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Research Article

The oxidation of dehydroascorbic acid and 2,3-
diketogulonate by distinct reactive oxygen species
Rebecca A. Dewhirst* and Stephen C. Fry
The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, The University of Edinburgh, The King’s Buildings, Edinburgh EH9 3BF, U.K.

Correspondence: Stephen C. Fry (s.fry@ed.ac.uk)

L-Ascorbate, dehydro-L-ascorbic acid (DHA), and 2,3-diketo-L-gulonate (DKG) can all
quench reactive oxygen species (ROS) in plants and animals. The vitamin C oxidation
products thereby formed are investigated here. DHA and DKG were incubated aerobically
at pH 4.7 with peroxide (H2O2), ‘superoxide’ (a ∼50 : 50 mixture of O��

2 and HO�
2), hydroxyl

radicals (•OH, formed in Fenton mixtures), and illuminated riboflavin (generating singlet
oxygen, 1O2). Products were monitored electrophoretically. DHA quenched H2O2 far
more effectively than superoxide, but the main products in both cases were 4-O-oxalyl-L-
threonate (4-OxT) and smaller amounts of 3-OxT and OxA + threonate. H2O2, but not
superoxide, also yielded cyclic-OxT. Dilute Fenton mixture almost completely oxidised a
50-fold excess of DHA, indicating that it generated oxidant(s) greatly exceeding the theor-
etical •OH yield; it yielded oxalate, threonate, and OxT. 1O2 had no effect on DHA. DKG
was oxidatively decarboxylated by H2O2, Fenton mixture, and 1O2, forming a newly char-
acterised product, 2-oxo-L-threo-pentonate (OTP; ‘2-keto-L-xylonate’). Superoxide
yielded negligible OTP. Prolonged H2O2 treatment oxidatively decarboxylated OTP to
threonate. Oxidation of DKG by H2O2, Fenton mixture, or 1O2 also gave traces of 4-OxT
but no detectable 3-OxT or cyclic-OxT. In conclusion, DHA and DKG yield different oxi-
dation products when attacked by different ROS. DHA is more readily oxidised by H2O2

and superoxide; DKG more readily by 1O2. The diverse products are potential signals,
enabling organisms to respond appropriately to diverse stresses. Also, the reaction-
product ‘fingerprints’ are analytically useful, indicating which ROS are acting in vivo.

Introduction
Ascorbate (AA; one form of vitamin C) is the major low-molecular-weight, water-soluble antioxidant
in plants and animals, acting to quench reactive oxygen species (ROS). It is present in all metabolically
active cell types and sub-cellular compartments, and some AA is released into blood plasma [1] and
the plant apoplast (solution which permeates the cell wall) [2–6]. The major biosynthetic pathways of
AA in animals [7] and plants [8] are well characterised, but its degradation pathways have yet to be
fully elucidated. One reason why the oxidative degradation of AA, and of its own downstream pro-
ducts, by ROS is important is that these reactions ‘quench’ these potentially damaging ROS. Other
reasons are that the biosynthesis : degradation ratio dictates steady-state AA levels in vivo, e.g. in fruits
and vegetables, and that degradation contributes to vitamin losses during food storage [9] and
cooking [10].
AA is unstable in aqueous solutions under aerobic conditions, the first oxidation product being

AA free radical, which can be either reduced back to AA in vivo or oxidised further to produce
dehydro-L-ascorbic acid (DHA; Figure 1) [11]. The oxidation of AA to DHA is reversible in vivo,
partly owing to dehydroascorbic acid reductase action [12]. However, DHA represents a branch-point
in AA catabolism and can undergo further irreversible degradation (Figure 1), resulting in a perman-
ent loss of vitamin C. DHA can be hydrolysed to 2,3-diketo-L-gulonate (DKG) or oxidised to a range
of products such as L-threonic acid (ThrO), oxalic acid (OxA), and their esters [13–16]. Investigations
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of the fate of DHA under oxidising conditions in vitro revealed the probable existence of a short-lived, highly
reactive intermediate (proposed to be cyclic-2,3-oxalyl-L-threonolactone; cOxTL), which simultaneously forms
three major end-products (Figure 1): cyclic oxalyl threonate (cOxT), oxalyl threonate (OxT), and OxA (plus
ThrO), in a ∼6 : 1 : 1 ratio [17,18]. OxT exists as at least two isomers, 3-OxT and 4-OxT [17], of which 4-OxT
is the more stable [14]. Interconversion between these isomers occurs in vivo [17] and in vitro [18]. In the pres-
ence of esterases in vivo, and during prolonged enzyme-free incubations in vitro, irreversible hydrolysis of some
of the initially formed products can also occur (cOxT→OxT→OxA + ThrO; Figure 1) [14,17,19]. Also, trans-
acylase activities can transfer the oxalyl group from OxT to acceptor substrates, e.g. carbohydrates [20].
If oxidation is limited by exclusion of ROS, DHA in aqueous solution predominantly undergoes hydrolysis

to form DKG (Figure 1). This hydrolysis is probably irreversible in vivo [12,21]. DKG itself can be oxidised
into an unknown compound (‘H’), which itself can be further oxidised to ThrO; therefore, DKG can, like AA
and DHA, act as an antioxidant [17,18]. Compound ‘H’ has been characterised in the present work and is indi-
cated in Figure 1 as OTP (2-oxo-L-threo-pentonate). Lactonised products of DKG have also been reported,
including simple lactones [22] branched-chain rearrangement products [17] and a reduction product [23].

Figure 1. Catabolism of AA.

All the reactions shown can occur non-enzymically; some are also promoted by plant enzymes. The two-electron oxidation of AA proceeds via

AA-free radical (not shown), yielding DHA. This unionised product, which mainly exists in the bicyclic form, is at a metabolic branch-point: it can be

either hydrolysed (grey star) to DKG or oxidised (black star) to an unstable intermediate which is proposed to be cOxTL. The structures of products

formed from both DKG and cOxTL by various ROS (in steps labelled ‘oxidation’) are shown. Note that ThrO and 4-OxT can arise by at least two

routes. Compounds sufficiently stable to be detected after electrophoresis are labelled in bold; hypothetical intermediates are shown in square

brackets. The probable derivation of carbon atoms, referred to the original AA molecule, is indicated by coloured dots; however, it is not possible to

be definitive about the disposition of former C-1 and C-2 within OxT and cOxT compounds. The pathways are from Parsons et al. [17], updated

with the OTP branch (present work).
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All the oxidation reactions mentioned require electron acceptors such as ROS. The major biological ROS are
hydrogen peroxide (H2O2), superoxide (here taken to include O��

2 and its unionised form HO�
2), hydroxyl radi-

cals (•OH), and singlet oxygen (1O2). Although often viewed as detrimental to cellular survival, ROS are natur-
ally present in healthy organisms and are generated during normal aerobic metabolism, e.g. in mitochondria,
chloroplasts, peroxisomes, and the plant cell wall. For instance, superoxide is produced in mitochondria by the
one-electron reduction of O2 [24,25], and at cell surfaces by NADPH oxidases [26]. Superoxide is also gener-
ated in organisms treated with the herbicide paraquat [27,28]. ROS levels are often elevated in vivo in response
to abiotic stresses (e.g. ultraviolet radiation [29], drought [30], mineral deficiency, heavy metal [31] or boron
toxicity, salinity [30], and ozone pollution [32]), and microbial infection [33]. H2O2, superoxide, and

•OH can
all be produced in the chloroplast [34–36]. 1O2 can be produced in biologically relevant situations by exposure
to ultraviolet (e.g. in the presence of tryptophan; [37,38]) and visible light (e.g. in the presence of riboflavin;
[39,40]), and has been reported to be responsible for the majority of photo-oxidative damage in leaves [41].
•OH is the most potent but also the shortest-lived ROS [42,43].
Some ROS — generated at the right time and place — have beneficial biological roles [44], e.g. H2O2 and

1O2 as signalling molecules [45–49]; superoxide made during the oxidative burst as a defence against pathogens
[50–52]; H2O2 as a reactant to synthesise lignin [53,54] and to cross-link proteins and feruloyl-polysaccharides
in the cell wall, thus strengthening the wall and preventing pathogen ingress [44,55,56]; and •OH as a wall-
loosening agent enabling cell expansion and fruit softening [57–60].
On the other hand, excess ROS can damage cells and are widely implicated in ageing and diseases such as

atherosclerosis [61,62]. For example, superoxide can attack membranes, especially their unsaturated fatty acid
residues; •OH can react with DNA, proteins, and lipids, causing mutation, denaturation, and membrane perme-
abilisation, respectively; and 1O2 can inactivate enzymes, including xyloglucan endotransglucosylase/hydrolases
[40]. Quenching of ROS may therefore often be beneficial and is potentially achieved by AA, DHA, and DKG.
However, since ROS are sometimes beneficial, their scavenging is not always advantageous to the organism,
and the antioxidant pathways leading to scavenging are complex and need to be tightly controlled.
AA can react directly with •OH, superoxide, and 1O2, and can reduce H2O2 via the ascorbate–glutathione

pathway, mitigating oxidative stress [63,64]. For example, increased apoplastic AA concentrations correlate with
increased tolerance of oxidative stresses such as ozone [5,65,66], and apoplastic AA represents a cell’s first line
of defence against ozone [67–69]. In addition, AA quenches 1O2, e.g. in food systems [70] and in plants
[71,72]. However, the products formed from the reaction of AA and DHA with 1O2 have not been defined.
The actions of the various ROS are interconnected, with many ROS degrading to form H2O2. Likewise,

ozone in aqueous solution can form •OH [73] and 1O2 [74]. The aim of this study was therefore to further elu-
cidate the pathways of AA catabolism, via the action of various ROS on DHA and DKG, and to distinguish the
oxidation products generated by different ROS. The outcome defines breakdown-product ‘fingerprints’ enabling
us to recognise which ROS were being scavenged by DHA or DKG, and suggesting mechanisms by which
organisms may recognise which ROS are prevalent and activate appropriate resistance responses.

Materials and methods
All chemicals used were purchased from Sigma–Aldrich (Poole, U.K.) or Fisher Chemicals (Loughborough,
U.K.). L-[1-14C]Ascorbic acid was purchased from Amersham Pharmacia Biotech UK Ltd.

Electrophoresis
Aqueous samples were loaded onto Whatman No. 3 paper and electrophoresed at 2.5–3.5 kV for 30–70 min in
a buffer of pH 2 (formic acid/acetic acid/water, 1 : 4 : 45, v/v/v) or pH 6.5 (pyridine/acetic acid/water, 33 : 1 :
300, v/v/v) [75].
Orange G (2 ml, 10 mM) was added to all samples as an internal marker, and electrophoretic mobilities

(mOG) are calculated relative to orange G. Neutral compounds move a small distance away from the origin
owing to electro-endo-osmosis, so mobilities were calculated with a neutral marker (e.g. DHA) as mOG = 0.
After long electrophoresis runs, orange G ran off the paper, and mThrR [mobility relative to threarate (mThrR =
1.0) and glucose (mThrR = 0.0)] was used instead of mOG. Ascorbate-related compounds were stained with
AgNO3 [76]. Paper electrophoretograms containing 14C-labelled compounds were exposed to photography film
(Kodak BioMax MR-1 film) for 7 days.
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Purification of [14C]DHA by anion-exchange column chromatography
[1-14C]DHA was obtained from 100 mM [1-14C]AA treated with AA oxidase (from Cucurbita species, 1 U ml–1)
in 10 mM formate (pyridinium, pH 5), for 30 min. The solution was then passed through a 50-ml bed volume
Dowex 1 anion-exchange column that had previously been washed in 500 ml each of, sequentially, (a) 0.5 M
NaOH, (b) 0.5 M formic acid, (c) 2 M sodium formate and (d) 10 mM formate (pyridinium, pH 5.0) buffer. The
[14C]DHA, which had no affinity for the column, was eluted in H2O.

Preparation of diketogulonate
Usually, DKG was produced by hydrolysis of DHA. A solution of 3 M DHA in DMF (40 ml) was mixed with
200 ml of 0.75 M NaOH and incubated for 30 s. Acetic acid (1.5 M, 200 ml) was added to stop the reaction.
The DKG was diluted to 50 mM in H2O (thus 62.5 mM sodium) and stored at −80°C.
The DKG used in some experiments (specified in legends) was prepared by iodate treatment of AA. A solu-

tion containing AA (0.12 M) and potassium iodate (0.36 M) was incubated for 5 min. KOH (1 M) was then
added dropwise until the solution became colourless. Cold ethanol (8 volumes, −20°C) was added, precipitating
the DKG as its K+ salt. The precipitated DKG was vacuum filtered, rinsed in 70% ethanol, dried, and stored at
−80°C.

ROS reactions
All ROS reactions were carried out at ∼20°C in 0.1–0.2 M acetate (Na+) buffer, pH 4.7 or 4.8 over the time-
courses indicated in Results. Products were stored at −80°C before electrophoresis.
Commercial H2O2 was used. Reactions with H2O2 were stopped at the desired time-point by the addition of

catalase (bovine liver) to 2.5 mg/ml.
Superoxide was added as commercial KO2. It is impossible to prepare a stock solution of aqueous KO2 owing

to its short half-life. Instead, we prepared a 1.0 M suspension of KO2 powder in dry hexane and added 0–0.075
volume of the rapidly stirring suspension to 1 volume of a buffered aqueous solution of DHA or DKG; vigor-
ous shaking was continued until all the KO2 had dissolved, theoretically giving an initial superoxide concentra-
tion of 0–75 mM. Each mole of KO2 will rapidly yield 1 mol of KOH (regardless of whether it underwent
dismutation and/or reacted with DHA or DKG). To minimise the resulting rise in pH, we included 200 mM
acetate buffer, pH 4.7; the highest concentration of KO2 tested (75 mM) will have raised the pH of this to ∼5.5,
which is unlikely to have had any appreciable effect on the fate of AA derivatives. The buffer used for super-
oxide incubations contained catalase (2.5 mg/ml), preventing oxidation of DHA or DKG by the H2O2 formed
from superoxide by dismutation. Stopping superoxide reactions was not necessary because this radical has an
extremely short half-life, and we had included catalase to scavenge the H2O2 by-product.
We produced the hydroxyl radical with an equimolar mixture of FeSO4, H2O2, and EDTA (ethylenediamine-

tetraacetate) (each 1, 10, or 50 mM). Any •OH action was stopped at selected time-points by the addition of
ethanol to 50% (v/v).
Singlet oxygen was produced from 1 mM riboflavin (or 10 mM for Supplementary Figure S7) in a glass tube

placed 40 cm from a fluorescent lamp. The reaction was stopped by shading and freezing.

Results
Identification of two previously unknown DKG metabolites
Treatment of DKG with H2O2 yielded at least five products: CPA [(formerly called compound E) proposed to
be 2-carboxy-L-threo-pentonate (i.e. ‘2-carboxy-L-xylonate’ or ‘2-carboxy-L-lyxonate’, which are synonyms)],
CPL [(formerly called compound C) proposed to be a mixture of 2-carboxy-L-threo-pentonolactones
(2-carboxy-L-xylonolactone plus 2-carboxy-L-lyxonolactone)], an unidentified compound (‘H’ of Parsons &
Fry [18]), threonate, and a product that electrophoresed in the OxT zone (but whose identity required checking
since OxT had not previously been noted as a DKG product) (Figure 4; discussed in more detail in the
following section). In the pathway, DKG→H→ ThrO, both steps require the presence of ROS [18,77].
CPA and CPL were provisionally identified as non-oxidative by-products (Figure 6 of ref. [17]): CPA as
2-carboxy-L-threo-pentonate, formerly called compound E, and CPL as 2-carboxy-L-threo-pentonolactones, for-
merly compound C [17]. These will be further characterised in a future manuscript. Therefore, in the present
work, we investigated the chemistry of the two DKG oxidation products: H and the putative OxT.

© 2018 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY).3454

Biochemical Journal (2018) 475 3451–3470
https://doi.org/10.1042/BCJ20180688

https://creativecommons.org/licenses/by/4.0/


Compound H is 2-oxo-L-threo-pentonate (‘2-keto-L-xylonate’)
Oxidation of DKG with H2O2 yielded CO2, detected by gas chromatography, suggesting that H might be a C5

compound [78]. By mass spectrometry, Deutsch [77] found that H has the correct mass to be an oxo-pentonate
[i.e. a 3,4,5-trihydroxy-2-ketopentanoate; C5H8O6 (in the unionised form)], which could be formed from DKG
(C6H8O7 in the unionised form) thus:

C6H8O7 þ [O] ! C5H8O6 þ CO2,

where [O] is an oxygen atom from H2O2 (to simplify balancing, we present all equations with the compounds
in their unionised form). The theoretical oxidative decarboxylation product of DKG is OTP (synonyms:
2-oxo-L-xylonate, 2-oxo-L-lyxonate, 2-keto-L-xylonate, L-xylosonate; Figures 1 and 2e), our proposed identity
for H.
No authentic OTP was available to test this identity; however, the chemically similar 2-oxo-arabino-hexonate

(OAH; ‘2-keto-gluconate’) was tested by electrophoresis. OAH is a much stronger acid than its parent com-
pound, gluconate, with pKa values≈ 2.7 [79] and 3.9 [80], respectively. Electrophoresis at pH 2.0 (Figure 2)
showed that compound H and OAH had similar, high, mobilities, indicating that they share an unusually
strong acidity. Accurate mobilities can be read from Supplementary Figure S1. By applying Offord’s rules
[75,81], we estimate the pKa of compound H to be ∼2.8 (Supplementary Figure S2).
Figure 2d shows a simple aldonic acid (gluconate; GlcO) alongside several oxo-aldonic acids. Increasing

proximity of neutral C=O groups to the carboxylate group (–COO−) renders the latter more acidic (lower pKa;
Figure 2a; faster-migrating on electrophoresis at pH 2). The strong acidity of compound H thus supports its
proposed identity as a 2-oxo-pentonate.
Staining reactions supported the proposal that H is an oxo-aldonate. It was stainable with AgNO3

(Supplementary Figure S1), like all sugar acids. In addition, it stained with aniline hydrogen-phthalate
(Figure 2b,c), which detects reducing sugars (aldoses and ketoses; [76]). The reducing nature of H, attributable
to an oxo group, is a property it shares with glucose, 2-oxogluconate, 5-oxogluconate, and glucuronate
(‘6-oxo-L-gulonate’), but not gluconate or threarate (Figure 2). Spots produced by aniline hydrogen-phthalate
often exhibit a characteristic fluorescence under ultraviolet, and indeed, H showed a strong bluish fluorescence
under 360-nm UV (Figure 2c and Supplementary Figure S3). The faint spot accompanying H and running
near the origin (Figure 2c; position slightly distorted by the heavy loading of sodium acetate) has the same
colour and fluorescence properties as H, and is probably a lactone of OTP.

OxT is a minor ROS product of DKG
OxT had not been reported as a DKG oxidation product, though well established as a DHA catabolite.
Therefore, putative OxT spots produced by ROS treatment of DHA or DKG were compared after elution from
an electrophoretogram and treatment with or without cold alkali, which quickly hydrolyses OxT to ThrO +
OxA. We confirmed that the ‘OxT’ spot, whether produced from DHA or from DKG, and whether by H2O2 or
by superoxide, completely disappeared upon alkali treatment, yielding ThrO + OxA (Supplementary
Figure S3c). Thus, OxT is indeed a minor product formed by ROS treatment of DKG.

The reactions of DHA and DKG with H2O2 and superoxide
The products of oxidation and/or hydrolysis formed when DHA and DKG are subjected to treatment with
H2O2 and superoxide are summarised (Table 1), and the deduced pathways are presented (Figure 3). The evi-
dence is given in the following paragraphs.

The major products of H2O2 action on DHA are OxT isomers
DHA was incubated with a small excess of H2O2 (buffered at a typical apoplastic pH, 4.7), and products were
analysed by electrophoresis at pH 2.0 (Figure 4) and 6.5 (Figure 5). At pH 6.5, all –COOH groups are almost
fully charged (–COO−), causing migration towards the anode. In contrast, at pH 2.0, only those with an
unusually low pKa (e.g. OxA, cOxT, OxT, DKG, CPL, CPA and OTP) are highly mobile; however, many of the
DHA and DKG products found in the present work fell in this category, so electrophoresis at pH 2.0 was valu-
able. ThrO is a weak acid, migrating very slowly at pH 2.0. DHA itself is immobile in both electrophoresis
systems. All the singly ionised compounds of interest (DKG, cOxT, CPL, OTP and ThrO) formed a rather tight
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a b

d

e

c

Figure 2. Compound H is a 2-oxo-aldonic acid. Part 1 of 2

(a–c) Electrophoresis at pH 2.0 and 3.0 kV for 3.5 h. The sample containing compound H in (b) was 20 ml of the 5-h reaction

products between DKG and H2O2 (see Figure 4). MM, marker mixtures containing 8, 16, or 32 mg, each, of glucose (Glc),

gluconic acid (GlcO), 2-oxogluconic acid, 5-oxogluconic acid, glucuronic acid (GlcA), and threaric acid (ThrR; L-tartaric acid).

Sections of the electrophoretogram were stained with (a) AgNO3, revealing all sugar-like compounds, or (b,c) aniline
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cluster on electrophoresis at pH 6.5, but were very well resolved at pH 2.0. The conclusions below are thus pri-
marily drawn from Figure 4, but Figure 5 is compatible with them.
DHA in water gradually hydrolyses to DKG, more rapidly at higher pH values [82]. At pH 4.7 (our reaction

mixture), hydrolysis is slow (half-life ≈ 8 h; [82]), but a small proportion of DKG was formed in ROS-free
DHA samples (Figure 4). On electrophoresis at pH 6.5 (Figure 5), ROS-free DHA produced a streak between
the DHA and DKG positions, due to partial hydrolysis of DHA during the 42-min run at that pH (half-life of
DHA≈ 20 min; [82]). There was no such streak on the pH 2.0 electrophoretogram, indicating negligible DHA
hydrolysis.
The major stainable product formed during incubation of DHA with H2O2 was OxT (Figure 4), a reaction

with the stoichiometry:

C6H6O6 þH2O2 ! C6H8O8:

Electrophoresis at pH 2.0 (Figure 4) resolved at least two mutually interconvertible isomers: 3-OxT and 4-OxT
[17,18,78]. Our reaction mixture initially contained 1.2 mol H2O2 per mol DHA, which is theoretically suffi-
cient to give 100% oxidation of DHA to OxT, and indeed, H2O2 did gradually give a very high yield of OxT
(Figure 4).

Figure 2. Compound H is a 2-oxo-aldonic acid. Part 2 of 2

hydrogen-phthalate, revealing only reducing sugars (not GlcO or ThrR). (c) shows part (b) as seen under a 360-nm UV lamp,

revealing the fluorescence of reducing sugars. [A high NaOAc buffer content of the compound H sample has distorted the

position of neutral substances in this and neighbouring samples.] (d) Fischer projection formulae with synonyms and

approximate pKa values. (e) The deduced oxidative decarboxylation pathway occurring when H2O2 acts on DKG.

Table 1 Major and minor products formed by ROS action on DHA and DKG

Substrates and
products

Loss of substrates and formation of products during reaction of

DHA +
H2O2

DKG+
H2O2

DHA+
superoxide

DKG+
superoxide

DHA+
1O2

DKG+
1O2

DHA+
Fenton mix†

DKG+
Fenton mix†

DHA ↓t1/2≈ 2.5 h n/a slight loss n/a ↓t1/2≈
24 h

n/a ↓t1/2 < 6 s n/a

DKG (↓*) ↓t1/2≈ 2.5 h –* slight loss (↑*) ↓t1/2≈
8–24 h

–* ↓t1/2 < 6 s

3-OxT ++++ – + – – – +++ (nr) –

4-OxT ++++ + ++ + + + +

cOxT ++ – – – – – – –

OxA ± –* + –* ? ? ++++ ?

OTP (+) +++ – + (++) ++ – ++

ThrO (+) ++ ± + – – ++ ++

CPA – –* – –* – ↑* – ++

CPL – –* – –* – ↑* – ↑*

↓: Loss of substrate in the presence of ROS (t1/2 = approximate half-life).
–* Present as a contaminant in the substrate; no change during ROS treatment.
↓* Present as a contaminant in the substrate; decreasing during ROS treatment.
↑* Present as a contaminant in the substrate; increasing during ROS treatment.
slight loss: little observable loss of substrate during ROS treatment.
n/a, not applicable (DHA is not produced from DKG).
–, Absent.
±, +, ++, +++, ++++, Increasing during ROS treatment (±, trace product; ++++, major product).
( ), i.e. entries in parentheses, Product of the contaminating DKG, not a direct product of DHA.
nr, Isomers (3-OxT and 4-OxT) not resolved.
†Nature of the responsible ROS not identified.
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Only a faint trace of OxA was formed from DHA (Figure 4b), as revealed by staining with a pH indicator
(for comparison, the same electrophoretogram, subsequently stained with AgNO3, is shown in Supplementary
Figure S4. An unidentified spot (‘unk 2’; mOG 0.53) was a contaminant of the commercial DHA and was seen
equally in all samples, including in the DKG which we prepared from the DHA (Figure 4b).
Minor products of H2O2 action on DHA were cOxT and traces of ThrO, the latter detectable only after 10 h

incubation. These have the same oxidation state as OxT (each ThrO assumed to be accompanied by an OxA
molecule). The ratio of cOxT : OxT : (ThrO + OxA) generated will depend on which bond(s) in the initial
DHA oxidation product (proposed to be the short-lived cyclic 2,3-O-oxalyl-L-threonolactone; [17]) undergo
hydrolysis (Figure 3). OxT and cOxT were formed concurrently, supporting the conclusion [17] that these two
substances are formed from DHA independently (cOxT←DHA→OxT), not sequentially (DHA→ cOxT→
OxT).
A minor product when DHA was treated with H2O2 was OTP, generated by the action of H2O2 on the DKG

that was gradually formed by DHA hydrolysis (DHA→DKG→OTP). Some of the observed trace of ThrO
may have arisen by further oxidation of this OTP (see below).

Superoxide gives the same DHA products as H2O2 but in a different ratio
DHA was also partially oxidised by ‘superoxide’ [at the pH of our reaction buffer, a ∼50 : 50 mixture of HO2

·

and O��
2 , simplified in equations as HO�

2] (Figure 4). One mol of ‘superoxide’ can theoretically oxidise up to

Figure 3. Deduced pathways of dehydroascorbic acid and diketogulonate degradation in the presence of H2O2,

superoxide, or singlet oxygen.

The two substrates tested are in boxes. Black, red, and blue arrows show the H2O2, superoxide, and singlet oxygen

pathways, respectively. Arrow thickness indicates the prevalence of reaction. ‘H2O’ indicates a hydrolysis reaction; ‘[O]’

indicates an oxidation reaction (caused by ROS). [cOxTL] is a hypothetical highly reactive intermediate. For abbreviations, see

Figure 1.
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a

b

Figure 4. Reaction of dehydroascorbic acid and diketogulonate with H2O2 and superoxide: electrophoresis at pH 2.0.

DHA or DKG (25 mM) was incubated with 30 mM H2O2 for 0–10 h (left half of each electrophoretogram), or with 0–75 mM KO2 in

the presence of catalase for a few seconds (right half). All reaction mixtures were buffered with 200 mM acetate (Na+), pH 4.7.

Samples were electrophoresed for 60 min at pH 2.0. (a) 10 ml sample run at 2.5 kV with AgNO3 staining. (b) 20 ml sample run at

2.0 kV [so that the fast-migrating OxA would be retained on the paper] with bromophenol blue staining. The ‘0.0-hour’ time-points

represent DHA or DKG with no H2O2. Each loaded sample also contained 2.8 nmol of Orange G (OG) as an internal marker (circled

in pencil). In (a), the marker mixture (MM) contained glucose (neutral, co-migrating with DHA), ThrO, EryR, ThrR, and various AA

catabolites. In (b), MM contained glucose, ThrO, EryR, and ThrR. Oxalic acid (50 mg) was run as a separate marker. Abbreviations:

cOxT, cyclic oxalyl-L-threonate; CPA, 2-carboxy-L-threo-pentonate, formerly called compound E (Parsons et al. [17]); CPL,

2-carboxy-L-threo-pentonolactone, formerly called compound C (probably two epimers; Parsons et al. [17]); DHA,

dehydro-L-ascorbic acid; DKG, 2,3-diketo-L-gulonate; EryR, erythrarate (meso-tartrate); OTP, 2-oxo-threo-pentonate (compound H);

OxT, 3- and/or 4-O-oxalyl-L-threonate; ThrO, L-threonate; ThrR, L-threarate (L-tartrate). The ThrO spots are joined by yellow lines.
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1.5 mol of DHA to OxT:

3C6H6O6 þ 2HO�
2 þ 2H2O ! 3C6H8O8:

However, this theoretical stoichiometry would be impossible for two reasons: first, superoxide has a very short
half-life, undergoing dismutation

2HO�
2 ! H2O2 þ O2

(in competition with DHA oxidation), and secondly, the H2O2 by-product would have been rapidly removed
by the added catalase.
Thus, it is impossible to quote a specific time-period for the reaction of the DHA with superoxide. The half-

life of 50 mM superoxide at pH 4.7 is <1 ms (rate constant for dismutation at that pH, k≈ 3 × 107 M–1 s–1)
[34,83]. Those DHA molecules that failed to react with superoxide within a millisecond of superoxide addition
would thus have been spared any further oxidation by superoxide. Since time-course experiments were impos-
sible, we instead carried out a dose–response study with 0–75 mM superoxide, each concentration being tested
for the minimum possible duration, in the presence of catalase, and then froze the products.
Oxidation of DHA by superoxide, even when three molar equivalents (mol eq) of this ROS were added, was

less complete than with 1.2 mol eq H2O2, and only a small proportion of the DHA disappeared (Figure 4).
Superoxide, like H2O2, gave OxT (both isomers) as the major oxidation products plus a small amount of ThrO
+ OxA (Figure 4a,b). H2O2 gave the higher OxT yield, whereas superoxide gave the higher ThrO + OxA yield.
However, unlike with H2O2, superoxide gave no detectable cOxT or OTP (Figure 4). The lack of OTP produc-
tion supports the idea that the OTP formed by H2O2 (see previous section) had arisen from the small amount
of DKG that was formed as a contaminant in the DHA solution (since superoxide does not generate OTP from
authentic DKG; see section below). Therefore, the ThrO formed by superoxide must have arisen by an
oxidation-then-hydrolysis route from DHA (e.g. DHA→ cOxTL→ ThrO +OxA; [17]) and not via the
hydrolysis-then-oxidation route (DHA→DKG→OTP→ ThrO; Figure 2e) mentioned above.
Thus, in general, superoxide generated smaller quantities of, and fewer different, DHA oxidation products

than did H2O2.

Products of H2O2 action on DKG
DKG is formed from apoplastic AA, via intermediary DHA [14], and so has the potential to participate in reac-
tions with apoplastic ROS.
Samples of DKG, prepared by brief alkali treatment of DHA and not subjected to ROS treatment, were con-

taminated by small amounts of OxA, CPA, CPL, unknown 1, ThrO, and neutral material (probably lactones of
some of the above) (ROS-free samples in Figures 4 and 5). Most of these by-products did not decrease during
treatment with H2O2 and superoxide, so they were not themselves ROS scavengers. Likewise in vivo, CPA and
CPL are not oxidised (Figure 7 of ref. [17]).
DKG was gradually degraded by 1.2 mol eq H2O2, such that after 2.5 h roughly half remained (Figure 4).

This was a similar % h–1 rate to the reaction of DHA with H2O2.
The major product formed from DKG by H2O2 was OTP. Once a significant pool of OTP had accumulated,

ThrO also gradually appeared, compatible with the pathway DKG→OTP→ ThrO. Both these steps are oxida-
tive decarboxylations (Figure 2e), requiring an additional oxygen atom, ‘[O]’, provided by the H2O2:

DKG C6H8O7 þ [O] ! C5H8O6 þ CO2;

OTP C5H8O6 þ [O] ! C4H8O5 þ CO2:

Since we supplied only 1.2 mol of H2O2 per mol of DKG, it would have been impossible for both the above
reactions to go to completion, which would have required at least 2.0 mol/mol. When higher doses of H2O2

were supplied, a more complete conversion to ThrO was observed [18]. Thus, DKG has twice the capacity of
DHA for scavenging H2O2.
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An additional minor product was also formed from DKG, with electrophoretic mobilities close to those of
4-OxT (Figure 4). As expected, cold alkali hydrolysed it to ThrO (and probably OxA, detected with lower sensi-
tivity; Supplementary Figure S3c). Interestingly, only one isomer was detected (4-OxT) in the DKG products,
whereas DHA yielded both 3- and 4-OxT (Figure 4). This difference is clearest if the two samples with approxi-
mately the same 4-OxT yield are compared: the 10-h products of DKG +H2O2 versus the 0.3-h products of
DHA +H2O2 (Figure 4). cOxT was not detected as a product of DKG.

Products of superoxide action on DKG
Superoxide did not perceptibly decrease the DKG concentration, even when a 3 : 1 superoxide : DKG ratio was
tested (Figure 4). Nevertheless, traces of oxidation products were produced — the same range of products as
with DKG +H2O2. These products included traces of 4-OxT, OTP, and ThrO. Thus, DKG is a very poor scav-
enger of superoxide.

Reaction of ascorbate metabolites with Fenton reagent (source of hydroxyl
radical)
Control experiments with Fenton mixture
We investigated the effects of ‘Fenton mixture’ (an equimolar mixture of FeSO4, EDTA, and H2O2, which gen-
erates •OH) on DHA. The EDTA helps to keep the iron soluble (as Fe2+·EDTA), and the other components are
expected to undergo a Fenton reaction:

Fe2þ þH2O2 ! Fe3þ þ†OHþ OH�:

Figure 5. Reaction of dehydroascorbic acid and diketogulonate with H2O2 and superoxide: electrophoresis at pH 6.5.

All details as for Figure 4a, but electrophoresis was conducted at pH 6.5 and 2.5 kV for 42 min.
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The electrophoretic behaviour of Fenton mixture and its components, in the absence of DHA, is shown in
Supplementary Figure S5. In control experiments with no added H2O2 but under aerobic conditions, 1–50 mM
Fe2+·EDTA caused negligible oxidation of 50 mM DHA, as indicated by the absence of OxT and cOxT among
the products (Supplementary Figure S6). Unexpectedly, high concentrations of Fe2+·EDTA (12.5–50 mM) pro-
moted DHA→DKG hydrolysis (Supplementary Figure S6).

Reaction of DHA with complete Fenton mixture
Fenton mixture products are summarised in Table 1. Remarkably, even the lowest tested concentration of the
Fenton mixture (1 mM Fe2+·EDTA, 1 mM H2O2) was able to destroy the majority of a 50-fold molar excess of
DHA within ‘6 s’ (Figure 6a), indicating that the Fenton mixture produced unlimited amounts of ROS, presum-
ably ultimately from atmospheric O2. Higher concentrations of Fenton mixture (12.5 and 50 mM) acting on
50 mM DHA produced the same products as with the 1 mM mixture.
The reaction of DHA with Fenton mixture was not demonstrably time-dependent (0.1 and 30 min gave the

same product yield; Figure 6a), although the DHA was never completely consumed. This suggests that the
ethanol, added to scavenge •OH after a chosen time-point, failed to prevent the reaction of earlier-formed (or
continuously formed) oxidant(s) with DHA; thus, each sample effectively received the same (prolonged) oxida-
tion time. The ethanol used (final concentration ∼10 M) was a 400-fold molar excess over the DHA and would
thus have scavenged essentially all •OH produced after the moment of ethanol addition (given that DHA and
ethanol have comparable rate constants for reaction with •OH [84]). However, the ethanol evidently did not
stop the production or action of the highly effective, unidentified oxidant(s) that were generated by Fe2+·EDTA
+H2O2 in the presence of O2.
Stainable products formed within ‘0.1 min’ from the reaction of 50 mM non-radiolabelled DHA with 1 mM

(0.02 mol eq) Fenton mixture were predominantly OxT (Figure 6a), as in the case of DHA’s reaction with
H2O2 or superoxide. However, we know from Figure 4 that neither H2O2 (1.2 mol eq, e.g. for 48 min) nor
superoxide (up to 3 mol eq) was capable of giving such a high yield of OxT. Therefore, the oxidant(s)

a b

Figure 6. Reaction products of DHA with Fenton mixture.

(a) DHA (50 mM) was incubated with a source of •OH [Fenton mixture: 50, 12.5, or 1 mM each of EDTA, FeSO4, and H2O2 in

0.1 M acetate (Na+, pH 4.8)]. After 0–30 min, any further •OH action was stopped by the addition of ethanol (to 50%). The

samples (10 ml) were electrophoresed at pH 6.5 and products stained with AgNO3. (b) Approximately 0.3 mM [14C]DHA was

incubated with increasing doses of Fenton mixture [equimolar FeSO4, EDTA, and H2O2; concentrations as indicated], for 5 min.

Any further •OH action was then stopped by the addition of EtOH (to 50%) and samples were electrophoresed at pH 6.5 and

autoradiographed. The electrophoresis run-time was curtailed, so that OxA would remain on the sheet. The marker was an

artificial mixture of 14C-labelled AA products. The position of the internal marker orange G is marked in pencil.
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responsible for DHA oxidation in the presence of 0.02 mol eq of Fenton mixture are unlikely to have been
H2O2 or superoxide; they remain unidentified.
Besides OxT, a spot co-migrating with ThrO was also produced (Figure 6a). Use of [1-14C]DHA as a sub-

strate confirmed that this spot was not the approximately co-migrating cOxT, which would have been radio-
active [14] (Figure 6b). Unlike cOxT, ThrO (formed in the pathway [1-14C]DHA + [O]→ ThrO + [14C]OxA) is
not expected to be radiolabelled, because it does not retain the C-1 atom of the DHA [14]. Indeed, by far the
most prominent radioactive product formed from [14C]DHA by Fenton mixture was [14C]OxA. The predomin-
ant reaction products formed from DHA by dilute Fenton mixture were thus OxA and ThrO, far exceeding the
formation of the same products by H2O2 or superoxide.
We conclude that the Fenton mixture does not generate only •OH. Other oxidant(s) were evidently also

formed, ultimately drawing on atmospheric O2. These oxidising species oxidised DHA predominantly to OxA
plus ThrO (Figure 6), unlike H2O2 or superoxide which gave OxT and cOxT (Figure 4a,b).

Reaction of DKG with Fenton mixture
The reaction of 1 mM Fenton mixture with 50 mM DKG was also studied (Figure 7). In the absence of ROS,
DKG was essentially stable for 30 min (Figure 7). As with DHA (Figure 6), a large proportion of the DKG was
consumed by 0.02 mol eq of Fenton mixture, indicating an ‘inexhaustible’ source of oxidant (ultimately

Figure 7. Reaction of DKG with Fenton mixture.

Non-radioactive DKG [50 mM in 0.1 M acetate (Na+, pH 4.8)] was incubated with Fenton reagent (1 mM each of EDTA, FeSO4,

and H2O2) for up to 30 min, after which further •OH action was stopped by the addition of ethanol (to 50%). This DKG was

prepared by the potassium iodate method. The time-0 sample represents DKG with ethanol added instantly after the Fenton

reagents. Samples were electrophoresed at pH 2.0 and the products stained in AgNO3. The position of internal marker orange

G is circled in pencil.
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atmospheric O2). As with DHA, the Fenton mixture appeared to act ‘instantaneously’, degrading all the
(50-fold molar excess) DKG even if •OH-quenching ethanol was added immediately after the Fenton mixture.
The major products formed from DKG by Fenton mixture were ThrO, 4-OxT, and OTP. In addition, CPA

and CPL (non-oxidative rearrangement products of DKG) were produced. There was no major difference
between the observed Fenton products (Figure 7) and those produced from DKG by H2O2 or superoxide
(Figure 4).

The reaction of DHA and DKG with singlet oxygen, 1O2
We used riboflavin in the light to produce 1O2 over a longer timescale (24 h), allowing time for detectable ROS
formation. This timescale allowed some of the DHA to hydrolyse to DKG during the experiment (Figure 8a,b);
therefore, ‘DHA’ products could arise from DHA and/or DKG.

ba

c

Figure 8. Reaction of AA catabolites with singlet oxygen.

DHA at 50 mM in 0.1 M acetate (a,b) or DKG at 25 mM in 0.16 M acetate (c) (both buffers Na+, pH 4.8) was incubated with

1 mM riboflavin in the light (which generates 1O2) or in darkness. Samples taken at 0–24 h were electrophoresed at pH 6.5 (a,c)

or 2.0 (b). Orange G (internal marker) was circled in pencil, then the metabolites were stained with AgNO3.
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1O2 is produced by riboflavin (in the presence of air containing ordinary oxygen, 3O2) in the light but not in
the dark [40,70,85], so samples incubated with riboflavin in the dark or without riboflavin in the light serve as
ROS-free controls. 1O2 production from 3O2 by riboflavin in the light is not stoichiometric: each riboflavin
molecule can generate many 1O2 molecules, although the yield is not unlimited because riboflavin itself is
subject to oxidation by 1O2 [70].
DHA plus 1O2 generated OTP and 4-OxT (Figure 8a,b). There was no detectable cOxT, CPA, or CPL. The

formation of OxT and OTP, most prominent at 24 h incubation, coincided with the decrease in DKG, which
was transiently formed by hydrolysis of the DHA during the lengthy incubation. Therefore, and since DKG
tends to generate OTP when oxidised, we suggest that the products observed when DHA was treated with 1O2

were mainly derived indirectly, via DKG, rather than directly from DHA. A riboflavin-only control
(Supplementary Figure S7) demonstrated that OTP and OxT did not originate from riboflavin itself.
Interestingly, there was no evidence for ThrO formation (the downstream product of OTP oxidation). Thus,

1O2 is incapable of driving an oxidative reaction that can be driven by H2O2 and to a lesser extent by super-
oxide (Figure 3).
When a sample of DKG (containing traces of CPA and CPL, which did not change in response to 1O2) was

treated directly with the source of 1O2, most of the DKG disappeared within 24 h (Figure 8c). OTP and OxT
were indeed formed, as detected by electrophoresis at pH 6.5 (Figure 8c), supporting the conclusion that the
products formed from DHA (Figure 8a,b) predominantly arose via DKG.

Discussion
Further elucidation of the oxidation products of DKG
Ascorbate is the major low-molecular-weight, water-soluble, biological antioxidant. The fate of AA when acting
as an antioxidant is well characterised [12,86]. AA is oxidised to monodehydroascorbate or DHA, which can
be recycled to AA via MDHA reductase and DHA reductase, respectively. Alternatively (perhaps especially in
the apoplast), DHA can be hydrolysed to DKG; both DHA and DKG have been detected in vivo [14]. In the
apoplast, in the absence of DHA reductase recycling DHA back to AA, DHA and DKG are themselves also
capable of scavenging ROS, as confirmed in the current work. However, the products of oxidation of DHA and
DKG had not been fully elucidated, especially those formed in the presence of ROS other than H2O2. We now
report two new conclusions about the oxidation products of DKG.
First, DKG can give low yields of 4-OxT when treated with ROS; this finding refines the previous assumption

that OxT arises from DHA oxidation and not from DKG. The new step (Figure 1, dashed line) gives 4-OxT
unaccompanied by 3-OxT or cOxT, and may therefore not proceed via [cOxTL], the short-lived intermediate
proposed as a branch-point during DHA oxidation. To account for the specific formation of 4-isomer, we
speculate that the ROS reacts with DKG in its minor ε-lactone form, oxidatively splitting the C-2–C-3 bond
and leaving the resultant oxalyl residue (former C-1 and C-2) esterified to the former C-6. Oxidatively splitting
the C-2–C-3 bond in the better-known δ-lactones [22] would probably afford 3-OxT (i.e. with the oxalyl
residue esterified to the former C-5).
Secondly, we identified the DKG product previously called ‘unknown H’ [18] as 2-oxo-L-threo-pentonate

(OTP; ‘2-keto-L-xylonate’), the oxidative decarboxylation product of DKG. OTP is a relatively strong acid
(pKa≈ 2.8), as expected of a 2-oxo-acid, and thus occupies a characteristic position after electrophoresis at pH
2.0.
The work thus provides increased clarity of the complex network of AA oxidation pathways, highlighting the

numerous different branches.

Testing effects of superoxide with minimal interference by H2O2
Previous work on oxidation of AA metabolites had focussed on H2O2. Here, we tested the effects of different
ROS. Studying superoxide’s action presents two practical difficulties: (a) superoxide is exceedingly short-lived in
aqueous solution (half-life <<1 s), undergoing non-enzymic dismutation, so time-courses are not feasible and
(b) the products of superoxide breakdown are a different ROS (H2O2) plus O2, so it may be difficult to deter-
mine whether any products observed arise from the action of superoxide (intended) or H2O2 (unintended).
Crystalline KO2 is a convenient source of superoxide. KO2 was suspended in hexane and then added to an

aqueous substrate solution. When mixed with water, KO2 fizzes briefly (O2 evolution during dismutation) and
any superoxide action on DHA or DKG is necessarily completed within <1 s; it is therefore impossible to
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obtain a time-course. Instead, the only feasible gradation of superoxide action is based on different doses of
added KO2, time being kept to a minimum. Another practical issue is that since KO2 + water yields KOH, we
required a high buffer concentration.
To minimise the effects of H2O2, generated during superoxide dismutation, we added catalase prior to KO2

to destroy H2O2. Its effectiveness was established by a demonstration that H2O2 that was deliberately added to
DHA or DKG in the presence of catalase generated no detectable oxidation products.

Properties of the Fenton reagent
The classic Fenton reagent is an equimolar mixture of Fe2+ and H2O2, which generates •OH [87,88]. Often,
EDTA is also added, forming Fe2+·EDTA, which has improved solubility and which we find is stable enough to
electrophorese as a discrete, negatively charged complex. Theoretically, a mixture containing 1 mol of each
component may yield up to 1 mol of •OH:

Fe2þ þH2O2 ! Fe3þ þ†OHþ OH�:

However, we find that 1 mM Fenton mixture very quickly (within 6 s) oxidises the majority of 50-fold excess
DHA. It is therefore impossible to satisfactorily explore the effects of •OH on DHA or DKG by use of Fenton
reagent because this mixture evidently continually generates unidentified oxidant(s) using atmospheric O2 as
the ultimate electron acceptor. The information recorded for DHA and DKG oxidation by Fenton mixture
(Table 1) thus relates to an unknown oxidant, not specifically •OH.

Different ascorbate metabolites target specific ROS, producing different ratios
of oxidation products: potential analytical fingerprints
Although there has been much interest in the ROS-scavenging potential of various antioxidants, especially AA
but also DHA and occasionally DKG, few studies have sought to compare different AA metabolites’ abilities to
quench different ROS.
In contrast with intraprotoplasmic AA which can be recycled via the DHA reductase/glutathione pathway,

further oxidation of DHA or DKG is sacrificial, resulting in the loss of antioxidant capacity. The oxidation of
DHA or DKG is more likely to occur in the apoplast, or in cell components where reducing agents, such as
glutathione, are less prevalent [89] and in which AA would therefore not be regenerated from DHA.
With DHA: H2O2 is scavenged effectively, generating 4-OxT, 3-OxT, and cOxT. Superoxide is scavenged

slightly by DHA, giving 4-OxT and 3-OxT. However, 1O2 appears not to be scavenged by DHA at all (except
insofar as DHA can be hydrolysed to DKG which then scavenges 1O2). With DKG: superoxide is scavenged
only very weakly by DKG, which, however, scavenges 1O2 and H2O2 relatively well.
Similarly, we made the novel observation that the degradation pathways of DHA and DKG vary depending

on the type of ROS present. This observation could be exploited to indicate the nature of oxidative stress that
an organism is experiencing, based on the signature of the DHA and DKG oxidation products. Some studies in
this field have used non-aqueous solvents, e.g. the action of superoxide on DHA to form oxalate + threonate in
dimethylformamide [90], in which the reaction pathways may not be the same as in vivo. Our studies investi-
gated only aqueous media.
For example, different ROS generate different OxT isomer ratios from DHA: H2O2 produces approximately

equimolar 3-OxT and 4-OxT plus some cOxT but almost no OxA, whereas superoxide gives predominantly
4-OxT, only traces of 3-OxT and undetectable cOxT but some detectable OxA (with ThrO) (Figure 4). The
reason for the H2O2 versus superoxide difference is unclear: since the divergence between cOxT, OxT, and OxA
(and the conversion of 3-OxT to 4-OxT) is proposed to occur after the last ROS-dependent step (DHA→
[cOxTL]; Figure 1), it is unclear how the nature of the ROS employed can direct this branching pathway,
which involves hydrolysis and acyl-migration reactions. Nevertheless, the trend is clear cut.
In the case of DKG oxidation, H2O2 gives much more OTP than does superoxide, whereas these two ROS

give similar (low) yields of 4-OxT (Figure 4). Thus again, there is a clear H2O2 versus superoxide difference.
Singlet oxygen, the only non-radical ROS tested in this study, shows the most divergent profile of oxidation

products (Figure 8). Curiously, 1O2 seems incapable of oxidising DHA directly, though it does effectively
oxidise DHA’s gradually formed hydrolysis product, DKG. Acting directly on DKG, 1O2 (like H2O2) steadily
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yields OTP, whereas superoxide does not. Since DHA does not generate OTP, the yield of OTP can indicate
whether or not a particular ROS is scavenged by DKG.
In vivo different ROS often occur together, and many ROS react to form other ROS, such as the production

of 1O2 [74] and •OH [73] from ozone, and •OH from H2O2 and superoxide [34]. This can create uncertainty
in investigated systems as to which ROS is contributing to the oxidative stress in vivo. Therefore, analysis of
DHA and DKG oxidation ‘fingerprints’ may help to shed light on this important issue. The use of these diag-
nostic ‘fingerprints’ will require significant further study because of the complexity of ROS reactions in bio-
logical systems as well as the complexity of interactions with other molecules. In planta ROS-scavenging
activity is likely to be influenced by other metabolites, and it would be useful to analyse the effectiveness of
DHA and DKG as scavengers in vivo or in planta.

Possible biological roles of specific DHA and DKG metabolites
It is possible that the various products formed from the reactions of different ROS with different AA metabo-
lites could supply information, making the plant aware of its internal ROS status. Thus, the OxT isomers,
cOxT and OTP, might potentially act as signalling molecules, triggering advantageous responses to the presence
of specific ROS. Production of OTP from DKG + 1O2 may represent biologically relevant case of when OTP
could be produced in vivo. Although H2O2 has been demonstrated to act as a signalling molecule for a general
oxidative stress response, it has been suggested that plant cells may require more site-specific (e.g. from specific
organelles) signals [91]. The different AA oxidation products from different ROS could provide this signal spe-
cificity; for instance, 1O2 derived products (different from H2O2 and superoxide products) are more likely to
have originated from the chloroplast [41]. Equally, oxidation products of carotenoids have been recently
demonstrated to influence expression of 1O2 related genes, but not H2O2 related genes [92]. The AA oxidation
products described in this study could potentially play similar roles within the plant. With the exception of
OxT [16], the oxidation products discussed have to date been detected in vivo mainly with the use of radiola-
belled tracers, which should, nevertheless, reflect processes that occur with endogenous compounds.
Indeed, the formation of DKG itself, which has been detected in vivo [14,93], may also supply information

about ROS status since high levels of DKG can only accumulate (from DHA hydrolysis) when DHA is not
being rapidly oxidised by ROS. In plants, OxT and cOxT are also capable of transferring their oxalyl group to
carbohydrates, catalysed by an apoplastic acyltransferase activity [20], and the roles of the resulting
O-oxalyl-sugars are yet to be explored.

Conclusion
Our study highlights the complexity of AA catabolism and demonstrates the numerous branches of AA, DHA,
and DKG breakdown. The possibility of their reaction products having further roles within the plant warrants
future study. The different AA metabolites investigated here differ in their abilities to scavenge different ROS.
The oxidation products of DHA and DKG differ, with only DHA producing cOxT and 3-OxT, and only DKG
producing OTP. Different ROS tend to generate different ratios of the oxidation products from these two AA
metabolites. The diverse products could potentially act as biological signals enabling the organism to respond
appropriately to different stresses. In addition, these products of DHA and DKG breakdown, which are readily
resolved by the electrophoretic systems employed here, can potentially serve as analytical fingerprints providing
information on the ROS-quenching reactions proceeding in biological systems of interest.
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