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ABSTRACT OF THE DISSERTATION

Exploring User-Centric Generative Models: Advancing User Control, Comprehension, and

Creative Capacity

by

Noyan Evirgen

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Los Angeles, 2023

Professor Xiang ‘Anthony’ Chen, Chair

The rapid advancement of generative models, particularly in image generation and manip-

ulation, has opened new possibilities in creative and design fields. However, their complex

‘black box’ nature poses significant challenges for user interaction and control, especially

for non-experts. This dissertation addresses these challenges by developing and evaluating

user-centric tools that enhance interaction with Generative Adversarial Networks (GANs)

and Text-to-Image (T2I) models.

Central to this work is the exploration of user-driven methods to improve the usability

and accessibility of these models. The research introduces innovative tools that empower

users to iteratively refine and control the generative process. These tools are designed to

complement existing GAN architectures, allowing users to interact more intuitively with the

models, particularly in tasks requiring precise image editing and creative content generation.

Empirical studies form a significant part of this research, evaluating the effectiveness

of these tools in real-world scenarios. The studies involve user tasks in image editing and

creative content generation. Findings demonstrate that the developed tools not only facilitate
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a more intuitive interaction with generative models but also enable users to achieve superior

results compared to existing state-of-the-art methods.

Additionally, this dissertation investigates ways to enhance user understanding of the

generative process. By making the mechanisms of these models more transparent and com-

prehensible, the research contributes to a more informed and effective use of these technolo-

gies.

In conclusion, this dissertation focuses on making advanced generative models more ac-

cessible and user-friendly. It offers insights into the development of intuitive tools that

bridge the gap between the complex capabilities of generative AI models and the creative

and practical needs of users.
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CHAPTER 1

Introduction

1.1 A New Era in Artificial Intelligence: Generative Models

As we stand at the threshold of a new era in technology, the rise of artificial intelligence (AI)

marks a turning point in human history, a period characterized by unparalleled advance-

ments and transformative innovations. AI, once a domain relegated to the realms of science

fiction and theoretical research, has rapidly evolved into an integral part of our daily lives,

reshaping industries, redefining human interaction, and revolutionizing the way we perceive

and interact with technology.

At the heart of this AI revolution lies the emergence of generative models, a groundbreak-

ing development that has changed the landscape of AI. These generative models, driven by

intricate algorithms and deep learning techniques, have ushered in a paradigm shift in var-

ious domains. In the realm of visual arts and design, models like generative adversarial

networks (GANs) and text-to-image systems have empowered creators with tools to gen-

erate lifelike images, realistic animations, and innovative designs. Similarly, in the field of

language and communication, LLMs have redefined the boundaries of text generation, en-

abling the creation of coherent, contextually relevant, and often insightful textual content.

Their applications span from writing assistance to conversational agents, from content cre-

ation to language translation, representing a quantum leap in how we interact with and

utilize language in the digital age.

These generative models have opened a myriad of possibilities across industries. In
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healthcare, they aid in synthesizing medical data for research, diagnostic simulations, and

training. In education, they serve as dynamic tools for learning and creativity, enhancing

student engagement and understanding. In entertainment and media, they offer novel ways

to produce content, tell stories, and engage audiences. The potential of generative models

extends to sectors like finance, law, and engineering, where they offer solutions for data

synthesis, predictive modeling, and problem-solving.

However, with all their capabilities and potential, these generative models also present

a significant challenge: their complexity and ‘black box’ nature. This aspect often renders

them inaccessible to most potential users, particularly those without specialized training in

AI. The intricate workings of these models, while fascinating, remain a mystery for many,

limiting their ability to leverage these tools to their full potential.

This observation, where the most advanced tools in AI are simultaneously the most

enigmatic and out of reach for the general public, sets the stage for the research presented in

this dissertation. In this environment of technological growth and the need to make AI tools

available to everyone, the dissertation introduces innovative solutions and insights aimed at

bridging the gap between the complex world of generative models and the everyday user.

1.2 Challenges and Research Questions in User-Centric Genera-

tive Models

Generative AI models present a unique set of challenges, distinct from those of traditional

decision-making AI models, such as classification or regression. The effectiveness of decision-

making models is typically gauged by performance, which can be quantified using specific

metrics. These metrics can often be improved through dataset enhancements or adjustments

in model architecture. Furthermore, the predictions made by such models can serve as

‘advisory’ inputs in high-risk fields like medicine, supplementing but not replacing human

decision-making.
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However, the dynamics of AI-human collaboration in the context of generative models

are less straightforward. Assessing the quality of images generated by these models with

standard metrics is challenging, and the integration of generated data into user workflows is

often not clearly defined.

In tasks involving classification or regression, the algorithms’ primary goal is to make

predictions and, ideally, ‘explain’ the reasoning behind these predictions. This allows users to

incorporate both the explanation and prediction into their workflow seamlessly. In contrast,

the interaction between users and generative models is not immediately apparent. Consider,

for instance, a game developer using a generative AI model to create human faces. The

question arises: should they simply use a set of generated images directly in their games, or

should they provide the model with specific conditions, such as generating faces with blue

eyes and long hair? Further complexities emerge when considering alterations to an already

created image. The inherently complex nature of generation tasks necessitates a reevaluation

of how humans and AI models interact. As a result, addressing these issues gives rise to

several pertinent research questions:

1. Tailoring generative model interfaces for non-expert users:

How can the interfaces of generative models be designed or adapted to be more user-

friendly and intuitive, especially for non-expert users, to facilitate effective control and

guidance of the generative process?

2. Aligning generative outputs with specific user creative goals:

How can generative models be tailored to better align their outputs with specific user

goals, particularly in creative tasks that require detailed customization and nuanced

control?

3. Empirical evaluation of user-centric generative models:

What methodologies and criteria can be employed to empirically evaluate the effec-

tiveness of user-centric tools in improving user experience and outcome quality in
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interacting with generative models?

These research questions aim to address the fundamental challenges in bridging the gap

between the advanced capabilities of generative AI models and the practical needs of their

users. Exploring these questions is crucial for enhancing the utility and applicability of

generative models in various real-world scenarios.

1.3 Contributions and the Outline of the Dissertation

To address the research questions outlined above, the dissertation presents research with

three primary aims:

1. It aims to advance user control in generative models, with a particular focus on the

image domain. This involves enhancing the ability of users, especially those with-

out extensive technical expertise, to effectively manipulate and guide the generative

processes.

2. The research seeks to increase creative capacity by developing user-centric tools. These

tools are designed to enable deeper and more intuitive interactions between users and

generative models, thereby broadening the creative possibilities available to them.

3. An essential goal is to improve users’ understanding of the generative process. This

involves elucidating the complex mechanisms underlying generative models, making

them more transparent and comprehensible, which in turn can lead to more informed

and effective utilization of these technologies.

Throughout this dissertation, every chapter adds to our understanding of how users can

better interact with generative models. It tackles the main questions we’ve set out to answer

and explores ways to make these complex technologies easier and more useful for everyone.

In the end, the dissertation wraps up by looking at the bigger picture of this research, talking
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about its limits, and suggesting ideas for what to study next in this area. Specifically, the

outline of the dissertation is as follows:

• Chapter 2 This chapter presents GANzilla, a user-driven tool designed to address

the ‘black box’ nature of Generative Adversarial Networks (GANs). By employing a

scatter/gather technique, GANzilla enables non-expert users to iteratively discover

and refine editing directions in GANs. The effectiveness of GANzilla is validated

through a study, demonstrating its ability to assist users in both specific and open-

ended image editing tasks.

• Chapter 3 This chapter introduces GANravel, a user-driven tool aimed at enhanc-

ing direction disentanglement in Generative Adversarial Networks (GANs). Addressing

the challenge of GANs as ‘black boxes’, GANravel enables users to iteratively re-

fine editing directions. The tool’s effectiveness is demonstrated through user studies,

showing its superiority in disentanglement performance over existing methods and its

practical application in creating high-quality images and GIFs, such as dog memes.

• Chapter 4 This chapter introduces PromptZEN, an innovative tool developed to

enhance user interaction with text-to-image diffusion models, specifically Stable Diffu-

sion. Addressing the complexity and ‘black box’ nature of these models, PromptZEN

enables users to perform precise, localized edits on images through prompt scheduling.

The chapter highlights PromptZEN’s role in providing users with granular control

over the image generation process, making advanced text-to-image models more inter-

active and accessible.

• Chapter 5 This chapter addresses the final research question by exploring methods

to enhance user understanding of the generative process in models like GANs and

T2I systems. It examines approaches to make these models more transparent and

understandable, thereby improving user comprehension and effectiveness in utilizing
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these technologies. The chapter also discusses the implications of these findings for

future research and the development of generative models.

• Chapter 6 The final chapter concludes the dissertation, summarizing the key con-

tributions and findings. It discusses the limitations of the current work and outlines

potential directions for future research in the field of user-centric generative models,

suggesting ways to further bridge the gap between technical complexity and user ac-

cessibility.
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CHAPTER 2

User-Driven Direction Discovery in Generative

Adversarial Networks

2.1 Introduction

Generative Adversarial Networks (GANs) promise to create new content by learning the

characteristics of existing data, showing compelling results in various domains, from styliza-

tion [ZPI17], scene creation [VPT16], and improving the quality of scientific data [SYP19].

Unfortunately, despite its increasing widespread use, most GAN models to date remain a

‘black box’ to end-users with little transparency about what a model is capable of generating

and little control over the generative process. Without transparency and control, when end-

users have a creative intent (e.g., a caricaturist illustrating a character’s facial expression in

creative storytelling), they cannot see whether or how one can instruct a GAN model as-is

to generate specific characteristics. In other words, there is little support for formulating

user-defined editing directions1—a set of input parameters that steer the GAN model to

generate contents with varying levels of characteristics (e.g., making the hair on the input

image more or less blonde).

To address the limited transparency and control, some prior work allows a user to browse

GAN-generated results in an interactive gallery view [ZB21]; however, such an open-ended

exploration is not intended to converge to a specific direction. Others propose methods to

1Hereafter simply referred to as ‘direction’.
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dissect a GAN model [BZS18] or to perform post hoc extraction of principal components

[HHL20] or semantic controls [CBP20]. However, such directions are often pre-defined by

algorithms, which do not permit a user to specify directions to generate their own desired

characteristics.

We design and implement GANzilla—a tool that complements existing algorithm-

driven approaches by enabling user-driven direction discovery in a GAN model. As a proof

of concept, we focus on a common use case of stylizing faces based on the StyleGAN2 model

[KLA20a]; however, the workflow in our tool is expected to generalize to other usages of

GAN as well.

As shown in Figure 2.1a, a GANzilla user starts with brushing on a few exemplar images

demonstrating specific areas they want to stylize, based on which the back-end samples a

large number of directions. Then, GANzilla’s front-end employs the classic scatter/gather

technique [PSH96] to let a user iteratively filter directions2 applied on exemplar images and

iteratively narrow down to the ones that result in their desired characteristics. Specifically,

a user can gather one or more clusters (Figure 2.1b), see whether the constituent directions

interest them (Figure 2.1c), and, if so, scatter (Figure 2.1d) them into new clusters to refine

their selection. Flexibly, at any given time, the user can go back to the previous iterations

and scatter a different subset of the clusters (Figure 2.1e). Meanwhile, the user can test

directions on some other images and see if the effects generalize (Figure 2.1f) and bookmark

the ones they like (Figure 2.1g).

We validate GANzilla in a user study (N = 12) with two types of tasks: (i) In the

closed-ended tasks, we controlled what a user intended to edit by providing participants a

set of edited image pairs (references and targets). Results show that participants were able

to find the GAN directions that closely replicated the edits—specifically, their discovered

directions transformed the reference images into ones that are more similar to the target im-

2In GANzilla, a direction is represented as a thumbnail of an exemplar edited image, e.g., an ‘aging’
direction is shown as a face older than the original image.
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ages and such similarities rank high when compared to edits done by 1000 randomly-sampled

directions (representing the latent space). (ii) In the open-ended tasks, we tested whether

participants could use GANzilla to achieve personalized edits: given some high-level edit-

ing goals (e.g., making the face happier), each participant would use GANzilla to find

specific edits that they considered to achieve such goals. Results show that each participant

felt satisfied with their edits, which also highly align with the goals when analyzed from a

language perspective (comparing image and text embeddings); further, the resultant edits

exhibit diversity across participants, indicating GANzilla’s ability to enable personalized

content creation.

Overall, GANzilla makes a tool contribution: in contrast to using a GAN model as

a ‘black box’, we provide a comprehensive tool for a user to see what directions the GAN

model is capable of and to iteratively discover and test directions that generate their desired

characteristics. GANzilla’s user-driven direction discovery aims to complement (rather

than replace) existing algorithm-driven approaches [GAO19, SGT20, YSZ21] by providing

users with an option to explore more editing options when the pre-computed controls do not

fully meet their needs.
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Figure 2.1: GANzilla is a tool that allows users to discover editing directions in Gener-

ative Adversarial Networks (GAN) via iterative scatter/gather interactions—a user-driven

approach that complements many existing algorithm-driven methods. (a) A user starts by

highlighting a region of interest (an optional step). (b) Based on the highlight (if there

is), directions are sampled and clustered, each shown as an image edited by that direction.

The user can gather clusters by selecting thumbnail images (indicated by a red border). (c)

The user can see all the directions of the gathered clusters and (d) scatter them into new

clusters. (e) The user can go back-and-forth across iterations to explore alternate choices of

scatter/gather. (f) The user can test a selected direction (red border in c) on other images

with individual sliders controlling the strength to apply the direction. (g) The user can

bookmark directions that meet their editing goals.
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2.2 Background & Related Work

In this section, we first provide background information on GAN and editing directions, then

we review two areas of work that intersect with ours: existing algorithm-driven approaches

for discovering GAN directions and enabling users to interact with GAN.

How does GAN work? As shown in Figure 2.2, GAN is a family of neural networks

where a generator G is trained to create synthetic data (xg) that simulates those from a

certain domain (e.g., images of human faces), a discriminator D is trained to distinguish

between the generator’s synthetic data (xg) and real data (xr), and the countering of D

and G iteratively leads to the generator’s ability to create synthetic data indistinguishable

from real data. By default, GAN functions as a ‘black box’ where a large collection of data

points (e.g., images) are generated from randomly-sampled ‘noises’ (z), leaving users very

little control of the generative process.

What is a GAN (editing) direction? The input ‘noise’ (z in Figure 2.2) to the

generator is a point from GAN’s latent space, which typically consists of a high-dimension

of variables, each drawn from a Gaussian distribution [Bro20]. An editing direction is a

vector d in the latent space along which we can move z so that the resultant xg = G(z) will

change in a semantically meaningful way, e.g., , given a closed-mouth image G(z0), making

the mouth open in the image G(z1) where z1 = z0 + λd. The coefficient λ is the strength to

apply direction d.

Algorithm-driven approaches for discovering GAN directions. To discover GAN

directions, early work employs supervised approaches that require sampling and labeling a

large number of points in the latent space [JCI19, GAO19, SGT20, PBH20, YSZ21]. Re-

cently, there has been a plethora of research focused on unsupervised methods [VB20, SZ21],

each of which aims at controlling a specific aspect of the generated data. Härkönen et al.

describe a PCA-based approach to decompose a GAN model into interpretable controls for

users to specify desired attributes of the generated outcome [HHL20]. Wu et al. present a
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Figure 2.2: Overview of a typical GAN model.

method for computing style channels, each controlling a distinct, localized visual attribute

without entangling with one another [WLS21a]. Collins et al. enable local semantic editing

using GAN: by selecting a specific part of an image (e.g., Person A’s nose), GAN is able

to transfer its style to another image (e.g., making Person B’s nose look like A’s) [CBP20].

Although all the above work does enable high-level user-control of the GAN’s output, such

fully algorithm-driven approaches tend to result in one-size-fits-all directions and do not

permit user input to specify customized directions. Complementarily, GANzilla enables

each individual user to discover directions on their own, which provides a useful option when

the pre-computed controls do not fully meet a user’s needs.

Enabling users to interact with GANs. Even prior to the popularity of GAN,

researchers have explored interactions with other generative processes, most of which are

centered around generative design (e.g., using topology optimization) via sketching [KGC17,

CTW18] or visualization [MGB18] to explore a large design space. Given that most conven-

tional ways of controlling GAN is via the use of sliders, Dang et al. conducted a comprehen-

sive comparative study to understand the effects of regular sliders vs. sliders that provide

a ‘filmstrip’ of feedforward information (preview images) [DMB22]. Other researchers go

beyond sliders to consider alternative techniques to interact with GAN. For example, Zhang

and Banovic present samples of generated images on a grid-like view wherein a user can zoom

in/out or pivot to explore more images [ZB21]. Alternatively, it is also possible to consider

other input modalities beyond conventional GUI elements. For example, Yu et al. demon-
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strate a visual design assistant that takes in a user’s natural language feedback to guide

the GAN model’s modification of the design [CGL20]. Ling et al. allow users to discover

directions by changing segmentation masks of the generated images [LKL21]. Related to our

goal of enabling users to discover directions, Or et al. develop StyleCLIP that takes the in-

put of textual description (e.g., “Mohawk hairstyle”) and transforms the image accordingly.

However, this approach cannot accept arbitrary editing requests; rather, acceptable textual

descriptions are limited to a set of phrases the CLIP model produces to characterize a given

image dataset. In contrast, GANzilla does not limit a user to a pre-defined vocabulary

but allows them to discover their desired editing direction by navigating vast examples using

the scatter/gather technique.

2.3 GANzilla: User-Driven GAN Direction Discovery for Image

Editing

In this section, we present a detailed walkthrough of GANzilla’s design and implementation

using an exemplar use case of stylizing a human portrait image to make the face happier.

2.3.1 Highlighting an area to focus the edit on

To start, the user can choose to select a specific part of the face for the edit to focus on.

For example, the user might wish to edit the mouth to make a big smile so the face would

appear happier. To specify the mouth area, the user simply uses a built-in brush tool to

paint over a few exemplar images GANzilla provides (Figure 2.1a). Note that this step is

optional: without any selection, edits could occur indiscriminatively across the entire image.

Implementation. GANzilla runs the direction search on the StyleSpace of Style-

GAN2. StyleSpace refers to the space that is defined by style parameters of StyleGAN2.

These parameters control the individual strength of various filters in StyleGAN2. It is sig-

nificantly more disentangled than the traditional latent space [WLS21b]. Depending on
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whether the user performs this optional highlighting step, the backend either uses the entire

or a subset of the style parameters based on the highlighted region. We use a similar method

to Collins et al. [CBP20] to translate a highlighted region into a subset of style parame-

ters. Each style parameter of StyleGAN2 is assigned an importance metric depending on the

highlighted region and the activation maps of the highlighted image. This step allows us to

select the filters of StyleGAN2. After doing this for few exemplar images, we take the union

of the selected style parameters. These parameters are later used to sample directions.

2.3.2 Sampling and clustering directions

Next, based on the user’s selected image region (if there is any), GANzilla samples a large

number of directions, each of which is represented by an exemplar image edited along that

direction. GANzilla clusters the sampled directions and displays each cluster using one

of its directions’ thumbnail images (Figure 2.3b) to avoid crowding the UI. Selecting one

or multiple clusters shows the constituent directions in a separate view (Figure 2.3c). The

user can change the number of clusters (the default number is six) and if they cannot find a

direction that matches their editing intent, they can request GANzilla to resample more

directions (Figure 2.3d).

Implementation. Sampling is done using the selected set of style parameters. We

observed from StyleCLIP that the directions only needed a small number of style parameters

to be diverse and expressive. Following that observation for each direction sample, we sub-

sample the style parameters that come from the highlighting step. The sub-sampling rate

is tuned as a hyper-parameter. The resulting set of style parameters are then randomly

increased or decreased using a normal distribution, which defines the sampled directions.

Each direction then changes a different set of style parameters to increase diversity. In order

to cluster these directions, we first generate the resulting images. Then we extract latent

codes for these images using an AI-model (CLIP model in our case). Next, these latent

codes are clustered with the k-means clustering. Note that we can not use the directions
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Figure 2.3: After highlighting, GANzilla generates an initial set of directions. (a) By

default it returns six clusters of directions which are all displayed with one representative

image each. (b) The user can change the number of clusters. (c) Selecting multiple clusters

(indicated by a red border) shows the constituent images of those clusters. (d) If the user

cannot find a direction, they can request to sample more.

directly without generating the images, because the dimensions of the directions are not

comparable with each other. As for the representative image of the cluster, we choose the

one that is closest to the center of the cluster. If the user asks for more directions, we repeat

the sampling step while giving a higher priority to the style parameters that are not chosen

in previously sampled directions. This allows us to investigate a new subspace in StyleSpace

that is not covered in previous directions.

15



Figure 2.4: The resulting view after clusters gathered in Figure 2.3 are scattered. (a) If

the user feels unsatisfied with the scatter results, they can click the back button to go to

the previous clusters. (b) The user can select a direction (indicated by red border) and (c)

test how it works on other images: the first row are the reference images and the second

row edited by the direction being tested, whose strength can be adjusted for individual test

images. (d) The user can bookmark a direction if they are satisfied with its edits.

2.3.3 Iterative scatter/gather of directions

Once a user identifies clusters of interest (e.g., open-mouth images matching their intended

editing goal), they can iteratively use the scatter/gather technique: first selecting those

clusters (gather) and then clicking the ‘scatter’ button to re-cluster them; then the user

can repeat this process with more scatter/gather. Figure 2.4 shows the updated UI after

scattering the two clusters gathered in Figure 2.3. Here, GANzilla repurposes the classic

scatter/gather technique [PSH96], which was used for browsing a large collection of text
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documents, for enabling a user to iteratively converge their choices of direction. Further,

GANzilla allows a user to step back (to previous iterations) and explore alternate ‘branches’

of scatter/gather. Specifically, if the user feels unsatisfied with the current batch of directions,

they can click the ‘¡’ button (Figure 2.4a), return to the previous clusters, gather and scatter

a different subset of them.

Implementation. Scatter is implemented by first sampling new directions based on

the gathered clusters and then clustering the new set of directions. In order to sample a

new direction, a random pair is selected from all the gathered directions. Then these two

directions are averaged, creating a new direction that combines the two. In order to increase

the variation, a random vector (sampled from a normal distribution) is added to the resulting

direction. Results of scatters are stored in a tree data structure. When the user wants to

explore alternate branches, a new subtree is created from the current node.

2.3.4 Testing directions on more images

At any given time, the user can test a direction by selecting its thumbnail (Figure 2.4b) and

see how this direction works on other images. Each of these test images comes with a slider

for the user to adjust the strength of the direction (how strongly to apply its editing effects)

(Figure 2.4c). Such a ‘test field’ allows a user to calibrate how strongly they should apply a

direction and examine the direction’s generalizability to make sure that it can generate the

intended edits on other images as well. If a user is satisfied with the direction after the tests,

they can bookmark it with the save button (Figure 2.4d). Later, the user can also bring

back a ’bookmarked’ direction to the test-area by clicking its thumbnail.

Implementation. When a thumbnail image is clicked to be tested, GANzilla scales

that direction with a default strength of the direction. Then, the direction is applied to

different test images that can be uploaded by the user. The resulting images and their

reference images are shown to the user. Whenever there is a change to a slider, the resulting

image is re-generated.
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2.3.5 Other implementation details

We used Pytorch as our deep learning backend. For the rest of the back-end implementation

we used Python. We used Flask as our web-framework, which handled the communication

between our front-end and the back-end. For our front-end, we used a combination of

Javascript, Node.js and React. The back-end ran on a Linux server equipped with an Nvidia

GeForce RTX 3090 GPU.

2.4 User Study

We conducted a study to validate whether GANzilla can enable users to discover directions

that steer a GAN model to edit images for specific purposes.

2.4.1 Participants

We used convenience sampling to recruit 12 participants from a local university (eight male,

four female, aged 23 to 31). Eight participants majored in electrical and computer engi-

neering, one in bioengineering, one in medicine, one in mechanical engineering and one in

engineering management. Eleven participants had programming experiences (3 to 15 years)

and three had programmed or used GAN-enabled applications before (P5, P6 and P7)3.

2.4.2 Tasks & Procedure

Each participant performed two blocks of editing task using GANzilla, each consisting of

three trials.

• Closed-ended tasks. In each trial, we provided a participant with a set of image pairs

3We decided not to exclude these participants because GANzilla was meant for complementing existing
algorithm-driven direction discovery and users who work on GAN development should be able to use and
benefit from GANzilla as well.

18



where each pair showed an image before and after editing (Figure 2.5), which hereafter

are referred to as reference and target images, respectively. The participant’s goal was

using GANzilla to find a direction that could replicate the edits, i.e., transforming the

reference images into ones that were as similar to the target images as possible.

• Open-ended tasks. In each trial, we provided a participant with a set of images and

a high-level editing goal—specifically, making all the faces old, happy, and surprised.

The goals were intentionally open-ended so that the participant had to come up with

specific edits based on their own interpretation of the goal and use GANzilla to discover

directions accordingly.

Each study started with an introductory tutorial of GANzilla, followed by a brief

practice session for each participant to try out GANzilla using a toy dataset. We then

continued with the block of open-ended tasks, after which the participant would take a

short break before performing three trials of closed-ended tasks4 (Figure 2.5). The order

of the three trials within each block were counter-balanced across participants. Finally,

we concluded the study with a semi-structured interview to elicit participants’ qualitative

feedback of interacting with GANzilla. The entire study took place over Zoom and lasted

for about one hour and each participant was compensated with a $25 gift card.

2.4.3 Data & Apparatus

For the back-end we used the state-of-the-art StyleGAN2 [KLA20a]. Together with its

predecessor, StyleGAN [KLA19], StyleGAN2 has been used for various applications including

style transfer, data augmentation and image-editing. For data we used the Flickr-Faces-HQ

(FFHQ) dataset, which was originally created for the StyleGAN as a benchmark. As our

deep learning model, we used a pretrained model that is trained on FFHQ and released by

4In an earlier pilot study, participants found closed-ended tasks much more challenging; thus we always
started with open-ended tasks to ease participants’ learning curve.
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Figure 2.5: Closed-ended tasks: the three sets of image pairs given to the participants where

each column consists of a reference and a target images. A participant’s task was to discover

a direction that edits each reference image to best approximate the corresponding target

image.

Nvidia for StyleGAN2 on their github page5. Other implementation details are introduced

in § 2.3.5. We conducted the study virtually where each participant used Zoom’s remote

desktop control to interact with the GANzilla front-end running in a Chrome Web browser

on the experimenter’s desktop computer. The front- and back- ends were connected via a

local area network to minimize latency.

5https://github.com/NVlabs/stylegan2-ada-pytorch
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Figure 2.6: Open-ended tasks. Participants were given a text description of the tasks (making

the face old, happy, and surprised). The reference images are given at the first column. Rest

of the columns are generated by directions discovered by participants. For the same editing

goal, participants discovered a wide variety of directions using GANzilla.

Figure 2.7: Closed-ended tasks. Participants were given the reference images (first column)

and the target images (last column) to match as well as they can. The columns in the middle

are generated by participants’ discovered directions.

2.4.4 Measurement

We recorded the entire Zoom meeting including the screen recording. In addition to that,

we saved every image participant generated throughout the study. We also logged all of the

user actions with timestamps including what they highlighted, which buttons they clicked,

which directions they have tested and saved.

For qualitative measures of open-ended tasks, immediately upon finishing each trial, we

asked each participant to rate (along a 7-point Likert scale) how successful they thought
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they had achieved the editing goal with the direction they found.

In the exit interview, participants started with an overall assessment of GANzilla based

on their overall experience for both closed- and open-ended tasks. We asked (i) whether the

tool is easy to use and (ii) whether the user can find directions that match their editing

goal. Next, participants rated the cognitive load using the mental demand, effort and frus-

tration dimensions in the NASA TLX questionnaire [Har86]. Next, we asked participants to

ablatively evaluate the usefulness of GANzilla’s individual UI elements: highlighting, the

scatter/gather technique, changing the number of clusters, going back-and-forth across iter-

ations, asking for more images, and live-testing directions on multiple images. All questions

were rated along a seven-point Likert scale.

2.5 Quantitative Results

Figure 2.6 and Figure 2.7 show sample images edited by participants’ discovered directions

for open- and closed-ended tasks, respectively. Below we provide quantitative analyses to

better understand participants’ performance and behavior using GANzilla.

2.5.1 Closed-ended tasks

2.5.1.1 User performance

We calculated the cosine similarity between the target image and a participant-generated

image (i.e., edited by the participant’s discovered direction) using VGG-Face’s latent vector

[PVZ15] extracted from the last layer. Cosine similarity results in between 0 and 1 where

1 represents a closer match between the vectors. Specifically, we ran two different analyses

using this VGG-Face similarity metric.

In the first analysis, we tested whether a participant-generated image was more similar to

the target image than the reference image is. As shown in Table 2.1, the similarities between
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Task 1 Task 2 Task 3

Reference 0.388 0.252 0.377

User-Generated 0.446± 0.123 0.422± 0.112 0.544± 0.140

Table 2.1: Closed-ended tasks: user-generated images (edited by participants’ discovered

directions) are more similar to the target images across all three tasks compared to reference

images. Higher value represents a closer match between the vectors.

the participant-generated images and the target images (averaged across participants) were

0.446± 0.123, 0.422± 0.112 and 0.544± 0.140 for the three trials, respectively, all of which

were higher than the similarities between the reference and the target images, which were

0.388, 0.252, and 0.377.

In the second analysis, we first sampled 1000 random directions to edit a reference image.

We then calculated where a participant-generated image ranked amongst the 1000 randomly-

edited images, in terms of their similarity to the target image. Results show that, in 33 out of

36 tasks (three tasks per participant × 12), the participant-generated images ranked top-5,

which suggests that the participant-discovered directions got very close to the target image

amidst the large GAN latent space (represented by the random samples).

2.5.1.2 User behavior

Overall, the average time to complete a closed-ended task is seven minutes and 16 seconds.

Participants spent 37.4% of their time on performing scatter/gather interactions, 45.0% on

testing a direction, and 17.6% on highlighting.

The average number of scatters per task is 1.64 and for an average of 0.53 times a

participant went back to undo a scatter. We noted that some users scattered more than the
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others. Four participants contributed to almost half (49.2%) of the total number of scatters.

The average number of directions tested per task is 6.61. On average when these directions

were being tested, the strength of the direction was changed 3.23 times.

On average, participants requested 1.81 times per task to change the number of clusters,

which ranged from six to nine across all tasks. In comparison, participants only asked to

sample more images 0.56 times per task.

2.5.2 Open-ended tasks

2.5.2.1 User performance

We conducted three folds of analyses:

First, we employed an open-source face analyzing tool called Deepface [SO21]. We ex-

tracted the age and emotion predictions as well as their respective confidence levels. Using

this tool, we can analyze whether a user-generated image (compared to the reference image)

resulted in an increase in age (old) or the confidence level in emotions (happy and surprised).

Results show that on average age increased by 10±3.12 years and confidence values for happy

and surprised increased by 45.1%± 25.7% and 56.7%± 22.9% respectively.

Second, we used the CLIP model [RKH21] that embeds both text and image into the same

latent space to make them comparable. We first computed the image-originated embeddings,

which correspond to each participant’s discovered directions by performing a subtraction

between the CLIP embedding of the participant-generated image and that of the reference

image. Next, we computed the text-originated embeddings: for each editing goal, we used the

corresponding keyword (‘happy’, ‘old’, and ‘surprised’) to create the text embeddings in an

approach similar to StyleCLIP [PWS21]. We then compare the image- and text-originated

embeddings by calculating their cosine-similarities, which were 0.314± 0.131, 0.341± 0.192

and 0.500± 0.072, respectively, for the three editing goals.

Third, to put these similarity numbers in perspective, we sampled 1000 random directions
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Task 1 Task 2 Task 3

Top-10* 0.194± 0.099 0.285± 0.176 0.387± 0.172

User-Generated 0.314± 0.131 0.341± 0.192 0.500± 0.072

*Amongst 1000 random samples that approximate GAN’s latent space

Table 2.2: Open-ended tasks: Similarity of user-generated images and top-10 randomly

generated images compared to the CLIP text-originated embeddings. User-generated images

are more similar to the given text (‘old’, ‘happy’, and ‘surprised’) across all tasks. Higher

value represents a closer match between the vectors.

to represent the latent space and used the aforementioned Deepface tool to search for the top-

10 directions that generated images with the highest increase in age/confidence in emotions.

We then compared the embeddings of these top-10 directions with the aforementioned text-

originated embeddings. We found that their averaged cosine-similarity values are 0.194 ±

0.099, 0.285± 0.176 and 0.387± 0.172, respectively, which are all lower than those achieved

by user-generated images, as shown in Table 2.2.

The three analyses above suggest that participants’ discovered directions reached a high

semantic proximity to the editing goal. In addition, participants also felt positively about

how they succeeded in achieving the editing goals, with reported scores (on a seven-point

Likert scale) of 6.08± 0.76, 5.83± 0.99 and 5.75± 0.83, respectively for the three tasks.

2.5.2.2 User Behavior

We report the same set of behavioral measures as in the closed-ended tasks and compare the

two, reporting statistical significance whenever there is any (otherwise any difference should

be assumed as not reaching statistical significance).

Overall, the average time for a participant to complete an open-ended task is eight
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minutes and 55 seconds, with 27.5% of their time spent on scatter/gather, 58.9% on testing

directions, and 13.6% on highlighting. Participants used the test-field about two minutes

more per task than the closed-ended tasks (W = 32, p = 0.03 based on a Wilcoxon signed-

rank test), probably to ensure that the editing goal actually applied to more than one face

for the open-ended tasks.

The average number of scatters per task is 1.17, about 0.5 smaller than that in the closed-

ended tasks (W = 8, p = 0.02). Scattering more allows one to further refine a direction to

better match the target image, which probably explained the higher number in the closed-

ended tasks. Unsurprisingly, the same participants who scattered more in closed-ended tasks

also scattered more here, contributing to over half (54.8%) of the total number of scatters. On

average, users went back 0.5 times to undo scatter—a similar number as in the closed-ended

tasks.

The average number of directions tested per task is 7.11. When these directions were

being tested, the strength of the direction was changed for an average of 3.67 times. On

average, participants requested 2.86 times to change the number of clusters, which ranged

from eight to ten. Participants only asked for more images 0.388 times per task.

2.5.3 Workload measured by NASA TLX

For the mental demand dimension, the four participants (P2, P4, P7, and P9) who rated

higher than four (neutral) considered the main workload as inspecting the small changes

and differences amongst images during the scatter/gather process. As mentioned by P2,

“You need to take a look at the images, small changes in them. Then you have to envision

what to combine which increases the mental load”. P2 is also the only participant who gave

a higher-than-neutral rating of effort and the only one that rated frustration higher than

three, which in part due to the need to spend a lot of time on some tasks because there

were many options. Rating of P2 on frustration is an outlier based on the IQR analysis.

Similar concerns are shared by P1 and P4: “Workflow is easy but still I had to click different
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Table 2.3: The participants’ ratings (Row 1-2: overall experience; 3-5: workload; the rest:

usefulness of individual components). The questions are explained in § 2.4.4. All questions

used a seven-point Likert scale. The outliers are found using interquartile range (IQR)

analysis. P9 ease of use, P2 frustration, P4 number of clusters, P2 and P3 live-testing

directions are outliers.

images and pay attention. If there were no images I liked, it got harder because I had to

start thinking about which images have the right parts to scatter” (P1). “Paying attention

to the details can be demanding, focusing on the patterns as well” (P4). P7 commented on

the challenges of visualization of data: “The task is really useful but visualizing really high

dimensional data is challenging which increases the mental load” (P7).

2.5.4 Summary of quantitative results

Analyses of the closed-ended tasks show that participants’ discovered directions transformed

the reference images into ones that are more similar to the target images and such similarities

rank high when compared to edits done by 1000 randomly-sampled directions.

Analyses of the open-ended tasks show that participants’ discovered directions achieve
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the given editing goals as validated by Deepface’s age and emotion detection; further, such

directions highly align with the interpretation of these goals from a language perspective.

Analyses of user behavior across both tasks show that (i) a few (four) participants con-

tributed to about half the total number of scatter/gather interactions; (ii) participants

scattered/gathered significantly more in closed-ended tasks; and (iii) participants spent sig-

nificantly more time testing directions in open-ended tasks.

Table 2.3 shows participants’ ratings of GANzilla with respect to ease of use, perceived

success, workload, and an ablative assessments of each component’s usefulness. Next, we

report participants’ qualitative feedback behind these ratings.

2.6 Qualitative Findings

We employed a method akin to the Affinity Diagram approach [HB97], based on which we

aggregated participants’ responses to summarize their perceived ease and success of using our

tool (§2.6.1) and surfaced recurring themes regarding how participants assess the usefulness

of GANzilla ’s individual components (§2.6.2). Specifically, the first author transcribed

participants’ responses to develop the initial codes, which were then reviewed by the second

author. Disagreements were resolved via discussion between the two authors.

2.6.1 Overall assessment

2.6.1.1 Ease of using the tool

When asked how GANzilla was easy to use, all but one (P9) participant gave a rating

above five. For example, P1 said: “I don’t have to remember most of the workflow. It is

just highlight and then click on images based on what you are searching.” Both P3 and

P5 commented on the intuitiveness of the UI. Some participants pointed out that there was

a learning curve mainly due to the inevitable randomness of the sampling process (P3 and

28



P6), i.e., participants needed to learn how to develop a strategy of using GANzilla based

on the sampled directions given to them. P9 gave the only below-five rating and thought

that it was hard to know how to improve the directions without getting overwhelmed by the

sheer amount of information (“too many faces”). Rating of P9 is an outlier based on the

IQR analysis.

2.6.1.2 Perceived success of the tasks

When asked how they felt successful that they found the directions to achieve their goals,

all but one (P11) participant gave a rating above five. Even P9 who did not feel GANzilla

was easy to use considered the task successful: “At the end of all tasks, I found a direction.

They were not exact but close”. Participants’ responses also pointed out nuances between

types of tasks—“Open-ended tasks were easy to achieve. Closed-ended were harder” (P4)

and nuances between different stages of a task—“It is easy to find the main direction (bigger

smile) but getting all the secondary changes are challenging” (P7). P11, who gave the only

below-five rating, reflected on their usage strategy—“Sometimes I felt like it did not match

the target very well. Maybe, I needed to iterate/scatter more. This is especially the case for

closed-ended tasks” (P11).

2.6.2 Ablative assessment of individual components

2.6.2.1 Highlighting an area to focus the editing on presented limited usefulness

For open-ended tasks, sometimes participants did not know which part to edit before starting

explorations, as mentioned by P1: “It seems if I know exactly what I am looking for it is

helpful. But there are some cases where it is not obvious so I can’t imagine where to

highlight.” Perhaps a more noticeable issue of this component was GAN’s entanglement

problem (discussed in more details in § 2.7), as participants noticed that sometimes the

highlighted part was not guaranteed to be majorly edited (P2 and P4) and sometimes non-
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highlighted parts were also changed (P6 and P7). Interestingly, one participant (P2) reported

using this component, not to instruct the GAN model, but to remind themselves to focus

on specific parts they wanted to edit.

2.6.2.2 Scatter/gather helps to combine directions with different features

Multiple participants (P1, P4, P5, P10, and P11) mentioned this usage, e.g., “There were

a lot of cases that it was useful. For example I wanted to change both eyes and mouth but

some clusters had only eyes and some clusters only had the mouth. I could leverage scatter

to get both.” (P1) Participants also pointed the need for finer-grained gather, e.g., “It would

be nice if we could choose individual images instead of clusters. Because sometimes I did

not want to choose the entire cluster.” (P2) Interestingly, one participant pictured scatter

as “zooming to that region” (P12), which could inform them if the gathered directions “are

bad”.

2.6.2.3 Changing the strength both positively and negatively in the testing field

helps one better understand the direction

The ability to live-test a direction on multiple images was rated the highest amongst all

components. Foremost, participants valued such a test of a direction’s generality (P4, P5,

and P6), as pointed out by P6: “I could also see the directions on other images. So I have

an idea about how well it works generally.” Participants also realized the importance of

exploring the right strength of applying a direction, e.g., “The previous steps help me to

find the direction but you still need to figure out the strength” (P1), “You can experiment

with the magnitude of the vector. It allowed me to try different combinations and helped

me build my intuition about the direction” (P12). To our surprise, many participants (P1,

P4, P5, P6, P8, P10, and P12) heavily used the functionality of setting a negative value

on the strength of the direction, which essentially allowed them to observe what happens if
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they go in the reverse direction. Specifically, seeing how a direction works in reverse was

“informative” (P10), helped participants “validate” (P5) or “understand” (P4, P8, and P11)

a direction better and “convince” (P12) themselves that it was the right direction. P6 even

employed a strategy that leveraged such negative strength: “... in the last task I could not

find the asked direction. Instead I found an opposite direction and used a negative weight

on the test area.” Amongst the two outlying scores (5), while P3 did not state anything

specifically negative, P2 pointed out that he did not find testing highly useful because he

could already anticipate how the direction would likely fail in some cases.

2.6.2.4 Changing the number of clusters and requesting more samples help

mitigate randomness

Multiple participants (P1, P2, P5) pointed out the inherent randomness of sampling direc-

tions and considered that asking for more images was a back-up solution (P3, P6, P8, and

P9) that helped when they could not find a direction that they were looking for. Sampling

randomness also affected the quality of the clusters, as pointed out by a few participants

(P1, P4, and P7). Changing the number of clusters helped them make sense of the clusters.

For example, P12: “It helped me to choose better groups because when you increase number

of clusters, clusters become better refined”. However, as pointed out by P1, one trade-off

was having to track changes in the clusters as the number was changed. P4 did not find

changing the number of clusters useful because he ‘would rather see as many images’ as he

could and thus always set the max number (10). Rating of P4 is an outlier based on the

IQR analysis.

2.7 Discussions & Future Work

We discuss several issues in the current system and possible solutions for future work.

Limitations of the current study. First, future work could increase the number

31



of participants and the number of tasks (e.g., via a out-of-lab deployment) beyond the

current controlled study. Second, three of our participants had prior knowledge of GAN.

Although anecdotally we did not observe any difference in how these three participants used

GANzilla, future work should still strive to focus on a narrower user group (e.g., product

designers who use GAN to formulate ideas). Finally, to ease participants’ learning curve, we

fixed the order of the tasks to be open-ended (easier) first then closed-ended (harder). To

verify whether there is an ordering effect, future work could extend our study with a counter-

balanced design. For stylizing faces, mouth area is usually the most expressive. However,

there were other changes in our closed-ended tasks. For example, Task 3 had more ‘squinty’

eyes and Task 2 had more makeup after the direction was applied. We do recognize such

changes are more subtle compared to mouth and will address this limitation in our future

work by introducing tasks that involve more significant changes in non-mouth areas.

Addressing entanglement issues in GANs. Entanglement refers to a long-standing

phenomenon in GAN direction discovery: if a feature is changed and another unintended

feature is also changed, these two features are said to be entangled. For example, while trying

to make someone look happier, the image might also appear younger. In this example, the

feature happy and young are entangled. In general, we want to discover directions that are

disentangled.

To mitigate this issue, we used the state-of-the-art StyleGAN2 and found the directions

in StyleSpace which is significantly more disentangled than the latent space. However, en-

tanglement still existed in our study and was pointed out by two participants: “... when I

try to make someone happy, their skin tone also changes” (P4); “I focus on the mouth but I

get variety of eyes.” (P5) Interestingly, some participants used the scatter/gather technique

to mitigate entanglement issues. For example, if the goal is to find a direction that results

in a bigger mouth, by scattering a cluster that has the bigger mouth feature, all the entan-

gled features in the cluster are scattered too. This allowed participants to choose a more

disentangled direction.
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In the future, we can also preprocess the StyleSpace itself to address entanglement. In-

stead of randomly sampling various dimensions, we can be more selective about the sampling

procedure. This can be achieved by uncovering dependencies between dimensions, so that

related dimensions are selected together rather than entangled ones. Another idea is to let

users inform the system about the entanglement issue in a secondary highlighting step. Then

we can try to remove the StyleSpace parameters that are related with what user highlighted.

An iterative process between the tool and the user can result in more disentangled directions,

which is left for future work.

Providing users with more guidance and explanation. While GANzilla makes

the generative process controllable as a whole, participants nonetheless requested more guid-

ance and explanation on the specific steps in this process. For example, participants wished

the tool could provide some guidance when they were stuck (i.e., faced with clusters that

contained no directions related to their editing goal). One possible idea for future work, in

this case, is to guide the user with a shortcut that jumps to a previous step that contains

directions most different from the current ones. Another popular suggestion is to help users

to keep track of how clusters change and differ. For example, displaying a heatmap next

to each image so that the changes/differences become more salient to human eyes. One

participant (P7) also suggested feedforward visualizations to help users preview what they

will get if they perform certain actions. Further, future work can introduce a recommender

component that retrieves directions in previously-unsampled space based on what clusters a

user currently gathers.

Integrating GANzilla with algorithm driven direction discovery. Currently, we

do not leverage algorithm-driven directions and instead let the users discover them from

scratch. Although this approach worked well in our studies, using prior work to discover

directions can also be beneficial to the user experience. Some of the sampled directions

can be filtered or better understanding of the editing space can be achieved. In the future,

users can look through algorithm-driven directions and then can decide to use GANzilla if
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their needs are not satisfied. These directions can be analyzed by our back-end to improve

GANzilla sampling and they can even become part of scatter/gather functionality. We

consider GANzilla complementary to existing approaches [HHL20, JCI19] and thus did not

compare their results. To address this, our future studies will incorporate state-of-the-art

methods to show how user-driven directions might result in different edits than algorithm-

driven approaches.

Improving scatter/gather with more engagement We observe that not all partici-

pants fully leverage scatter to ‘dive deep’ into the StyleSpace but rather only scattered a few

times. This is partly because it is challenging to manage highly-branched out scatter/gather

paths as the number of iterations increases. Future designs could incorporate a tree-like

UI structure of directions: every time the user scatters, a new branch is created. Another

approach in the future can be to build the tree to guarantee hierarchical semantics. This can

allow users to traverse a semantically more meaningful tree and and go ‘deeper’ in to the

StyleSpace for more specific directions. As it becomes easier to manage the scatter/gather it-

erations, we can further support exploring multiple directions at the same time (e.g., making

a mouth open and eye brows raised).
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CHAPTER 3

User-Driven Direction Disentanglement in Generative

Adversarial Networks

3.1 Introduction

Generating complex data is a long-standing problem in computer sciences. In recent years,

generative adversarial networks (GANs) are shown to be suitable for such tasks including

medical imaging [YWB19], data enhancement [PBS17, WYW18] and image editing [ZKS16].

Moreover, human-AI collaboration is shown to be useful in various areas including medicine [GLX22,

GHH21] and art creation [MH21]. Unfortunately, GANs function as ‘black boxes’ by their

nature. As a result, end-users have little control over the generative process which limits

human-AI collaboration. When an end-user with creative intent uses a GAN model for

editing, the lack of control over the capabilities of the model can lead to inadvertent and

inconsistent results. Moreover, there is little support for the end-users to improve said con-

trols (editing directions)– a set of input parameters that steers the GAN model toward the

intended characteristics with varying levels (e.g. making the eyes on the input image bigger

or smaller while preserving other characteristics). Specifically, a common problem is that

directions can be entangled, i.e., while the direction changes the desired attribute, it might

change other unintended attributes as well (e.g., the direction that adds glasses to the people

can also change their gender). Entanglement can also result in a direction that only works

on a certain type of image (e.g., the direction that adds glasses to the people, may not be

able to apply on young people).
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Improving an entangled direction, i.e., disentanglement, is an active research area in GAN

research. InterFaceGAN [SYT20] finds entangled directions using pre-trained classifiers and

disentangles them via subspace projection. However, InterFaceGAN requires developers to

come up with disentanglement rules for each domain and use human annotators to label large

datasets. There are also GAN architectures that have improved disentanglement properties

over the traditional GAN [GPM20] such as StyleGAN [KLA19], and GANformer [HZ21].

StyleGAN achieves better ‘attribute separation’ by introducing ‘styles’ which is inspired by

the style transfer literature. GANformer has better ‘spatial decomposition’ since it leverages

transformers [VSP17]. Despite their promises, these algorithm-driven solutions cannot cap-

ture a user’s intent of disentangling specific attributes of a given image; thus it is important

and complementary to support a user-driven approach, especially when algorithms fail to

achieve their desired disentanglement effects.

To this end, we design and implement GANravel, a tool that allows users to inter-

actively and iteratively disentangle directions. In order to highlight how GANravel can

enable users to disentangle directions, we focus on two studies: (i) the common task of edit-

ing human faces and (ii) the creative task of creating memes of dogs. GANravel can use

any image-generating GAN model that has disentangled directions. We complement differ-

ent GAN models –StyleGAN2 [KLA20b] and FastGAN [LZS20]– in the studies to underline

the model-agnostic nature of GANravel.

GANravel achieves disentanglement through two main approaches, global and local

disentanglement. Global disentanglement focuses on the holistic attributes (e.g., gender,

age, lighting, etc.) and aims to disentangle a direction by balancing these attributes. This

is achieved by users’ selecting exemplary images that carry the entangled attribute and

adjusting the weights of these images. Complementarily, local disentanglement focuses on

attributes of specific components (e.g., hair style, eye size, smiling, etc.) which can be more

subtle than the global attributes. Therefore, they are inherently harder to balance by tuning

exemplary images. Instead, users disentangle local attributes through masking where the
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user highlights a region of entanglement. Then, the masks are used to find the entangled

attribute in a one-shot manner (from a single mask without training).

To validate GANravel, we conducted two user studies with 16 participants each. The

first user study had coarse- and fine-grained tasks. The second user study had three tasks

where we compared GANravel with state-of-the-art user-driven direction discovery method

GANzilla. In the first user study, coarse-grained tasks were adding glasses, making the

face smile more, and making the face older. Fine-grained tasks were adding lipstick, making

eyes bigger, and making hairs curlier. Participants were asked to find the target direction.

Results show that participants were successful in finding disentangled directions. Specifically,

in the coarse-grained tasks, participants found directions that were more disentangled than

the directions that are found with state-of-the-art methods. Disentanglement was measured

with two main analyses: (i) facial identity preservation and (ii) facial attribute classifier

based metric. Results show that our metrics were ‘similar’ across tasks and participants felt

satisfied with their edits and disentanglement performance. Participants’ perceived disen-

tanglement success was also aligned with our iterative disentanglement metrics which showed

that a directions got more disentangled as participants iterated it more with GANravel.

In the second user study, participants were tasked to create dog memes by finding disentan-

gled directions. Participants used GANravel to disentangle directions they found using

GANzilla. Disentanglement was measured through a classifier based metric. Results show

that participants were able to disentangle directions which was also aligned with their per-

ceived success.

GANravel makes a tool contribution, enabling a user to interactively and iteratively

disentangle a direction and improve generated results. GANravel provides two user-driven

approaches for disentanglement, encompassing global and local disentanglement. Overall,

GANravel complements existing GAN architectures and the user study showed that re-

sulting directions were more disentangled compared to the state-of-the-art direction discovery

methods.
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Figure 3.1: GANravel enables users to disentangle editing directions in generative adver-

sarial networks (GAN) using global and local disentanglement approaches. (a) A direction

is often entangled when created by selecting exemplary images from the gallery. (b) The

weights of the exemplary images can be adjusted to disentangle global attributes such as age

and gender. (c) The direction can be tested on the live-testing section using multiple test

images. (d) The user can hover over an exemplary image to see its weight and go back and

forth between weight adjustments and live-testing until global attributes are disentangled.

(e) The user can use masks to disentangle local attributes such as glasses and closed mouth.

(f) The masks can be combined to either preserve or discard a region of interest and they

can be tested. (g) Resulting disentangled direction can be applied to other test images in the

live-testing section. (h) The final disentangled direction can be saved and applied in other

future images.
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3.2 Background & Related Work

In this section, we first review background information about GAN, editing directions, and

entanglement. Then, we review two areas of prior work: (i) existing algorithm-driven ap-

proaches for direction discovery and (ii) existing approaches that enable users to interact

with GAN.

Generative adversarial networks As shown in Figure 3.2, a typical GAN [GPM20]

consists of two neural network models: the generator (G) and the discriminator (D). G is

trained to generate synthetic data xg from a data domain such as human faces. At each

training step, the goal of G is to ‘trick’ D by creating xg that is indistinguishable from the

data from the aforementioned data domain (xr), and the goal of D is to distinguish synthetic

data xg from the real data xr. By playing this zero-sum game, both networks are trained

based on the prediction of D until G is trained to generate realistic data. By default, G

generates xg from a randomly-sampled noise vector (z). GAN functions as a ‘black box’

because the space where z resides is considered to be highly nonlinear. As a result, end users

have very little control over the generative process.

GAN editing direction Formally, the generator learns a mapping function f : Z 7→ X

where Z ∈ Rn and X is the space of the data domain. n is the dimension of the input vector

which depends on the generator model. Z is referred to as the ‘latent space’. Typically,

when G is trained, latent space is sampled from a Gaussian distribution [GPM20]. The

resulting vector (z in Figure 3.2) can be moved in the latent space to change the output in

a semantically meaningful way along the editing direction (d in Figure 3.2). For example,

given a face without glasses f(z0), the initial vector can be edited so that the output f(z1)

is the same face as f(z0) but wearing glasses, where z1 = z0 + λd. The coefficient λ is the

‘strength’ of the edit when d is normalized.

Entanglement in editing directions Entanglement is when a direction d changes

multiple semantic attributes of the output simultaneously. For example, if f(z0) outputs a
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Figure 3.2: A typical GAN model and its’ training scheme. Dashed lines indicate the

gradients that train the generator (G) and discriminator (D). In this training step, G

failed to trick D and the weights of G are updated accordingly. z controls the generated

data xg. The direction (d) is defined as the vector that changes the input z with addition.

When d is normalized, λ is referred to as the strength of the direction.

face without glasses, and f(z0 +λd) outputs the same face but with glasses and curlier hair,

then the facial attributes ‘glasses’ and ‘curly hair’ are considered to be ‘entangled’ for the

direction d. In this example, while trying to edit the face to add glasses, another attribute is

unintentionally changed. Entanglement can happen through the direction discovery process

or the generative model can introduce entanglement due to bias. Disentanglement is the

process of improving the entangled direction, resulting in a direction that only changes the

intended attributes.

Algorithm-driven discovery in GAN There are many supervised direction discovery

approaches that require a large labeled dataset [JCI19, GAO19, SGT20, PBH20, YSZ21,

RMC15, TTP21]. For example, InterFaceGAN finds disentangled directions by using classi-

fiers and subspace projection [SGT20]. The downside of these approaches is that they rely

on attribute predictors or human annotators. Relying on predictors or annotators severely

limits the number of directions, while GANravel provides arbitrary range of directions

through disentanglement. Recently, there has been some interest in finding directions in

an unsupervised manner. Voynov et al. finds directions in an unsupervised manner by

training a ‘reconstructor’ that predicts the strength and the index of a randomly sampled
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direction [VB20]. SeFa reveals underlying variation factors in an unsupervised manner using

closed-form factorization [SZ21]. GANSpace finds unsupervised directions using PCA on

the feature space [HHL20]. Collins et al. applies k-means to the hidden layer activations of

the generator to find a decomposition of the generated output into semantic objects. Then,

the generative model is able to transfer a style of a facial attribute in one image to another

image using the decomposition and the respective style parameters [CBP20]. Although there

are many algorithm-driven direction discovery methods, there is little support for improving

the directions through disentanglement. GANravel enables users to disentangle a given

direction with simple interactions.

Enabling users to interact with GAN Interactions with generative adversarial net-

works have been an active research area. Typically, the users interact with GANs through

sliders similar to GANravel. We decided to use sliders in the live-testing area following

prior work [SYT20, AZM21]. Dang et al. compared the regular sliders and sliders that

provide feedforward information (‘filmstrips’) in a comparative study [DMB22]. Zhang et

al. enabled users to explore the latent space with a grid-like view of sampled images [ZB21].

The users can zoom in or out, pivot, and pan to explore the latent space. Even though the

gallery section of GANravel is not spatially meaningful, it also leverages a grid of images

for selecting exemplary images. Chiu et al. created a tool that allows the user to search

through the GAN latent space interactively with a one-dimensional slider [CKL20]. There

are also various prior works that can enable new user interactions. Heim showed that GANs

can iteratively accept inputs to ‘generate an image more like A than B’ [Hei19]. Chen et

al. showed that it is possible to generate human faces from human face sketches [CSG20].

Cheng et al. developed a visual design assistant that interacted with the users through

natural language and edited the GAN outputs [CGL20]. Ling et al. allows users to edit

images leveraging segmentation masks of the images [LKL21]. StyleCLIP accepts a textual

description of the direction and finds it using the CLIP model [PWS21, RKH21]. GANzilla

allows users to discover directions via iterative scatter/gather interactions and complements
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other direction discovery methods [EC22]. GANzilla is a ‘complementary’ solution to the

algorithm-driven discovery methods. It does not find a target direction or improve disen-

tanglement, whereas GANravel is a user-driven disentanglement tool that provides more

flexibility to disentangle user-defined directions. GANzilla uses thumbnail images to rep-

resent directions and uses a brush tool to highlight a region of interest which is similar to

how users navigate in GANravel and highlight a mask for local disentanglement.

3.3 Design & Implementation

In this section, a detailed walkthrough of GANravel’s design and implementation is given

using an exemplary use case of adding glasses to the face. Similar to GAN Dissection [BZS18],

GANravel uses the filters1 in GAN models to edit images. Specifically, we extract feature

maps from each filter and define the directions at the filter level. Specific to StyleGAN,

we define the directions in StyleSpace. StyleSpace refers to the space of style parameters

that scale the outputs of convolutional filters of StyleGAN2. StyleSpace is considered to be

more disentangled than the latent space which makes it suitable for GANravel [WLS21a].

For the other GAN models, we define a space similar to StyleSpace. Each filter has a

value associated to it which is found by averaging their feature map. When all of the

associated values are concatenated, it creates a vector which we define as the direction. In

other words, each dimension of the direction represents a filter in the GAN model similar

to StyleSpace. These directions can then be applied to other reference images similar to

[BZS18], where the feature maps are increased or decreased by the respective dimension of

the direction. GANravel consists of two main disentanglement approaches, global and

local disentanglement which are detailed in § 3.3.1 and § 3.3.2 respectively.

1referred to as neurons or units in [BZS18] interchangeably.
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Figure 3.3: Exemplary image selection in GANravel. (a) The positive and negative exam-

ples can be selected from the gallery. (b) Users can request more images. (c) The resulting

direction can be tested on test images using the ‘test’ button. (d) The weights of the exam-

ples can be changed using the ‘+’ and ‘-’ buttons.

Starting with an entangled direction The workflow of GANravel starts with an

entangled direction which can be achieved by selecting a handful of positive and negative

exemplary images from the image ‘gallery’ (Figure 3.3a). Users can also request more im-

ages (Figure 3.3b). Positive examples carry the target attribute (glasses) whereas negative

examples do not. After the selection is complete, the current entangled direction can be

tested in the ‘live-testing’ area (Figure 3.1c) using the ‘test’ button (Figure 3.3c).
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Figure 3.4: Global and local disentanglement. (a) The resulting image when an entangled

direction (glasses entangled with age and mouth) is applied to the reference image. (b) Global

disentanglement. The weights of the young images with glasses are increased to disentangle

age. (c) Local disentanglement. The area of the intended direction (glasses) is preserved

while the area of the entangled attribute (mouth) is discarded. (d) The resulting image when

the globally-disentangled direction is applied to the reference image. Age is disentangled but

mouth is still entangled. (e) The resulting image when the locally-disentangled direction is

applied to the reference image. Mouth is disentangled but age is still entangled.

3.3.1 Global Disentanglement

The edited test image with the entangled direction can be seen in Figure 3.4a. As it can be

seen, the glasses direction is entangled with age (person gets older). In order to disentangle

glasses direction from age, the weights of exemplary images need to be adjusted which can

be done by the ‘+’ and ‘-’ buttons (Figure 3.3d). The weights can be seen when the mouse

hovers over the images (Figure 3.3e). Since the entangled attribute is age, the weights of
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young positive images are increased (Figure 3.4b). Another approach is to increase the weight

of old negative images. In an earlier pilot study, we discovered that global disentanglement

requires back and forth between weight adjustments and live-testing. It is also beneficial to

look for new exemplary images (e.g., positive images that are young and have glasses). After

changing the weights to balance out the entangled feature age, the edited test image with the

globally-disentangled direction can be seen in Figure 3.4d. As it can be seen, the resulting

glasses direction is disentangled from age, but still has some entanglement issues (e.g., mouth

is closed, beard, etc.). These subtle issues are harder to disentangle with positive/negative

examples and weight adjustments. They are instead fixed with local disentanglement.

Implementation First, the vector (associated with the filters) of each selected image

are extracted. The weighted average vector of positive examples is subtracted from the

weighted average vector of negative examples, resulting in the discovered direction. Initially,

all the positive examples have a weight of 1 and all the negative examples have a weight of

-1. By increasing the absolute value of positive or negative weights, the user can increase

the effect of individual vectors or vice versa. Since the user only selects a handful of images,

it is not required for the user to select negative examples to save time and effort. Instead,

each selected vector is subtracted by an ‘average’ vector which is created by averaging 10000

vectors that are extracted from random image samples. As a result, even if the user only

selects positive examples, the difference between selected vectors and average vector carries

enough information to find the target direction.

3.3.2 Local Disentanglement

In addition to global disentanglement, GANravel can also disentangle local attributes.

This is achieved by double clicking the test image with entangled attributes which pops up a

brushing tool for highlighting. After the region of interest is highlighted, the mask will appear

in the ‘masks’ section (Figure 3.1e). The masks can be used in two ways: (i) to ‘discard’

the attribute and (ii) to ‘preserve’ the attribute. The discard feature changes the direction
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to be less affected by the masked area and the preserve feature allows the direction to be

more affected by the masked area. For example, considering the same entangled direction in

Figure 3.4a, it can be seen that glasses direction is entangled with not only age (global) but

also closed mouth (local). The masks that are used to ‘preserve’ the glasses and ‘discard’ the

closed mouth can be seen in Figure 3.4c. The edited test image with the locally-disentangled

direction can be seen in Figure 3.4e. As can be seen, the edited image still has the glasses

which is achieved by the ‘preserve’ mask. Moreover, the mouth is no longer closed similar

to the reference image which is achieved by the ‘discard’ mask. However, the direction is

still entangled with age which is a global entanglement issue. The masks can be tried in

combination by selecting them and clicking the ‘test‘ button (Figure 3.1g). Each click cycles

through green, red, and no selection for the masks. If the user wants to test the masked

direction on all the test images, the ‘apply’ button can be used (Figure 3.1g). Finally, the

directions can be saved with the ‘save’ button (Figure 3.1h).

Implementation. When a region is highlighted, the filters that are responsible for that

region can be found. We extract all the outputs of the filters as feature maps. We then

calculate the overlap between the images and the mask, scaling the mask for each layer.

After normalizing the overlap, we use the overlap value as the ‘importance’ metric for that

particular filter. Higher values indicate that the filter is highly ‘responsible’ for the region

of interest. For the ‘preserve’ feature, we scale the vector with the importance metric which

results in more ‘important‘ filters having stronger influences on the output. For the ‘discard’

feature we use the same importance metric but we inversely scale the vector which results

in more ‘important’ filters having weaker influences on the output. This simple yet effective

trick allows us to disentangle a direction in a one-shot manner without any training or data

in real-time.
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3.3.3 Other Implementation Details

We used Nvidia’s implementation of StyleGAN2 in PyTorch and their pre-trained model for

the first user study. We trained a FastGAN model for the second user study. We extended

the PyTorch code of StyleGAN2 and FastGAN to be able to extract style parameters (only

in StyleGAN2) and filters which are used in disentanglement. We used Python for all of

the back-end calculations and Flask for our web-framework. The front-end of GANravel

was developed on Javascript, Node.js, and React. The back-end ran on a Linux 18.04 server

which is equipped with an Nvidia GeForce RTX 3090 GPU.

3.4 User Studies

We conducted two user studies to validate whether GANravel can enable users to dis-

entangle directions that edit images for creative purposes. In the first user study, we asked

participants to find and disentangle directions for human faces using GANravel in two sets

of tasks: (i) coarse-grained and (ii) fine-grained tasks. The goal of the first user study is to

analyze the disentanglement performance of GANravel with respect to the state-of-the-art

methods on the standard face editing task. In the second user study, we asked participants

to create dog memes using GANravel, GANzilla and combination of both. The goal

of the second user study is to put emphasis on the tool contribution of GANravel by

enabling users in a creative task of generating memes. The second user study also shows

how GANravel can disentangle directions that are found by another direction discovery

method such as GANzilla which is the most similar work to ours.

3.4.1 Editing Human Faces

The details of the first user study is provided below.

Participants. We used convenience sampling to recruit 16 participants from a local uni-
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versity. Out of 16 participants, twelve were male, four were female, and they were aged from

23 to 33. Seven participants majored in electrical engineering, two in biomedical engineering,

five in economics, and two in computer science. All of the participants had programming

experiences from five to 10 years and none of them had programmed or used GAN-enabled

applications before.

Tasks & Procedure. Each participant performed two sets of tasks (coarse-grained and

fine-grained tasks) using GANravel, and each task consists of three trials. In both tasks,

the participant’s goal was to use GANravel to find a direction that steers the output of

the GAN towards the given editing goal while preserving other attributes.

• Coarse-grained tasks. In each trial, participants were given a generic editing goal.

Specifically, the goals were: adding glasses to the faces, making the faces smile more

and making the faces appear older2. The goals were intentionally generic so that they

can be compared with the state-of-the-art face editing methods.

• Fine-grained tasks. In each trial, participants were given a specific editing goal.

Specifically, the goals were: adding lipstick to the faces, making eyes bigger, and

increasing the curliness of the hair3. The goals were intentionally specific which are

not naturally supported by the prior works to show the flexibility of GANravel.

Each user study started with an introductory tutorial of GANravel. After the tutorial, the

participants are given a brief practice session to try out GANravel using a toy example.

We then continued with a block of tasks (either coarse- or fine-grained) which is followed

by a short break. After the break, the participants are given the remaining block of tasks.

The order of the tasks and the three trials within each block were counter-balanced across

participants. We concluded the study with a semi-structured interview to elicit participant’s

2Hereafter simply referred to as glasses, smile and age

3Hereafter simply referred to as lipstick, eye, and curliness
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qualitative feed-back of GANravel. The entire study took place over Zoom and lasted for

about an hour. Each participant was compensated with a $25 gift card.

Data & Apparatus. We used StyleGAN2 as our GAN model, specifically we used a pre-

trained model which is trained on Flickr-Faces-HQ (FFHQ) dataset. The model parameters

and its PyTorch code are available on Nvidia’s github page4. Other implementation details

are given in § 3.3.3. The user studies are conducted virtually over Zoom. Each participant

used Zoom’s remote control feature to interact with the computer of the experimenter.

GANravel ran on the same computer to minimize latency.

3.4.2 Generating Dog Memes

The details of the second user study is provided below.

Participants. We used convenience sampling to recruit 16 participants from a local

university. The participants of the first and second user studies did not overlap. Out of 16

participants, ten were male, six were female, and they were aged from 21 to 29. Five partic-

ipants majored in electrical engineering, one in industrial engineering, three in biomedical

engineering, two in economics, and five in computer science. All of the participants had

programming experiences from five to 10 years and none of them had programmed or used

GAN-enabled applications before.

Tasks & Procedure. Each participant performed three tasks using (i) GANravel,

(ii) GANzilla and (iii) combination of both. Specifically, the participants were asked to

generate two dog memes for each task. A meme consisted of two images side-by-side and

text underneath them. The images were either the unedited reference images, or an edited

image, which is generated by applying the discovered direction to the reference image. The

text underneath them was written by the participants. We also let participants turn these

4https://github.com/NVlabs/stylegan2-ada
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two images into a single GIF to animate the meme 5. For the first two tasks, participants

generated dog memes using GANravel and GANzilla separately. For the last task, par-

ticipants disentangled the directions they found before (with GANzilla) using GANravel.

In other words, they improved the quality of the memes that they already found before. The

goal in the first two tasks is to compare the disentanglement quality of GANravel with a

similar work to ours GANzilla. The goal in the last task is to show how GANravel can

be used with another direction discovery method to disentangle (improve) directions.

Each user study started with an introductory tutorial of GANravel and GANzilla.

After the tutorial, the participants are given a brief practice session to try out GANravel

and GANzilla using a toy example. We then continued with a block of tasks (creating two

memes using either GANravel or GANzilla) which is followed by a short break. After the

break, the participants created two more memes using the remaining tool. After the second

task, participants are given another short break. After the second break, for the third

task, the participants disentangled the memes (previously found with GANzilla), using

GANravel. The order of the first two tasks were counter-balanced across participants.

Similar to the first user study, we had a semi-structured interview at the end. The entire

study took place over Zoom and lasted for about an hour.

Data & Apparatus. We used FastGAN 6 as our GAN model, specifically we used Pro-

jected GAN 7 for training the model on Animal Faces-HQ (AFHQ) Dog [CUY20] dataset.

GANzilla is publicly available on Github 8. We adapted GANzilla for the trained Fast-

GAN model. Other implementation details are given in § 3.3.3. Similar to the editing human

faces user study, the user studies are conducted virtually over Zoom.

5We only reported the images in the paper. The GIFs as well as the source code will be made available
on GitHub if the paper gets accepted.

6https://github.com/odegeasslbc/FastGAN-pytorch

7https://github.com/autonomousvision/projected gan

8https://github.com/noyanevirgen/GANzilla-UIST22

50

https://github.com/odegeasslbc/FastGAN-pytorch
https://github.com/autonomousvision/projected_gan
https://github.com/noyanevirgen/GANzilla-UIST22


3.4.3 Measurement

In both user studies as the participants interacted with GANravel and GANzilla, we

saved every image generated by them. We also saved all of the user interactions, such as

which buttons are clicked, and which images are selected with timestamps. We also recorded

the entire session over Zoom.

In the exit interview, first we asked participants to assess GANravel based on their

overall experience. Specifically, they are asked to rate (on a 7-point Likert scale) (i) whether

GANravel is easy to use, (ii) whether GANravel can find directions that match their

editing goal, and (iii) whether GANravel can disentangle an initially entangled direction.

Next, participants rated the cognitive load using the mental demand, effort and frustra-

tion dimensions of the NASA TLX questionnaire [Har86]. Finally we asked participants to

evaluate the usefulness of GANravel’s individual UI components: selecting positive and

negative examples, changing weights of positive or negative examples, live-testing directions

on multiple images, highlighting and masking to create new directions.

3.5 Quantitative Results

In this section, we provide quantitative analyses to understand participant performance

and behavior using GANravel and compare it with state-of-the-art baselines. There are

multiple comprehensive analyses for the tasks including: (i) disentanglement performance

comparison between the user-edited images and the images edited by the state-of-the-art

baselines (§ 3.5.1), (ii) further analyses into disentanglement to surface trends in entangle-

ment (§ 3.5.2), and (iii) user behavior (§ 3.5.3). The study of human faces in AI literature

allows us to access labeled datasets, classifiers, and facial feature extraction tools. This

makes it easier to analyze disentanglement performance using the first user study. We also

performed analyses on the second user study, in which participants were asked to find editing

directions for dogs, although these analyses were not as detailed.
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3.5.1 Disentanglement performance

Measuring disentanglement accurately is an open question in GAN research. For the first user

study, we measured disentanglement through two main analyses: (i) similar to [KGM22], we

measured how well a direction preserves the facial identity, and (ii) we measured how much

the intended facial attribute changed compared to unintended features using facial attribute

classifiers. A disentangled direction should preserve the facial identity more since there are

fewer facial attributes changing compared to an entangled direction. With a disentangled

direction, the intended facial attribute should change more than the unintended features

which can be measured with classifiers. For the second user study, we measured how well

a direction preserves the breed of the dog. A disentangled direction is expected to preserve

the breed more, similar to facial identity analysis in the first user study.

Baseline Methods. We quantitatively compared GANravel with four state of the art

methods for editing human face user study: InterFaceGAN [SYT20], GANSpace [HHL20],

StyleFlow [AZM21] and GANzilla [EC22]. GANSpace and StyleFlow are unsupervised di-

rection discovery methods and InterFaceGAN is a supervised direction discovery method that

leverages classifiers. GANzilla is a complementary user-driven direction discovery method.

GANravel does not require a dataset or a classifier similar to GANSpace, StyleFlow, and

GANzilla. On the other hand, GANravel can disentangle a given direction, similar to

the conditional manipulation of InterFaceGAN. Although InterFaceGAN, GANSpace and

StyleFlow do not have user interaction as their contribution, they produce state-of-the-art

directions that are made available by the developers. Other than GANzilla, baseline

methods are not available for the second user study. Instead we directly compared the

disentanglement performance of GANravel, GANzilla, and the combination of both.

Calibration. One of the challenges was to calibrate the strength of the directions across

methods. The individual strengths of the directions needed to be adjusted per method and

direction so the faces’ changes were comparable. For the first user study, we followed an
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approach similar to [KGM22]. We leveraged VGG-Face [PVZ15] to find the smallest and

largest limits of the applicable strengths where the faces could still be detected. We then

divided this range into five intervals and used the resulting six images as the edited images.

In total, we used 1000 reference images for the three aforementioned directions. Therefore,

for each method, we had 1000 reference images ×3 (coarse-grained) tasks per reference image

×6 resulting images per task = 18000 total number of images for the analysis. We applied

the same principle to the directions found by our participants. For the second user study, we

applied the same principle where a simple dog detector is used which is trained with Kaggle’s

Dog dataset [Cuk13].

Analysis. We re-trained InterFaceGAN for StyleGAN2 since it was originally released

for StyleGAN. The directions of GANSpace9 and StyleFlow10 are already available for Style-

GAN2 on Github. For the editing human faces user study, we implemented GANzilla’s

scatter/gather functionality to find directions, since participants did not interact with GANzilla

in the first user study. Due to the nature of unsupervised direction discovery, not every di-

rection can be found by the baselines. Coarse-grained tasks (glasses, smile and age) are all

supported by the baselines and they are used in our analyses to compare GANravel with

the baselines for disentanglement performance. We also ran our analyses on fine-grained

tasks and reported the metrics, even though they were not comparable with the baselines.

For the second user study, we trained a FastGAN using the AFHQ Dog dataset and extended

the code of GANzilla. The details of the user study can be found in § 3.4.2.

Facial Identity. Although facial identity is used as a measure of disentanglement in the

literature, it suffers from certain entanglement types. A subtle entanglement (e.g., bigger

eyes) does not change the face as much as a global entanglement (e.g., getting older). As a

result, the facial identity metric should not be compared across tasks. We used a different

face recognition model for facial identity analysis (FaceNet [SKP15]) than the model that is

9https://github.com/harskish/ganspace

10https://github.com/RameenAbdal/StyleFlow
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used for calibration (VGG-Face). Because the calibration step can bias the facial identity

similarity metric if they use the same model. First, we extracted latent vectors from the

last layer of FaceNet for the reference images. Next, we extracted latent vectors from the

six edited images that originated by calibration. Then, we calculated the cosine similarity

between the reference latent vectors and the six edited latent vectors. We averaged the

results across tasks. Cosine similarity is between zero and one. Higher values represent

a closer match between the vectors and therefore represent a more disentangled direction.

The results can be seen in Table 3.1. As it can be seen GANravel and InterFaceGAN

have better facial identity retaining compared to GANSpace and StyleFlow. GANravel

outperforms all the baselines. The values also differ across tasks. For example, age has

lower values compared to glasses and smile. This can be explained by images going through

more major changes with the age direction making it harder to retain identity. For the

fine-grained tasks: lipstick, eye, and curliness the GANravel facial identity metrics are

.84 ± .19, .85 ± .21, and .73 ± .22 respectively. According to Mann-Whitney U test, there

are no statistically significant differences between coarse and fine-grained tasks. According

to Friedman-Nemenyi test, only the age direction has statistically significant difference after

Bonferroni correction (p=.03), which indicates age direction changes the face more than the

other directions.

Classifier-Based. Although facial identity is a useful metric for disentanglement, it

does not entirely measure disentanglement. A face can go through minimal changes or the

direction can be subtle in which case the face retains most of its identity. Another way to

quantify disentanglement is to use facial attribute classifiers and measure the cosine similarity

of their latent vectors after they are edited. First, we can extract the latent vectors of the

edited and the reference images with a classifier that is trained for the goal of the direction.

For example, if the direction is age, we can extract the latent vectors of the reference images

and the edited images using an age classifier. Then, we can calculate the cosine distance

between the vectors coming from the age classifier. We can do the same calculation using

54



Coarse-Grained Glasses Smile Age

interfaceGAN .74± .11 .78± .13 .60± .21

GANspace .65± .21 .76± .15 .42± .34

StyleFlow .55± .24 .69± .15 .48± .40

GANzilla .58± .22 .71± .22 .45± .39

GANravel .84± .19 .86± .18 .67± .23

Table 3.1: Facial identity metrics of GANravel with baselines IFG, GS, and SF for wearing

glasses, smiling, and increasing age tasks. Higher values indicate higher disentanglement.

different face attribute classifiers such as baldness, hair color, face roundness, facial hair, etc.

Since a disentangled direction should not change other facial attributes, it is expected to have

a higher cosine similarity when different face attribute classifiers are used compared to the age

classifier. However, in practice, it is costly to train many different facial attribute classifiers.

Instead, we used an open-source face attribute classifier model called FAN [HFZ18] that can

detect 40 binary attributes with one model including all six tasks in our study. FAN takes an

image as an input and outputs a vector of size 40 that consists of 1s and 0s indicating whether

that attribute is present or not in the image. We used FAN and recorded: (i) whether the

targeted attribute (old) was detected, (ii) percentage of attributes that were lost (out of 40),

and (iii) percentage of new attributes (out of 40) that were detected after the direction is

applied. We averaged the results across all the coarse-grained tasks and the results can be

seen in Table 3.2. Ideally, after the image is edited, the output of FAN should not lose any

attribute, and it should not find any new attributes other than the targeted attribute.

According to Friedman’s test, after Bonferroni correction, there is no statistically sig-
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Coarse-Grained Success (%) (↑) Lost (%) (↓) Found (%) (↓)

interfaceGAN 72.34± 18.15 6.32± 3.64 8.82± 4.12

GANspace 69.68± 21.64 8.74± 6.61 10.12± 7.12

StyleFlow 69.13± 27.16 11.98± 6.85 13.87± 6.91

GANzilla 66.99± 35.98 12.12± 7.35 10.33± 5.22

GANravel 74.81± 12.66 3.41± 4.33 4.59± 4.12

Table 3.2: Facial attribute classifier metrics of GANravel with baselines IFG, GS, and

SF for wearing glasses, smiling, and increasing age tasks. Success percentage indicates how

successful the direction is in adding the target attribute when applied. The lost percentage

indicates how many facial attributes are lost when the direction is applied. The found

percentage indicates how many facial attributes are introduced when the direction is applied.

Lower values for lost and found indicate higher disentanglement.

nificant difference in success rates. This indicates that all methods introduce the targeted

attribute with similar percentages. However, InterFaceGAN and GANravel have statisti-

cally significant lower lost and found attributes which is a result of their disentanglement

capabilities (p=0.04 and 0.02 respectively). GANravel outperforms all the baselines. For

the fine-grained tasks: the GANravel success, lost and found metrics are 63.91 ± 23.18,

6.00 ± 7.91, and 5.61 ± 11.23 respectively. According to Mann-Whitney U test, there are

no statistically significant differences between coarse and fine-grained tasks. According to

Friedman-Nemenyi test, only the success metric has statistically significant difference (p=.02)

after Bonferroni correction. This can be explained by fine-grained tasks being more subtle

by definition. That being said, lost and found metrics are similar which again shows that

56



the directions are disentangled regardless of the task.

Dog Breed. In order to measure disentanglement in the second user study, we used a

dog breed classifier which is trained with the Oxford Dog dataset [PVZ12]. Similar to the

facial identity metric in the first user study, a disentangled direction is expected to preserve

the breed more. It should be noted that human faces are better studied and have better

models (like FAN) than dogs. As a result, the analyses in this section should be viewed as

complementary to the previous disentanglement performance analysis.

In the second user study, we asked participants to use GANravel, GANzilla, and

the combination of both (GANzilla+GANravel) to create dog memes. In the last

task, participants disentangled directions that they already found with GANzilla. Sim-

ilar to facial identity metric, we extracted latent vectors of the reference images and the

edited images and calculated cosine similarity for each task. Cosine similarities are between

zero and one, where higher values represent a more disentangled direction. The results

for GANravel, GANzilla, and the combination of both (GANzilla+GANravel) are

.91± .12, .45± .32, and .90± .15, respectively. According to Friedman-Nemenyi test, across

three tasks, only GANzilla has statistically significant difference (p=.02) after Bonferroni

correction. This shows that GANzilla is significantly worse at creating disentangled di-

rections than GANravel. More interestingly, participants were able to disentangle the

directions they discovered with GANzilla using GANravel. This analysis highlights

how GANravel can be either used by itself or complementary to other direction discovery

methods for disentangled direction discovery.

3.5.2 Iterative disentanglement

User-driven disentanglement is one of the biggest contributions of GANravel. Previously

in § 3.5.1, we showed the disentanglement performance of the directions that users found

at the end of each trial. In this section, we analyze how the disentanglement changes over

time as the participants interact with GANravel. We provide insight into interactive
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Over Time Success (%) (↑) Lost (%) (↓) Found (%) (↓)

Glasses 0.29± 1.38 −7.61± 4.51 −5.80± 4.73

Smile 0.60± 0.69 −4.69± 6.54 −3.02± 3.51

Age 0.38± 1.01 −6.95± 7.82 −4.00± 5.51

Lipstick 1.08± 1.11 −7.95± 7.99 −6.12± 7.65

Eye 1.37± 0.92 −6.57± 4.66 −7.69± 8.10

Curliness 0.58± 1.56 −5.89± 5.99 −5.78± 6.11

Table 3.3: Facial attribute classifier metrics of GANravel for each trial when the final

‘disentangled’ direction results are subtracted from the initial ‘entangled’ direction. Positive

values in success indicate improvement in the target facial attribute over time. Negative

values for lost and found indicate higher disentanglement over time.

disentanglement in using classifier-based disentanglement over time.

For each trial when the users selected exemplary images and tested a direction for the

first time, we saved the direction as the ‘entangled’ direction. After they interacted with

GANravel to improve the direction, we saved the final version as the ‘disentangled’ direc-

tion. Previously in § 3.5.1, we reported the results for the ‘disentangled’ direction. We did

the same analysis for the ‘entangled’ direction. Then, we subtracted the success, lost, and

found percentages of the ‘disentangled’ direction from the ‘entangled’ direction and reported

it for each trial. Positive values in success imply the final direction introduces the target

facial attribute more often than the initial direction. Whereas, negative values in lost and

found imply that the final direction is more disentangled than the initial direction. The

results can be seen in Table 3.3.
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According to Mann-Whitney U test, there is a statistically significant difference between

the initial and final directions for both loss and found percentages (p = 0.02, 0.04, 0.02, 0.02,

0.02, and 0.03 respectively for lost) (p = 0.03, 0.03, 0.04, 0.02, 0.03, and 0.03 respectively

for found). As the users interacted with GANravel, they disentangled the initial direc-

tion consistently for each trial. However according to the Mann-Whitney U test, there is

no statistically significant difference between the initial and final directions for the success

percentages. In other words, the target facial attribute is present when the initial direc-

tion is applied as well as the final direction. The improvement is in the disentanglement

performance over time.

We also analyzed how the disentanglement performance improved over time. Every time

the participants applied a disentanglement, global or local, we extracted the current direc-

tion and ran the same analysis we ran earlier in this section. The results can be seen in

Figure 3.5. As it can be seen, the disentanglement performance increases over time (per-

centages get lower). Interestingly, on average it took 4.12 and 5.32 actions for participants

to reach at least 90% of the maximum disentanglement they could achieve. This can be

explained by participants focusing on global disentanglement at the beginning which is eas-

ier to observe with the metrics, since global disentanglement change the image more than

local disentanglement. 73.9% of the first 5 actions consist of global disentanglement, which

supports the previous observation.

3.5.3 User behavior

In this section, we report how the users interact with GANravel. Overall, the average

time to complete a coarse and fine-grained task were 8 minutes 54 seconds and 8 minutes 29

seconds respectively. For the second user study, the average time to create a dog meme was

9 minutes and 12 seconds for GANzilla, 9 minutes and 21 seconds for GANravel, and

6 minutes and 42 seconds for disentangling the directions of GANzilla using GANravel.

The faster times in the last task can be explained by participants not needing to choose
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Figure 3.5: Lost and found percentages over user actions when the current direction metrics

are subtracted from the initial entangled direction metrics. Lower values indicate higher

disentanglement. The shaded regions represent 0.2 times the standard deviation to make

plots readable. The values of tasks should not be compared with each other as discussed.

exemplary images. The results show that using GANravel from scratch to find a disentan-

gled direction takes less time than disentangling an entangled direction that is found with

GANzilla, including the time that it takes to find a direction with GANzilla. However,

it can also be argued that algorithm-driven approaches can find a direction significantly

faster than a user-driven tool like GANzilla. Therefore using algorithms in combination

with GANravel for disentanglement can yield better results. We did not analyze the op-

timal disentanglement procedure in this work and left it as future work. Participants spent

32.32% of their time selecting exemplary images, 46.34% on live-testing the directions, 7.66%

on highlighting, 8.17% on weight adjustments, and the remaining 5.51% on applying masks.

The average number of positive or negative examples selected per trial is 15.32. The average

number of highlighting per trial is 2.75. The average number of times the weights of the

exemplary images are adjusted per trial is 8.54. The average number of directions tested

on live-testing per trial is 3.72. However, participants tested each direction thoroughly and

changed the individual weights of the test images on live-testing 8.56 times per direction.
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The average number of masks the participants tested per trial is 2.53. The average number

of times the participants applied the mask to all the test images is 1.82 per trial.

Participants were able to find state-of-the-art disentangled directions from scratch in un-

der 10 minutes 81.19% of the time. This shows how GANravel can efficiently enable the

end user to find disentangled directions when a dataset or a classifier is not available. More-

over, participants got better at disentanglement as they spent more time with GANravel.

For the first user study, the initial directions they found were 41.33% more disentangled (ac-

cording to classifier-based metrics) after the first three trials which is statistically significant

(p=0.04) according to to Mann-Whitney U test. They achieved this by spending 13.1% more

time on the initial image selection which is also statistically significant (p=0.04) according

to to Mann-Whitney U test.

3.6 Qualitative Results

We employed a method akin to the Affinity Diagram approach [HB97], and we aggregated

participants’ responses. We summarized their perceived ease, the perceived success of disen-

tanglement, and the perceived success of finding the directions using GANravel in § 3.6.1.

We also report the cognitive load responses using the mental demand, effort and frustration

dimensions in the NASA TLX questionnaire in § 3.6.2. Additionally, we extracted recur-

ring themes regarding how participants assess the usefulness of the individual components

of GANravel in § 3.6.3. Specifically, the first author transcribed participants’ responses

to develop the initial codes, which were then reviewed by the second author. Disagreements

were resolved via discussion between the two authors. Figure 3.6 shows the average ratings of

the participants for GANravel on ease of use, perceived disentanglement success, perceived

trial success, cognitive load, and ablative assessment of each component’s usefulness.

We also show some qualitative images showing the disentanglement performance of

GANravel for the first user study. In Figure 3.7, we compare the resulting images of
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Figure 3.6: The participants’ average ratings. The questions are explained in § 3.4.3. All

questions used a seven-point Likert scale.

GANravel with the baselines. As can be seen, GANravel has better disentanglement.

Additionally, we show directions that participants found during various trials in Figure 3.8

(which uses the same reference image as Figure 3.7). As can be seen, the participants have

successfully disentangled directions in all of the tasks. In Figure 3.9, we show the improve-

ment of the direction ‘glasses’ as the participant interacts with GANravel. As can be

seen, the participant disentangles age and gender with global disentanglement. Then, the

participant disentangles the remaining local attributes with local disentanglement. For the

second user study, we show some dog memes the participants created in Figure 3.10. In Fig-

ure 3.11, we also show some directions the participants found using GANravel, GANzilla

and both. As it can be seen, the entanglement issues improved after the participants used

GANravel.
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Figure 3.7: Comparison of state-of-the-art direction discovery methods and GANravel.

The reference row is the original image. GANravel has better disentanglement than other

methods.
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Figure 3.8: Participants found various disentangled directions using GANravel. Each

image is generated from a disentangled direction, found by the participants. Each column is

for a different trial. Participants successfully disentangled the directions.
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Figure 3.9: Improvement of the direction glasses as the participant interacts with GAN-

ravel. The ‘entangled’ direction has entanglement with age, gender, and other various

local attributes. After the global disentanglement, the direction is disentangled from age

and gender but still entangled with local attributes (e.g., hairstyle, mouth, etc.). Finally,

after the local disentanglement, the glasses direction is disentangled.

Figure 3.10: Dog memes created by the participants. A disentangled edited image makes a

higher quality meme.
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Figure 3.11: Comparison of different tasks in the dog meme user study. GANzilla creates

entangled directions which result in worse quality edited images. GANravel can disentangle

a direction that is found with GANzilla.

3.6.1 Overall assessment

P1-16 represents the 16 participants from the first user study. P17-32 represents the 16

participants from the second user study.

3.6.1.1 Ease of using the tool

All of the participants except (P9, P17, and P26) gave a rating equal or greater than five,

when they were asked to rate how easy GANravel was to use. For example P1 commented

on the intuitive workflow of GANravel: “The steps are really intuitive. You just select

images that have the target attribute and then highlight the region if the results are entan-

gled”. P3, P7, P17, P11, P14, P30, and P31 commented on how fast and easily they could

find the directions. P4, P5 and P22 pointed out that they had to fine-tune the individual

strengths on some of test images for the target attribute to appear, which made it harder

to access the directions easily. When the directions are entangled, they can fail to work on

some test images. For example P22 said: “Initially, the direction was not working on all of
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the dogs. When I disentangled the direction, it started to work”. P1, P2, P23, P12, and

P32 mentioned it was intuitive to figure out which images to select for global entanglement.

P9 gave below-five rating (four) and mentioned the lack of guidance in the tool: “When I

got a direction that I did not expect, the next step to take was not always clear”. P17 and

P26 shared similar concerns. Ratings of P9, P17 and P26 (below-five) are outliers based on

the IQR analysis. Overall, participants thought the tool was easy to use.

3.6.1.2 Perceived success of disentanglement

All of the participants except P8 and P29 gave a rating greater than four, when they were

asked to rate their perceived success of disentanglement. P9, who previously rated four

for the ease of use, thought the disentanglement was successful: “I could get rid of most

of the entanglement problems as I changed the weights”. P26, who also rated four for

the ease of use, said: “I could clearly see the disentanglement when I improved the image

that I found before with GANzilla.” P8, who rated three, thought that it was hard to

preemptively avoid entanglement and the resulting directions were not always as they were

envisioned. P8’s and P29’s ratings are outliers based on the IQR analysis. P1, P10, P15,

P23, and P31 pointed out that they could disentangle the directions better as they got more

experience with GANravel. Participants also pointed out variations in entanglements:

“Some entanglements were more obvious, for example, gender and age. I tried to disentangle

them first” (P3) and different strategies to overcome them: “Some entanglements were more

subtle such as gaze direction or chin roundness. I tried to ignore those and focus on the

more obvious ones first” (P5). “Sometimes I could see the breed of the dog changing. After

balancing out the exemplary dogs, It got much better.” (P21). Overall, the participants

thought they were successful in disentangling the directions which is also backed by the

quantitative analysis.
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3.6.1.3 Perceived success of the trials

All of the participants gave a rating of six or seven, when they were asked to rate their

perceived success in finding the direction for trials. Participants had different reasons why

they were confident with their directions: “I could see that the direction was working on all

of the test images” (P1), “I could build a diverse set of exemplary images in all trials, so the

resulting directions were successful” (P3), and “I could see the improvement in directions

after I spend some time on them, progression was convincing” (P10). Some participants felt

successful after changing the strength of the direction and saw the transition from the initial

image (P2, P7, P8, P12, P16, P20, P30). P17 and P32 pointed out the open-ended nature of

creating memes and commented that they were surprised that they could find the directions

they envisioned while creating the memes. P29 mentioned how he adjusted for the tool: “It

was not possible to find everything I was looking for, instead I got inspired by what I could

find.”. Overall, participants felt like they were able to finish the tasks.

3.6.2 Cognitive load by NASA TLX

Only one participant (P9) gave a rating higher than four (neutral) for the mental demand

dimension and pointed out that the main mental demand was to come up with ways to

disentangle a direction when the entanglement was not very clear. As explained by P9:

“Sometimes I could see there were some entanglement problems with the direction, the face

looked like someone else, but I did not know how to fix it”. P9 also gave a rating higher than

neutral for the frustration dimension citing the same reasoning. Rating of P9 on frustration

is an outlier based on the IQR analysis. Most of the participants found the tasks were not

mentally demanding or frustrating as mentioned by P18: “It was easy and a lot of fun”. P8:

“It behaved as I expected and that was really satisfying”. P4, P7 P13, and P31 mentioned

that they could see their progress over time and were motivated by it. P8 was the only

participant who rated higher than neutral for the effort dimension and said: “For some
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trials, I had to do multiple iterations until I was confident”. Rating of P8 on the effort is an

outlier based on the IQR analysis. The rating of P4 for the frustration dimension was five

because of how the directions could behave unexpectedly. As mentioned by P4: “Sometimes

the directions did not work on all the test images or the directions required specific strengths

to appear. I had to test a lot of different values in some trials”. Rating of P9 (five) and P4

are outliers based on the IQR analysis. Most of the participants were not frustrated, in fact,

they “enjoyed” (P3, P7, P17, P18, P19, P21) the tasks.

3.6.3 Ablative Assessment

In this section, we summarized the recurring themes based on participants’ responses on the

usefulness of individual components of GANravel.

3.6.3.1 Participants could preemptively avoid entanglement issues by curating

a set of positive and negative examples.

Some participants (P1, P2, P5, P7, P10, P13, P17, P19, P21, P22, P24, P25, P28-32) pointed

out that they got better at disentanglement as they learned more about the model and more

about the entanglements in the directions. As P1 mentioned: “After the first couple of

trials, I was looking to avoid some entanglements proactively. I was trying to balance out

concepts such as gender, age, and glasses by choosing a diverse set of examples”. Participants

also had different strategies to avoid entanglement, for example as P2 mentioned: “For the

curliness direction, I had a hard time finding male examples. So instead, I selected most

of my positive and negative examples as females so the final direction was not entangled

with gender”. Another example was from P23: “I was selecting just a couple of exemplary

images to see the initial entanglement and then try to select the next example based on the

entanglement. From there, I added examples one-by-one”. P5 pointed out that creating

a ‘balanced’ set requires tuning through trial and error: “It was not as easy as selecting
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the same number of female and male positive examples to disentangle gender. It required

tuning”. P7, P10, P23, P27, and P31 mentioned that with more available time, they could

tune out the entangled features more.

3.6.3.2 Participants struggled with entangled directions that do not introduce

the target facial attribute on all the test images.

P4, P5, P11, P13, P15, P23, and P29 pointed out the lack of consistency in the live-testing

area when the direction is entangled. Specifically, they talked about the cases when a

direction did not work on certain test images, but worked on others, as mentioned by P5:

“When a direction did not work on a couple of test images, it was hard to believe in the

direction”. P4 talked about the same issue with more nuance: “Because of the entanglement,

lipstick direction did not work on all the test images. But as I disentangle the direction and

make the direction purer, it started to work on more images”. P15 also mentioned the same

issue: “Some directions changed the breed of the dog but not for all of the test images. It

was a little confusing”. To our surprise, some participants were more positively reinforced

when the direction worked well on a couple of test images but not on all of them. They

thought that it was “not possible” (P1 and P19), “a limitation of the model” (P2 and P32),

and they tried to “get right” as many images as they can (P9, P13, and P22). Similarly,

some participants mentioned the lack of quantitative metrics in the live-testing area (P3,

P10, and P25), as mentioned by P10: “I wish there were metrics at testing, so I knew I

was improving the direction more objectively”. P6 (and P31) had a different strategy: “I

focused on the worst looking test examples and tried to improve them. The rest of the test

examples usually followed”.
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3.6.3.3 Some participants favored one of the disentanglement approaches over

the other.

To our surprise, some participants found the global disentanglement more intuitive, as men-

tioned by P21: “Changing the weights to improve images were really helpful, I did not use

the masking a lot.” and P5: “Changing the weights of selected images was helpful whenever

disentanglement was necessary and the results were as expected”. Similarly, P1 preferred

to use changing weights over masking, saying: “I exactly knew what ‘changing weights’ did,

but I was not sure how masking worked under the hood”. However, some participants pre-

ferred masking, as mentioned by P2: “Masking is easy to use, I just highlighted the area of

interest and the directions were disentangled”. P7 and P29 mentioned masking was “faster”

and “easier” than changing weights to disentangle the direction. Some participants utilized

both and even created their own system, as mentioned by P3: “If the entangled features

were obvious such as gender or age, I fixed them with changing weights. For more subtle

entanglements, I used masking”. All of the participants gave ratings of above four to the

changing weights component.

3.6.3.4 Participant used local disentanglement with various masks.

Masking was used in various ways by some participants, as P2 mentioned: “Whenever the

lighting on the face was changing, I highlighted the entire face and used the masking to

reduce lighting entanglement” (using the discard feature). Some participants highlighted

more subtle changes such as cheeks (P3) or forehead (P4). However, according to P4,

subtle masks did not always work and bigger masks were more “consistent”. P5 gave a

more nuanced explanation of why masking was harder to use in certain situations: “Trying

to disentangle age from gender was harder with masks because both directions were not

contained to an area”. Some participants did not use the discard feature of the masks to

eliminate entanglement (P8, P9, and P10) but instead used the preserve feature which is
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explained in § 3.3.2. For example, P8 said: “For the eyeglass trial, I chose the best test

example that had glasses. Then I used the masking on the glasses and kept them (preserve).

The direction got significantly more disentangled”. P6 only used the discard feature to

improve the “worst-looking” test examples. A similar trend can be seen in the second user

study, where participants had different strategies. For example P26 said: “Masking the ears

were resulting in change of the breed, so instead I focused on the discard feature”. P17

and P21 mentioned ‘using different combination of masks’ to end up with a disentangled

direction.

3.7 Discussions

This section discusses several issues in the current tool and possible solutions for future work.

Limitations of the current study. First of all, future work can increase the number

of participants beyond the current user studies. Moreover, we can also use a narrower user

group (e.g., artists trying to use GANs for creative purposes). In the ‘age’ trial of the first

user study, participants had various interpretations of the task, e.g., some participants found

directions for wrinkly faces, some found white hair, etc. This trial can be improved so that

it is easier to compare it with prior work.

Improving disentanglement with prior analysis. Currently, GANravel is de-

signed to iteratively disentangle a direction. Typically, the user identifies an entanglement

problem and then tackles it with either global or local disentanglement. While fixing one

type of entanglement, the disentanglement process can introduce a new type of entangle-

ment. For future work, one possible idea is to analyze entanglements in the model via an

unsupervised algorithm prior, such as clustering. This would allow the model to predict

which type of entanglements appear together and can be used to feed-forward information

about the entanglements while the users interact with the system.

Providing guidance through exemplary image selection. Image selection plays
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an important part in global disentanglement. Currently, the user goes through the image

gallery which consists of randomly sampled images. We decided to go with random sampling

because, in an earlier version of GANravel, user recommendations for selections created

bias and entanglement in the resulting direction. In the future, non-biased guidance through

image selection can be implemented to help the users. This can be achieved by a text prompt

indicating what the user is searching for (e.g., young blond males) or if the search is about

more subtle attributes, it can be through highlighting a region.

Providing guidance and metrics on disentanglement. In the future, more guid-

ance on disentanglement can be provided to the user. This can be achieved with heat maps

that show the changed regions as well as metrics (e.g., facial identity) that indicate the

disentanglement performance. As another solution, the user can indicate when a disentan-

glement works and does not work, which can then be used to learn the correlations in the

GAN model. The information can then be used for further guidance as the users disentangle

a direction. As a result, the tool can adapt to user feedback.

3.8 Conclusion & Future Work

In this section, we summarize key insights of GANravel to help future work.

• Curating a balanced set of images to find a disentangled direction is a trivial task in

disentanglement. Surprisingly, as the participants interacted with GANravel, they

got better at avoiding the initial entanglement issues.

• Directions can fail to generalize across test images due to entanglement. But this failure

can also be caused by the limitation of the model. In other words, some test images

could not be successfully edited with the direction. This phenomenon was confusing to

the users since they did not know if their direction was entangled or it was a limitation

of the generative model. In the future, figuring out the model limitations automatically
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and communicating it to the user can become an important task.

• A future research direction can be figuring out how to utilize algorithmic direction

discovery methods in user-driven direction discovery. In the second user study, we dis-

covered that starting with a direction can speed up disentanglement. Using algorithm-

driven direction discovery methods to initialize the search process or leveraging them

throughout the human-AI interaction is left as future work.

• As the participants disentangled directions, they learned the common entanglement

issues specific to the generative model. With each new task, they had to disentangle

the same issues such as age and gender. In the future, an algorithmic way to get rid

of this repetitive task can be investigated.

• Subtle entanglement issues are harder to measure as discussed in § 3.5.2. In the future,

new metrics can be investigated specifically tailored for local entanglement issues.

• Throughout the workflow of GANravel, selecting exemplary images was time con-

suming as discussed in § 3.5.3. Users were ‘communicating’ with the model through

selecting images. For example by selecting images with blonde hair, the users were

interacting with the model to find the respective direction that changes the hair color.

In prior work, instead of exemplary images, StyleCLIP [PWS21] leverages text prompts

for the same interaction, which is faster than selecting images. However the downside

of natural language is, it does not have the fine-grained optimization a set of images can

provide. In the future new interaction methods should be investigated that provides

both fast and detailed communication between the users and AI models.
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CHAPTER 4

User-Driven Prompt Scheduling in Text-to-Image

Diffusion Models

4.1 Introduction

Foundational deep learning models are large machine learning models trained on a vast

quantity of data at scale. Due to this large dataset they can be easily adapted to wide

range of downstream tasks. Specifically, text-to-image models like Dall-e[RPG21] and Stable

Diffusion[RBL22] have many applications including art [Opp22], medicine [WWA22], and

education [VT23].

Despite these advancements, a challenge persists for non-expert users. These cutting-

edge models, while potent, present themselves as intricate ‘black boxes’ to the end user.

This effectively restricts users to basic interactions, preventing them from tapping into the

full potential and versatility of the models. The primary user control remains the textual

prompt, which serves as the singular input point, thus limiting the level of influence a user

can exert on the output. Addressing this limitation, the image generation community has

collaboratively created ‘prompt books’ as comprehensive guides. The community has also

seen the rise of ”prompt engineers” - professionals who specialize in crafting optimal textual

inputs to achieve specific model outputs. The commercial value of this expertise has even

led to a market for these services. Concurrently, there are also prompt search engines,

further emphasizing the collective pursuit for refined input controls. While methods like the

Prompt-to-prompt[HMT22], Prompt mixing[PGA23], and ControlNet[ZRA23] have enabled
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Figure 4.1: PromptZEN enables users to edit images through prompt scheduling. (a) User

can choose a generated image or upload a real image for inversion. (b) User can schedule

prompts to control image generation process. (c) User can find related keywords to influence

prompt scheduling. (d) User can investigate image generation through denoising timesteps

for precise prompt scheduling. (e) User can see the result of their schedule as well as the

original image. (f) User can save and return to a saved image for subsequent trials.

more intricate interactions with the models, there remains a gap in making such advanced

techniques readily accessible to the everyday user.

We design and implement PromptZEN—a tool that enables users to edit images through

prompt scheduling. While our initial implementation is tailored for the Stable Diffusion

model and its intrinsic cross-attention mechanisms, the workflow in our tool is expected to

generalize to other diffusion-based text-to-image models as well.

Beginning their interaction, users can opt to select a pre-existing model-generated im-

age or upload their personal real-world image, supplementing it with a related inversion
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prompt (Figure 4.1a). Diving deeper into PromptZEN’s functionality, users can pinpoint

a keyword of interest and suggest its replacements for various timesteps1. Through a user-

friendly slider bar (Figure 4.1b), they can methodically dictate the temporal sequence for

their keyword replacements, providing a nuanced influence on the image’s generation. To

enhance this experience, PromptZEN incorporates two key features: (i) a context-driven

word cloud (Figure 4.1c) that offers alternative keywords based on the original prompt, and

(ii) a denoising visualization (Figure 4.1d) that reveals the image’s evolution from pure noise

to its final intricate form. This progression aids users in determining the optimal timings to

introduce their keyword changes, refining localized edits in the process. The synergy of the

word cloud and denoising visualization empowers users to navigate and execute previously

inaccessible local edits with precise prompt schedules. After scheduling, they can test their

schedule (Figure 4.1e) and save the edits for future generation (Figure 4.1f).

In our evaluation of PromptZEN, we conducted a user study involving 12 participants,

focusing on its efficacy across two distinct tasks. Firstly, in closed-ended tasks, participants

were provided with edited image pairs, consisting of references and targets, to discern their

ability to replicate specific edits. The results showed that when utilizing PromptZEN,

participants created prompt schedules that resulted in images that closely mirrored the de-

sired target images. Moreover, in comparison to three other benchmark methods, the use

of PromptZEN led to superior edits that maintained the background’s integrity while

aligning the local changes closely with the target in terms of shape, texture, and color distri-

butions. Secondly, in open-ended tasks, participants used real images of their living spaces,

allowing for freeform edits without a set directive. This was to understand PromptZEN’s

real-world application and gather actionable insights for future design decisions. The out-

come was consistent with our previous findings: participants displayed a clear inclination

towards PromptZEN over other baselines. In short, we showed both quantitatively and

qualitatively, PromptZEN enabled participants to achieve successful image edits and also

1which we refer to as prompt scheduling
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Figure 4.2: Diffusion models iteratively denoises a given noise over multiple timesteps. End

users do not have access to this process hindering their control over the generation.

outperformed the existing benchmark methods in the process.

Overall, PromptZEN makes a tool contribution. In contrast to using diffusion mod-

els as ‘black boxes’, we introduce a comprehensive tool that empowers users with granular

control over the image generation process. Through PromptZEN, users are guided at each

step with intuitive visualizations, enabling a clearer understanding of how their input influ-

ences the final output. Importantly, the intent behind PromptZEN is not to overshadow

or replace other methods that enhance user control. Instead, it aims to augment these

techniques, showcasing the potential of user interaction within the context of user-driven

diffusion models.

4.2 Background & Related Work

Diffusion models. Diffusion models operate based on the principle of iterative denoising.

At the beginning of this process, the model starts with an image dominated by noise, as

depicted in Figure 4.2. As the iterations progress, this noise gradually diminishes, revealing

the underlying image structure. Each successive timestep refines the image further, reducing

the noise and enhancing the clarity. By the conclusion of the sequence, clear and detailed

features emerge from what was initially a chaotic noise pattern. Specifically, the underlying

deep learning model responsible for the denoising process (U-net in the case of Stable Diffu-

sion) is trained using a unique methodology. Artificial noise is introduced to an image from

the training dataset, and the model is then tasked with predicting this introduced noise.
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During the inference phase, the noise predicted by the model is subtracted from the orig-

inal noisy image. This approach iteratively reduces the noise level, progressively revealing

a clearer version of the image. However, a limitation in the current application of diffusion

models is the availability of these denoising timesteps to the user. End users typically in-

teract only with the final output and are denied access to these informative intermediate

stages, restricting their understanding and control over the image evolution process.

Enabling users to interact with generative models. User interactions with gen-

erative models have been explored in various research studies. A common method used in

this domain is the slider interface, as documented in several works [SYT20, AZM21]. An

extension to this was presented by Dang et al., who compared traditional sliders with en-

hanced versions showing previews, known as ‘filmstrips’ [DMB22]. Moving beyond sliders,

Zhang et al. used a grid-based view for the latent space, allowing users to interact and

explore generated samples more intuitively [ZB21]. A different approach was introduced by

Chiu et al.., where a single-dimensional slider was employed to navigate the latent spaces

of generative models [CKL20]. In terms of diverse input methods, works by Cheng et al.

and Yu et al. incorporated natural language feedback to influence the output of generative

models [CGL20, CSG20]. Further, Ling et al. introduced a system that lets users edit gen-

erated images using segmentation masks [LKL21]. Another method involves using textual

descriptions for image transformations, as seen in StyleCLIP by Or et al. [PWS21] that uses

CLIP embeddings [RKH21]. Tools such as GANravel [EC23] and GANzilla [EC22] have also

contributed to the field, with GANzilla offering a scatter/gather technique and GANravel

focusing on user-driven disentanglement in directions. Drag Your GAN, is an interactive

point-based manipulation tool that lets user edit an image [PTL23]. In summary, various

methods and tools have been developed to enhance user interactions with generative models,

reflecting the ongoing growth in this area.

Controlling image diffusion models. In our exploration of image diffusion models,

we employed a Stable Diffusion model in PromptZEN as a proof of concept. Controlling
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these image diffusion models has gained significant traction recently. Various methodologies

have emerged, ranging from the straightforward addition of noise to an image followed by

its denoising using a guiding prompt [ALF22, MHS21, CVS22], to the more complex ma-

nipulation of model internals, such as attention maps, to maintain the image’s structure

[HMT22, GLK23, PKZ23, PGA23]. Innovations like Magicmix [LYZ22] are venturing into

semantic mixing, blending distinct semantics for a fresh concept, while ControlNet [ZRA23]

integrates spatial conditioning controls to upscale pretrained text-to-image diffusion mod-

els. MakeAScene [GPA22] and SpaText [AHG23] harness segmentation masks, translating

them into tokens or localized token embeddings for controlled image generation. Instruct-

Pix2Pix performs the appropriate edit using an image and an instruction for how to edit

that image [BHE23]. Further advancements include GLIGEN [LLW23] adjusting attention

layers’ parameters for grounded generation, Textual Inversion [GAA22] and DreamBooth

[RLJ23] refining the diffusion model with user images for personalized content. Yet, despite

these technical leaps, a discernible gap persists between user engagement and the optimal

presentation of these control mechanisms for the end user. Complementarily, PromptZEN

enables end users to control the generation process through intuitive user interactions built

on top of attention-based techniques.

4.3 PromptZEN: User-Driven Prompt Scheduling in Stable Dif-

fusion

In this section, we present a detailed walkthrough of PromptZEN’s design and imple-

mentation using an exemplar use case of editing a scene with a hamster holding a banana.

PromptZEN’s implementation can be divided into four main groups: selecting an image,

prompt scheduling, word cloud, and denoising visualization.
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Figure 4.3: Users can schedule the replacement keywords using the dropdown menu. The

schedule will be visualized as a slider bar where blue color indicates a replacement word.

The timing of the replacement can be changed using slider handles.

4.3.1 Selecting an image to edit

Initially, a user provides a textual prompt to produce a variety of images generated from

different seeds. As demonstrated in Figure 4.1a, these generated images are displayed in a

gallery format. The user then selects their preferred image for further editing. In addition

to using generated images, users also have the option to upload a real image for editing

purposes.

Implementation. For generating images through Stable Diffusion, we utilize a conven-

tional generation pipeline. This pipeline produces images based on the provided prompt

using the model in the absence of prompt scheduling or scene modifications. When users up-

load their own images, we apply null-text inversion [MHA23]. Despite uploading an image,

users are still required to input a prompt for inversion as well as to facilitate the functioning

of PromptZEN’s pipeline. Every time an image is generated, it is saved on a local device

with the latent codes so that subsequent runs with identical prompts run faster.

4.3.2 Prompt Scheduling

Stable Diffusion creates images by sequentially denoising an initial noisy image across multi-

ple timesteps. With prompt scheduling, Stable Diffusion is enabled to incorporate different

prompts at specific timesteps. PromptZEN emphasizes modifying a singular keyword by
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blending the original prompt with alternate keywords, ensuring the entire scene remains

coherent. This design decision was taken to streamline user interaction, especially since our

preliminary studies showed that users found scheduling multiple keywords challenging to

navigate. As depicted in Figure 4.3, users begin by entering the term they aim to adjust

into the ’Target Word’ section. This keyword should be consistent with one from the origi-

nal prompt. Users then enter the replacement keyword in the ’Replacement Word’ section.

In our example, we are editing ‘banana’ with keywords ‘orange’ and ‘fur’, the rationale for

which will be elaborated in subsequent sections. This new keyword can be scheduled using

the adjacent dropdown menu. The schedule is represented graphically with a sliding bar.

This bar contains handles that segment the bar into sections, with each section representing

a specific keyword. Between these handles, users can see and adjust the keywords for various

timesteps. Users can adjust the number of segments (and thus the number of keywords)

with ’+’ or ’-’ buttons. By dragging the handles, users can determine the duration and the

timing of each keyword in the schedule. Each handle is also marked with numbers, indicating

the associated timestep. After finalizing their desired schedule, users can activate the ’mix’

button to produce the edited image.

Implementation. Once the prompt schedule is established, it is passed to the backend.

Here, based on the replacement keywords, the prompts undergo modification. Within the

Stable Diffusion framework, these prompts are channeled into the U-net via cross-attention

layers. These layers comprise matrices named Key, Value, and Query, inspired by information

retrieval systems [VSP17]. In the conventional implementation, prompts influence the Key

and Value matrices, with the Query originating from a preceding layer in the U-net. In

contrast, our methodology employs the new prompts (sourced from the prompt schedule)

to compute only the Value matrices. However, the Key matrices remain computed using

the original prompt, a procedure aligning with [PGA23]. Only updating Value matrices

demonstrated to better retain the original image’s layout, resulting in better disentangled

edits. As a result, even if the entire prompt schedule diverges from the original in terms
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Figure 4.4: Users can search for keywords by providing a search word. Using CLIP embed-

dings, PromptZEN returns a word cloud where the most related words have bigger fonts.

of keywords, our framework still upholds the original image’s layout. Once processed, the

modified image, alongside its associated schedule, is stored on the local device, ensuring swift

retrieval in subsequent operations.

4.3.3 Word Cloud

PromptZEN incorporates a word cloud within its pipeline, assisting users in discovering

related keywords for any given keyword. As depicted in Figure 4.4, participants have the

ability to input a keyword into the ‘Search Word’ field. This keyword subsequently guides

the generation of a word cloud. This visual representation showcases words related to the

user-provided keyword, with the font size indicating the degree of similarity. Users can either

click on a word, automatically populating the ‘Replacement Word’ field, or initiate a new

keyword search. In our example, we are searching for similar words to ‘banana’, in order to

not dramatically influence the resulting image. Then we can use the keyword ‘orange’ for

scheduling which can be achieved by clicking on it.

Implementation. When provided a keyword, we derive the prompt’s embedding with

the provided keyword substituted for the ‘target word’. This embedding is subsequently

compared with embeddings of all possible terms from the original CLIP vocabulary. This

comparison is conducted by replacing the target word’ with a vocabulary word and subse-
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Figure 4.5: Users can use the denoising visualization to see how the model generates the

final image over multiple timesteps. They can use this information for precise scheduling.

On the left (at timestep t=8), the object the hamster is holding is barely visible indicating

that the location of the object is set. Scheduled keywords after this timestep will not change

the outline of the scene. On the right (at timestep t=22), the shape of the object is barely

visible indicating that the shape of the object will not be affected by the scheduled word

after this timestep. These visualizations enable the user to precisely schedule and control

the generation of the image.

quently determining the resultant embedding. The measure of similarity, determined using

cosine similarity, informs the font size allocation within the word cloud. Both the determined

font sizes and the associated words are relayed to the frontend for visualization.

4.3.4 Denoising Visualization

PromptZEN integrates an interactive denoising visualization feature. This visualization

includes a slider bar, which users can adjust. Altering the position of the slider reveals the

image at a specific timestep, given the current prompt schedule. The primary objective of

this feature is to allow users to witness the generation progression, transitioning from pure

noise to the final image. As depicted in Figure 4.5, by timestep t = 8, the banana held by

the hamster starts to become vaguely distinguishable. Such observation indicates that at

this particular timestep, scheduling a specific keyword can influence various details without
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drastically altering the overall location of the object, especially since the object’s outline is

already somewhat apparent. In a similar vein, by timestep t = 22, the object’s color, as well

as its overall structure, are prominently visible. Thus, introducing a different keyword at this

stage can primarily impact very minute details, such as texture, while leaving other aspects

largely unchanged. Notably, each denoising example possesses different timing requirements.

Hence, the denoising visualization tool is instrumental in aiding users to precisely time their

prompt schedules tailored to individual examples. In our provided example, we strategically

scheduled keywords ‘orange’ and ‘fur’, influenced by the denoising visualization. As can be

seen, the outcome is an image retaining the location of the original banana, yet incorporating

the overall shape of an orange and the texture of fur.

Implementation. The Stable Diffusion U-net does not directly denoise the entire image.

Instead, it denoises a latent code that represents the image. After the denoising process

concludes, this latent code is channeled through a decoder to produce the full-resolution

image. In our implementation, we maintain a record of all the latent codes from every

timestep during the denoising phase. When a user adjusts the slider bar, the corresponding

latent code associated with that specific timestep is passed to the decoder. The decoder then

creates the high-resolution image corresponding to that denoising stage. For efficiency and

quick access in subsequent interactions, we store this image and forward it to the frontend.

4.3.5 Other Implementation Details

For our deep learning tasks, we employed PyTorch as the backbone. Our codebase builds

upon the official implementation of Prompt-to-prompt. This foundation proved beneficial,

given its pre-existing functionality pertaining to attention map access and modification. We

developed the remainder of the backend using Python. To manage interactions between

our frontend and backend systems, we integrated Flask as our chosen web framework. Our

frontend is a combination of technologies: it leverages Javascript, Node.js, and React to

deliver a responsive interactive user experience. To ensure robust performance and seamless
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computation, the backend is hosted on a Linux server outfitted with an Nvidia GeForce RTX

3090 GPU and the frontend is served on a web browser.

4.4 User Study

We conducted a user study to examine the capabilities of PromptZEN in enabling users

to modify scenes for diverse and creative outcomes. Participants were tasked with editing

objects in images using PromptZEN across two distinct task types. Following the method-

ology of other user-driven generative model evaluations [EC22, EC23], we incorporated both

closed-ended and open-ended tasks. For the closed-ended tasks, participants had a specific

editing objective to meet, requiring them to navigate and utilize PromptZEN to achieve

a predefined image outcome. This design not only demonstrated the practical utility of

PromptZEN for end users but also permitted a performance comparison with baseline ap-

proaches. Conversely, the open-ended tasks presented participants with a more ambiguous

goal. The primary intent of these tasks was to highlight the broad range of scene variations

possible with PromptZEN, thus emphasizing the tool’s potential in enabling creativity

and underscoring its diversity. In essence, the study aimed to both evaluate participant

success in generating varied scene modifications and to highlight the innovative capacity of

PromptZEN in facilitating diverse creative tasks.

4.4.1 Participants

We employed convenience sampling to enlist 12 participants from a nearby university. Of

these participants, eight were male and four were female, with ages ranging from 21 to 32.

The academic backgrounds of the participants were diverse: four specialized in electrical

engineering, four in biomedical engineering, three in economics, and one in archaeology.

While participants had programming experience spanning three to 10 years, none had prior

exposure to Stable Diffusion or its related applications.
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Figure 4.6: Reference and target images that are given to the participants for the closed-

ended tasks. The goal for the participants was to recreate the target images.

4.4.2 Tasks & Procedure

Participants were required to complete two types of tasks with PromptZEN: closed-ended

and open-ended. Each task type comprised three trials. In both, the aim was for participants

to use PromptZEN to modify an object within an image, generating scene variations while

retaining other features. The details of the tasks are detailed below:

Closed-ended tasks. The primary metrics of interest in our study were creativity

and performance. Closed-ended tasks were designed with a particular emphasis on gauging

performance. In each trial of this task type, participants were presented with an original

image alongside its edited counterpart. Their objective was to reproduce the edited image

as accurately as possible. Figure 4.6 showcases the original and corresponding edited images

provided to the participants. The closed-ended tasks were intentionally restrictive, designed

to constrain creativity and solely assess the participant’s ability to meet a defined editing tar-

get with PromptZEN. To further evaluate the effectiveness of PromptZEN, participants

were also tasked with three baselines. The first baseline involved replicating the image edit by

solely modifying the prompt. In addition to this baseline, we incorporated two comparative

methods: Prompt-to-prompt [HMT22] and Prompt mixing [PGA23]. Though the primary

contributions of these methods do not center on user interaction, they focus instead on the

intrinsic mechanism. Further details on the implementation of these comparative methods
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can be found in section § 4.4.3. In other words, given the original prompt that generated

the image, participants aimed to emulate the edited image using iterative prompt modifica-

tion, Prompt-to-prompt, Prompt mixing, and PromptZEN. This task aims to investigate

whether user-driven tools, such as PromptZEN, can offer improvements or variations to

the outcomes achieved by baseline performance methods.

Open-ended tasks. The primary objective of the open-ended tasks was to explore the

creative possibilities facilitated by PromptZEN and to gauge the diversity of variations

achievable. Unlike the closed-ended tasks, participants weren’t directed towards a specific

editing outcome. Instead, they were encouraged to experiment and produce a varied array

of images. Specifically, participants were prompted to submit pictures from their living

spaces for editing. Recognizing that real images can introduce complexities due to image

inversion, especially if the model misinterprets the scene, participants also had the option to

generate interior scene images through prompts. Each participant was tasked with editing

three scenes, either real or generated, aiming to introduce variations while retaining the

essence of the original image. The study’s design was deliberately open-ended to assess

PromptZEN’s efficacy in supporting creative tasks. The insights from this task could

guide future designers considering the incorporation of Stable Diffusion tools in creative

settings. Mirroring the closed-ended tasks, participants were also tasked to use Prompt-to-

prompt and Prompt mixing methods and were asked to highlight their preferred outcomes.

Notably, iterative prompt modification was not employed in this task since the images were

produced through image inversion, rather than directly originating from provided prompts.

Procedure. Before each study, participants completed a preliminary questionnaire to

gather background information. Each study was initiated with an introduction to PromptZEN,

followed by a tutorial. Subsequent to the tutorial, participants were given a brief practice

session using a toy example to become acquainted with PromptZEN’s functionality. As

Prompt-to-prompt and Prompt mixing lack dedicated tool support, participants were also

introduced to an example notebook and received a tutorial explaining the operation of these

88



two baseline methods. Following this, participants started with a block of trials (either

closed-ended or open-ended) which was followed by a short break. After the break, the

participants are given the remaining block of trials. The order of tasks, as well as the order

of trials within each block, was counter-balanced among participants. After the conclu-

sion of each trial, participants responded to questions pertaining to the task, the details

of which are elaborated upon in §4.4.5. The study was concluded with a semi-structured

interview, aimed at garnering participants’ qualitative feedback regarding their experience

with PromptZEN. Conducted in person, the study spanned approximately one hour, with

participants being compensated with a $25 gift card.

4.4.3 Baseline Implementations

Our study employed three baselines to compare and contextualize the capabilities of PromptZEN.

Prompt editing. This baseline method involves participants directly modifying the

prompts to change the scene. When the edited prompts are closely related to the original, and

identical seeds are applied, the generated images often remain similar to the original images.

However, this approach lacks a mechanism to guarantee consistent image preservation. Using

prompt editing as a baseline highlights the critical role of attention injection, without these

injections user control over the generation is limited.

Prompt-to-prompt. The official implementation of this method offers many param-

eters and diverse means of injecting attention maps, such as replacement, refinement, and

re-weight. It allows users to replace, introduce, or adjust the weight of words. For this study,

we adopted the prompt refinement feature of prompt-to-prompt, as it most closely resembles

the PromptZEN implementation. For other parameters, such as cross and self-attention

replacement steps, we conducted a parameter sweep, presenting the resulting images to users

for them to select their favored option.

Prompt-mixing. The official prompt-mixing feature employs CLIP embeddings to auto-
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generate variations by sampling similar prompts. In our approach, we leveraged this mech-

anism to produce edited images, allowing participants to select their preferred variation.

4.4.4 Data & Apparatus

For the backend Stable Diffusion model, we used pretrained CompVis Stable Diffusion v1.4,

the model parameters are publicly available on Hugginface website2. It should be noted

that there are newer Stable Diffusion models publicly available and the methods introduced

in this paper can still be applied to them since these models still leverage the same cross

attention mechanisms. We decided to use v1.4 to be able to compare our results with other

methods that are officially supported on v1.4. The user studies are conducted in person.

The participants interacted with the local server directly that the backend was running to

minimize the latency. Other implementation details are given in §4.3.5.

4.4.5 Measurement

We saved every image the participant generated throughout the study. We also logged all of

the user actions with timestamps including keywords that they have searched on the word

cloud, the prompt scheduling they have created, all the buttons they have pressed, and differ-

ent timesteps they have tested on the denoising visualization as well as the resulting image.

For qualitative measures, immediately upon finishing each trial, we asked each participant to

rate (along a 7-point Likert scale) how successful they thought they had achieved the editing

goal with the prompt scheduling they used. In the exit interview, participants started with

an overall assessment of PromptZEN based on their overall experience for both closed-

and open-ended tasks. We asked (i) whether the tool is easy to use and (ii) whether the

user can find prompt schedules that match their editing goal. Next, participants rated the

cognitive load using the mental demand, effort and frustration dimensions in the NASA TLX

2https://huggingface.co/CompVis/stable-diffusion-v1-4
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Figure 4.7: Closed-ended tasks results. The first column in each task (1st, 4th, and 7th) has

the target images given to the participants. The other columns are generated by participants.

The images generated by PromptZEN closely match with the target image compared to

other baselines. Better viewed in full screen.

questionnaire [Har86]. Next, we asked participants to ablatively evaluate the usefulness of

PromptZEN’s individual UI elements: word cloud, denoising, and prompt schedule. All

questions were rated along a seven-point Likert scale.

4.5 Results

The results section is split into two subsections: quantitative and qualitative findings. Fig-

ure 4.7 and Figure 4.8 show sample images edited by participants for closed- and open-ended

tasks, respectively.

4.5.1 Quantitative Findings

Below we provide quantitative analyses to better understand participants’ performance and

behavior using PromptZEN.
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Figure 4.8: Open-ended tasks results. The first row is the real images participants used in

open-ended tasks from their living spaces. Using PromptZEN participants were able to

create variations in their images. Compared to baseline methods, the edited images with

PromptZEN preserve the background better and they are more natural-looking. Better

viewed in full screen.

4.5.1.1 Editing Performance

In this section, we evaluate the editing performance of participants using both PromptZEN

and the baseline methods on closed-ended tasks. The editing objective can be categorized

into two main goals: (i) modifying the object while maintaining the integrity of the rest

of the image, and (ii) altering the object so it aligns with the intended editing target.

We ran three analyses to investigate the editing performance of PromptZEN. The first

objective aligns more with the intricacies of the attention-mixing technique and its associated

hyperparameters. While identifying a disentangled editing approach – where ”disentangled”

means changes are isolated to the intended portion only – is valuable, it is not the primary

focus of PromptZEN. Nevertheless, our initial analysis delves into how effectively the

different methods retain the untouched aspects of the image. In our subsequent analysis,

the emphasis shifts to gauging how accurately participants can modify the object to match
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Method Background Object HOG GLCM HSV

Prompt Editing .56± .30 .36± .23 .22± .33 .40± .35 .47± .31

Prompt-to-prompt .81± .19 .51± .29 .47± .25 .59± .37 .69± .37

Prompt Mixing .88± .17 .58± .31 .50± .20 .66± .35 .81± .35

PromptZEN .94± .04 .91± .12 .85± .09 .94± .05 .96± .04

Table 4.1: Comparison of cosine similarities for PromptZEN and baseline methods. Higher

number represents higher similarity to the target image. participants were able to accurately

match the object’s shape, texture, and color using PromptZEN.

their editing intentions. This embodies the core contribution of PromptZEN: empowering

users to realize their editing visions via user interactions. Here, we compare PromptZEN

against baseline methods, zeroing in specifically on the object being edited. In our third

analysis, we examine the resilience of the prompt scheduling, aiming to elicit the extent

to which participants can deviate from the ideal prompt scheduling while still producing a

closely aligned image.

Background preservation. First, we manually created a mask for the object for each

target image and images generated by participants. We then zero out the object of interest to

create an image for the background. We extracted features from the pre-trained VGG16 deep

learning model. Subsequently, we computed the cosine similarities between the features of

the generated images and those of the target images for both PromptZEN and the baselines.

The results can be seen in Table 4.1. As can be seen, the background is preserved in both

PromptZEN and prompt mixing. This is mostly due to the underlying attention injection

mechanism.

Object modifications. We conducted several analyses to evaluate the edits made to the
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objects. Leveraging the masks from our prior analysis, we first isolated the images’ objects by

zeroing the backgrounds. To evaluate the overarching performance of PromptZEN against

the baseline methods, we again leveraged the VGG16 deep learning model. Similarly, we

computed the cosine similarity between the features of the generated images and those of

the target images for both PromptZEN and the baselines. To get a deeper understanding

of object performance at both high levels (e.g., , shape) and low levels (e.g., , texture and

color), we extracted several features using different methodologies:

• For shape analysis, we used the Histogram of Gradients (HOG).

• For texture evaluation, the Gray Level Co-Occurrence Matrix (GLCM) was employed.

• For color assessment, a 2D color histogram using HSV was extracted.

These methods were chosen because they are robust to masking. Subsequently, we computed

the cosine similarity for these features3, facilitating a comparison between PromptZEN and

the baselines. This in-depth analysis provided a comprehensive insight into performance

across various facets of the object’s representation. A comparison of these results is detailed

in Table 4.1. As can be seen, participants were able to accurately match the object’s shape,

texture, and color using PromptZEN. In contrast, despite the underlying attention injec-

tion mechanisms being similar in PromptZEN, Prompt-to-prompt, and Prompt mixing,

participants encountered challenges achieving comparable object edits when using the base-

line methods. These results underscore the importance of user-driven prompt scheduling to

enable users to control the generation of a scene.

Prompt scheduling performance. We conducted an analysis to assess the proximity

of participants’ selections to the ground truth prompt schedules. To gauge the accuracy

of prompt scheduling, we introduced a novel metric. For every keyword at timestep t, we

3The results were consistent with Chi-squared distance on histogram features, we decided to report cosine
similarity for all the features since it has a range between -1 and 1.
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determined its CLIP embedding and subsequently computed the cosine similarity with the

corresponding ground truth keyword for that specific timestep. The average cosine similarity

was then determined across all denoising steps. The underlying rationale for this metric is

that even when participants opt for a keyword that’s similar, but not identical to the ground

truth, high cosine similarities are observed due to the properties of the CLIP embedding.

Participants exhibited a similarity score of .73± .24 when compared to the ground truth

prompt schedule. In contrast, the resulting images (focused solely on the object) presented

a similarity score of .91± .12. While these similarity measures are not directly analogous,

the data suggests the robustness of the prompt scheduling mechanism. This indicates that

even when faced with sub-optimal schedules (varying keywords or non-optimal timesteps),

the desired images could still be generated with accuracy.

4.5.1.2 User Behavior

In this section, we delve into the ways participants interacted with PromptZEN and ex-

amine the statistical significance of their interactions between open and closed-ended tasks.

If no significance is reported, differences should be understood as not reaching statistical

significance, based on the Wilcoxon signed-rank test. These findings highlight the distinct

approaches participants took, with an emphasis on creativity in open-ended tasks and pre-

cision in closed-ended ones.

Time Spent. On average, participants took five minutes and four seconds to complete

closed-ended tasks, whereas open-ended tasks took slightly longer at five minutes and 17

seconds.

Word Cloud. Participants dedicated 31.3% of their time for open-ended tasks and 23.7%

for closed-ended tasks. The increased time spent on the word cloud for open-ended tasks

was significant (W=32, p=0.02), indicating a preference to brainstorm various keywords.

Prompt Schedules. 40.5% of the time was spent on this for open-ended tasks, slightly
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less than the 45.21% for closed-ended tasks. Participants, on average, tested 10.12 prompt

schedules for closed-ended tasks and 6.78 for open-ended tasks, a difference that was statis-

tically significant (W=36, p=0.02). This discrepancy likely stems from the more meticulous

effort to match the target output in closed-ended tasks. Supporting this hypothesis is our

prior metric on prompt scheduling: participants adjusted prompt schedules by an average of

0.05 and 0.23 across subsequent schedules for closed and open-ended tasks respectively—a

statistically significant variation (W=46, p=0.02). This further emphasizes the experimental

approach in open-ended tasks and the required precision in closed-ended tasks.

Denoising Visualizations. The remaining time was utilized for denoising visualiza-

tions. Participants significantly prioritized their time on denoising visualizations for closed-

ended tasks to align their generated images closely with the target image (W=32, p=0.03),

with averages of 28.12 visualizations for closed-ended and 45.87 for open-ended tasks, a

difference that reached statistical significance (W=51, p=0.01).

Other Metrics. On average, participants tested 4.12 words on the word cloud versus

3.01 for open-ended tasks (W=32, p=0.02). They also used 3.12 and 3.08 prompts (number

of mixed keywords) per schedule for closed and open-ended tasks, respectively.

4.5.2 Qualitative Findings

We adopted a method similar to the Affinity Diagram approach [HB97]. The responses from

participants were aggregated, and a summary of their perceptions regarding ease of use and

the perceived success of editing scenes using PromptZEN can be found in Section4.5.2.1.

We have also presented the findings related to cognitive load using the mental demand,

effort, and frustration dimensions from the NASA TLX questionnaire in Section 4.5.2.2.

In addition, we identified common themes on how participants evaluated the utility of the

individual components of PromptZEN, which are detailed in Section 4.5.2.3. The tran-

scription of participants’ responses was carried out by the first author to develop initial codes.

These codes were then reviewed by the second author, and any disagreements were resolved
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Figure 4.9: The participants’ average ratings. The questions are explained in §4.4.5. All

questions used a seven-point Likert scale.

through mutual discussion. Figure 4.9 provides the average ratings given by participants

for PromptZEN in terms of ease of use, perceived trial outcomes, cognitive load, and an

ablative analysis of the utility of each component.

We present qualitative images to showcase the editing capabilities of PromptZEN. In

Figure 4.7, we compare the images from the user study with those from the baseline methods.

This comparison indicates that participants more accurately matched the target images

in the closed-ended tasks than the baseline methods did. In Figure 4.8, we highlight the

diverse living space variations participants created using PromptZEN in open-ended tasks

compared to the baseline methods. These generations exemplify the participants’ ability to

create varied scenes from authentic images of their living spaces with PromptZEN.
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4.5.2.1 Overall assessment

In this section, we give an overall assessment of the tool in terms of ease of use and perceived

success of the tasks.

Ease of using the tool. Upon querying about the ease of using PromptZEN, most

participants expressed that they found the tool user-friendly and intuitive. The majority,

eleven out of twelve, rated their experience above five on a scale of ten. P2 remarked, ‘The

process was fairly straightforward. Once I got the hang of it, editing became second nature.’

Both P6 and P8 expressed appreciation for the user-friendly interface of PromptZEN.

P6 noted, ‘The interface was intuitive and did not hinder my creativity at all.’ P4 and

P7 particularly appreciated the interactive UI elements, highlighting the visual feedback

as a strong feature of the tool. P4 said, ‘The visual feedback on the sliding bars and the

image generation visualizations helped me focus on the prompt schedule and iterate over

various schedules.’ P12 also praised the scheduling sliding bar and explained it as ‘a way

to summarize the generation’. P10, who gave a rating below five, faced a slight learning

curve, expressing, ‘While the tool is undoubtedly powerful, initially navigating through its

functionalities required some attention.’ Based on our analysis, the feedback from P10 is an

outlier as determined through IQR analysis.

Perceived success of the tasks. In terms of perceived success in accomplishing the

given tasks, eleven participants gave ratings above five. Moreover, all of the participants

preferred PromptZEN compared to other baselines in all of the tasks. P3 commented,

‘The results I achieved with PromptZEN, especially in the open-ended tasks, were beyond

my expectations.’ Even P10, who initially found the tool somewhat challenging, expressed

satisfaction with the outcomes: ‘Though I began hesitantly, by the end of my tasks, I felt I

had a good grasp and was pleased with the scene modifications I achieved.’ Another interest-

ing feedback came from P7, who stated, ‘The closed-ended tasks were a bit challenging, but

the open-ended tasks were a joy. I felt I could truly experiment.’ However, P11, who gave
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the only below-five rating, felt a bit constrained. They remarked, ‘In some cases, especially

in closed-ended tasks, I felt I was not getting the exact result I had in mind. Maybe I needed

to be more patient and try different combinations.’ Based on our analysis, the feedback

from P11 is an outlier as determined through IQR analysis. Notably, even those who found

the tool easy to use highlighted the nuanced challenges in the closed-ended tasks, hinting

at the trade-offs between precision and creativity. For example, P1 said, ‘The closed-ended

tasks required precision, whereas the open-ended ones allowed more freedom, but in both

cases, I felt successful.’ Meanwhile, P8 believed there was room for improvement in terms of

achieving the precise outcomes desired in closed-ended tasks. This feedback might suggest

the need for clearer instruction or further refining tool functionalities to accommodate users’

varying expertise levels.

4.5.2.2 Cognitive load by NASA TLX

A unique participant, P5, rated higher than the neutral score of four concerning the mental

demand dimension. P5 identified the primary cognitive challenge as discerning the optimal

moments to schedule prompts, especially during the initial noisy phases of image genera-

tion. P5 described, ’There were instances when determining the best timesteps to influence

the image’s texture or shape, I struggled. Especially when the diffusion process was still in

its early stages.‘ In the dimension of frustration, P5 also notched a rating surpassing the

neutral threshold, attributing it to similar nuances in scheduling prompts. According to the

IQR analysis, P5’s score on frustration is an outlier. However, the overarching sentiment

amongst participants was predominantly positive. For instance, P1 found the tool intuitive,

and the denoising visualization particularly fun. Another participant, P7, reflected, ‘The

results resonated with my anticipations, making the entire exercise fulfilling.’ P10 emerged

as the only participant who perceived a heightened effort, citing, ‘At times, I needed numer-

ous iterations, especially when utilizing the word cloud for inspiration, to ensure the desired

image outcome.’ P11’s rating on the effort dimension is an outlier as per the IQR analysis.
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P8’s frustration rating was a notable five, predominantly due to occasional inconsistencies

between the provided prompts and the final generated images. As P8 expressed, ‘On sev-

eral occasions, the prompts, even after meticulous scheduling, didn’t seem to significantly

influence the final image or required exhaustive fine-tuning.’ Ratings from both P8 (scoring

five) is an outlier according to the IQR analysis. Nonetheless, the general consensus pointed

towards a gratifying experience, with many, including P2, P3, and P4, P7, P11 enjoying their

engagement with PromptZEN. In summary, most participants resonated with the promis-

ing capabilities of PromptZEN, and the mental demand, effort, and frustration levels were

mostly minimal across the tasks.

4.5.2.3 Ablative assessment

In this section, we consolidate evaluations of the tool’s individual components to provide

insights for future work.

Word cloud empowers creativity through synonym exploration. A majority of

the participants appreciated the word cloud’s function. P4 said, ‘Especially when I’m out

of ideas, the word cloud sparks inspiration.’ This sentiment was shared by P6, who felt it

widened the scope of creative possibilities. However, P8 and P10 had reservations. P8 felt,

‘The word cloud is informative, no doubt. But there’s also a risk of over-relying on it, leading

to possibly repetitive outcomes.’ P10 added, ‘While I used it often, I wish there were a way

to filter or group the suggestions.’ P2 used the word cloud as a way to discover new edits,

mentioning, ‘Whenever I felt stuck, the word cloud became my go-to. It not only gave me

alternate terms but sometimes resulted in unpredicted and beautiful outcomes.’ In essence,

the word cloud facilitated participants in diversifying their keyword choices. However, its

reliance on an initial keyword to generate related terms might narrow down the exploration

capabilities. Future iterations could explore mechanisms to expand the breadth of word

suggestions.

Prompt scheduling enhances control but requires precision. The feature of
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prompt scheduling was widely acknowledged for the control it offered. P1 commented, ‘The

ability to schedule prompts allowed for a nuanced touch to the images. It’s particularly

empowering when I have a clear vision.’ However, as P7 remarked, the requirement for

precision was unmistakable. ‘It’s like having a double-edged sword. While I can influence

the image, it’s so easy to skew it if I’m not exact.’ The challenge of maintaining the image’s

coherence when introducing terms at the early stages, related to Stable Diffusion’s process,

was echoed by P3 and P5. For example, P5 said, ‘Earlier keywords had a bigger impact on

the image than the later keywords. It took a while for me to realize that the later stages had

almost no effect on the image’. Similarly, P3 commented, ‘Prompt scheduling makes it look

like timesteps have linear influence but in reality, the impact on the final image is far from

linear.’ In summary, while participants easily understood and utilized prompt scheduling,

they also offered insights for potential refinements in future iterations.

Denoising visualization aids in pinpointing scheduling times. The denoising

visualization received commendations for its transparency and insights into the image’s pro-

gression. P7 found it invaluable, stating, ‘From pure noise to a complete image, this visual-

ization acted as a guide, letting me intervene at the right moments.’ P9 felt more in control,

sharing, ‘It’s a representation on how the image is created, helping me plan my edits.’ Yet,

for P11 and P12, there was a learning curve. P11 commented, ‘It took me a few tries to

understand and utilize the visualization effectively.’ Also, some participants, like P2, P3,

and P4, felt that the early stages of the visualization, where there is mostly noise, did not

give them much to work with. P3 said, ‘At first, I thought I should wait until I see something

clear in the image before adding keywords.’ In summary, participants leveraged denoising

visualization to schedule their prompts successfully. However, there was an initial learning

curve.

Prompt scheduling moves from a broad to a detailed effect on the image. Many

participants noticed the step-by-step progression of Stable Diffusion. It starts by setting up

the general scene, then focuses on shapes, and finally refines textures. P6 described it like

101



this: ‘With Stable Diffusion, it is like painting. You start with the big picture, like the

horizon, then add details like trees, and finally, you focus on the small things like leaves.’

P2 observed, ‘The early steps set the scene, and they have a big impact on the final image.’

Going into more detail, P9 shared, ‘Once the scene’s set, you can not change it much even

if you add new keywords later. But once I understood this order of creation, everything

made sense.’ P10 emphasized, ‘It’s important to get the shapes right early on because that

sets the foundation.’ P7 pointed out the role of the later stages, saying, ‘Textures come in

towards the end. So, changing things in the later steps can really change how an object

looks.’ To sum up, understanding how Stable Diffusion works—from setting the scene to

adding textures—helps users know when and how to make edits. This understanding lets

users get the most out of PromptZEN, making it a more powerful creative tool.

4.6 Limitations and Future Work

This section discusses several issues in the current tool and possible solutions for future work.

Limitations of the user study. Future work can increase the number of participants

and the number of tasks beyond the current study. Moreover, it can include tasks that

include subsequent image edits. Testing PromptZEN with alternative mechanisms would

provide insights into its dependency on cross-attention map injection and its generalization

capabilities. Evaluations with updated versions of Stable Diffusion and their novel mecha-

nisms warrant consideration.

Image inversion. The image inversion method employed in this research encountered

difficulties when applied to intricate scenes. This highlights a recognized limitation within

current image editing methodologies. Advancements in the field may yield enhanced image

inversion strategies. Consequently, exploring these methods with detailed, real-world scenes

is an avenue for future research. Complex scenes may necessitate varied user interactions,

such as employing heatmaps for inversion verification or specifying particular objects for
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more accurate pixel-to-keyword alignment. The possibility of adjusting prompt directives

based on different image regions exists. It should be noted that as the field progresses,

adaptation in methodology may be necessary.

Choice of baseline methods. While there are alternative baselines to compare with

PromptZEN, such as InstructP2P [BHE23], it’s essential to understand that PromptZEN

primarily serves as a supplementary tool, enhancing user controls in existing techniques. The

attention injection mechanism, which is the foundation of our work, is not fixed; it can be

substituted with other techniques in future developments. Our primary contribution lies

in the user interactions we’ve introduced and the evidence that they can enhance editing

performance. We selected our baseline methods with this central premise, as they too rely

on the attention mechanism for their modifications.

Number of scheduled keywords. While participants had the autonomy to explore

intricate scheduling patterns, they typically employed three keywords in their schedules. The

task of formulating intricate schedules and interpreting scene generation from the final image

is challenging. Future work can include enhanced feedback mechanisms for prompt schedules.

Potential interactions could encompass systematic comparisons of prompt schedules, and the

formulation of data trees to visualize and monitor schedule intricacies. Moreover, automated

prompt schedule suggestions aligned with user preferences might aid in optimizing scheduling

choices.

Word cloud improvements. Future iterations might re-evaluate the method for key-

word discovery. Word clouds often return similar terms, limiting users in discovering novel

keywords. An alternative approach could offer dissimilar words, potentially clustering them

for enhanced user experience. A shift from traditional word clouds to a ‘keyword discovery’

mechanism would aim to facilitate users’ exploration within the keyword space. In return,

this can increase the diversity of the generated images.
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4.7 Conclusion

Large diffusion models, particularly in text-to-image applications, have broadened the hori-

zons of machine learning applications. Yet, their intricate structures have limited non-expert

users. PromptZEN addresses this challenge, offering a tool that provides enhanced, intu-

itive control mechanisms for users, transcending the limitations of simple textual prompts.

By facilitating prompt scheduling and integrating user-friendly features like context-driven

word clouds and denoising visualizations, PromptZEN enables users to conduct local ed-

its with precision. Our empirical study, involving 12 participants, confirmed the tool’s ef-

fectiveness. In closed-ended tasks, PromptZEN surpassed three benchmark methods in

producing images that closely resembled the target images. Similarly, in open-ended tasks,

participants predominantly preferred PromptZEN to other methods. Thus, PromptZEN

not only provides enhanced control to users but also objectively outperforms existing solu-

tions. The results and capabilities of PromptZEN pave the way for future work, suggesting

a strong potential for further advancements in refining and expanding user interactions in

text-to-image diffusion models.
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CHAPTER 5

Enhancing User Understanding through Text-to-Image

Model Explanations

5.1 Introduction

Recent advancements in text-to-image models (T2I), including Dall-e [RPG21, RKH21], Im-

agen [SCS22], and Stable Diffusion [RBL22] have enabled the generation of intricate and

contextually accurate images from textual descriptions. Applications of T2I models span

diverse areas such as art generation [Opp22], design prototyping [KPJ23], visual aids in

education [VT23], medicine [WWA22], and entertainment [LPL20]. Nevertheless, for the

inexperienced end user, these models largely operate as a ‘black-box’, obscuring the under-

lying mechanisms that dictate their behavior. In the absence of explanations regarding the

generation of specific images, users are deprived of a nuanced understanding of the model’s

operation, thereby inhibiting their capacity to exploit its full potential. Generating detailed

images via computational models necessitates specific and well-structured prompts. To facili-

tate this process, the image-generation community has developed ’prompt books’ as reference

guides. Moreover, the emergence of prompt engineers, specialists dedicated to the formu-

lation and refinement of prompts, underscores the complexity of achieving desired outputs.

Nonetheless, for those unfamiliar with the intricacies of the method, attaining the intended

image remains a formidable task. Significantly, a unique aspect of T2I models is that un-

derstanding the generation process can directly enhance the quality of the images produced.

Grasping the generation mechanics and nuances results in superior prompts, thereby yield-
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Figure 5.1: Visual representation of our process: Experts go through many iterations of

prompts to create an image. Expert-led iterations illuminate text-to-image(T2I) model ex-

planation goals and methods. Drawing from these expert insights, we designed and conducted

a comprehensive user study with 473 participants, unveiling preferences and challenges in

T2I explainability. Our efforts bridge the gap between complex T2I model operations and

the understanding of novice end-users.

ing better images. Consequently, developing explanation techniques for T2I models directly

contributes to improved image quality in downstream tasks for the user. Consequently, it

is pivotal to identify explanation goals and devise techniques that best serve the user in the

context of image generation.

Wang et al. [WYA19] investigated explanation goals in traditional Explainable AI (XAI)

methods, which are predominantly applied to classification or regression tasks. However,

Text-to-Image (T2I) generation represents a distinct domain and, consequently, has different

objectives. Addressing these varied goals calls for the utilization of a range of explanation

techniques. To pinpoint unique explanation goals inherent to T2I models, we executed a

formative study involving eight experts. These experts identified a subset of goals orig-

inating from traditional XAI objectives. Specifically, participants sought explanations to

‘filter causes,’ ‘generalize and learn’ a mental model of the generation process, and ‘pre-
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dict and control’ future generations. Following this, we facilitated a participatory design

session with the participants to formulate explanation techniques in alignment with these

identified goals. The techniques suggested by the participants can be categorized into four

main groups: sensitivity-based, model-intrinsic, surrogate model, and example-based, simi-

lar to the ‘functioning approach’ taxonomy introduced by Speith [Spe22]. Using these four

main explanation groups, we designed four distinct explanation methods for T2I models:

redacted prompt explanation, keyword heat map, keyword linear regression, and keyword

image gallery. These explanation methods are representative of the explanation techniques

that are elicited during the formative study.

Subsequently, we implemented and evaluated these four explanation methods on a larger

cohort of 473 participants (with 5676 responses) sourced from Amazon Mechanical Turk

(AMT) across six distinct tasks. The choice of AMT was motivated by our interest in

assessing the effectiveness of these explanations among inexperienced end-users. From our

user study, we derived insightful findings that we anticipate will steer subsequent research

related to explainable methods for T2I models. These insights not only hold relevance

for tool designers but also for ML researchers aiming to enhance the explainability of T2I

systems. Additionally, we have contributed a dataset comprising prompt and image pairs for

future explainability research. Our data indicate that users are able to grasp new keywords

via explanations and exhibit a preference for example-based explanations. Conversely, they

encounter difficulties with keywords that alter the overarching theme and often overestimate

their comprehension of the explanations provided. Moreover, users typically favor one to

two explanation methodologies concurrently, with any further addition diminishing their

performance.

Our main contributions can be summarized as:

• A curated dataset tailored to evaluate explainability techniques within T2I models.

• Empirical results from a large AMT user study, offering a resource for researchers
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seeking a deeper understanding of user interactions with T2I explanations.

• Key observations and insights poised to inform and shape future research in T2I model

explainability.

5.2 Related Work

Text-to-Image explanations. There are some introductory progress on trying to gain

more insight to T2I models using AI models. For example, What the DAAM, explains

T2I models by upscaling and aggregating cross-attention word–pixel scores [TPJ22]. X-IQE

leverages visual large language models (LLMs) to evaluate text- to-image generation methods

by generating textual explanations [Che23]. Liu et al. conducted a study exploring what

prompt keywords and model hyperparameters can help produce coherent outputs. They

present design guidelines that can help people produce better outcomes from text-to-image

generative models [LC22].

Text-to-Image controls. On the other hand there are also various methods that try

to gain more control over T2I models and offer certain perspective regarding their capa-

bilities. For example, T2I-Adapter propose to learn simple and lightweight T2I-Adapters

to align internal knowledge in T2I models with external control signals [MWX23]. Sim-

ilarly, ControlNet allows users to add conditions like Canny edges, human pose, etc., to

control the image generation of large pretrained diffusion models [ZRA23]. ImageReward is

a general-purpose text-to-image human preference reward model to effectively encode human

preferences [XLW23]. AnimateDiff is an effective framework for extending personalized T2I

models into an animation generator without model-specific tuning [GYR23]. On the other

hand Wu et al. proposed a simple yet effective method to adapt Stable Diffusion to better

align with human preferences based on Human Preference Score (HPS) [WSZ23]. Observing

that T2I models still lack precise control of the spatial relation corresponding to semantic

text. Yan et al. takes text and mouse traces for image generation, as traces provide a more
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natural and interactive way than layouts to ground the text into the corresponding position

of the image [YJW22]. Promptist proposes prompt adaptation, a general framework that au-

tomatically adapts original user input to model-preferred prompts with llm [HCD22]. TIME

receives a pair of inputs: a ‘source’ under-specified prompt for which the model makes an

implicit assumption (e.g., , ‘a pack of roses’), and a ‘destination’ prompt that describes the

same setting, but with a specified desired attribute (e.g., , ‘a pack of blue roses’) [OKB23].

Traditional XAI explanations. The use cases of traditional XAI methods on classifi-

cation and regression tasks differ from the use cases of generative tasks. Lim et al. [WYA19]

summarize the explanation goals in traditional XAI as: (i) filter to a small set of causes

to simplify their observation [Lom06], (ii) generalize these observations into a conceptual

model to ‘predict and control’ future phenomena [Hei13]. Additionally, Nunes and Jannach

suggested transparency, improving the decision-making when AI is used as a decision aid,

and debugging as goals of traditional XAI methods [NJ17]. Jeyakumar et al. conducted a

cross-analysis Amazon Mechanical Turk study comparing the popular state-of-the-art expla-

nation methods to empirically determine which are better in explaining deep neural network

model decisions [JNC20]. Fok et al. argue that explanations rarely enable complementary

performance in AI-advised decision-making. Interestingly, they argue explanations are only

useful to the extent that they allow a human decision-maker to verify the correctness of an

AI’s prediction, in contrast to other desiderata. This sentiment is relevant to explanations in

T2I models, because explanations in T2I models are inherently more verifiable compared to

traditional XAI methods since the image output carries more information [FW23]. Buçinca

et al. argues that the limitations of contemporary explainable AI solutions are not appreci-

ated because the most commonly-used methods for evaluating AI-powered decision support

systems are likely to produce misleading (overly optimistic) results [BLG20]. In another

work, Buçinca et al. argues that people over-rely on AI and they accept an AI’s sugges-

tion even when that suggestion is wrong. More interestingly, adding explanations to the AI

decisions does not appear to reduce the overreliance [BMG21]. On the other hand Jacobs
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et al. shows that there is mounting evidence that human+AI teams often perform worse

than AIs alone.[JPJ21]. These observations should be considered again in the context of

T2I explanations considering the underlying differences between the T2I explanations and

traditional XAI explanations.

5.3 Formative Study

In order to comprehend the distinct explanation goals and pinpoint potential techniques for

text-to-image models, and to elucidate their differences from traditional XAI methods, we

conducted a formative study with eight participants who use text-to-image models regularly.

These participants were invited to the study from the stable diffusion1 and Midjourney2

discord channels. Six of the participants were male and two of them were female, aged 21 to

37. Five participants had programming experience and four of them were familiar with XAI

methods from traditional tasks. All of the participants used text-to-image generation tools

regularly for at least a year.

Each session was a brainstorming discussion between the first author and a participant.

We followed think-aloud protocol [Lew82] where the first author was the interviewer and

note-taker, whereas the participant was the primary contributor. The interviewer focused on

prompting the participant to clarify and broaden their ideas. The main purpose was to elicit

potential explanations for T2I models that can be beneficial for the users. Each discussion

lasted for around an hour. For the first ten minutes, participants were asked to brainstorm

the potential explanation goals of T2I models. The remaining discussion revolved around

how these goals can be achieved through various explanation ideas, similar to participatory

design [Spi05]. We employed a method akin to the Affinity Diagram approach [HB97], based

on which we aggregated participants’ responses to summarize their ideas. Specifically, the

1discord.gg/stablediffusion

2discord.gg/midjourney
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Figure 5.2: All goals and techniques presented here originate from traditional XAI. However,

our objective was to contrast these with those of T2I. Explanations and techniques that are

grayed out are exclusive to traditional XAI, while the others are applicable to both XAI

and T2I. Elicited explanations and techniques are matched using symbols. Participants

determined these relationships between goals and techniques upon being prompted with

specific goals by the interviewer.

first author transcribed participants’ responses to develop the initial codes, which are then

reviewed by the second author. Disagreements were resolved via discussion between the

authors.

5.3.1 Explanation goals for text-to-image models.

To derive potential explanations for T2I models, participants initially brainstormed the ex-

planation goals specific to these models. As indicated by the participants and illustrated in

Figure 5.2, the explanation goals of T2I models exhibit differences from those of XAI meth-

ods, while also presenting certain similarities. Interestingly, even though we did not show

traditional XAI methods to the participants, there were many similarities in the brainstormed

explanation goals. Unlike classification tasks, T2I models do not make or aid decisions but

create images. Since these models are not used as decision-aid systems, the users are not

interested in improving their ‘decision-making process’. Rather, their aim is to deepen their

understanding of the model to craft more effective prompts, thereby leading to the generation

of superior images. Similarly, the users do not seek explanations for the purpose of ‘debug-
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ging’ the model or improve their ‘trust’ in the model. For instance, P1 pointed out, ‘There

is no right or wrong when you are doing something creative. The output quality is highly

subjective naturally.’ P4 extended on this with more nuance and stated that, ‘If a model

is incapable of generating certain phrases, it is typically due to lack of training data and it

does not change my confidence in other generations.’ In a similar fashion, P7 pointed out

that generated images themselves can be considered as proof that the model understands

the context and the complex relationships in a scene. The variation in explanation goals

between T2I models and XAI methods can influence the selection of suitable explanation

techniques.

On the other hand, similar to traditional XAI methods, the users want to ‘generalize’

their observations into a conceptual model to ‘predict and control’ future phenomena, i.e.,

future image generations. For example, P2 said, ‘After a while, you get a feeling of which

keywords3 go together and how they change images.’ P3 extended this idea by stating

the main goal of image generation is to investigate the range of feasible images, and the

conceptual model is crucial for this exploration. Similarly, the users want to ‘filter causes’

to a small set for simplification. P1 said, ‘One of the first things I do is to figure out which

words in my prompt contributed to the image.’ P8 pointed out that the shorter prompts

are easier to understand and improve on. P4 iterated on this notion and said, ‘I want

to understand how the changes to the prompt affect the image so that I can improve the

prompt.’, highlighting the importance of explanations for future image generations. P5 also

talked about the iterative nature of T2I by stating, ‘It is impossible to improve a prompt

if you do not understand why it results in that particular image.’ The participants tend to

not ‘debug’ the model but ‘debug’ their prompts by analyzing them.

In conclusion, the users want the explanation in T2I models to simplify their conceptual

model similar to traditional XAI methods. The difference is that they do not seek these

3Typically prompts consist of ‘keywords’ that are separated with commas. Therefore, a keyword in the
context of this paper refers to multiple words such as, ‘..., digital painting, highly detailed, ...’.
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simplifications to identify when the models fail or to debug the model, but to improve the

model output iteratively with better prompts. The traditional XAI methods in classification

tasks are not iterative by nature whereas T2I models require careful iterative prompting.

Understanding a classifier’s decision-making process does not directly increase the classifi-

cation quality, whereas understanding a generative model’s generative process can improve

the prompts which leads to higher-quality outputs.

5.3.2 Participatory Design: Potential explanation techniques in text-to-image

models

With the explanation goals for T2I models in mind, participants brainstormed potential

explanations that can help the users. The explanation ideas that surfaced in interviews

can be summarized in four groups: (i) sensitivity-based explanations, (ii) model-intrinsics,

(iii) surrogate models, and (iv) example-based explanations. The explanation taxonomy

we elicit from the study is similar to the functioning approach taxonomy introduced by

Speith [Spe22]. As illustrated in Figure 5.2, the explanation techniques that surfaced during

discussions, when prompted with the explanation goals, are highlighted.

Sensitivity-based explanations. Sensitivity-based explanations observe the change in

the output when the prompt is slightly changed. During our study, participants mentioned

that they investigate the effect of words by removing or adding them. For example, P6

mentioned how he builds his conceptual model by stating, ‘Sometimes I remove a keyword

to see how it changes the image, it helps the mental model I have about the generation

process.’ P4 also mentioned a similar strategy where she changes the strength of individual

words to understand their effect on that particular image. Interestingly, P8 pointed out a

common issue he faces, ‘Sometimes adding a phrase changes the image as I expected, but

then when the same phrase is added to another prompt, it does not have the same effect.’ P8

concludes his thought process by arguing that prior knowledge about a phrase is not enough

to confidently add it to a prompt and it needs to be tested iteratively for each new prompt.
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While all participants utilized sensitivity-based explanations in their workflow, many (P1,

P3, P4, P6, P8) highlighted the cognitive challenge of monitoring different tests due to the

lack of a structured method. This underscores the importance of introducing tools that can

assist in tracking and managing sensitivity-based explanations.

Model-intrinsic explanations. Explanations that use model-intrinsics leverage the

model architecture. Rather than treating the model’s generation process as a black box, these

explanations delve into the model to offer insights into its workings. To our surprise, although

none of the participants knew about the specifics of the model architecture, they frequently

suggested explanation methods that would use model-intrinsics. Several participants (P1,

P4, P5, P6, P7) offered varied suggestions based on the way the model processes words.

For example, P1 mentioned, ‘I would like to see the effected regions in the image for each

word.’ P4 extended on this idea by suggesting that these regions can be shown to the user

as heatmaps, which can inform the user when a word is ineffective. P5 suggested how the

words are combined in the model could explain the resulting image, ‘I want to check if

the model understands the context by mixing the contextually related words.’ P2 and P8

suggested similar systems that would warn the user about certain phrases when they are

not effective and suggest replacements. Despite these ideas, explanations that utilize model-

intrinsics currently remain unavailable, leading to none of the participants incorporating

such explanations into their workflows.

Surrogate model explanations. Surrogate model explanations involve using simpler

or more interpretable models to approximate and explain the behavior of a more complex

model. Some participants (P5, P6, P7, P8) suggested using surrogate models for explana-

tions. For example, P5 suggested that an image can be explained as a linear combination

of the words in the prompt. In contrast, P6 and P7 favored a non-linear approach, recom-

mending the use of non-linear surrogate models such as decision trees. P8 recommended

developing a distinct dialogue-based large language model (LLM) that can elucidate the

rationale behind the produced image, shedding light on the generation process.
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All these suggestions revolve around developing a new, more human-interpretable model

to explain T2I models. Interestingly, both P1 and P2 argued that using surrogate models

for explanations adds another layer of uncertainty. P1 expressed, ”If we employ a separate

model for explanations, how can we be sure it accurately represents the original model’s

decision-making process?” This highlights concerns about the reliability of surrogate mod-

els as true reflectors of primary model behavior. In classification and regression tasks, the

accuracy of the surrogate model can be quantified using various metrics. However, for gen-

erative models, this straightforward assessment is not readily available. When prompted,

P2 argued that in such cases, we can rely on qualitative analysis, such as human observa-

tion, which inherently has a degree of subjectivity. Similar to model-intrinsic explanations,

surrogate model explanations are currently unavailable, leading to none of the participants

incorporating such explanations into their workflows.

Example-based explanations. Traditionally, example-based explanations involve pre-

senting instances that the model has previously encountered or processed, helping users to

understand the model’s behavior and decision-making patterns. In the context of T2I gener-

ation, this can have multiple interpretations as indicated by the participants. For example,

P1 referenced the use of prompt search engines4 to better comprehend the impact of specific

keywords. P2, P5, P7, and P8 also emphasized the utility of these search engines to both

discover and comprehend new keywords through multiple examples. Notably, P4 mentioned

that when keywords are similar across different prompts, their resulting images can also

appear alike, making differentiation challenging. To address this, P4 combines sensitivity-

based explanations with example-based ones to discern subtle differences between similar

keywords. In a different approach, P3 recommended showcasing related prompts and their

corresponding images when given a specific prompt. Instead of browsing through an image

gallery for specific keywords, the emphasis here is on contrasting entire prompts using text

embeddings for a more discernible comparison. P5 emphasized the challenges with creating

4For example prompthero.com and lexica.art
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prompt-image pair galleries: not only is it costly, but with each new model, the utility of

keyword searches diminishes due to a lack of relevant data. While one might consider using

older datasets as a workaround, it’s no guarantee that keywords influencing older models

will have the same effects on newer ones. It underscores the need for a balance between

retaining older examples and generating new datasets from user interactions. Addition-

ally, P5 stated: ‘Given that these foundation models are frequently fine-tuned, relying on

prompt search engines may not be a sustainable strategy.’ An alternative approach could

be utilizing LLMs to generate similar prompts and craft example images, even if it demands

higher computational resources. All participants incorporated example-based explanations

into their workflow. Interestingly, several participants, namely P3, P4, and P6, highlighted

using these explanations as initial inspiration in their processes.

In summary, participants identified four primary explanations considering the explanation

goals of a T2I model. Some of these explanations, such as sensitivity-based and example-

based explanations, are practical. This is because participants already incorporate similar

methods into their workflows. However, some explanations are not currently in use, but

participants believe they would be beneficial, aligning with the explanation goals established

earlier in the study.

5.4 Explanations for Text-to-Image Models

In laying the groundwork for explanation methods in text-to-image models, we introduce four

explanation techniques, each representing a distinct type of explanation that was elicited

from the formative study. While the study presented a range of ideas, we centered our

implementation on the most prevalent concepts. The explanation methods for each type are

explained and implemented as follows:

(i) Redacted Prompt Explanation.

Redacted prompt explanation (RPE) is a sensitivity-based explanation that frequently
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Figure 5.3: Redacted prompt explanation and keyword heat map. The first row displays a

sample redacted prompt explanation. On the left, we present the original prompt alongside

its resulting image. Subsequent images demonstrate the outcome when a keyword is omitted,

providing insights into the impact of that particular keyword on the image’s formation. The

second row showcases keyword heat maps for the same original image and prompt. Each

column corresponds to a distinct keyword, labeled below. For each keyword, cross-attention

heatmaps highlight where the model’s attention is concentrated. For instance, the keywords

‘vector art’ and ‘cyberpunk’ appear to influence the background, a finding that aligns with

the redacted prompt explanation for those specific keywords.

came up during the participatory design process. An example RPE can be seen in the first

row of Figure 5.3. This technique systematically redacts or removes keywords from prompts

to gauge their impact on the generated image. RPE evaluates the similarity between the

original and altered images. RPE operates by randomly removing a subset of keywords

from the original prompt for each image-prompt pair, until the resultant image undergoes a

’significant’ change. Formally, let P represent the original prompt, which is a set of keywords:

P = {k1, k2, . . . , kn}
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Let I(P ) denote the image generated by using the entire prompt P . For any subset P ′ ⊆ P ,

I(P ′) is the image generated by using the prompt subset P ′. Let S(I1, I2) be a similar-

ity metric between two images I1 and I2. For a given threshold θ, which determines the

’significant’ change in images, we randomly select a subset P ′ from P until the similarity

satisfies:

S(I(P ), I(P ′)) < θ

Different methods can be used to define the sub-sampling, similarity, and θ. In our imple-

mentation, we adopted random subsampling, used CLIP embeddings [RKH21] to measure

similarity, and set a predetermined constant for θ. The value of θ is qualitatively adjusted

by reviewing examples to determine if image alterations are substantial enough to infer the

influence of the excluded keywords. After applying RPE, both the original and altered

image-prompt pairs are displayed to shed light on the effects of the redacted words. The

primary objective of RPE is to elucidate the influence of a redacted keyword through image

comparison.

(ii) Keyword Heat Map.

The Keyword Heat Map (KHM) is a model-intrinsic method that leverages Stable Dif-

fusion parameters to craft a heatmap, serving as a visual explanation. An example KHM

can be seen in the second row of Figure 5.3 Drawing inspiration from the Prompt-to-prompt

technique [HMT22], KHM averages the cross-attention maps corresponding to each key-

word present in the prompt, presenting the outcome as detailed heatmaps. These maps

effectively elucidate which pixel regions in the image are more influenced or ”attracted” by

specific keywords, offering insights based on the model’s internal parameters. A multitude

of visualization strategies can be employed to illuminate the model’s intricate interactions

with the keywords during the image generation process. For instance, an exploration of

these cross-attention maps across distinct denoising timesteps can provide clarity on the

model’s evolving focus throughout the generation journey. Such a timestep-based break-

down could reveal reasons why certain visual concepts, although present initially, may not
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dominate the final image. In fact, techniques like Attend-and-Excite harness this temporal

information, driving the model to ensure no keywords are overlooked in the generation pro-

cess [CAV23]. While timestep-based heatmaps offer valuable insights, our implementation

prioritizes a holistic view. We average across all timesteps and adopt a 32x32 resolution,

a decision supported by prior work highlighting the efficacy of this resolution in semantic

clustering [PGA23]. Formally, let P represent the original prompt, which is a set of key-

words. For each keyword k in P , we extract cross-attention maps, At,h(k), for each timestep

t and attention head h. Then we average the cross-attention maps across both timesteps

and attention heads to produce a non-normalized heatmap, H′(k):

H′(k) =
1

T ×H

T∑
t=1

H∑
h=1

At,h(k)

where T is the total number of timesteps and H is the total number of attention heads.

Finally we normalize H′(k) to get the heatmap H(k) such that the values lie in the range

[0, 1]:

H(k) =
H′(k)−min(H′(k))

max(H′(k))−min(H′(k))

After applying KHM, the resultant heatmaps are closely associated with their source key-

word, underscoring their integral influence in guiding the image synthesis. The primary

aim of KHM is to provide a basic understanding of how keywords influence the final image

outcome.

(iii) Keyword Linear Regression.

The Keyword Linear Regression (KLR) is a surrogate-model explanation that approxi-

mates the image generation process as a linear combination of its constituent keywords. KLR

lacks visual representation capabilities compared to other methods. Instead of visual cues,

this method directly reports numerical values corresponding to the significance of each key-

word. Although there are other methods available, such as decision trees, we opted for linear

regression due to its straightforwardness. Though various methods can be used to fit the lin-

ear model, we used a large prompt-image dataset that is publicly available. Specifically, we
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used DiffusionDB dataset which contains 1.8 million unique prompts and 14 million images

generated with Stable Diffusion v1.4 [WMM22]. Our approach is characterized by first iden-

tifying the 20 most related images in the dataset for each keyword. These related images are

identified by comparing the CLIP embeddings. A notable benefit of utilizing CLIP embed-

dings is that even if a prompt does not explicitly contain a particular keyword, the resultant

image can still resonate with the essence of that keyword. Once these images are identified,

their VIT image embeddings5 are averaged, ensuring that the emphasis remains squarely

on the characteristics of the images themselves, rather than being constrained by the scope

of CLIP [DBK20]. Using the embeddings for each keyword, linear regression is applied to

predict the embedding of the original image. The weights associated with each keyword are

viewed as an approximation of their contribution to the final image representation. After

the linear regression the weights are normalized so that they collectively sum to 1. Finally,

the weights for each keyword are then provided to the user to illustrate the contribution

of each keyword to the generated image. Formally, given a dataset D consisting of images

{I1, I2, ..., Im}, we denote the embeddings for each image I and keyword k as Eimg(I) and

Ekeyword(k), respectively using CLIP embeddings. The cosine similarity between an image

and a keyword is defined by

sim(I, k) =
Eimg(I) · Ekeyword(k)

∥Eimg(I)∥∥Ekeyword(k)∥

For each keyword k, we determine the top 20 images from D with the highest similarity,

termed TopImages(k). The refined embedding for the keyword k is then

E ′
keyword(k) =

1

20

∑
I∈TopImages(k)

E ′
img(I).

where E ′
img(I) is the VIT image embedding. Applying linear regression, the embedding of

the generated image is modeled as

Eimg(Igenerated) = β0 +
n∑

j=1

βjE
′
keyword(kj) + ϵ,

5We used google/vit-base-patch16-224 from Huggingface
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where βj indicates the weight of keyword kj, β0 is the constant term, and ϵ captures the

model’s prediction error. Lastly, to normalize the coefficients, we compute

β′
j =

βj −min(β)∑n
j=1(βj −min(β))

,

ensuring that
∑n

j=1 β
′
j = 1.

In the absence of available prompt-image dataset, the embeddings for each keyword can be

derived by calculating the discrepancy between the embeddings of the full-prompt resultant

image and that with the omitted keyword, similar to sensitivity-based explanation. The

pool of embeddings can be augmented by modifying this prompt to reduce variance. After

implementing KLR, the keywords paired with their weights give a linear interpretation of

how each keyword contributes to the image creation. The primary aim of KLR is to simplify

the intricate generative process into a more understandable linear model.

(iv) Keyword Image Gallery.

The Keyword Image Gallery (KIG) offers an example-based explanation, elucidating the

influence of each keyword through a curated gallery of images. An example KIG is given in

Figure 5.4 for the teddy bear image presented in Figure 5.3. While there are several methods

to curate this gallery, our approach centers on utilizing the prompts directly. Essentially,

for each keyword, the gallery showcases images from the dataset that feature that keyword

in their prompts. The selection criteria for these images revolve around the similarity of

their entire prompts to the original prompt, provided the keyword in question is present.

Formally, given a dataset D of images and associated prompts, and an original prompt

Poriginal. Embeddings of prompts are represented as: Eprompt(P ). The cosine similarity

between two prompts is defined as:

sim(P, Poriginal) =
Eprompt(P ) · Eoriginal(Poriginal)

∥Eprompt(P )∥∥Eoriginal(Poriginal)∥

For a keyword k present in Poriginal, the subset of prompts containing k is denoted as:

S(k) = {P | k ∈ P}
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Figure 5.4: Keyword Image Gallery (KIG). KIG explains the ‘teddy bear’ image shown in

Figure 5.3. Each row in the gallery corresponds to a specific keyword, organized from top to

bottom as ’lowpoly style’, ’cubist’, and ’cyberpunk’. The primary objective of the KIG is to

showcase exemplary images associated with each keyword. This provides context, helping

users understand the influence and interpretation of each keyword.

Let n be a predefined number indicating the top n prompts to be selected based on similarity.

The gallery for keyword k, curated based on similarity to Poriginal, is then:

G(k) = argmaxn (sim(P, Poriginal) | P ∈ S(k))

In scenarios where prompt-image datasets for specific models are unavailable, images can

be generated using prompts extracted from the DiffusionDB dataset. Alternatively, in the

absence of prompts, a method akin to the one outlined in KLR can be employed to pinpoint

images that align closely with the given keyword. The end result is a tailored collection

of images for every keyword, highlighting the keyword’s influence on the image generation

process. The primary aim of KIG is to convey the impact of keywords using a range of
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example images previously generated by the model.

5.5 User Study

In our formative study, while we did identify various explanation types and even proposed

specific techniques for each in §5.4, the real-world efficacy of these methods remains to

be explored. The effectiveness of an explanation method can be evaluated from various

angles. However, as a pioneering effort in the realm of explainable text-to-image methods, we

directed our focus towards end users, especially those unfamiliar with text-to-image models.

With the rising ubiquity and accessibility of these models, understanding their reception

and utility among mainstream users becomes crucial. For instance, with Apple now officially

incorporating Stable Diffusion support in iPhones [OSW22], it underscores the importance of

ensuring these explanations resonate with the general public. Our approach was to conduct

a comprehensive user study using Amazon Mechanical Turk (AMT). The choice of AMT

stemmed from its ability to quickly scale and accommodate a large number of participants,

ensuring a diverse representation of end users. Additionally, AMT has been leveraged in

previous research on user preferences in XAI methods, making it a reliable platform for our

empirical analysis [JNC20].

5.5.1 Participants

473 participants contributed across an array of tasks. Each participant, on average, provided

12 responses (four per task), culminating in a comprehensive set of 5,676 responses. This

extensive collection forms a solid base for extracting significant insights and conclusions

about the practicality of our explanation methods.

Validating responses. Two filtering criteria were implemented to exclude participants

who submitted illegitimate responses. First, similar to [JNC20], participants who submitted

responses more quickly than the minimum threshold necessary are excluded, ensuring the
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removal of submissions potentially auto-completed by bots. Second, each test input included

an additional question: a random prompt and text pair from our dataset were presented to

the user. For half of these instances, the original prompt was replaced with a random one,

and users were then asked if the presented prompt corresponded to the image. Participants

who failed more than 20% of these validation questions were subsequently excluded from

the published results. To guarantee that the substituted prompt was not related to the

original, CLIP embeddings were used. Prompts with low cosine similarities were selected as

replacements.

5.5.2 Data & Apparatus

In some of the explanation methods, we leveraged a prompt-image dataset. Specifically, we

used DiffusionDB dataset which contains 1.8 million unique prompts and 14 million images

generated with Stable Diffusion v1.4 [WMM22]. We also proposed alternative explanations

in §5.4 when these datasets are not available. We used the same Stable Diffusion model as

our text-to-image model since it is open-source [RBL22]. We precomputed the images and

explanations using a local machine equipped with an Nvidia GeForce RTX 3090 GPU. These

results were then stored in an AWS S3 bucket, ensuring asynchronous delivery to the AMT

participants during the study.

We curated a dataset of prompt-image pairs derived from the DiffusionDB dataset using a

specific sampling method. This dataset can serve as a valuable resource for future researchers

aiming to advance explainable AI techniques in text-to-image models. A straightforward

random sampling from the DiffusionDB dataset proved suboptimal due to its imbalanced

nature. For instance, certain terms like ”cats” or ”people” appear with greater frequency

than others. While there exist various strategies to address dataset imbalance, we adopted

a unique approach. Initially, we clustered images based on embeddings computed using a

pretrained VIT model. During the sampling of prompt-image pairs from the various clusters,

we ensured that each new sample’s embedding was compared to those of existing ones. Only
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when the distance between the new sample’s embedding and the existing ones was higher

than a predefined threshold was the sample added to the dataset. This iterative sampling

continued across numerous rounds, ceasing only when a complete round failed to identify

any new embedding that met the threshold criterion. Formally, D is the DiffusionDB dataset

and S is our curated dataset which is initialized as an empty set, S = ∅. E(I) is the image

embedding of image I, ∀I ∈ D. C is the cluster sets, C = cluster({E(I)|I ∈ D}). I isampled is

a sample from cluster i. Then,

If min
J∈S

dist(E(I isampled), E(J)) > θ : S ← S ∪ I isampled

where θ is the threshold parameter. This cycle continues until S is stable over C. Ul-

timately, our methodological approach yielded a diverse dataset comprising 516 distinct

prompt-image pairs. The dataset’s size can be modulated based on the study’s requirements

by adjusting the aforementioned threshold. For distinct research needs, we are making three

distinct datasets of varying sizes publicly available, each generated utilizing different thresh-

old values.

5.5.3 Tasks & Procedure

Our study was designed with three tasks for each participant. To ensure fairness and elimi-

nate any potential biases, the sequence of these tasks was shuffled for different participants.

The study commenced with a brief overview of what prompt and image pairs were. To

familiarize participants with the study’s mechanics, they were presented with two prompt-

image pairs but weren’t told which prompt corresponded to which image. They were then

tasked with pairing the prompts with their rightful images by selecting a checkbox adjacent

to the prompts. Before progressing to the main study, participants were required to correctly

match the pairs on two separate occasions. Those who couldn’t accomplish this preliminary

task were not allowed to proceed further in the study. Prior to each task, participants are
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presented with a sample correct response to familiarize them with the task.

The user study had three main goals. First, we wanted to find out which explanation

method was preferred by users without technical backgrounds. Next, we aimed to measure

how well these users actually understood the explanations given to them. Lastly, we were

interested in seeing which combinations of explanations worked best together. In examin-

ing these facets, our objective is to optimize the design of text-to-image models to better

cater to a broader, non-expert audience. These objectives are crucial for several reasons.

Firstly, identifying user preferences can provide valuable insights to UX designers aiming to

develop more user-friendly text-to-image models. Additionally, it is essential to assess the

comprehensibility of the provided explanations. If explanations are not easily understood

by users, their utility is reduced. Consequently, the results of this study can guide designers

in selecting the most effective explanations, or combinations thereof, for inclusion in their

applications.

In our formative study, we explored the potential of explanations in aiding users to refine

their image prompts over subsequent interactions. However, an earlier pilot study indicated

that familiarity with text-to-image models is important for prompt enhancement, even when

equipped with explanations. As a consequence, our user study emphasized the comprehen-

sion and utility of explanations among non-expert users. In the future, the interplay be-

tween explanations and the iterative refinement of prompts warrants further investigation.

Presently, our research establishes a foundational set of methods, validated by non-expert

participants, serving as a reference point for future explorations.

Next, we introduce the three tasks we had in the user study: (i) user preference, (ii) per-

formance, and (iii) combined explanations. Prior to each task, participants are provided

with a demonstrative example to familiarize them with the task.

Task 1: User Preference on Explanations. To assess participants’ preferred expla-

nations, they were presented with the original prompt and image pair. Subsequently, two

randomly selected explanations (out of a possible four) were shown, akin to the methodology
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in [JNC20]. Participants were then prompted to choose the explanation they favored. The

decision to only compare two explanations at a time is to minimize the cognitive load on

participants.

Task 2: User Performance on Explanations. A particular method may appeal to

participants due to various factors, such as visual intuitiveness or simplicity. However, this

appeal might not guarantee effective conveyance of the underlying model’s behavior. For an

explanation to be considered effective, it should not only be favored by users but should also

enhance their understanding of the model’s workings. To assess the efficacy of the various

explanation methods delineated in §5.4, we employed a binary choice paradigm. Below is a

concise overview of each implementation:

• Redacted Prompt Explanation. Participants were presented the original image

alongside two generated images, each missing distinct keywords. Their task was to

associate each image with its corresponding redacted prompt.

• Keyword Heat Map. Participants were presented with two heatmaps, each associ-

ated with a different keyword. They were required to correctly match these heatmaps

to their respective keywords, gauging their understanding of heatmap representations.

The selected heatmaps for this task were pre-verified to ensure discernible differences,

making the task solvable.

• Keyword Linear Regression. Participants were presented with a linear explanation

for a prompt and a randomly generated linear explanation. They were tasked with

identifying the correct linear explanation.

• Keyword Image Gallery. Participants were presented with two sets of image gal-

leries, each related to a distinct keyword. They were required to pair each gallery with

the correct keyword.

Additionally, after each task, participants were prompted to rate their confidence in their
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predictions on a scale from 1 to 10. For tasks involving the use of two keywords, we employed

CLIP embeddings to ensure the semantic impacts of the keywords were distinguishable.

Task 3: Combined Explanations. For each instance, participants were provided with

two distinct sets of explanations, with each set comprising between one to four explanations.

They were tasked with identifying and selecting their preferred set from the presented op-

tions. To maintain distinctiveness and clarity between the sets, no explanation appeared in

both sets simultaneously, unless one set encompassed all four explanations. In such instances,

the contrasting set faced no restrictions on its content.

5.6 Results

We performed several quantitative analyses on the data gathered from the AMT study.

As previously highlighted, the primary focus of this study was to assess user preferences,

evaluate performance, and determine the synergistic effectiveness of combined explanation

methods. Additionally, we conducted analyses to examine the impact of different keyword

types on user performance. In the subsequent sections, we detail these analyses and present

key observations from the study. The summarized results can be found in Section § 5.6.3.

5.6.1 Preference vs Performance

We initially assess the correlation between participants’ preferences and their actual perfor-

mance in comprehending the explanations.

Participants prefer example-based explanation. The participants exhibited a pref-

erence for the Keyword Image Gallery (KIG) explanation method, selecting it 83.7% of the

time when presented with choices. The results of pairwise preference percentages are pre-

sented in Table 5.1. Based on the Chi-Squared test with a Bonferroni correction, the KIG

method is statistically preferred over the other methods. Based on the same analysis, Key-

word Heat Map (KHM) performed better against KIG compared to other two methods.
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Chosen over

RPE (%)

Chosen over

KHM (%)

Chosen over

KLR (%)

Chosen over

KIG (%)

Average (%)

RPE - 48.1 24.9 4.9 26.0

KHM 51.9 - 52.8 33.1 45.9

KLR 75.1 47.2 - 10.9 44.4

KIG 95.1 66.9 89.1 - 83.7

Table 5.1: Percentage preference of the method in the row over the method in the column

when presented with a binary choice. Participants prefer KIG over other methods. The least

favored method is RPE even though it is commonly used by experts.

This heightened performance is likely due to KHM’s approach of elucidating the genera-

tion process using images, similar to KIG. Nonetheless, when assessed against the other two

explanation method (RPE and KLR), KHM did not demonstrate a statistically significant

preference.

Participants’ least favored explanation is sensitivity-based. Interestingly, de-

spite its frequent use by experts in our formative study, the Redacted Prompt Explanation

(RPE) emerged as the least favored explanation method statistically. This disparity can

be attributed to the difference in expertise levels; sensitivity-based explanations, like RPE,

necessitate a certain degree of experience to be preferred.

Participants overestimate how well they understand the explanations. We

conducted a paired-samples t-test with Bonferonni correction to compare participants’ con-

fidence scores with their actual performance on the second task. Across all explanation

methods, participants consistently rated their confidence higher than their demonstrated

performance levels. The average confidence and accuracy percentages can be found in Ta-
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Confidence (0-10) Scaled Confidence (%) Actual Performance (%)

RPE 4.7 73.3 65.2

KHM 7.8 89.0 65.9

KLR 5.1 75.5 59.9

KIG 8.6 93.1 78.8

Table 5.2: Average confidence and performance of different explanation methods. Scaled

confidence is linearly scaled so that 0 confidence corresponds to 50%, mimicking random

chance. Participants overestimate how well they understand the explanations.

ble 5.2. Importantly, a random guess would result in a 50% accuracy rate, and considering

that confidence scores range from 0-10, we linearly scaled these scores for our analysis. In

this scaling, a 50% accuracy corresponds to a confidence score of 0, as reflected in the ta-

ble. We also conducted a repeated measures ANOVA test followed by a paired-samples

t-test with Bonferroni correction, revealing that the Keyword Heat Map (KHM) exhibited

the largest statistically significant disparity between participant confidence and actual per-

formance. This discrepancy can likely be attributed to the inherent simple visualizations

of KHM compared to KIG and RPE where the participants need to deduct the keyword

effect by comparing images. Notably, this heightened confidence due to visual explanations

was also statistically greater than that observed with the KLR (the only method that does

not have a visual representation), as corroborated by a Chi-Squared Test with Bonferroni

correction.

It is essential to highlight that comparing performances across different tasks is not

appropriate due to inherent disparities in task difficulties. Consequently, results from the

second task should be interpreted in isolation, without cross-comparison to other tasks.
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For example, the KLR task necessitated participants to distinguish between the correct

explanation and a decoy. Accomplishing this solely based on linear parameters is inherently

challenging, which is reflected in participants’ near-random success rate of 59%. However,

KLR still provides important information to the participants by explaining the generation

process through a linear model. For a more objective evaluation of the explanation methods,

a comprehensive user study is necessary, focusing on how these explanations influence user

objectives, such as determining which explanation methods enhance prompting effectiveness.

Participants’ preference peaks with two explanations. In the third task, as the

number of explanations increased, the most favored combination comprised two explanations.

The preference percentages for one to four explanations were as follows: 35.4%, 66.1%, 54.1%,

and 44.4%, respectively. Although a greater number of explanations inherently provide more

information, it appears the cognitive burden imposed on participants inversely affected their

preferences. Based on Chi-Squared test with Bonferroni correction, KIG with KLR is the

most preferred combination with the preferred rate of 74.6%. This finding is intriguing

given that the KHM explanation was the biggest rival to KIG during individual assessments

in the first task. A plausible interpretation for this phenomenon is the overlap in insights

offered by both KHM and KIG, as both are rooted in visual explanations. In contrast,

KLR effectively complements KIG, enabling participants to visualize the influence of specific

keywords (through examples by KIG) and comprehend their linear integration (demonstrated

by KLR). This observation is further underscored by the preference rate of 28.1% for the

RPE and KLR combination, which emerged as the least preferred combination statistically.

5.6.2 Keyword Types

To delve deeper into participants’ performance concerning specific keywords, we examined

all the prompts used throughout the study and segmented the keywords into two distinct

categories. For the first category, the focus was on the impact scope of the keywords on

images. Here, keywords causing localized alterations like ‘cat’, ‘table’, ‘door’, and ‘lamp’
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Local (%) Global (%) Known (%) Magic (%) Known

Confidence

Magic

Confidence

RPE 88.2 61.3 67.0 62.4 4.7 3.6

KHM 83.6 60.8 69.0 63.1 8.3 6.7

KLR 65.6 52.9 58.3 60.2 6.8 4.1

KIG 84.6 75.5 82.0 77.3 9.4 7.6

Table 5.3: Performance distinction between local vs global keywords as well as known vs

magic keywords for each explanation type.

were isolated. In contrast, those keywords governing overarching changes or dictating the

broader theme of an image, including ‘oil painting’ and ‘very detailed’, were also identified.

In the second category, keywords were differentiated based on their intuitiveness and their

association with Stable Diffusion. While some keywords were deemed ‘known’, others were

uniquely tied to Stable Diffusion, which we termed as ’magic’ keywords. These ’magic’

keywords, exemplified by phrases like ’trending on artstation’ or specific references such

as ’by Stanley Artgerm Lau and Alphonse Mucha’, likely fall outside the user’s existing

knowledge base. Using these labels, we average the performance of the explanation methods

across keywords.

Global keywords significantly influence participants’ performance. Based on

the results from a paired-samples t-test with Bonferroni correction, participants exhibited

greater difficulty in comprehending global keywords compared to local ones. These results

can be seen in Table 5.3. Keywords that influence the overarching theme or appearance of

an image pose a greater challenge for participants than those affecting a specific segment of

the image. This observation aligns with intuitive reasoning: subtle modifications across the
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entirety of an image are more challenging to discern than distinct changes to a particular

object or section.

Familiarity with keywords influences user confidence, not performance. De-

spite encountering unfamiliar keywords, participants were able to interpret them effectively,

as shown in Table 5.3. According to a paired-samples t-test with Bonferroni correction,

participants’ performance with both familiar and ”magic” keywords (those unique to Stable

Diffusion) remained consistent. However, their confidence varied significantly, being notably

lower when interpreting the ”magic” keywords. This underscores that while participants can

adapt to unfamiliar terms with the help of explanations, their assurance in their understand-

ing diminishes.

5.6.3 Summary of Results

The study conducted a comprehensive analysis to evaluate user preferences, assess perfor-

mance, and determine the combined effectiveness of different explanation methods, with

a specific focus on the impact of different keyword types on user comprehension. Results

showed that the Keyword Image Gallery (KIG) method was the most favored explanation

technique, selected 83.7% of the time in binary choices, even though the Redacted Prompt

Explanation (RPE), frequently used by experts, was the least preferred. A consistent pat-

tern emerged where participants consistently rated their understanding of the explanations

higher than their actual performance. Specifically, the Keyword Heat Map (KHM) method

was observed to boost participant confidence more than other methods, though it didn’t

necessarily improve actual comprehension. Furthermore, when participants were exposed

to multiple explanations, they showed a marked preference for combinations of two, with

the KIG and KLR combination being the most favored. It is interesting to note that KLR,

when standalone, does not convey substantial information as it simplifies the intricate gen-

eration process into a simple linear model. On the matter of keyword comprehension, global

keywords, which influence the overarching theme of an image, posed a greater challenge

133



than local ones that only affect specific sections. Interestingly, while participants’ perfor-

mance remained consistent regardless of keyword familiarity, their confidence was notably

diminished when dealing with unfamiliar, or ”magic,” keywords. This data underscores the

importance of visual explanations and the need to manage user confidence in line with actual

understanding.

5.7 Limitations and Future Work

Gap in explanation categories relative to traditional XAI. Our taxonomy lacks two

categories present in Speith’s function approach taxonomy [Spe22]: meta-explanation and

architecture modification. Participants didn’t present ideas aligning with these categories.

Meta-explanation, which derives explanations by leveraging other explainability methods, is

yet to be explored, given the current limited state of T2I explainability methods. Likewise,

architecture modification, which aims to simplify models by altering their structure, remains

unaddressed in the T2I context. However, the other categories were recurrent in participant

discussions, indicating their intuitive nature.

Potential simplification in model-specific explanations. Our technique involved

averaging attention maps across all attention heads, which might offer a simplified perspec-

tive of the actual image generation process. The diverse attention heads in Stable Diffusion

focus on varied aspects of generation. Combining them might obscure information. As future

text-to-image models could employ distinct architectures, it’s essential to continually assess

the relevance and limitations of model-specific explanations.

Evolving nature of Text-to-Image models. Many of the explanations proposed

in this study hinge on keywords. As T2I models evolve, they might transition to a more

conversational style or accept diverse input formats. Therefore, this study’s insights should

be interpreted with an emphasis on general end-user behavior rather than the specifics of

existing explanation techniques. As T2I models undergo significant changes, reevaluation of
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explanation techniques becomes essential.

Challenges in comparison of explanation methods. The task of comparing XAI

methods remains formidable, and this area is still an active research area. Depending solely

on participant feedback to determine the best explanation method is insufficient as shown in

our work. Participants may not always possess the expertise or insight to judge explanations

accurately. Therefore, it is crucial for future studies to define novel metrics or methodologies

to comparatively analyze explanation techniques within the T2I framework.

Prompt iteration over time with explanation methods. Our study did not eval-

uate the potential improvement in participants’ prompts over time. A crucial aspect of

explanations in T2I models revolves around their capacity to guide users towards enhancing

prompts, resulting in higher quality image outputs. Future work could concentrate on estab-

lishing metrics for ‘improved prompts’ and examining which explanations most effectively

facilitate better image generation.

5.8 Conclusion

The development of text-to-image (T2I) models has expanded the ability to produce images

from textual descriptions. However, for many users, especially those less familiar with the

domain, the processes behind these models remain unclear. Our work aims to address this

challenge by introducing and testing specific explanation methods designed to elucidate the

workings of these models. Generating images from textual prompts requires precision and

clarity in the prompts given. Through our initial study, we identified primary explanation

goals specific to T2I models and subsequently developed explanation techniques aligned with

these goals.

Our evaluation, conducted via Amazon Mechanical Turk, provided insights into how

users interact with and perceive these explanations. Notably, the data revealed a preference

among users for example-based explanations and indicated that users benefit most from a
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limited set of explanation methods. Additionally, the study showed that certain keywords,

which significantly change the theme of an image, are harder for users to understand.

In summary, this research contributes to the understanding of how users interact with

explanations for T2I models. The dataset and findings presented provide a basis for further

research in this area. As T2I models continue to evolve and find wider applications, making

their operations transparent and understandable will be essential. This work is a step towards

that objective.
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CHAPTER 6

Summary

This dissertation has journeyed through the evolving landscape of generative models, high-

lighting the challenges and potentials of these technologies. The focus has been on developing

and evaluating user-centric tools to make advanced AI more accessible and intuitive for a

diverse range of users. This summary chapter synthesizes the key insights and contributions

from each chapter, providing a cohesive overview of the entire work.

In Chapter 2, I introduced GANzilla, a tool designed to demystify Generative Adver-

sarial Networks (GANs) for non-expert users. By implementing a scatter/gather approach,

GANzilla allows users to intuitively explore and refine editing directions, enhancing their

creative control over the image generation process. User studies demonstrated the tool’s

efficacy in enabling both specific and open-ended image editing tasks.

In Chapter 3, I introduced GANravel, a tool developed to aid users in disentangling

editing directions within GANs. Addressing the ’black box’ nature of these models, GAN-

ravel provided a user-driven approach for iterative refinement of image edits. The chapter

detailed its successful application in user studies, including creative tasks like meme gener-

ation.

In Chapter 4, I introduced PromptZEN, a novel tool tailored for text-to-image diffusion

models, particularly Stable Diffusion. PromptZEN empowers users to make precise, local-

ized edits via prompt scheduling, offering an enhanced level of control and interaction. The

chapter highlighted the tool’s ability to facilitate user-guided image generation, substantiated

by positive outcomes from user studies.
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In Chapter 5, I tackled the challenge of making generative processes more transparent

and understandable. It explored methods to enhance user comprehension of GANs and

T2I systems, aiming to demystify the underlying mechanisms of these models. The chapter

discussed the broader implications of these findings for future research and the ongoing

development of generative models.

6.1 Limitations and Future Work

The sample size in some studies, though adequate for initial exploration, may not capture the

full spectrum of user interactions and experiences. Additionally, the demographic represen-

tation in the studies might limit the generalizability of the findings to broader populations.

The field of AI, especially generative models, is rapidly advancing. Tools and methods

developed in this dissertation might need continuous updating to stay relevant and effective

in the face of new advancements. As new models and techniques emerge, some of the specific

findings and tools discussed may become less applicable or require significant adaptation to

align with future technologies.

The user-centric tools developed, while innovative, have inherent limitations in their fea-

tures and capabilities. These limitations might impact their effectiveness in certain complex

scenarios or for specific advanced user needs. Despite being designed for simplicity, there

remains a learning curve associated with these tools. Users might require time and guidance

to fully utilize their capabilities, which could be a barrier for some.

The research touches upon the democratization of AI but does not deeply explore the

ethical implications, such as potential biases in model outputs or fairness in accessibility.

Future research can focus on aligning generative models to eliminate biases. The tools and

methods proposed may also have broader implications for employment and skill development

in creative industries, which are not covered in this dissertation.

This dissertation contributes to the growing field of user-centric AI by offering practical
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solutions and insights into enhancing user interaction with generative models. The tools

developed and evaluated in this work represent a significant step towards democratizing

advanced AI technologies, ensuring they are accessible and beneficial to a wide range of

users. In summary, this dissertation underscores the importance of user-centered design in

the realm of AI and generative models. It opens up new avenues for future research and

development, aiming for a future where advanced AI is not just a tool for the few but an

empowering technology accessible to all.
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Bölöni, and Ratheesh Kalarot. “Latent to Latent: A Learned Mapper for Identity
Preserving Editing of Multiple Face Attributes in StyleGAN-generated Images.”
In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer
Vision, pp. 3184–3192, 2022.

[KLA19] Tero Karras, Samuli Laine, and Timo Aila. “A style-based generator architecture
for generative adversarial networks.” In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 4401–4410, 2019.

[KLA20a] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. “Analyzing and Improving the Image Quality of StyleGAN.” In Proc.
CVPR, 2020.

[KLA20b] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and
Timo Aila. “Analyzing and improving the image quality of stylegan.” In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
8110–8119, 2020.

[KPJ23] Hyung-Kwon Ko, Gwanmo Park, Hyeon Jeon, Jaemin Jo, Juho Kim, and Jinwook
Seo. “Large-scale text-to-image generation models for visual artists’ creative
works.” In Proceedings of the 28th International Conference on Intelligent User
Interfaces, pp. 919–933, 2023.

[LC22] Vivian Liu and Lydia B Chilton. “Design Guidelines for Prompt Engineering
Text-to-Image Generative Models.” In Proceedings of the 2022 CHI Conference
on Human Factors in Computing Systems, CHI ’22, New York, NY, USA, 2022.
Association for Computing Machinery.

[Lew82] Clayton Lewis. Using the” thinking-aloud” method in cognitive interface design.
IBM TJ Watson Research Center Yorktown Heights, NY, 1982.

[LKL21] Huan Ling, Karsten Kreis, Daiqing Li, Seung Wook Kim, Antonio Torralba, and
Sanja Fidler. “EditGAN: High-Precision Semantic Image Editing.” Advances in
Neural Information Processing Systems, 34, 2021.

[LLW23] Yuheng Li, Haotian Liu, Qingyang Wu, Fangzhou Mu, Jianwei Yang, Jianfeng
Gao, Chunyuan Li, and Yong Jae Lee. “Gligen: Open-set grounded text-to-image
generation.” In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 22511–22521, 2023.

[Lom06] Tania Lombrozo. “The structure and function of explanations.” Trends in cog-
nitive sciences, 10(10):464–470, 2006.

144



[LPL20] Jiadong Liang, Wenjie Pei, and Feng Lu. “Cpgan: Content-parsing generative
adversarial networks for text-to-image synthesis.” In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part IV 16, pp. 491–508. Springer, 2020.

[LYZ22] Jun Hao Liew, Hanshu Yan, Daquan Zhou, and Jiashi Feng. “Magicmix: Seman-
tic mixing with diffusion models.” arXiv preprint arXiv:2210.16056, 2022.

[LZS20] Bingchen Liu, Yizhe Zhu, Kunpeng Song, and Ahmed Elgammal. “Towards
faster and stabilized gan training for high-fidelity few-shot image synthesis.” In
International Conference on Learning Representations, 2020.

[MGB18] Justin Matejka, Michael Glueck, Erin Bradner, Ali Hashemi, Tovi Grossman, and
George Fitzmaurice. Dream Lens: Exploration and Visualization of Large-Scale
Generative Design Datasets, p. 1–12. Association for Computing Machinery, New
York, NY, USA, 2018.

[MH21] Deborah Mateja and Armin Heinzl. “Towards Machine Learning as an En-
abler of Computational Creativity.” IEEE Transactions on Artificial Intelligence,
2(6):460–475, 2021.

[MHA23] Ron Mokady, Amir Hertz, Kfir Aberman, Yael Pritch, and Daniel Cohen-Or.
“Null-text inversion for editing real images using guided diffusion models.” In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 6038–6047, 2023.

[MHS21] Chenlin Meng, Yutong He, Yang Song, Jiaming Song, Jiajun Wu, Jun-Yan Zhu,
and Stefano Ermon. “Sdedit: Guided image synthesis and editing with stochastic
differential equations.” arXiv preprint arXiv:2108.01073, 2021.

[MWX23] Chong Mou, Xintao Wang, Liangbin Xie, Jian Zhang, Zhongang Qi, Ying Shan,
and Xiaohu Qie. “T2i-adapter: Learning adapters to dig out more controllable
ability for text-to-image diffusion models.” arXiv preprint arXiv:2302.08453,
2023.

[NJ17] Ingrid Nunes and Dietmar Jannach. “A systematic review and taxonomy of
explanations in decision support and recommender systems.” User Modeling and
User-Adapted Interaction, 27:393–444, 2017.

[OKB23] Hadas Orgad, Bahjat Kawar, and Yonatan Belinkov. “Editing implicit assump-
tions in text-to-image diffusion models.” arXiv preprint arXiv:2303.08084, 2023.

[Opp22] Jonas Oppenlaender. “The creativity of text-to-image generation.” In Proceed-
ings of the 25th International Academic Mindtrek Conference, pp. 192–202, 2022.

145



[OSW22] Atila Orhon, Michael Siracusa, and Aseem Wadhwa. “Stable Diffusion with Core
ML on Apple Silicon.”, 2022.
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