
UC Irvine
UC Irvine Previously Published Works

Title
Evolutionary State-Space Model and Its Application to Time-Frequency Analysis of Local 
Field Potentials.

Permalink
https://escholarship.org/uc/item/2bg3p3w1

Journal
Statistica Sinica, 30(3)

ISSN
1017-0405

Authors
Gao, Xu
Shen, Weining
Shahbaba, Babak
et al.

Publication Date
2020

DOI
10.5705/ss.202017.0420
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bg3p3w1
https://escholarship.org/uc/item/2bg3p3w1#author
https://escholarship.org
http://www.cdlib.org/


Evolutionary State-Space Model and Its
Application to Time-Frequency Analysis of

Local Field Potentials

Xu Gao*, Babak Shahbaba*, Norbert Fortin***, and Hernando Ombao*,**

*Department of Statistics, University of California, Irvine, California, 92697
**Department of Cognitive Sciences, University of California, Irvine,

California, 92697
***Center for the Neurobiology of Learning and Memory, Department of

Neurobiology and Behavior, University of California Irvine, Irvine,
California 92697

November 3, 2016

Abstract

We propose an evolutionary state space model (E-SSM) for analyzing high dimen-
sional brain signals (in particular, local field potentials in rats) whose statistical prop-
erties evolve over the course of a non-spatial memory experiment. Under E-SSM, brain
signals are modeled as mixtures of components with oscillatory activity at defined fre-
quency bands. One unique feature of E-SSM is that the components are parametrized
as second order autoregressive AR(2) processes. To account for the potential non-
stationarity of these components (since the brain responses could vary throughout
the entire experiment), the parameters are allowed to vary over epochs. In contrast
to independent component analysis, the method for estimating the components in
E-SSM accounts for the entire temporal correlation of the components. Moreover,
compared to purely data-adaptive strategies, such as filtering, E-SSM easily accom-
modates non-stationarity through the component of AR parameters. To estimate the
model parameters and conduct statistical inference, we use Kalman smoother, maxi-
mum likelihood and blocked resampling approaches. The E-SSM model is applied to a
multi-epoch LFP signals from a rat in a non-spatial (olfactory) sequence memory task.
Our method captures the evolution of the power for different components across phases
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of the experiment. The E-SSM model also identifies clusters of electrodes that behave
similarly with respect to the decomposition of different sources. These findings sug-
gest that the activity of different electrodes changes over the course of the experiment.
Treating these epoch recordings as realizations of an identical process could give rise
to misleading results. The proposed model underscores the importance of capturing
the evolution in brain responses during the course of an experiment.

Keywords: Auto-regressive model; brain signals; spectral analysis; state-space models; time-
frequency analysis.
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1 Introduction

1.1 Background

The goal of this paper is to develop a novel model for investigating how a brain process

could evolve over the duration of a learning experiment. To infer brain neuronal activity,

we shall use electrophysiological recordings such as local field potentials (LFPs) and elec-

troencephalograms (EEGs) which indirectly measure electrical activity of neurons in animal

brains. LFPs are electrical signals from a single or multiple electrodes that capture the

integration of membrane currents in a local region of cortex (Mitzdorf et al., 1985).

In practice, LFPs are the observed spatio-temporal signals at different tetrodes. In our

dataset, we have LFP recordings in a rat which are obtained from an implanted plate with

12 electrodes. LFPs can be characterized as mixtures of different underlying oscillatory pro-

cesses and there have been a number of approaches used to estimate these latent independent

sources (Whitmore and Lin, 2016; Einevoll et al., 2007). In a recent paper, Fiecas and Ombao

(2016) study the dynamics of LFPs during the course of experiment via Cramér representa-

tions and hence does not investigate low dimensional representations which are indispensable

to modeling these multi-electrode LFPs. Data-adaptive methods such as independent com-

ponents analysis (ICA) and principal components analysis (PCA) provide estimates for the

unobserved cortical sources. However, they do not provide rigorous modeling and inference

for settings with multiple epochs, where the the underlying sources have spectral structures

that could change over the course of the experiment. In addition, these approaches may

produce sources which are not easily interpretable, e.g., they may not represent sources with

oscillations at precise frequency bands. Moreover, without any constraint on the structure of

the sources, it is extremely difficult to pool information across the epochs in the experiment.

To overcome these major limitations, we will develop the evolutionary state space model

(E-SSM).
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1.2 Preliminary analysis from an olfactory (non-spatial) sequence

memory experiment

The proposed E-SSM was motivated by results from our preliminary analyses of LFPs in an

olfactory (non-spatial) sequence memory experiment performed in a memory laboratory led

by our co-author to study how neurons learn the sequential ordering of odors presented (see

Allen et al. (2016)). As shown in Figure 1, rats were trained to identify a sequence of odors

while electrophysiological signals were recorded. In Figure 2, LFPs signals from one electrode

recorded from the first 15 epochs are plotted. We further study the behavior of these LFPs

by examing their spectra. In Figure 3, we plot the boxplots of the log periodograms across

all the epochs from one electrode. These reveal that LFPs contain power at distinct delta

(0-4 Hertz), alpha (8-12 Hertz) and the high-beta low-gamma (30-35 Hertz) bands.

One key goal in this paper is to model how the LFPs signals evolve over the course of

many epochs in the experiment as the rat learns the sequence of the odor presentation. As

an exploratory step, we divided the session into early (Phase 1), middle (Phase 2) and late

(Phase 3) phases. In each of these phases, we computed the average periodogram which is

plotted on the left side of Figure 4. On the right side, we plot the relative periodogram

(rescaling the periodogram so that the relative periodogram for each frequency sums to 1)

and noted that the spectral power evolved during the course of experiment with the most

dramatic changes happening on the last phase. During the early phase, power had a broad

(rather than concentrated) spread across bands. However, at the late phase, power seems

to have been more concentrated at the low beta and gamma bands. Our contribution here

is the E-SSM model that explicitly captures this evolutionary behavior in high dimensional

time series.

4



Figure 1: Apparatus and behavioral design for the olfaction (non-spatial) memory sequence
experiment (Allen et al., 2016). Series of five odors were presented to rats from the same odor
port. Each odor presentation was initiated by a nose poke. Rats were required to correctly
identify whether the odor was presented in the correct or incorrect sequence position (by
holding their nose in the port until the signal or withdrawing before the signal, respectively).
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Figure 2: The overlaid time series LFPs plots of the first 15 epochs at electrode 7. The
experiment and the data are reported in Allen et al. (2016).
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Figure 3: The log periodogram boxplots for each frequency obtained by all 247 epochs at
electrode 7.
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Figure 4: Left: The heatmap of the averaged periodogram among Phase 1 (epochs 1 -
80), Phase 2 (81 - 160) and Phase 3 (161 - 247) respectively at electrode 7. Right: The
heatmap of the relative periodogram (summing up to 1 for each frequency). Spectral power
(decomposition of waveform) evolved across phases of the experiment with the most dramatic
effect captured by the last phase.

In summary, from the LFPs signals, we observe that there exists strong similarity of

the LFP waveforms across many electrodes. Moreover, as shown in Figures 3 and 4, the
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spectra of the LFPs appear to change across the epochs in the experiment. The proposed

E-SSM model in fact explicitly takes into account both of these empirical observations about

the LFP data. The E-SSM shares a similar form to the classical state-space model (as in

(Shumway and Stoffer, 2013)) but differs in that the parameters are varying across epochs

and the observational (or “mixing”) matrix is unknown and has to be estimated. Moreover,

E-SSM captures the temporal correlation of each of the latent sources by characterizing these

as second order autoregressive [AR(2)] processes. The reason for choosing AR(2) is clearly

due to its ability to capture the precise oscillatory behavior of these sources. That is, by

parameterizing these sources as AR(2), we can constrain the power of each source to these

particular frequency bands: delta (0 - 4 Hertz), alpha (8 - 12 Hertz) and high-beta gamma

(> 30 Hertz) bands. This is a clear advantage over the PCA and ICA methods since the

sources produced by E-SSM are easily interpretable in terms of oscillatory properties.

1.3 Contributions

The main contributions of this paper are as follows: (1.) The proposed E-SSM model pro-

vides a rigorous framework in modeling the dynamics of brain activity and connectivity

during the course of experiments. In particular, our model accounts for the temporal evo-

lution/dependence of the spectrum power for particular frequency bands across the entire

experiment. (2.) E-SSM accounts for the temporal structure among the latent sources.

Specifically, the estimate of sources and hence of the auto spectrum in the current epoch

takes into account the signals at neighboring epochs. (3.) E-SSM gives interpretable results

by modeling particular predominant frequency bands that are associated with various brain

functional states through these AR(2) processes. (4.) By applying the E-SSM model, one

can easily conduct analysis on both of time and frequency domains and thus provide a com-

plete characterization of the underlying brain process. (5.) Finally, the E-SSM model and

the proposed estimation method, in general, are intuitive and easily implemented. They take

advantage of existing theory and algorithm for state space model. However, the novelty of

the proposed E-SSM is that it generalizes the state space framework to the multiple epochs
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setting (borrowing information across epochs) and does not constrain the “mixing” matrix

to be known.

1.4 Outline of the paper

The remainder of this paper is organized as follows. In Section 2, we develop a framework of

the proposed method to model the variability across epochs while taking into account par-

ticular frequency bands. In Section 3, we propose a hybird iterative method that comprises

of Kalman filter and blocked resampling for estimating the “mixing” matrix and maximum

likelihood (ML) for estimating the AR(2) parameters. In Section 4, we compare the existing

methods (ICA and PCA) to the proposed E-SSM. In Section 5, we present some results

to evaluate the performance on single-epoch and multiple-epoch scenarios. Results show

the method is promising in reconstructing the latent source signals and their spectrum. In

Section 6, we apply the proposed E-SSM to an LFPs dataset obtained from a nonspatial ol-

factory sequence memory study. Results demonstrate the evolution of the statistical property

of the brain signals across the experiment - in particular on the varying spread or concen-

tration of power. In addition, the analysis revealed a frequency-band specific clustering of

the electrodes.

2 Evolutionary State Space Model (E-SSM)

As is discussed in Section 1, the proposed method is motivated by analyzing LFPs data

obtained from a nonspatial sequence memory study. The objectives of the analysis are to

model the latent structures in LFPs and to investigate how they evolve across epochs. In

this section, we shall first describe the model for a single epoch and then develop this further

to multiple epochs.
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2.1 State Space Model for a single epoch

Denote t = 1, · · · , T as the time points in a single-epoch experiment and Yt = (Yt(1), · · · , Yt(p))′,

as the observed LFPs where p is the number of electrodes. For any fixed time point t, we as-

sume that Yt is a mixing of latent independent source signals. Denote St = (St(1), · · · , St(q))′

and q to be the number of spatial source signals, the model can be presented as Yt = MSt+εt,

where M is the “mixing” matrix, εt = (εt(1), · · · , εt(p))′ are Gaussian noise that follows

N(0, τ 2Ip) and Ip is an identity matrix of dimension p. Each of the independent latent sig-

nals St(l), l = 1, · · · , q models the source that represents oscillatory activity at the common

frequency bands (delta, alpha and gamma).

On modeling the source signals St

One unique parameterization in this model is to constrain the sources to have an AR(2)

structure so that they represent the delta, theta, alpha and gamma oscillations. We will

start with stating some basic concepts in time series.

Definition 1. The autocovariance function γ(h) of a weakly stationary time series xt with

E(xt) = 0 is defined as γ(h) = Cov(xt+h, xt), for any time t and lag h.

Definition 2. A zero mean stationary time series xt follows an autoregressive model of

order p, denoted AR(p), if it is of the form xt = φ1xt−1 + φ2xt−2 + · · ·+ φpxt−p + wt, where

φ1, · · · , φp are parameters, wt is a Gaussian white noise series with mean zero and variance

σ2
w.

Definition 3. The autoregressive operator (autoregressive polynomial) is defined to be

φ(B) = 1− φ1B − φ2B
2 − · · · − φpBp, (1)

where B is a backshift operator defined by B`xt = xt−`.

On the frequency domain, we define the spectral density as follows
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Definition 4. Let f(ω) be the spectrum of a stationary process with corresponding auot-

covariance function, γ(h), which is absolutely summable. Then γ(h) and f(ω) are defined

as follows: γ(h) =
∫ 1/2

−1/2
e2πiωhf(ω)dω, h = 0,±1, · · · and f(ω) =

∑∞
h=−∞ γ(h)e−2πiωh,−1

2
≤

ω ≤ 1
2
.

As a special example, the spectrum of anAR(2) process is f(ω) = σ2
w

|1−φ1 exp(−2πiω)−φ2 exp(−4πiω)|2 .

To illustrate this idea, Figure 5 shows the spectrum of AR(2) process with φ1 = 1.976, φ2 =

−0.980, σw = 0.1. It can be seen that there is a peak at a band around frequency ω = 10

Hertz. So, we can conclude that the frequency ω = 10 Hertz dominates the process and thus

produces the most power. This property of AR(2) time series models makes it potentially

useful for characterizing brain signals (such as LFPs) with oscillatory behavior.
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Figure 5: The theoretical spectra of an AR(2) process with power concentrated at the alpha
band: φ1 = 1.976, φ2 = −0.980, σw = 0.1 (alpha frequency band).

We now explain the connection between the AR(2) coefficients and the spectrum (i.e., the

location and spread of the peak). First, the process is causal when the roots of the polynomial

in Equation (1) have magnitudes greater than 1. Furthermore, under causaity, Jiru (2008)

and Shumway and Stoffer (2013) demonstrate that when the roots of the polynomial in

Equation (1) are complex-valued with magnitude greater than 1, then the spectrum attains
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a peak that is located at the phase of the roots. Moreover, when the magnitude of the roots

become larger than 1, the peak becomes less concentrated around the phase. Motivated by

this result, we will fix the phase (or argument) of each of the AR(2) polynomial roots to

model each of the particular bands. To model the evolution across epochs, we allow the

module of the AR(2) polynomial roots changes among epochs. As a result, after we fix the

arguments of the roots for each of the latent independent source signals, the AR(2) process

is uniquely determined by the modulus and the variance. In practice, the value of modulus

controls the spread of the spectrum curves. For an AR(2) process xt = φ1xt−1 +φ2xt−2 +wt,

the modulus ρ and phase ψ of the roots of the polynomial have the relationship that φ1 =

2ρ−1cos(ψ), φ2 = −ρ−2.

Following the previous discussion, the latent independent spatial source signals are mod-

eled as multivariate autoregressive processes of order 2, St = Φ1St−1 + Φ2St−2 + ηt, where

Φ1 = diag(φ11, · · · , φq1),Φ2 = diag(φ12, · · · , φq2) ∈ Rq∗q are diagonal matrices and noise is

independent Gaussian to guarantee the independence of the sources, ηt = (η1(t), · · · , ηq(t))′

are Gaussian noise that follows N(0, σ2Iq) and Iq is an identification matrix of dimension q.

Finally, the model can be generalized as state-space model as

Yt = M̃Xt + εt,

Xt = Φ̃Xt−1 + η̃t,
(2)

where Xt = (S′t,S
′
t−1)′, M̃ = (M,0) ∈ Rp∗2q, Φ̃ =

Φ1 Φ2

Iq 0

 , and η̃t = (η′t,0)′. Note that

model in Equation (2) is not a regular state-space model since the “mixing” matrix M̃ is

fixed but unknown. Moreover, following the aforementioned discussion, the coefficients of

the autoregressive processes are determined by the modulus ρ = (ρ1, · · · , ρq) and arguments

ψ = (ψ1, · · · , ψq) of the autoregressive polynomial roots. Since we are interested in particular

frequency bands, we fix the argument ψ and the state equation in (2) is parameterized by

ρ and σ2.
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2.2 Evolutionary State Space Model for multiple epochs

In this section, we will generalize the proposed method in Section 2.1 to multiple epochs.

We assume that across epochs, the mixing matrix M is fixed and the latent independent

autoregressive processes evolve through the modulus ρ. This assumption is based on the

cortical structure remains unchanged across epochs for each individual. We denote r =

1, · · · , R as the epochs of conducting an experiment, then the model is expressed by

Y
(r)
t = M̃X

(r)
t + ε

(r)
t ,

X
(r)
t = Φ̃(r)X

(r)
t−1 + η̃

(r)
t ,

(3)

where the definition of Y
(r)
t , M̃ ,X

(r)
t , Φ̃(r), ε

(r)
t , η̃

(r)
t are similar as in Equation (2) except that

the superscript r accounts for epochs.

Remark 1. In this model, we assume that the autoregressive structure evolves across epochs.

This assumption is inspired by the preliminary analysis in Section 1 showing that the power

spectrum evolves during the course of the experiment. Accordingly, the evolutionary spec-

trum of each latent source will be easily captured throughout the model fitting. In particular,

the theoretical evolutionary spectrum will be denoted as f (r)(ω) = σ
2(r)
w

|1−φ(r)1 exp(−2πiω)−φ(r)2 exp(−4πiω)|2
.

Remark 2. Moreover, the “mixing” matrix is invariant to epochs. This is due to the fact

that the network structure of subjects is not changing across phases of experiments.

Remark 3. Finally, note that Φ̃(r), which are uniquely determined by the evolving modulus

and unchanged arguments of the autoregressive polynomial roots, evolves as r changes.

Remark 4. On identifiability issues. There has been numerous discussions on the identifia-

bility issues of state-space models, e.g. model (2). Hamilton (1994) pointed out that “in the

absence of restrictions on M̃, Φ̃, σ, τ , the parameters of the state-space representation are

unidentified - more than one set of values for the parameters can give rise to the identical

value of the likelihood function, and the data give us no guide for choosing among these”.

Indeed, for a general state-space model, the representation can also be obtained by mul-

tiplying each of the equation by a orthogonal matrix. Arun and Kung (1990) stated this
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issue and provided restriction to avoid this issue. Zhang and Hyvärinen (2011) proposed a

non-Gaussian constraint to maintain the model identifiable. In this study, we address this

problem by assuming that each component of the latent independent source signals S(t)

have unit variance and the entries of M̃ is positive.

3 Estimation Method for E-SSM

In this section, we will provide algorithms/strategies for estimating parameters in the models

proposed in Section 2.

Estimating E-SSM for a single epoch

To make inference of the proposed model (2), we propose an iterative algorithm that

comprises of Kalman filter and least square estimates. We start with initial values M̃ = M̃0,

X0
0 and P 0

0 . The whole procedure takes iterations between Algorithms 1 and 2 (shown below)

until convergence.

Algorithm 1 Kalman Filter and Maximum Likelihood

1: procedure Given M̃,X0
0 , P

0
0 , estimate ρ, σ

2, τ2 by Kalman filter and maximum likelihood of innovations εt
2: A.1 Kalman filter and Kalman gain step

3: Φ1 ← diag(2ρ−1
1 cos(ψ1), · · · , 2ρ−1

q cos(ψq))

4: Φ2 ← diag(−ρ−2
1 , · · · ,−ρ−2

q )

5: Φ̃←
[
Φ1 Φ2
Iq 0

]
6: for t = 0, . . . , T do

7: Xt−1
t ← Φ̃Xt−1

t−1

8: P t−1
t ← Φ̃P t−1

t−1 Φ̃′ + σ2

[
Iq 0
0 0

]
9: Kt ← P t−1

t M̃ ′[M̃P t−1
t M̃ ′ + τ2Ip]−1 . The Kalman gain

10: Xt
t ←Xt−1

t +Kt(Yt − M̃Xt−1
t )

11: P tt ← (I2q −KtM̃)P t−1
t

12: A.2 Maximum likelihood estimation
13: for t = 0, . . . , T do

14: εt ← Yt − M̃Xt−1
t

15: Σt ← M̃P t−1
t M̃ ′ + τ2Ip

16: lY (ρ, σ2, τ2)← 1
2

∑T
t=1 log |Σt|+ 1

2

∑T
t=1 ε

′
tΣ
−1
t εt . The negative loglikelihood

17: (ρ̂, σ̂2, τ̂2)← argmin
(ρ,σ2,τ2)

lY (ρ, σ2, τ2) . Maximizing the likelihood of innovations

return ρ̂, σ̂2, τ̂2

Remark 5. In this study, since we are interested in the power of particular frequency bands,

we will introduce box constraints to the modulus ρ1, · · · , ρq to control the spread of the
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spectra curves. Hence in A.2 of Algorithm 1, we implement an optimization method with

box constraints on modulus ρ1, · · · , ρq and no constraints on σ2, τ 2.

Algorithm 2 Kalman Filter and Least Squares Estimation

1: procedure Given the current estimates of ρ, σ2, τ2, we can obtain the estimates of M̃ by Kalman filter and
least squares estimation.

2: B.1 Kalman filter and Kalman gain step

3: Φ1 ← diag(2ρ−1
1 cos(ψ1), · · · , 2ρ−1

q cos(ψq))

4: Φ2 ← diag(−ρ−2
1 , · · · ,−ρ−2

q )

5: Φ̃←
[
Φ1 Φ2
Iq 0

]
6: for t = 0, . . . , T do

7: Xt−1
t ← Φ̃Xt−1

t−1

8: P t−1
t ← Φ̃P t−1

t−1 Φ̃′ + σ2

[
Iq 0
0 0

]
9: Kt ← P t−1

t M̃ ′[M̃P t−1
t M̃ ′ + τ2Ip]−1 . The Kalman gain

10: Xt
t ←Xt−1

t +Kt(Yt − M̃Xt−1
t )

11: Xt
t ←Xt

t/sd(Xt
t ) . sd(Xt

t ) denotes the standard deviation of Xt
t

12: //Remark: We scale Xt
t to unit variance for identifiability issues discussed before.

13: P tt ← (I2q −KtM̃)P t−1
t

14: B.2 Least square estimation from Equation (2)
15: Y ← (Y1, · · · ,YT ) . Y ∈ Rp∗T
16: X ← (X1

1 , · · · ,XTT ) . X ∈ Rq∗T
17: for w = 1, . . . , p do

18: M̃w ← (X ∗X′)−1 ∗X ∗ Y ′
(w)

. Y(w) denotes the wth row of Y

19: M̃ ← (M̃1, · · · , M̃w)′

return M̃

Estimating E-SSM for multiple epochs

We propose a blocked resampling based approach to conduct inference on model (3).

Here is the key idea: we obtain blocks of epochs; for each block we estimate the mixing

matrix and the epoch-specific AR(2) parameters. These blocks retain the temporal sequence

of the epochs and the final estimate at a previous epoch serves as the initial estimate of

mixing matrix at the current epoch. The final estimates of the mixing matrix obtained from

each block are averaged to produce the estimate for the common mixing matrix. As the next

step, given the estimate of mixing matrix, we follow Algorithm 1 to obtain estimates of the

epoch-specific AR(2) parameters. The iterative approach is summarized below.

II.A. We fix the length of the blocked resampling sampler as l. We draw the starting epoch

index s from the set {1, 2, · · · , R− l+ 1}. Then at current iteration, the blocked resampling

sampler is ({Y (s)
t }Tt=1, · · · , {Y

(s+l−1)
t }Tt=1)

14



A.1. Starting with epoch s, we implement the approach for single epoch in Sec-

tion 2.1 on {Y (s)
t }Tt=1to obtain estimates M̃ (s).

A.2. Staring with epoch s + 1 and the initial value M̃ (s), we repeat A.1 to obtain

estimates M̃ (s+1).

A.3. We repeat A.2 until the last epoch s + l − 1. We denote the final estimates

M̃ (s+l−1) as the ultimate estimates of resampling sampler ({Y (s)
t }Tt=1, · · · , {Y

(s+l−1)
t }Tt=1).

The pipeline of the procedure is summarized below.


Y

(s)
1

Y
(s)

2

· · ·

Y
(s)
T

→ M̃ (s) →


Y

(s+1)
1

Y
(s+1)

2

· · ·

Y
(s+1)
T

→ M̃ (s+1) · · · →


Y

(s+l−1)
1

Y
(s+l−1)

2

· · ·

Y
(s+l−1)
T

→ M̃ (s+l−1)

II.B. Repeat II.A until a sufficient number of resampling estimates is obtained. Compute

the average of those estimates, defined by M̃g, as the global estimate of M̃ .

II.C. Plug the global estimate M̃g into every single epoch. Following Algorithm 1 for single

epoch discussed in Section 2.1, obtain the estimates of ρ(r), σ2(r)
, τ 2(r)

, r = 1, · · · , R.

The over-all work flow is given in Figure 6. Note that since the “mixing” matrix M̃ are

the same across epochs, we use the blocked resampling strategy to get the global estimates

sequentially. Given that estimate, we proceed to make inference on every single epoch.
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Figure 6: Schematic illustration of the estimation methods that summarize II.A, II.B and
II.C in Section 2.2.

Remark 6. The blocked resampling method is utlized to estimate model (3) for the following

reasons: (1.) Within each block, we utilize all the information sequentially to learn the same

“mixing” matrix and break up the over-all computational burden. (2.) The optimization

procedure may rely on initial values due to the complex structure of the model. However,

using the blocked resampling method will avoid the sensitivity to starting values. (3.) We

will obtain a distribution of the estimates of “mixing” matrix, which provides more flexibility

for inference and an approach to test the stability of the proposed algorithm.
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4 A Comparison to Existing Methods

Independent component analysis (ICA) is a general framework that has been widely used

in modeling spatio-temporal data. It is a dimensionality reduction approach that assumes

the signals are non-Gaussian and maximally statistically independent (Calhoun et al., 2009).

Unlike principal component analysis (PCA) that assumes the sources are uncorrelated, ICA

ensures the independence structure that allows for estimates of high-order statistics. The

objective of ICA, in general, is to “recover” those independent non Gaussian latent struc-

tures. Bell and Sejnowski (1995) and Hyvärinen et al. (2004) proposed various algorithms to

achieve that goal. ICA has been widely used in single/between-subject electrophysiological

exploratory analysis. Makarova et al. (2011) proposed an ICA method to segregate path-

ways with partially overlapped synaptic territories from hippocampal LFPs. To investigate

the variability across different subjects or subgroups, Guo (2011) proposed a general group

probabilistic ICA (pICA) framework accommodating cross-subject structure in multisubject

spatial-temporal brain signals. Maximum likelihood, exact EM and variational approxima-

tion EM algorithms were developed to estimate the parameters in the model.

The limitations of the existing (group) ICA methods for analyzing electrophysiological

signals are the following. First, they do not have a mechanism for capturing how the pa-

rameters (and spectral properties) of the latent source signals may evolve across epochs over

the entire experiment. Most of the existing methods are based on concatenating the signals

from different epochs and estimating the parameters of the model as though these signals

were realizations of the same underlying process. However, since the “reconstructed” latent

sources vary across epochs, there is no rigorous framework for modeling how these parame-

ters could change across epochs. As demonstrated in our exploratory analysis, Figure 3 and

4 show that the power of LFP signals changes quite drastically from the middle phase to

the late phase of the experiment. Simply lumping together signals that are generated from

different underlying source processes could yield misleading results. Second, the existing

methods do not take into account the temporal structure of the latent sources. In fact, these

sources are estimated for each time point independently of the other time points. Third,
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given that spectral analysis of electrophysiological signals yield interpretable results, it is

interesting that the current ICA methods for source modeling do not rigorously take this

into account. In fact, brain researchers have observed association between power at different

frequency bands and brain functional states (Michel et al., 1992). Thus, it is necessary to

develop a framework that accounts for the evolution of the power at these frequency bands

over many epochs. Lastly, there are limitations in the connection between time and fre-

quency domain analysis. Methods from time and frequency domain are developed almost

exclusively from each other which is counter-intuitive since these two approaches ought to

be used concurrently in order to give a complete characterization of brain processes.

The proposed E-SSM was inspired by ICA and classical state-space model. Specific

refinements and extensions were needed for the E-SSM in order to address to overcome the

limitations of the current approaches and provide a framework that capture the dynamics

on time and frequency domains.

5 Simulation Studies

5.1 Results on single epoch analysis

In this section, we will evaluate the proposed E-SSM on single epoch data. For the latent

independent source signals, we assume that there are three AR(2) stationary processes. Each

of them corresponds to delta (δ: 0 - 4 Hertz), alpha (α: 8 - 12 Hertz), beta (β: 12 - 18 Hertz)

frequency bands respectively. We randomly generate a positive “mixing” matrix M and fix

the number of electrodes of the observational brain signals to be 20. In summary, following

the notation in Section 2.1, we have: p = 20, T = 1000, q = 3, τ 2 = 1, σ2 = .1, (ρ1, ψ1) =

(1.0012, 2), (ρ2, ψ2) = (1.0012, 8), (ρ3, ψ3) = (1.0012, 15).

We implemented the proposed method in Section 2.1 and evaluated its performance.

Figure 7 shows the periodograms of the true and reconstructed signals. As we can see, the

estimated source signals share exactly the same shape as the true signals.
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Figure 7: The periodograms of the true (black) and estimated (red) latent processes.

5.2 Results on multiple epoch analysis

In this section, we will evaluate the performance of the proposed method in Section 2.2.

We choose 20 electrodes and 3 latent independent AR(2) processes. To model the evolution

across epochs, we allow the modulus (ρ
(r)
1 , ρ

(r)
2 , ρ

(r)
3 ) increase from (1.001, 1.001, 1.001) with

increment 0.00005 as the epoch r propagates. All the remaining parameters are the same as

in Section 5.1. To visualize the signals, Figure 8 shows the heatmap of periodogram from

electrode 1 as epochs evolve.
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Figure 8: The periodogram of generated signals from electrode 1 computed over all 100
epochs. From the heat map, we are observing the powers are evolving across epochs. At
early stage, three dominating frequency bands can be identified clearly. As epoch evolves,
such pattern is getting less clear.

After we implement the method in this scenario, we find results similar to Section 5.1.

Figure 9 shows the periodograms of the true and estimated signals from the three underlying

AR(2) processes. For the delta, alpha, and beta bands, we can see the peaks at the corre-

sponding dominating frequency from the true and estimated signals. As the epochs evolve,

we could observe that both of the true and estimated periodograms spread out around the

dominating frequency. Our results show that the pattern of the periodograms from the

reconstructed AR(2) process is consistent with that of the true AR(2) process.
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Figure 9: The periodograms of the true (left) and estimated (right) latent AR(2) processes
corresponding to delta (top), alpha (middle) and beta (bottom) frequency band.

5.3 Results from settings derived from the data

In this simulation study, we used the estimates of modulus, “mixing” matrix and variance

parameters from the LFP data in the olfaction (nonspatial) sequence memory study to

simulate the data. In particular, we used the estimates (ρ̂
(r)
1 , ρ̂

(r)
2 , ρ̂

(r)
3 , σ̂2(r), τ̂ 2(r)) and the

estimate of “mixing” matrix M̃ to generate signals across 12 electrodes among 247 epochs.

To test the performance of E-SSM, we also applied the classical state space model (SSM)

estimation methods as a benchmark in comparison with E-SSM. Specifically, we worked on

the state space model for each single epoch and take average to obtain parameters estimates,

(ρ̂
(r)
1 , ρ̂

(r)
2 , ρ̂

(r)
3 , σ̂2(r), τ̂ 2(r)) as well as the estimate of the “mixing” matrix, M̃ . Note that this

is the approach that most of the existing methods will follow when analyzing signals with

multiple epochs.

We compare mean of sum of square errors of the parameters obtained from E-SSM and

the benchmark. From Table 1, it is clear that E-SSM successfully captures the evolution

of parameters compared to classical state space models. Among all the frequency bands,
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the benefits are dramatic. These results highlight the advantages of using E-SSM when

signals are comprised of multiple epochs. Meanwhile, it also indicates the potential loss of

information if we naively average over all the epochs when conducting analysis.

Table 1: Mean of sum of square errors obtained from E-SSM and SSM (benchmark)

Parameters E-SSM SSM

Φ̃ (delta band) 3.33 × 10−5 7.27× 10−5

Φ̃ (alpha band) 1.41 × 10−5 3.23× 10−5

Φ̃ (gamma band) 1.69 × 10−5 8.07× 10−5

τ 2 9.31 × 10−6 2.03× 10−4

σ2 1.93 × 10−1 1.93× 10−1

6 Analysis of LFP data in an olfaction (nonspatial)

sequence memory study

6.1 Data description

The LFPs dataset was obtained from an experiment searching for direct evidence of coding for

the memory of sequential relationships among non-spatial events (Allen et al., 2016). During

the course of experiment, rats were provided with series of five odors. All the odors were

delivered in the same odor port. In each session, researchers presented the same sequence for

multiple times. Each odor presentation was initiated by a nose poke and rats were required

to correctly identify whether the odor was presented in the correct or incorrect sequence

position (by holding their nose in the port until the signal or withdrawing before the signal,

respectively). During the period of experiment, as rats performed the tasks, LFPs were

recorded in the CA1 pyramidal layer of the dorsal hippocampus. In total, 22 tetrodes were

implanted but LFPs were only analyzed from electrodes that exhibited task-critical single-

cell activity (12 in this case). The LFPs dataset in this study comprise of 12 electrodes and
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247 epochs. Each epoch is recorded over 1 second, aligned to port entry, sampled at 1000

Hertz and thus has T = 1000 time points.

6.2 Exploratory analysis

In our exploratory analysis, we are interested in two key goals: (1.) to determine how

the original high-dimensional signals can be sufficiently represented by lower dimensional

summary signals; and (2.) to assess if and how the spectral properties of the LFP signals

evolve across epochs during the experiment.

To address the first question, we note the assertion in other studies (e.g., Makarova et al.

(2014)) that the natural geometry of these neuronal assemblies gives rise to possible spatial

segregation. This suggests that it is plausible to represent LFP data by lower dimensional

summaries. In this nonspatial sequence memory study, we observe similar pattern across

all the 12 electrodes. In Figure 10, although the power varies within each electrode, the

synchrony of pattern across electrodes is still critical. For example, electrode 1 and 2 behave

almost identically. Electrodes 10, 11 and 12 also follow the same pattern during the course of

experiment. Moreover, as part of this exploratory analysis, we implemented spectral principal

component analysis (Brillinger, 1964). This approach is widely used in the exploratory

analysis of brain imaging data (Yuxiao Wang, 2016). Figure 11 presents the boxplots of

the percentage of variability accounted by the first and third components. It can be shown

that 3 components (mixture of delta, alpha and gamma bands) account for roughly 92%

of the variability with the first component accounting for 70%. All these findings validate

the assumption that the original LFPs can be projected into low dimensional source signals

without substantial loss of information. In this paper, we will build on this preliminary

analyses by giving a more specific characterization of these signal summaries or components

using the AR(2) process.
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Figure 10: The evolution of the power spectrum across the duration of experiment. Each
plot displays the estimated log power spectrum during the 3 phases: Phase 1 (epoch 1 - 80),
Phase 2 (epoch 81 - 160) and Phase 3 (epoch 161 - 247). Frequency bands around particular
hertz are present, which can be modeled as AR(2).
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Figure 11: The boxplots of variance accounted by different components across different
stages during the experiment. The results were obtained by conducting principal component
analysis on frequency domain (Brillinger, 1964). Epochs in the entire experiment have been
classified as 6 stages with each consisting of 40 epochs (Stage I: 1-40, II: 41-80, III: 81-120,
IV: 121-160, V: 161-200, VI: 201-247). The first component is shown on top and the third
is at the bottom. We could observe that about 90% of variance can be explained by three
components.

To gain insights into addressing the second question, we examined the LFP traceplots

of the first 15 epochs at electrode 7 (Figure 2). It is clear that signals across various elec-
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trodes are highly associated as time evolves. Similarly, from the log periodogram boxplots

in Figure 3 across all the frequencies, we notice that the powers are quite spread out, es-

pecially at lower frequencies and the two peaks around delta and slow gamma bands. The

heatmap in Figure 4 demonstrates the dynamics from early, middle, and late stages of the

whole session. Figure 10 shows the evolving of the power across all the electrodes particu-

larly on delta, alpha, and gamma bands. It shows that higher frequency bands dominates

in early and late phases, while lower frequency bands capture more power. In Figure 12, an

interesting pattern emerges: the burst of gamma activity on Phase 1 of the epochs is not

replicated at other phases. One possible interpretation is that odor sequence (on which the

animals have had extensive training) is re-encoded early in each session, which requires high

frequency (gamma) activity, but later in the session, gamma activity is regulated and other

lower frequencies (delta and alpha) become more prominent. Inspired by all these results, a

further study is necessary to uncover the latent lower dimensional source signals that drive

the observed LFPs.
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Figure 12: The evolution of power spectrum among delta (0-4 Hertz), alpha (8-12 Hertz)
and gamma (30-35 Hertz) bands. Each band was averaged over all the electrodes.
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6.3 Results and Discussion

We applied our proposed E-SSM method to this study. Figure 13 shows time series plots of

modulus among all the three frequency bands as epochs evolve. In this plot, we could clearly

identify the evolution of each individual module and a strong dependence in temporal space.

Figure 14 displays the power of three latent source signals evolving during the period of

experiment. We observe that the delta band captures the most power among all bands and

is persistent across all phases. Gamma band power narrows down slightly towards the late

phase. Alpha band attains its maximum power during the early phase and diminishes quickly

in the middle stage and obtains more power in the end. There appear to be discontinuities in

the delta, alpha and gamma power across the entire experiment. One interpretation to these

results from the E-SSM analysis is that these on-off patterns could be just random variation.

Another is that these are actual resetting of neuronal responses. This phenomenon of phase

resetting in neurons is also observed in many biological oscillators. In fact, it is believed that

phase resetting plays a role in promoting neural synchrony in various brain pathways. In

either case, it is imperative to be cautious about blindly assuming that the neuronal process

behaves identically across epochs. Doing so could produce misleading results.
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Figure 13: The time series plots of modulus corresponding to delta (above), alpha (middle)
and gamma (bottom) frequency bands.
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Figure 14: The periodograms of estimated latent AR(2) processes corresponding to delta
(top), alpha (middle) and gamma (bottom) frequency band.

We also study the “mixing” matrix to investigate how electrodes are associated across

the three frequency bands. From Figure 15, at delta band, electrodes 1, 2, 4, 5, 7, 8 are

likely to be linked in terms of large power. Electrodes 3, 9, 10, 11 and 12 share the lowest

power. At alpha band, electrodes 4, 7 and 8 maintain the most power in contrast with

electrodes 3, 9 - 12 that obtain the lowest power. This pattern of association may result

from the anatomical connections. Similarly, at gamma band, electrodes are connected in the

same way as alpha band. We also used a cluster analysis on the entries of “mixing” matrix

to understand the connection among electrodes. Similar to the results shown in Figure 15,

we are able to identify the same pattern in Figure 16, through the visualization of cluster

analysis. At delta band, electrodes 1, 2, 4 - 8 share the same pattern while 9 - 12 are in

the same cluster. Clusters at alpha and gamma bands are roughly identical, which coincide

with the results in Figure 15. To the best of our knowledge, this approach (i.e., clustering

of electrodes or nodes) has not be used previously for this kind of analysis. This has the

potential for future explorations on synchrony among neuronal populations. Finally, we
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note here that the specific parametric AR(2) structure in our E-SSM has facilitated ease of

interpretation of the oscillatory activity of these sources.

We also examined model validation and diagnostics using the residuals. Sample auto-

correlations (ACF) and partial auto-correlations (PACF) were computed from the residuals.

Figure 17 shows an example of those values obtained from a representative electrode. We

could easily observe the uncorrelated structure among the residuals. A p-value of 0.75 based

on the Ljung-Box test also provides some evidence to suggest white noise residuals and thus

conclude that the proposed E-SSM fits this LFP data well.
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Figure 15: The estimated mixing matrix. Darker color represents heavier weights given by
the latent processes (delta, alpha, gamma) on the LFPs.
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Figure 16: Cluster analysis results among all the three frequency bands.
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Figure 17: Top: Auto-correlation function (ACF) of the residual plots from electrode 1.
Bottom: Partial auto-correlation function (PACF) of the residual plots from electrode 1.
The dashed lines indicate the threshold for non-zero correlation. These plots, along with the
Ljung-Box test for white noise (p− value ≈ 0.75) suggest that the residuals are white noise
and hence the E-SSM model fits the data well. These same plots were observed in all the
other electrodes but we do not report them here due to space constraints.
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7 Concluding remarks

In this paper, we have proposed an evolutionary state space model (E-SSM) that allows the

latent source signals to evolve across epochs. The advantages of this methods are as follows:

(1.) by introducing autoregressive structure in the latent source signals, it allows us to model

the evolution of particular frequency bands in a parametric framework; (2.) the proposed

method utilizes the autoregressive structure, which serves as a link between time and spectral

domains, provides an approach of interpreting findings from both domains; (3.) compared to

the existing methods, the proposed method is not computationally intensive since we have

used ML and blocked resampling approaches for estimating the model parameters.

Although the results reported in this paper are quite promising, nevertheless, modeling

the evolution/dynamics across epochs still remains a challenge in general. For example, in

our current method, we ignored the subject specific random effects. Future extensions of our

method should taken this into account. Moreover, future directions might involve incorpo-

rating different experimental conditions into our model to improve statistical inference.

References

Allen, T. A., D. M. Salz, S. McKenzie, and N. J. Fortin (2016). Nonspatial sequence coding

in ca1 neurons. The Journal of Neuroscience 36 (5), 1547–1563.

Arun, K. and S. Kung (1990). Balanced approximation of stochastic systems. SIAM journal

on matrix analysis and applications 11 (1), 42–68.

Bell, A. J. and T. J. Sejnowski (1995). An information-maximization approach to blind

separation and blind deconvolution. Neural computation 7 (6), 1129–1159.

Brillinger, D. (1964). A frequency approach to the techniques of principal components,

factor analysis and canonical variates in the case of stationary time series. In Invited

Paper, Royal Statistical Society Conference, Cardiff Wales.(Available at http://stat-www.

berkeley. edu/users/brill/papers. html).

31



Calhoun, V. D., J. Liu, and T. Adalı (2009). A review of group ica for fmri data and ica for

joint inference of imaging, genetic, and erp data. Neuroimage 45 (1), S163–S172.

Einevoll, G. T., K. H. Pettersen, A. Devor, I. Ulbert, E. Halgren, and A. M. Dale (2007).

Laminar population analysis: estimating firing rates and evoked synaptic activity from

multielectrode recordings in rat barrel cortex. Journal of neurophysiology 97 (3), 2174–

2190.

Fiecas, M. and H. Ombao (2016). Modeling the evolution of dynamic brain processes during

an associative learning experiment. Journal of the American Statistical Association (just-

accepted).

Guo, Y. (2011). A general probabilistic model for group independent component analysis

and its estimation methods. Biometrics 67 (4), 1532–1542.

Hamilton, J. D. (1994). Time series analysis, Volume 2. Princeton university press Princeton.

Hyvärinen, A., J. Karhunen, and E. Oja (2004). Independent component analysis, Volume 46.

John Wiley & Sons.

Jiru, A. R. (2008). Relationships between spectral peak frequencies of a causal AR (P) process

and arguments of roots of the associated ar polynomial. Ph. D. thesis, San Jose State

University.

Makarova, J., J. M. Ibarz, V. A. Makarov, N. Benito, and O. Herreras (2011). Parallel

readout of pathway-specific inputs to laminated brain structures. Frontiers in systems

neuroscience 5, 77.

Makarova, J., T. Ortuño, A. Korovaichuk, J. Cudeiro, V. A. Makarov, C. Rivadulla, and

O. Herreras (2014). Can pathway-specific lfps be obtained in cytoarchitectonically complex

structures? Frontiers in systems neuroscience 8, 66.

32



Michel, C., D. Lehmann, B. Henggeler, and D. Brandeis (1992). Localization of the sources

of eeg delta, theta, alpha and beta frequency bands using the fft dipole approximation.

Electroencephalography and clinical neurophysiology 82 (1), 38–44.

Mitzdorf, U. et al. (1985). Current source-density method and application in cat cerebral

cortex: investigation of evoked potentials and EEG phenomena. American Physiological

Society.

Shumway, R. H. and D. S. Stoffer (2013). Time series analysis and its applications. Springer

Science & Business Media.

Whitmore, N. W. and S.-C. Lin (2016). Unmasking local activity within local field poten-

tials (lfps) by removing distal electrical signals using independent component analysis.

NeuroImage 132, 79–92.

Yuxiao Wang, Chee-Ming Ting, H. O. (2016). Exploratory analysis of high dimensional time

series with applications to multichannel electroencephalograms.

Zhang, K. and A. Hyvärinen (2011). A general linear non-gaussian state-space model: Iden-

tifiability, identification, and applications. In JMLR Workshop and Conference Proc.,

Asian Conf. on Machine Learning, pp. 113–128.

33


	1 Introduction
	1.1 Background
	1.2 Preliminary analysis from an olfactory (non-spatial) sequence memory experiment
	1.3 Contributions
	1.4 Outline of the paper

	2 Evolutionary State Space Model (E-SSM)
	2.1 State Space Model for a single epoch
	2.2 Evolutionary State Space Model for multiple epochs

	3 Estimation Method for E-SSM 
	4 A Comparison to Existing Methods
	5 Simulation Studies
	5.1 Results on single epoch analysis
	5.2 Results on multiple epoch analysis
	5.3 Results from settings derived from the data

	6 Analysis of LFP data in an olfaction (nonspatial) sequence memory study
	6.1 Data description
	6.2 Exploratory analysis
	6.3 Results and Discussion

	7 Concluding remarks



