress (as the ver-
tical contours in Figure 9b show), these two parameters can
be used together to determine both dynamic parameters.
Furthermore, the monotonicity of each parameter gives the
direction to search, and guarantees that the solution found
will be unique. Given enough stations to resolve barrier
break time, the dynamic parameters of a simple barrier are
fully constrained. In these models, we have left the slip-
weakening displacement, dc, constant. Due to the trade-
off between dc and strength excess [Guatteri and Spudich,
2000], we cannot constrain dc as well.

As the barrier size decreases, the dynamic scaling rela-
tions become linear. When the radius of the barrier is small
compared to the fault depth, fault-parallel static offset is
linear in prestress and the time delay is a linear function of
strength excess. Also, in the small barrier limit, the final
offset again scales with R2, as was the case in the original
model with fixed rupture velocity. For a smaller barrier,
however, the change in static offset may not be resolvable.
A barrier with R = 1 km and a prestress of 40 MPa increases
the fault-parallel static offset by 17% for a point close to the
fault (Figure 9b). If the radius is instead 0.35 km, the static
offset change becomes negligible at 2%. This is the main
limitation of our result: a strong heterogeneity is required
to provide the resolution to determine both the prestress
and yield stress of the barrier.

4. Conclusion

With a series of increasingly complex models, we have
analyzed the radiation produced by barriers and asperities.
We found that a delayed barrier break time initially arrests
the rupture, leading to stronger ground motion when the
barrier eventually fails. In addition, rupture-front focusing
leads to a sharper barrier pulse on the surface, which is even
more pronounced in spontaneous models. We found that the
pulses generated by heterogeneities were most clearly seen
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in the fault-parallel component. Here, the heights of the ve-
locity pulses help to constrain the size and strength of the
heterogeneity, while the width of the pulses constrain size
and depth. If the fault-perpendicular asperity or barrier
pulses can be resolved, their polarity gives the location of
the heterogeneity.

We also investigated the scaling in a fully spontaneous,
dynamic model. The static offset and barrier break time al-
low both dynamic parameters, prestress and strength, to be
constrained for the case of a circular barrier on an otherwise
homogeneous fault. This is primarily because prestress con-
trols static offset, while strength excess controls the break
time of the barrier.

In this paper, we have studied simplified rupture scenar-
ios in order to derive general results. Real earthquakes are
likely to be considerably more heterogeneous than our mod-
els. However, these results could be used to help guide kine-
matic inversions for earthquakes that are relatively homoge-
neous with the exception of a large stress drop in a concen-
trated region. One possible candidate is the 1984 Morgan
Hill earthquake. A kinematic inversion by Beroza and Spu-
dich Beroza and Spudich [1988] found a barrier region 13
km southeast of the hypocenter. This region initially re-
sisted rupture, and produced high slip when it failed. This
barrier, however, may have failed in the opposite direction
as the rest of the earthquake, as a large late pulse at a sta-
tion in the backward direction suggests that the directivity
from this region was to the back [Beroza and Spudich, 1988].
This is somewhat more complicated than the type of rupture
considered in this paper.

Also, we found that constraints on rupture velocity signif-
icantly affect ground motion. Restrictions that lead to less
rupture-velocity variation and less rupture-front curvature
dampen the pulses seen in ground-motion. This suggests
that kinematic inversions with rupture velocity constraints
will overestimate the actual stress heterogeneity. The un-
conventional approach in this paper – starting with a highly
simplified, constrained model, and adding back in the ele-
ments of a fully dynamic, spontaneous rupture, as opposed
to the conventional, kinematic approach of approximating a
fully dynamic rupture with a complex, but fully-constrained
rupture – allows the effects of these constraints and sim-
plifications to be clearly seen. This is important because
kinematic inversions are by far the most computationally
practical way to invert for the earthquake source. At the
same time, they are underdetermined, and can be unphysi-
cal. We must be aware of the effects of constraints that are
(of course, must be) imposed in kinematic inversions. Ide-
ally, these constraints will lead to ruptures that are physical
and consistent with dynamic ruptures as well.
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