
UCSF
UC San Francisco Previously Published Works

Title
Standardizing Benchmark Dose Calculations to Improve Science-Based Decisions in 
Human Health Assessments

Permalink
https://escholarship.org/uc/item/2bf436hr

Journal
Environmental Health Perspectives, 122(5)

ISSN
1542-4359

Authors
Wignall, Jessica A
Shapiro, Andrew J
Wright, Fred A
et al.

Publication Date
2014-05-01

DOI
10.1289/ehp.1307539
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bf436hr
https://escholarship.org/uc/item/2bf436hr#author
https://escholarship.org
http://www.cdlib.org/


Environmental Health Perspectives • volume 122 | number 5 | May 2014 499

ResearchAll EHP content is accessible to individuals with disabilities. A fully accessible (Section 508–compliant) 
HTML version of this article is available at http://dx.doi.org/10.1289/ehp.1307539. 

Introduction
Public health agencies [e.g., the U.S. 
Environmental Protection Agency (EPA) and 
the California EPA] conduct health assess-
ments of environmental chemicals to deter-
mine the likelihood of human health hazard 
and to establish levels of exposure considered 
as health protective. To derive quantitative 
toxicity values (i.e., cancer slope factors or ref-
erence doses/concentrations) for comparison to 
environmental exposure levels, the relationship 
between a dose/concentration of a chemical 
and a health outcome is characterized (U.S. 
EPA 2012b). Data from occupational cohorts 
or from studies in experimental animals are 
typically used for this purpose [National 
Research Council (NRC) 1983]. The first 
step in developing toxicity values is identify-
ing, for each data set, a point-of-departure 
(POD) dose, from which extrapolations to 
 environmentally relevant doses are made.

PODs traditionally used in non cancer 
health effect assessments are no-observed-
adverse-effect-levels (NOAELs) or lowest-
observed-adverse-effect-levels (LOAELs) 
(U.S. EPA 2012b). NOAELs and LOAELs 
are limited to the dose groups tested in 

a particular study and are not informed by 
the shape of the dose–response relationship 
(Barnes and Dourson 1988; Travis et al. 
2005). Benchmark dose (BMD) modeling, 
a process of fitting a model to dose–response 
data, estimates a POD that is associated with 
a predefined level of biological response [i.e., 
the benchmark response (BMR)] (Crump 
1984). BMD modeling addresses some limita-
tions of NOAELs and LOAELs in that BMDs 
account for the shape of the dose–response 
curve, are more independent of study design 
elements such as dose choice or spacing, and 
can be more easily compared across multiple 
chemicals. In addition, estimating the BMD 
lower limit (BMDL) informs uncertainty in 
risk estimates. However, not all dose–response 
data sets are amenable to BMD modeling, for 
example, when group sizes are very small but 
otherwise reflect the species of choice (as is 
often the case with dog studies).

BMD modeling is traditionally conducted 
on a chemical-by-chemical basis, with variabil-
ity introduced during selection of critical end 
points, BMR values and models used to com-
pute BMDs, as well as in evaluating model 
fit (Travis et al. 2005; U.S. EPA 2012b). For 

example, the biological significance of a given 
magnitude of change can differ among end 
points, especially when they range in severity. 
Thus, even though the choice of BMR may 
vary from chemical to chemical and study 
to study, we investigated ways to standardize 
BMD methodology to increase consistency 
in POD derivation, reduce complexity, and 
improve efficiency.

A large database of developmental toxic-
ity studies was used previously to derive 
BMD estimates (Allen et al. 1994a, 1994b) 
to demonstrate that a standardized approach 
to dose–response modeling is advantageous. 
Using a limited set of data and models, it was 
shown that BMDs based on a 5% extra risk 
response were within an order of magnitude 
of statistically derived NOAELs. In the pres-
ent study, we expand upon this previous work 
by applying a standardized process for con-
ducting BMD modeling to 880 dose–response 
data sets for 352 environmental chemicals 
extracted from publicly available human health 
assessments. Using standard approaches, as 
recommended by the U.S. EPA (2012a), we 
evaluated multiple end points and identified 
features of animal study methods that may 
influence their utility for BMD modeling.

Methods
Data sets. The U.S. EPA Integrated Risk 
Information System (IRIS) (U.S. EPA 
2013a), the U.S. EPA Office of Pesticide 
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Background: Benchmark dose (BMD) modeling computes the dose associated with a prespecified 
response level. While offering advantages over traditional points of departure (PODs), such as no-
observed-adverse-effect-levels (NOAELs), BMD methods have lacked consistency and transparency 
in application, interpretation, and reporting in human health assessments of chemicals.

oBjectives: We aimed to apply a standardized process for conducting BMD modeling to reduce 
inconsistencies in model fitting and selection.

Methods: We evaluated 880 dose–response data sets for 352 environmental chemicals with exist-
ing human health assessments. We calculated benchmark doses and their lower limits [10% extra 
risk, or change in the mean equal to 1 SD (BMD/L10/1SD)] for each chemical in a standardized way 
with prespecified criteria for model fit acceptance. We identified study design features associated 
with acceptable model fits.

results: We derived values for 255 (72%) of the chemicals. Batch-calculated BMD/L10/1SD 
values were significantly and highly correlated (R2 of 0.95 and 0.83, respectively, n = 42) with 
PODs previously used in human health assessments, with values similar to reported NOAELs. 
Specifically, the median ratio of BMDs10/1SD:NOAELs was 1.96, and the median ratio of 
BMDLs10/1SD:NOAELs was 0.89. We also observed a significant trend of increasing model viability 
with increasing number of dose groups.

conclusions: BMD/L10/1SD values can be calculated in a standardized way for use in health assess-
ments on a large number of chemicals and critical effects. This facilitates the exploration of health 
effects across multiple studies of a given chemical or, when chemicals need to be compared, provid-
ing greater transparency and efficiency than current approaches.
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Programs (U.S. EPA 2013b), the U.S. EPA 
Superfund Regional Screening Levels (RSL) 
(U.S. EPA 2013d), and the California EPA 
(Office of Environmental Health Hazard 
Assessment 2009a, 2009b) were surveyed for 
publicly available information on chemicals 
with human health assessments. Superfund 
RSL also included toxicity values from the 
U.S. EPA Provisional Peer Reviewed Toxicity 
Values (U.S. EPA 2013c), the Centers for 
Disease Control and Prevention’s Agency for 
Toxic Substances and Disease Registry (2013), 
and the U.S. EPA Health Effects Assessment 
Summary Tables (U.S. EPA 2011a). We col-
lected both non cancer and cancer toxicity 
values [reference doses (RfDs), reference con-
centrations (RfCs), oral slope factors, inhala-
tion unit risks, and cancer potency values], 
and PODs that were used to derive the toxicity 
values, where applicable (NOAELs, LOAELs, 
and BMDLs).

For each toxicity value, we extracted the 
dose–response data from the critical study 
used in the human health assessment. For 
each chemical, we obtained the name and a 
unique chemical identifier in the form of the 
Chemical Abstracts Service Registry Number 
(CASRN). The chemicals and their associated 
toxicity values, PODs, dose–response data, 
and calculated BMD/Ls are from the Carolina 

Center for Computational Toxicology (http://
comptox.unc.edu/bmddata.php).

Chemical structure curation. Chemicals 
lacking CASRN were removed (e.g., mixtures 
such as “coke emissions”). CASRN were used 
to retrieve chemical structure information 
in the form of simplified molecular-input 
line-entry system codes (Weininger et al. 
1989), which were converted to structure-
data files using KNIME: the Konstanz 
Information Miner (Berthold et al. 2007). 
A rigorous chemical structure curation pro-
tocol (Fourches et al. 2010) was applied to 
ensure that the chemical structures were stan-
dardized and that mixtures and chemicals for 
which descriptors cannot be calculated (i.e., 
 inorganics, organometallics) were removed.

BMD/L calculation. BMDs and BMDLs 
were calculated in a consistent fashion using 
BMDS Wizard (beta version 1.6.1) (ICF 
International 2012) and BMD Software 
(BMDS, version 2.3.1; http://www.epa.gov/
ncea/bmds/). Specifically, we applied auto-
mated rules with no manual interpretation of 
results with respect to the following: a) selection 
of the BMR value, b) choice of the models(s), 
c) model fitting criteria, d) computation of the 
BMDL, and e) reporting of BMD and BMDL 
values. All automated rules were consistent with 
BMD modeling guidelines (U.S. EPA 2012a). 

The results are hereafter referred to as “batch-
calculated” BMDs and BMDLs.

The BMDS Wizard program (ICF 
International) was used to automatically run 
BMDS. This program also recommended 
BMD/Ls for the collected dose–response 
data, based on the best-fitting model selected 
according to decision logic determined prior 
to modeling. The model decision logic and the 
criteria used to determine each model’s viabil-
ity, based on adequacy of the fit of the model 
to the data are specified in Supplemental 
Material, Table S1. That is, after models are 
fit to the dose–response data, the tests listed in 
Supplemental Material, Table S1 were used to 
assign model fits of the dose–response data to 
Unusable, Questionable, or Viable categories 
by BMDS Wizard. As described in Figure 1, 
only Viable model outputs are used in the 
remainder of this analysis. We termed such 
Viable models “successful.”

Data sets were grouped according to 
dose–response type (continuous, dichoto-
mous, or dichotomous-cancer), which guided 
the choice of BMRs and the types of models 
used to calculate BMDs. All models specified 
in the BMD modeling guidelines (U.S. EPA 
2012a) were run for the appropriate data type 
(Table 1). Several additional model types that 
take into account more advanced biology—
such as nested dichotomous, background-dose, 
background-response, repeated response, con-
centration/time, and multi-tumor models—
were not within the scope of this project.

The BMR levels associated with the 
batch-calculated BMD/Ls, termed BMD/
BMDL10/1SD throughout, were standardized 
only according to the mathematical repre-
sentation of the response data (continuous or 
dichotomous), following the recommendations 
outlined in BMD Guidance (U.S. EPA 2012a). 
A 10% BMR was used for dichotomous data, 
and a “change in the mean equal to one control 
SD” BMR was used for continuous data. These 
two BMR levels are the standard reporting lev-
els for each dose–response type and do not nec-
essarily represent equivalent values. However, 
Crump (1995) found that using a 1 control- 
group SD change for the continuous end point 
gives an excess risk of approximately 10% for 
the proportion of individuals < 2nd percentile 
or > 98th percentile of controls for normally 
distributed effects. Tailoring of BMR levels to 
the specific type or severity of the end point 
measured may depend on the decision-making 
context for which the BMD results will be used 
and was, therefore, beyond the scope of the 
present study.

The final model and associated BMD and 
BMDL for each dose–response set was selected 
according to the following criteria. The Viable 
model with the lowest Akaike’s information 
criterion (AIC) was always selected if the 
BMDLs were “sufficiently close,” that is, there 

Figure 1. Schematic of BMDS Wizard workflow, adapted with permission from ICF International. AIC, 
Akaike’s information criterion.
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Table 1. Summary of BMRs and models used in BMDS, according to dose–response type.

Dose–response type Dichotomous Continuous Dichotomous-cancer
Benchmark response 10% extra risk Change in the mean = 1 control-

group SDa
10% extra risk

Models used to 
calculate BMDs and 
BMDLsb

Gamma, Dichotomous-
Hill, Logistic, 
LogLogistic, Probit, 
LogProbit, Weibull, 
and Multistagec

Exponential 2, Exponential 3, 
Exponential 4, Exponential 5, 
Hill, Power, Polynomialc, and 
Linear (both constant and 
modeled variance models for 
each model above)

Cancer multistage, 1st-order 
through n–1 order, where 
n is the number of dose 
groups

Distribution assumption Binomial Normal Binomial
aThis control-group SD is the modeled SD. bModels selected based on defaults in BMDS and preferences of the U.S. 
EPA IRIS program (U.S. EPA 2012a). cOf order n–1, where n is the number of dose groups for each data set modeled.
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was no more than a 3-fold difference between 
lowest and highest BMDL for Viable models 
(Davis et al. 2011). Otherwise, the model with 
the lowest BMDL was selected. If no models 
were Viable, the highest dose(s) were removed, 
and the models were re-run in cases where at 
least three (including control) doses remained. 
If two or more models had the same lowest 
AIC value and the BMD and BMDL values 
were different, the averages of the BMDs and 
BMDLs of those models were recorded. This 
final step is not done automatically by the 
BMDS Wizard. After completion of a model-
ing run of a dose–response data set and BMR, 
we recorded the BMD and BMDL for all suc-
cessful models as well as any applicable model 
warnings or notes (based on passing or failing 
the tests listed in the decision logic reported in 
Supplemental Material, Table S1). If no model 
was successful, the dose–response data set was 
noted as having failed BMD modeling.

BMD/L selection. If a chemical had more 
than one dose–response data set, we selected 
the BMDs and BMDLs as follows: a) the 
lowest BMD (without warnings, if available) 
and the BMDL associated with it, and b) the 
lowest BMDL (if different from the previous 
BMDL). These were selected regardless of end 
point/effect.

Data analysis. We examined the features 
of the overall resulting data set, including the 
range and distribution of the batch-processed 
BMD and BMDL values. BMDs and BMDLs 
calculated using the method described here 
were compared to BMDLs and other PODs, 
particularly NOAELs, for the same chemicals as 
reported in previous human health assessments, 
using several linear regression methods to cal-
culate Pearson (R2 values) and Spearman (ρ 
values) correlations. Tests for significance were 
calculated using two-tailed unpaired t-tests. The 
chi-squared test for trend in proportions was 
used to test for significance in trends. p-Values 
< 0.05 were considered significant. Statistical 
analysis and graphical outputs were produced 
by Microsoft Excel (Armonk, NY), R (version 
2.15; R Foundation for Statistical Computing, 
Vienna, Austria), GraphPad Prism (La Jolla, 
CA) software, and the Health Assessment 
Workspace Collaborative (Shapiro 2013).

Results
Curation of chemicals and data. We identi-
fied 1,260 chemicals with at least one U.S. 
EPA- or California EPA-derived toxicity value. 
Mixtures, chemicals missing structural informa-
tion, and inorganic, organometallic, and dupli-
cate structures were removed during curation 
(n = 374). We collected dose–response data 
for 352 of the remaining 886 chemicals with 
toxicity values, yielding 880 dose–response data 
sets. We prioritized data collection according 
to public availability of the information (see 
Supplemental Material, Figure S1).

BMD modeling. Of the 880 dose–response 
data sets available for analysis, we success-
fully [termed Viable in BMDS Wizard (ICF 
International)] modeled 603 according to the 
prespecified statistical and other adequacy cri-
teria given in Supplemental Material, Table S1 
without any adjustments. Ninety-nine dose–
response data sets contained fewer than three 
dose groups (including the control) and thus 
could not be modeled. For 178 dose–response 
data sets, a first-pass attempt to model with 
all dose groups failed. When the highest dose 
group was omitted, we obtained successful 
models for an additional 66 dose–response 
data sets while 112 remained unmodelable. In 
total, 669 dose–response data sets were suc-
cessfully modeled, whereas 211 dose–response 
data sets were not (see Supplemental Material, 
Figure S2). The modeled data sets covered 
255 chemicals, whereas dose–response data 
sets for a remaining 97 chemicals did not pass 
model fit and completion tests. Overall, the 
modeling success rates were 86, 91, and 75% 
for cancer, dichotomous, and continuous data 
sets, respectively. The most frequently used 
model was exponential for continuous data 
sets and log-logistic for dichotomous data sets. 
See Supplemental Material, Figure S3, for 
additional information on the models used, 

including a characterization of the models used 
by the number of dose groups.

We also evaluated the model-fit warnings 
associated with successful models (271 of 669, 
or 40.5%, successful data sets had at least one 
warning), and we found that the majority 
(64%) of these concerned extrapolating more 
than three times below the lowest non-zero 
dose (median values were 6.4 for BMDL and 
5.0 for BMD extrapolations). The next most 
common (13.2%), but not mutually exclusive, 
warning was high (> 5) BMD/BMDL ratio 
(see Supplemental Material, Figure S4).

Comparison to PODs reported in human 
health assessments. We made statistical com-
parisons among previously reported and 
batch-calculated PODs for the PODs used as 
the basis for published RfDs (fewer data were 
available for comparison of PODs for other 
toxicity values and analyses were designed to 
be as consistent as possible). The lowest batch-
calculated BMD10/1SD and BMDL10/1SD were 
compared with BMDLs from the same data 
set used for PODs in previous human health 
assessments. We found these untransformed 
values to be significantly and highly linearly 
correlated (R2 of 0.95 and 0.83, respectively, 
n = 42) (Figures 2A,B). More than 88% of 
values were within one order of magnitude of 

Figure 2. Correlations of batch-calculated BMDs and BMDLs with BMDLs (A,B) and NOAELs (C,D) as 
reported in human health risk assessments. R2 values represent squared Pearson correlations. ρ Values 
represent Spearman correlations. Dotted line represents the regression line through the origin. Solid line 
represents the best-fit line. “a” denotes dichloromethane values; “b” denotes trichloroethylene values.
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the BMDLs used in past assessments, and the 
mean values were not significantly different (see 
Supplemental Material, Figure S5). We noted 
two outliers (both were included in the correla-
tion analysis): dichloromethane and trichloro-
ethylene (marked “a” and “b,” respectively, in 
Figure 2A,B).

These same batch-calculated BMD10/1SD 
and BMDLs10/1SD were also compared with 
NOAELs from the same data set used as 
PODs in previous human health assessments, 
and, after log-transformation to account for 
skewness, were found to be significantly lin-
early correlated (R2 of 0.66 for both, n = 75) 
(Figure 2C,D; see also Supplemental Material, 
Table S2, for the list). The comparison was 
further made with LOAELs used previously 
as PODs, or all previous PODs aggregated 
together, with significant linear correlation 
after log transformation (LOAELs: R2 of 0.78 
and 0.63, respectively, n = 20; PODs: R2 of 
0.62 and 0.59, respectively, n = 138) (see 
Supplemental Material, Figure S6).

Comparison to NOAELs reported in 
human health assessments. We calculated the 
ratios of batch-calculated BMDs10/1SD and 
BMDLs10/1SD to oral NOAELs reported in 
previous health assessments (Figure 3A,B; 
n = 75) (there was an insufficient number 
of inhalation NOAELs for statistical com-
parison), respectively. The median ratio 
of BMDs10/1SD:NOAEL was 1.96, with a 
5th–95th percentile range of 0.24–56.9. 
The median ratio of BMDLs10/1SD:NOAEL 
was 0.89, with a 5th–95th percentile range 
of 0.06–23.7. In addition, we compared 
LOAELs from the studies used to identify the 
NOAELs used in the previous health assess-
ments when available, and found a median 
ratio of 3.81 with a 5th–95th percentile range 
of 1.87–10.7 (Figure 3C, n = 68).

Batch-calculated BMD/Ls permit com-
parisons among adverse effects and chemicals. 
We selected nitroguanidine (CASRN 556-
88-7) as an example chemical to illustrate 
how the standardized BMD approach can 

be used to calculate “batch-calculated candi-
date reference values” among multiple adverse 
health effects. Several dose–response data sets 
were available for nitroguanidine, including 
body weight changes, maternal toxicity, and 
non-neoplastic histopathological changes. In 
the original human health assessment, all of 
these end points were used to select a single 
NOAEL and derive an RfD. The collection 
of batch-calculated BMDLs10/1SD was arrayed 
and compared to the NOAEL (Figure 4A) 
(U.S. EPA 1993). Uncertainty factors for 
interspecies uncertainty (UFA = 10), intra-
species variability (UFH = 10), sub chronic to 
chronic extrapolation (UFS = 10), and data-
base incompleteness (UFD = 3) were applied 
in the original assessment to derive a reference 
dose of 0.1 mg/kg/day. “Batch-calculated 
candidate RfDs” based on batch-calculated 
BMDLs and the same uncertainty factors are 
presented in Figure 4A. The same type of 
analysis was conducted for di(2-ethylhexyl)
adipate (CASRN 103-23-1) and penta chloro-
phenol (CASRN 87-86-5) (see Supplemental 
Material, Figure S7).

We also used BMDs to illustrate com-
parisons across chemicals because they reflect 
central estimates of the dose associated with 
a standardized level of benchmark response 
based only on the mathematical representa-
tion of the response (continuous or dichot-
omous). We ranked multiple chemicals 
according to their calculated BMDs10/1SD 
(i.e., relative potency) in Figure 4B.

Study design features as a factor in BMD 
modeling success. Because about a quarter of 
the dose–response data sets could not be suc-
cessfully modeled using the BMD approach 
(i.e., Unusable or Questionable according to 
BMDS Wizard), we reviewed study design 
characteristics that may be associated with suc-
cess or failure of modeling. Dose–response 
data sets that were not modeled successfully 
failed for a variety of reasons, including poorly 
modeled variance, goodness of fit p-test values 
< 0.05, or a lack of confidence in calculated 
values, such as by having a BMDL higher than 
highest dose or a BMD/BMDL ratio > 20 (see 
Supplemental Material, Figure S8).

We found a significant (p < 0.05) differ-
ence in the number of dose groups of success-
ful dose–response data sets versus unsuccessful 
dose–response data sets (see Supplemental 
Material, Figure S9). Upon further exami-
nation, we observed a significant (p < 0.01) 
trend of increasing viability of models 
with increasing numbers of dose groups 
(Figure 5A). We found that the number of 
animals per dose group is statistically signifi-
cantly associated with BMD modeling success 
(p < 0.001) (Figure 5B). Successful models 
had lower numbers of animals per dose 
group than unsuccessful  models, across all 
dose–response data types (i.e., dichotomous, 

Figure 3. Histograms of log-transformed ratios of batch-calculated BMDs to NOAELs (A), BMDLs to 
NOAELs (B), and LOAELs to NOAELs (C). The y-axis shows the frequency counts; the x-axis shows the 
magnitude of the ratio; the dashed lines indicate the 5th and 95th percentiles of the distribution; and the 
arrows indicate median values.
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dichotomous-cancer, continuous). There was 
no correlation between the number of dose 
groups and number of animals per dose group 
(data not shown). The spacing between the 
dose level of dose group 2 and dose group 3 
was not associated with BMD modeling out-
come (data not shown).

Discussion
We evaluated the efficacy and reliability of a 
standardized BMD approach, compared it to 
chemical-specific BMD modeling, and iden-
tified lessons learned for future application 
of BMD modeling in human health assess-
ments. Our analysis indicates that a standard-
ized approach can be successfully applied to 
a large number of chemicals and data sets. 
We limited our analysis to the dose–response 
data sets from which PODs were identified in 
past assessments but which were not neces-
sarily chosen with BMD modeling in mind. 
It is likely that this approach would be even 
more successful if applied to data sets specifi-
cally chosen for BMD modeling (e.g., those 
with sufficient dose groups and dose–response 
trends) (Davis et al. 2011).

W e  c o m p a r e d  b a t c h - c a l c u l a t e d 
BMD/Ls based on a standardized, guidance-
driven choice of benchmark responses and 
models with BMD/Ls based on chemical-
specific decisions made by different asses-
sors and at different times. Batch-calculated 
BMD/Ls were significantly correlated with 
BMDLs derived one chemical at a time. 
Approximately 20% of the batch- calculated 
values used a different BMR from the 
BMR used in the original assessment (see 

Supplemental Material, Table S3). Two 
outliers were dichloromethane and trichloro-
ethylene and the difference was largely due to 
the use of PBPK model–based dosimetry in 
the original assessments. The PODs for these 
two chemicals already reflected a conversion 
from animal to human equivalent dose and an 
adjustment for human toxicokinetic variabil-
ity (U.S. EPA 2011b, 2011c). For trichloro-
ethylene, an additional difference was the use 
of a 10% extra risk in the batch-calculated 
modeling as opposed to a 1% extra risk in the 
 assessment (U.S. EPA 2011c).

Because our analysis uniquely included 
BMD, BMDL, and NOAEL values for 
75 chemicals, we evaluated the relationship 
between batch-calculated BMDs and BMDLs 
and NOAELs selected during the course of 
a human health assessment. NOAELs are 
thought to approximate the dose that represents 
a 1–5% BMR (Allen et al. 1994a). However, 
our findings show that BMDs based on a 
10% or 1-SD BMR are similar to NOAELs 
(Figure 3B) (U.S. EPA 2012a). Similarly, 
Sand et al (2011) found that the median upper 
bound on extra risk at the NOAEL was approx-
imately 10% using 786 National Toxicology 
Program cancer data sets.

Our analysis also highlights the utility of 
BMD modeling and batch-processed candi-
date reference value calculations in evaluating 
the entirety of a database on a specific chemi-
cal. Although we used only data from the 
critical study evaluated in the original human 
health assessment, our findings demonstrate 
that BMDLs can be calculated in a standard-
ized way to facilitate comparison among 

multiple health effects and multiple studies 
at a fixed BMR, consistent with the advice 
from the National Academies (NRC 2009). 
This approach also aids identification of out-
lier evidence or studies if some calculations 
are orders of magnitude higher or lower than 
the balance of the data. Thus, this approach 
can increase objectivity in evaluating multiple 
studies, enhance transparency, and improve 
communication with assessors, peer-reviewers, 
and the general public.

We posit that a comparable approach can 
be applied in other contexts. For example, 
high-throughput in vitro testing is producing 
vast amounts of data, consisting of hundreds 
of dose–response data sets on thousands of 
chemicals. However, it is unrealistic to expect 
that individual evaluation of concentration-
response relationships in each data set would 
be commensurate with timely and efficient 
analyses of these data. Calculation of BMD-
like values from in vitro data has been sug-
gested (NRC 2009), and our approach can be 
applied to increase efficiency and transparency 
in processing such large data sets. Sand et al. 
(2012) provided a comprehensive review of 
the considerations for selecting appropriate 
standardized BMRs when performing con-
centration-response analysis of in vitro data. 
Consistent selection and application of BMRs 
and a standardized decision logic yields val-
ues that enable comparisons across chemicals 
(Sirenko et al. 2013) and may inform further 
testing using a process that is relevant for and 
familiar to risk managers and decision makers.

In addition, consistently derived BMDs 
that represent the same biological response 

Figure 4. Array of batch-calculated BMDLs for the critical effects observed in studies of nitroguanidine compared with the IRIS NOAEL and RfD (A), and array 
of batch-calculated BMDs for selected chemicals compared with RfDs and PODs reported in human health assessments (B). Yellow circles indicate batch-
calculated BMDs and BMDLs; orange circles indicate RfDs based on batch-calculated BMDLs. Uncertainty factors: UFA, interspecies uncertainty; UFD, database 
incompleteness; UFH, intra species variability; UFS, sub chronic to chronic extrapolation.
aReduced body weight gain. bRetarded ossification of pubis. c< 3 sternebrae ossified. d< 3 caudal vertebra ossified. eReduced weight gain in female rats. fReduced weight gain in female 
rats. gRetarded ossification of pubis. h< 3 caudal vertebra ossified. i< 3 sternebrae ossified. jReduced body weight gain. kMaternal toxicity. lRenal lesions (glomerulosclerosis).  mDecreased 
delayed hypersensitivity response. nRenal tubule regeneration. oIncreased splenic weight. pRenal cytomegaly. qNest-like infolds of the nasal respiratory epithelium. rChronic irritation. 
sLung adenoma or carcinoma (combined). tHemosiderin deposition in the liver. uIncreased mortality. vLung and kidney histopathology. wReduced offspring body weight.
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can provide valuable quantitative information 
for other analyses. For example, they can be 
used to evaluate the potential for quantitative 
structure-activity relationship modeling. If a 
chemical structure is found to be predictive of 
a chemical’s BMD, this would allow decision-
makers to evaluate a chemical’s potential haz-
ard to human health even if animal or human 
data on that chemical are lacking.

Our analysis also informs advancement of 
a unified dose–response modeling framework 
that is applied consistently to cancer and non-
cancer effects proposed by the NRC (2009). 
The exact nature and implementation of this 
framework has yet to be determined. For 
dichotomous end points, current U.S. EPA 
BMDS guidance specifies a smaller and more 
constrained set of models for cancer than for 
non cancer end points (U.S. EPA 2012a). 
This is a potential area for harmonization as 
health assessments move towards unifying the 
cancer and non cancer assessments that could 
be readily explored by the batch-processing 
approach explored herein.

Finally, results of our analysis also give 
insight into study design attributes that 
increase the potential for BMD modeling 
success. We observed that successful dose–
response data sets tend to have higher num-
bers of dose groups with fewer animals in 
each dose group. This result is in accord with 
Slob et al. (2005) who found, using simulated 
data, that a higher number of dose groups 
will help to define the shape of the dose–
response relationship and may minimize the 
risk for unfavorable dose placement. This may 
be due to several factors. First, as the num-
ber of animals in each dose group increases, 

flexi bility in slight deviations between the sta-
tistical model’s shape and the true underlying 
dose–response function decreases. Second, for 
dichotomous models, there may be sources 
of variation beyond the binomial statistics 
assumed by BMDS. In either case, a statisti-
cally poor model fit is more likely with more 
animals per dose group, all other things being 
equal. This may arise because the test for lack 
of fit has more power and is more likely to 
reject the model fit when group sample size 
is high. Nonetheless, this finding does not 
imply that fewer animals per dose group is 
preferable overall. Modeling success needs 
to be balanced against having enough sta-
tistical power to detect a response (Melnick 
et al. 2008). Because the majority of warn-
ings found in otherwise successful models are 
due to extrapolation more than three times 
below the lowest non-zero dose, it is likely that 
those data sets did not have adequate data to 
support the BMRs used, and such a warning 
would not have occurred if a higher BMR has 
been selected. In addition, the models may 
not account for non biological sources of varia-
tion (e.g., group effects) and are dependent on 
a biological or statistical dose–response trend 
(Sand et al. 2008). Consideration of these fac-
tors together with a more detailed evaluation 
of the characteristics of dose–response data 
sets associated with BMD modeling success 
might illuminate additional useful trends that 
can inform future study design.

We acknowledge several limitations. 
Because we did not conduct chemical-by-
chemical evaluation, the BMR was not 
adjusted based on data source or effect sever-
ity. A higher or lower BMR may be warranted 
based on the study type (e.g., epidemiologi-
cal vs. experimental animal) or severity of 
the biological response (e.g., develop mental 
malformations vs. organ-specific histopatho-
logical changes). However, it is likely that a 
fixed BMR would be appropriate still (i.e., to 
enable comparisons among chemicals with 
the same critical effect and observed sever-
ity) in contexts using a standardized BMD 
process. In addition, BMD models might fit 
the data mathematically, but may not inform 
plausibility of the biological response (Davis 
et al. 2011). Statistical evaluation was limited 
to model-fit criteria and did not include other 
considerations such as evaluating the model 
fit in the low-dose region. Also, cutoffs were 
fixed in an automated manner according to 
the decision logic, resulting in less flexibility 
in assessing model viability than if each cutoff 
were independently adjusted. These issues can 
be addressed by a chemical-by-chemical or 
model-by-model analysis, if necessary.

Furthermore, when using BMD modeling 
to derive a chemical-specific POD, U.S. EPA 
guidance recommends an evaluation of the 
pertinent literature to first identify the most 

appropriate study(ies) for analysis based on 
hazard identification, the type of data, and 
study design (U.S. EPA 2012a). However, 
our analysis was based on studies that were 
not necessarily selected for their amenability 
to BMD modeling. Thus, for a given chemi-
cal, it was possible that the dose–response 
data were unavailable due to inadequate 
reporting (e.g., original data not provided or 
only represented graphically in primary litera-
ture, group means reported without SDs, no 
control group reported). This highlights the 
importance of presenting the raw data used 
to identify the POD in assessment summaries 
(such as the online IRIS Summaries).

Conclusions
Our findings demonstrate that a standard-
ized BMD modeling approach can be used 
to derive BMD/Ls10/1SD that are significantly 
and highly correlated with BMDLs derived 
one chemical at a time. The median ratio of 
BMDs10/1SD to NOAEL was < 2, whereas 
BMDLs10/1SD values were generally even 
lower than NOAELs. Deriving BMD/Ls in 
a consistent way across chemicals and end 
points gives values that represent the same 
response level and which are, therefore, use-
ful in various decision-making contexts, such 
as identifying a candidate reference value 
or determining relative potency of chemi-
cals. Such a standardized approach can also 
be applied to data sets when speed and effi-
ciency are priorities (e.g., in vitro assays). 
Ultimately, our findings show that a stan-
dardized approach, which makes BMD mod-
eling transparent and easy to reproduce, is 
feasible and thus may be considered for wider 
use in certain decision contexts and types of 
assessments. In specific cases, expert judg-
ment will still be needed in evaluations of 
alternative BMRs based on the study type or 
severity of biological response. Such judg-
ment will assure that the standardized BMD 
modeling yields an accurate reflection of the 
under lying biology.
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