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A B S T R A C T   

Adoption of residential behind-the-meter solar photovoltaic-plus-storage systems (PVESS) is driven, in part, by 
customer demand for backup power. However, there is limited understanding of how these systems perform over 
a range of building stock conditions that will evolve with future efficiency and electrification trends, posing 
challenges for identifying optimal electric resiliency investments. This study quantifies how residential energy 
consumption impacts the capability of PVESS to provide home backup power during long-duration power in
terruptions. We model statistically representative distributions of the residential building stock and estimate 
storage sizes required to provide backup power as a series of building envelope efficiency, load flexibility, and 
electrification measures are applied. For the baseline building stock, median storage size requirements range 
from 10 kWh in temperate weather conditions to 90 kWh in hot climates for a 3-day power interruption. 
Applying energy efficiency and temperature set-point adjustments reduce storage size requirements by 2–45 kWh 
(16%–53 %). In hot locations, heat pump retrofits reduce median storage sizing by an additional 10–30 kWh 
while in cold locations, they drive 10–50 kWh of storage capacity increase. Our results suggest that bi-directional 
EV charging may be essential to enabling PVESS backup of heating and cooling, given their typically large kWh 
sizes.   

1. Introduction 

Early adoption of behind-the-meter (BTM) solar photovoltaic + en
ergy storage systems (PVESS for remainder of the paper) has been 
driven, to a significant degree, by customer concerns over electric sys
tem reliability and resilience [1–3]. Transmission and distribution net
works are particularly vulnerable to severe storms and extreme heat 
[4–6], and customer concerns may reflect an expectation that severe 
weather events may become increasingly common given future climate 
change projections [7,8]. While PVESS investments are being made by 
individual customers on their own behalf, utilities may also need to 
make significant investments to maintain electric service resiliency to 
mitigate future climate risks [9,10]. Such trends underscore the 
importance of studying novel approaches to enhancing customer resil
iency to electricity interruptions [11]. 

Today, most electric resiliency investments (e.g. infrastructure 

upgrades, tree trimming, protective equipment) are made by electric 
utilities and approved by their corresponding regulators [12]. Recent 
cost declines of solar and storage technologies over the last decade 
provide a new option for electric customers to meet their own resiliency 
needs [13–15]. BTM PVESS could therefore serve as an important sub
stitute for traditional grid resilience investments [16], and some utilities 
have already begun to announce such programs [17]. Additionally, even 
if initially installed for resilience purposes, PVESS can provide a broader 
range of grid services once installed [18]. Understanding the backup 
power capabilities of PVESS in a variety of geographic contexts is 
therefore important to inform electricity system resiliency investments 
that are often made by public policies. Such research can also inform 
broader PVESS deployment forecasts that have historically been focused 
on non-resiliency drivers of PVESS adoption [19]. 

Recent work evaluated the technical capabilities of BTM PVESS for 
backup power during long-duration power interruptions [20]. That 
study implemented a novel and expansive analytical framework that 
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involved simulating PVESS backup power performance across a range of 
interruption conditions for a typical home in a variety of weather con
ditions, as well as across large and statistically representative distribu
tions of building models within a selection of individual locations. That 
work highlighted the challenges associated specifically with providing 
backup power to heating and cooling loads, and the interdependencies 
with building envelope and equipment efficiency, electrification of 
heating loads, and behavioral conservation measures that customers 
may implement during power interruption events. Additional research 
on distributed resource applications to enhance customer electric resil
iency has focused on microgrid deployments [21], individual case 
studies [22,23], or electric vehicle applications [24]. 

Importantly, however, these earlier analyses are based on the 
present-day building stock. Yet, buildings across the globe are in the 
midst of significant transformation, driven by technological advance
ment and policy goals [25,26]. Meeting decarbonization objectives 
cost-effectively will require substantial improvements in building en
ergy efficiency [27] and large-scale electrification of building end-uses 
[28], including switching from fossil-based heating to efficient electric 
heat-pumps [29,30]. Buildings will also need to become significantly 
more flexible [31], to minimize the costs of transitioning to high 
renewable energy penetrations [32]. This transformation of the building 
stock, and the resulting changes in residential building electricity con
sumption patterns, will have potentially significant but diverse impli
cations for PVESS-based backup power, depending on pre-existing 
building stock conditions, climate, and the timing and severity of power 
interruption events. 

In this paper, we extend the previous literature to evaluate the 
technical potential for PVESS backup power as residential buildings 
become progressively more efficient, flexible, and electrified. To do so, 
we apply a series of building efficiency, load flexibility, and electrifi
cation measures to the baseline building stock, and evaluate the 
resulting impacts on required battery storage sizing for backup power 
during long-duration power interruptions. Such an approach allows us 
to evaluate how PVESS can mitigate customer concerns over electric 
system resilience. We focus on electricity system ‘resilience’, over reli
ability, in this paper given our focus on long-duration power in
terruptions. Prior work has defined mitigation of interruptions >24 h as 
resilience benefits, and we rely on the same definition here [33]. Our 
results illustrate key regional differences as well as a diversity of impacts 
across the building stock within each study location. 

This work adds to the broader literature on PVESS backup power 

both in the novelty of its findings as well as the underlying methods. The 
literature review in Gorman et al., 2023 noted that prior work studying 
the resilience impacts of PVESS has consisted mostly of either the 
development of novel operation strategies for PVESS in individual case 
studies or analyses of the resilience impacts on the broader distribution 
network, rather than the impacts for the individual host customer who is 
typically the entity adopting (and financing) these investments [20]. 
Furthermore, prior research has thus far focused on the current resi
dential building stock, without accounting for the significant change to 
building loads expected as a result of electrification and energy effi
ciency investments [34]. This paper fills these important gaps by 
providing generalizable findings about resilience impacts for host cus
tomers who might be considering corresponding building upgrades 
when choosing to install PVESS. These findings can inform 
decision-making by customers, building designers, developers, and 
technology vendors seeking to understand the capabilities of PVESS for 
individual customer-level backup power. This work can also inform 
building energy modeling and forecasting activities that aim to project 
customer adoption of PVESS, and require a characterization of the un
derlying distribution of its technical potential in backup power appli
cations, and how that may evolve over time with changes in the 
underlying building stock [35]. 

2. Methods 

This section is broken up into three subsections which describe our 
data, the implementation of the PVESS optimization program, and the 
parameters adjusted in our scenario analysis. 

2.1. Datasets for optimization analysis 

Our research approach requires three timeseries data: (1) dis
aggregated end-use load profiles, (2) solar production profiles, and (3) 
power interruption profiles. Critically, we ensure that these data sets are 
temporally and geospatially aligned at an 15-min interval given the 
correlation of weather events with likelihood of power outage [5]. To do 
so, we rely on a consistent set of typical meteorological year (TMY3) and 
actual meteorological year (AMY) weather data that are used to simulate 
both end-use load profiles and solar production profiles. Using both 
weather data sources allows us to compare more recent weather than 
used to construct the TMY3 dataset, and potentially allows us to observe 
more extreme weather conditions. Still, our analysis relies primarily on 

Abbreviations 

ACCA – Air conditioning contractors of America 
AMY – actual meteorological year 
BTM – behind-the-meter 
COIN-OR – Computational infrastructure for Operations Research 
DC – Washington DC 
DER – Distributed energy resources 
DFW – Dallas Ft. Worth 
EV – electric vehicle 
HP – heat pump 
HSPF - Heating Seasonal Performance Factor 
HVAC – heating ventilation air conditioning 
kWh – kilowatt hour 
LA – Los Angeles 
NREL – National Renewable Energy Laboratory 
NSRDB – National Solar Radiation Data Base 
PVESS - Photovoltaic energy storage systems 
RECS – Residential Energy Consumption Survey 
SAM – System Advisor Model 

SEER - Seasonal Energy Efficiency Ratio 
SOC – state of charge 
TMY – typical meteorological year 
US – United States 
VOLL – Value of lost load 

Nomenclature 
Y = size of storage system (kWh) 
Bd = storage discharging, 15 min interval (kW) 
D = Cost of discharging (i.e., degradation cost) ($/kWh) 
SOCk = state of charge of storage at time step k (kWh) 
Bc = storage charging, 15 min interval (kW) 
Bd = storage discharging, 15 min interval (kW) 
η = storage efficiency (%) 
L(k) = demand at time step k, 15 min interval (kW) 
E(k) = electricity shed from given demand profile at time step k, 

15 min interval (kW) 
S(k) = power generated from solar at time step k, 15 min interval 

(kW) 
Dpv (k) = curtailed PV production, 15 min interval (kW)  
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TMY3, which selects actual weather data from the most typical month of 
a given historical period, relying on both average and extreme weather 
(i.e. the selection tries to match a distribution of temperature outcomes 
rather than solely the median outcome) [36]. More information on both 
the temperature and solar radiation data inputs are provided in sup
plementation data Figs. 9–1 and 9–2. 

Our analysis relies on a large and statistically representative set of 
end-use level building models that, in the baseline case, reflect the 
present-day distribution of building envelope and equipment charac
teristics across the entire stock of U.S. single-family detached homes. 
Focusing on a set of ten climatically diverse study locations, the analysis 
evaluates PVESS backup performance across 170,000 unique building 
load profiles, allowing for robust insights into the effects of building 
stock transformations on PVESS backup power capabilities. These 
building load profiles are simulated using the National Renewable En
ergy Laboratory’s (NREL) ResStock simulation tool to create a statisti
cally representative sample of 1000 baseline building models for each 
location studied (Fig. 1) [37]. The baseline building models for each 
location are based on probabilistic distributions of more than 100 
building stock characteristics (e.g. building insulation, HVAC technol
ogy type, square footage, heating fuel), reflecting characteristics of the 
present-day building stock [38]. Those probabilistic distributions are 
derived from a wide range of empirical data, including the U.S. Census, 
the U.S. Energy Information Administration’s Residential Energy Con
sumption Survey (RECS), and whole-building interval meter data from 
residential utility customers [38]. More information about the proba
bility distributions for the housing characteristics can be found in an 
online data repository [39]. 

We then modify these baseline buildings by applying a series of 
building envelope efficiency (e.g., insulation and air sealing), electrifi
cation (e.g., heat pumps, water heaters, dryers, and cooking equipment), 
and load flexibility (temperature set-point adjustments) measures. 
Building envelope efficiency measures reduce median annual energy 
consumption in our buildings across the 10 locations by 3–12 %. Our 
load flexibility measure is implemented by applying 5 ◦F increase 
(cooling) and 6 ◦F decrease (heating) in temperature set points. In 
addition, we studied several heat pump configurations that incorporate 
different efficiency and sizing assumptions. Heat pumps are modeled 
with performance and capacity curves with outdoor temperature as the 
dependent variable (find more information in Supplemental data 
Table 9–2). Our electrification measure involves electrifying water 
heating and cooking with heat pump water heaters and induction stoves. 

For computational tractability, we select 10 locations across the 
country with differing climate and solar insolation levels (see Fig. 1). 
Overall, we model 17 building measure bundles, yielding a total of 
170,000 unique building load profiles (17 measure bundles x 10 loca
tions x 1000 homes/location). A more detailed table that explains the 
difference between all 17 measures is provided in the Supplemental data 
Table 9–2 and corresponding text. 

To produce solar generation profiles, we apply the same weather 
data that are used in the underlying ResStock building simulations to 
ensure geospatial and temporal alignment. In total, 10 weather locations 
were used, and the corresponding weather data combines both ground 
based measurement data and solar radiation data from NREL’s National 
Solar Radiation Data Base (NSRDB) [40]. Then, we use NREL’s System 
Advisor Model (SAM), which outputs AC solar production profiles. For 
these simulations, we use default system losses from NREL’s SAM tool of 
14 % and an inverter efficiency of 96 % and assume a 1.2 inverter 
loading ratio, 180 azimuth, fixed-roof system with tilt equal to the 
latitude of the weather station location [41,42]. We size the solar system 
to meet 100 % of each building’s annual load, subject to available roof 
area. The presumption is that PV systems are sized for reasons other than 
backup power (e.g., to minimize utility-bills). Such assumption is 
consistent with current installation practices in most markets [43] 
though PV systems sized for resilience purposes could be larger [44]. 
The roof constraint assumes that only 70 % of total roof area is available 
to the PV, though this constraint rarely binds as most modeled solar 
systems take up less than half of the total roof area (see Fig. 9–5 in 
supplemental data). 

Finally, we simulate power interruption profiles by defining the start 
date, start time, and duration of each interruption event. The interrup
tion start date is defined for each individual building model based on the 
daily net-load (i.e., gross load – PV production calculated for each day of 
analysis). For our base-case interruption scenario, the interruption be
gins on the 90th percentile net-load day, which corresponds to the day 
with the 36th highest net load out of the 365 days in the year. We default 
to starting the interruption at midnight. The interruption durations then 
extend for a specified number of days (in the base-case, a 3-day power 
interruption is assumed). 

When studying resilience issues within the electricity sector, it has 
previously been shown that extreme weather conditions are more 
important to consider over typical or average conditions [45–48]. Given 
that concern, we replicate our analysis using AMY data. However, using 
AMY data is significantly more data intensive given the need to model 
more than a decade of 15-min load and solar intervals; therefore, we 
only modeled two locations to assess if TMY3 data understates the 
impact of extreme weather: (1) Boston (to represent cold-weather lo
cations) and Phoenix (to represent hot-weather locations). We perform 
calculations using TMY3 weather data for all locations and 11 years of 
historical AMY data (2011–2021) for Boston and Phoenix. Comparisons 
of results using those different sets of weather data are provided in the 
discussion section. 

2.2. Optimization and dispatch model used to size PVESS 

Across all residential buildings and scenarios, the analysis employs a 
linear optimization model to determine the minimum required battery 
storage size needed to provide backup power over the corresponding 
power interruption event. Fig. 2 provides a graphical representation of 
how the linear optimization model connects with the key data inputs 
summarized in the previous section to calculate our results. An illus
trative time-series figure for each location is provided in the Supple
mental data Fig. 9–6. 

Since we aim to understand the technical capability of a PVESS to 
provide backup, we limit the operation of the system to solely provide 
backup during interruption events. We develop the optimization model 
to solve for the minimum storage size (in kWh) required to serve spec
ified critical loads over the duration of a given power outage, ensuring 

Fig. 1. Department of Energy Building America Climate Zones, with stars 
indicating our focus locations within the study. 
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load is met for each 15-min time interval during the interruption. To 
calculate the minimum size of storage, we develop a linear objective 
function, a variety of linear constraints, and a specific electric demand 
and solar profile. The key variables are the size of storage system, the 
storage’s state of charge, and power going into or out of storage in one- 
time step (t = 15 min). We treat storage system size (Y) as the decision 
variable.1 We do not treat inverter size (e.g. power capability of storage) 
as a decision variable because, for a back-up power system, it is dictated 
by customer demand – which is an exogenous assumption in our model 
framework – rather than PV or storage size. Furthermore, we do not 
implement a minimum or maximum state of charge, effectively meaning 
that the optimization program solves for “useable” capacity. The below 
equations mathematically describe the objective function. The battery 
degradation cost (D) is included in the objective function to eliminate 
the error of simultaneous discharging and charging of the battery which 
can result if no cost is placed on discharging. 

Objective function : Minimize( Y +Bd ∗ D) (Eq. 1)  

Where. 

Y = size of storage system (kWh) 
Bd = storage discharging, 15 min interval (kW) 
D = Cost of discharging (i.e., degradation cost) ($/kWh) 

We implemented several operational constraints on the system, 
shown below in equations (2)–(8). The storage constraints are defined in 
equations (2)–(6). For simplicity, we assume that the storage can charge 
or discharge its full capacity in each 15-min time step and has a 92 % 
one-way storage efficiency. The main operational constraint placed on 

the PVESS is the demand balancing equation (Eq. 7). This equation sets 
the rule that the energy consumption must match the energy production 
during a given time step. The left-hand side represents household energy 
use while the right-hand side represents energy production (i.e., positive 
terms for storage discharging, solar energy production, or avoided 
consumption due to our reliability constraint) and energy consumption 
(i.e., negative terms for storage charging or curtailed solar production). 
The final constraint establishes the bound on how much electricity can 
be shed due to our reliability constraint (Eq. (8)). 

Beginning state of charge : SOC0 =Y ∗ SOCb (Eq. 2)  

Storage state of charge : SOCk+1 = SOCk +

[
ηBC(k)

4
−

Bd(k)
η ∗ 4

]

(Eq. 3)  

State of charge range : 0 ≤ SOCk ≤ Y (Eq. 4)  

Power in rate : 0 ≤ BC(k) ≤ Y (Eq. 5)  

Power out rate : 0≤Bd(k) ≤ Y (Eq. 6)  

Demand balance : L(k) = Bd(k) − BC(k) + S(k) + El(k) − Dpv(k)
(Eq. 7)  

Reliability constraint :
∑

El(k) ≤ 0 (Eq. 8)  

Where. 

SOCk = state of charge of storage at time step k (kWh) 
Bc = storage charging, 15 min interval (kW) 
Bd = storage discharging, 15 min interval (kW) 
η = storage efficiency (%) 
Y = size of storage system (kWh) 
L (k) = demand at time step k, 15 min interval (kW) 

Fig. 2. Schematic summarizing key data sources and corresponding use in PVESS evaluation methodology.  

1 We also place a small cost on discharging electricity from the storage unit to 
ensure that the optimization algorithm does not generate inappropriate solu
tions with discharging and charging simultaneously. 
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El(k) = electricity shed from given demand profile at time step k, 15 
min interval (kW) 
S (k) = power generated from solar at time step k, 15 min interval 
(kW) 
Dpv(k) = curtailed PV production, 15 min interval (kW) 

In the framework above, we assume that future demand for electricity 
and future solar production is known. We use the optimization solver, 
Computational Infrastructure for Operations Research (COIN-OR, or 
“Clp”). This solver is used for linear programming. The optimization 
model is implemented utilizing the Julia programming language and the 
package JuMP [49]. 

The primary metric for our analysis is the median required storage 
size needed to meet load at every single time step during our defined 
power interruption across all modeled buildings in each location. As 
noted above, we have results from over 170,000 individual building 
models, given we simulate 1000 building models for each of the 10 
geographic locations and 17 different building measures. We estimate 
the entire distribution of battery sizes for the entire building stock but 
focus on the median required storage size in each location and for a 
given building measure to better highlight how changes to our building 
measures impact battery sizes for the typical residential home. We still 
share full distributions of results, where relevant. 

2.3. Scenario and sensitivity analysis description 

Our analysis focuses on how required battery sizing is affected by the 
timing and duration of power interruption events (including coincidence 
with extreme weather events), the set of building loads included for 
backup power, and a variety of building measures. Table 1 summarizes 
the key parameters we adjust in our analysis. Our baseline interruption 
scenario involves a 3-day interruption event that starts at 12am on the 
90th percentile net-load day (i.e. the day with the 36th highest net load 
out of the 365 days in the year). We assume that the storage unit has a 
100 % beginning storage state of charge at the time of the interruption. 
Though we present results with both whole-home backup and limited 
critical load backup (no heating and cooling), most of our results focus 
on PVESS capabilities to meet critical loads with heating and cooling. 
The load measures in this study principally impact heating/cooling 
loads, hence our focus on critical-load backup with heating and cooling. 

Our critical load assumptions are informed by a set prior literature 
that focused on the Value of Lost Load (VoLL). In particular, past 
research has surveyed customers in the northeast asking about load 

prioritization during interruption time periods.2 The top 7 categories 
selected by respondents in rough order of prioritization were lighting, 
refrigeration, chargers, computers, TV, heaters, and air conditioning 
[50,51]. Informed by this literature, we designate 6 out of 15 dis
aggregated end-use types in the ResStock building simulations as crit
ical: refrigeration, interior lighting,3 a limited set of plug loads,4 well 
pumps, space heating, cooking ranges, water heating, and space cooling. 
End-uses that we deem non-critical are fans (bath, ceiling), clothes 
dryer/washers, pool equipment, dish washers, exterior lighting, and full 
plug loads (other ancillary equipment like televisions, microwaves, 
humidifiers are unfortunately not disaggregated beyond a generic ‘plug 
load’ category in ResStock). We also consider a limited critical load case 
without heating and cooling demand. A visual representation of these 
assumptions is depicted in Fig. 9–3 in the supplemental data 

3. Results 

Our results section is split between two scenarios: storage system 
sizing for the (1) baseline (present-day) building stock and (2) the 
building stock with the energy efficiency, load flexibility, and electrifi
cation measures. 

3.1. Baseline building stock 

For the baseline building stock, the median required storage size 
across all modeled buildings ranges from 10 kWh in LA to 90 kWh in 
DFW and Phoenix (Fig. 3). While we focus mostly on medians in this 

Table 1 
Summary of parameters and scenarios considered for the scenario analysis.  

Scenario Assumption 

Building Measure 17 different measures considering load 
flexibility, energy efficiency, and 
electrification (see Supplemental Tables 9–2 
for details and labels for analyzed building 
measures) 

Backup Load  • Limited critical load (no heating/cooling)  
• Critical load (w/heating/cooling)  
• Whole-home 

Interruption start day (based on net 
load percentile within month) 

Range from 1st percentile to 99th percentile 

Interruption length (days)a 1; 2; 3; 4; 5; 6; 7  

a Results for this scenario are shared in the supplemental information. 

Fig. 3. Storage size needed to maintain power during the 3-day interruptions 
with baseline building stock. Critical-Load scenario includes heating and cool
ing loads. Assumes 100 % beginning storage state of charge. 

2 In both studies, the authors asked the respondents to select electric appli
ances they would like to use within a 20 Amp limitation, which was determined 
after testing several combinations of electric appliances that cover bare ne
cessities (i.e., critical demands).  

3 Critical lighting load is defined as interior light usage from 5pm to 12am.  
4 The ResStock model does not provide detailed plug load disaggregation. 

Therefore, we define our critical plug load as a constant 70 W demand, ac
counting for the typical usage of low demand computer, internet, and phone 
charger end-uses. 
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section, required storage sizing varies widely across individual homes in 
each location (see Fig. 6 for the distribution of results across all 1000 
building models per location). Electric-resistance heating is highly en
ergy intensive and providing backup power to homes with electric 
resistance heating over a 3-day interruption would require extremely 
large batteries in most locations (see Supplemental Fig. 9–8). The fat tail 
of the distribution in Supplemental Fig. 9–7 highlights the extent of 
electric resistance heating in Memphis and DFW. 

Fig. 4 shows that there is a linear relationship between the required 
storage size and the net critical load over the interruption event. The 
relationship implies a 1.1 kWh increase in storage size for each kWh 
increase in net load during an outage event across all locations and 
building models, aligning with storage charging and discharging in
efficiencies. This basic relationship underlies many of the results pre
sented later in this paper and can also serve as a useful heuristic for 
sizing storage systems. Deviations above the trend line (see insert in 
Fig. 4) are cases where the load shape/timing during the interruption 
impacts storage sizing, solar curtailment occurs, and/or the storage 
power constraint binds. 

3.2. Impacts of set-point adjustments, energy efficiency, and 
electrification 

In Fig. 5, we sequentially vary individual measures to show the in
cremental impacts of set-point adjustments, building envelope effi
ciency, heat pump retrofits, and full building electrification on changing 
the minimum storage size for all 10 locations studied. Our set-point 
adjustment measure reduces required storage size across all locations. 
The largest reductions (14–25 kWh) are in the five locations with hot 
summers and/or with a concentration of electric-resistance heating (DC, 
Memphis, DFW, Tampa, Phoenix). Effects in other locations are negli
gible, due to mild summers and fossil-based heating. Building envelope 
measures further reduce storage sizing across all locations similarly to 
the set-point adjustment measure. Set-point adjustments in cold weather 
locations become more impactful once heat pumps are installed: 8–14 
kWh reduction in median storage size when heat pumps are installed, 
compared to 1–3 kWh when the baseline building stock is analyzed. In 
contrast, in hot-weather locations, the impact of set-point adjustments is 
lower (though still meaningful) once heat pump and building envelope 
measures are installed: 4–8 kWh reduction in storage sizing vs. 14–25 

kWh in the baseline building stock. Similar results occur for the energy 
efficiency measures (see Fig. 9–15 in the supplemental data for more 
detail). 

Heat pump retrofits have different directional impacts on battery 
sizing depending on the location. In hot locations (Phoenix, Tampa, 
DFW, Memphis), heat pump retrofits reduce median storage sizing by 
~10–30 kWh, due to replacement of inefficient air conditioning. In cold 
locations where fossil-based heating is used in the current building 
stock, heat pump retrofits necessitate larger batteries (10–30 kWh more 
in Denver, Boston, Seattle; 50 kWh more in Duluth). Our electrification 
measure has negligible impact on storage sizing, given the small energy 
consumption by these loads over the duration of an interruption event. 
Required median storage size declines in some locations from replacing 
inefficient electric end-uses and the side-effect of heat-pump water 
heaters to reduce internal building cooling loads (e.g., in DFW, Phoenix, 
and Tampa). 

As previously noted, required storage sizing varies widely across 
homes in each location. Fig. 6 shows corresponding shifts in the un
derlying distribution that result from the building measures analyzed. 
Efficiency and (to a lesser extent) load flexibility measures tend to 
compress these distributions (blue line in Fig. 6). Heat pump retrofits 
compress the distributions in hot climates and in regions with a high 
concentration of electric-resistance heating in the baseline stock (e.g., 
Memphis and DFW). However, in fossil-heated cold climates, heat 
pumps significantly widen the distributions (e.g., Duluth, Denver, Bos
ton). Furthermore, the building measure impacts the season which 
drives storage sizing decision given that the net load calculation updates 
with the changing load profile resulting from a new building measure. 
DFW, Boston, Memphis, and Washington DC have summer power 
interruption start days in 20–40 % of their baseline residential building 
stock. That percentage is reduced to 0 % of the building stock when 
moving from the baseline to all measures building stock scenario (see 
Figs. 9 and 10 in the supplemental data section). All other locations’ 
interruption start day season distribution does not change due to the 
building stock scenario, with the winter season driving most of the 
interruption start days. Phoenix is the only area that retains a large 
majority of summer season system sizing once the all building measures 
scenario is applied. 

The analysis thus far assumed interruptions begin on the 90th 
percentile net-load day (challenging but not extreme conditions). Sizing 
the storage instead for less or more extreme conditions significantly 
impacts the required storage size, especially for homes with large elec
tric heating/cooling loads (Fig. 7). For that reason, sensitivity to inter
ruption timing is most acute for cold-weather homes with electric heat 
(all measures cases) and for inefficient hot-weather homes (baseline 
building stock case). Efficiency and load flexibility can reduce that 
sensitivity, effectively extending the range of interruption conditions 
over which a given PVESS can provide backup power. For example, 
incremental storage capacity needed when sizing based on a 90th rather 
than a 99th percentile net-load day is reduced from 65 kWh to 20 kWh in 
DFW or from 45 kWh to less than 5 kWh in Tampa. The ultimate decision 
on which sizing criteria will be up to individual households in collabo
ration with system installers. 

In many backup power applications today, customers back up a 
limited set of critical loads that exclude heating and cooling loads. For 
limited critical load backup without heating and cooling, storage sizes 
are quite small (<15 kWh) across all locations and are largely unaffected 
by the set of building measures (circles in Fig. 8). Whole-home backup 
requires about 30 kWh more storage, on average, compared to what is 
needed for backup of just critical loads with heating and cooling; that 
difference is largely unaffected by the set of load measures (triangles in 
Fig. 8). 

4. Discussion 

The results above focus on the technical impacts on PVESS sizing 
Fig. 4. Correlation between required storage size and net load of the power 
outage event with the baseline building stock. 
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decisions when providing backup power under a variety of end-use load 
assumptions. However, such results do not provide an indication of the 
market potential for this new backup power option amongst the resi
dential customer class. A 30 kWh storage system is at the upper end of 
the size range of what is typically observed in the residential market 
today [14]. We can determine what percentage of homes within our 
distribution of household building models would be able to technically 
meet their backup power needs with a system of that size, under our 
base-case power interruption conditions. 

Fig. 9 shows that a 30 kWh system could provide complete mitigation 
of power interruptions to some portion of the existing building stock, 
ranging from 6 % of homes in Phoenix to 90 % of homes in LA. However, 
through some combination of set-point adjustments, building envelope 

efficiency upgrades and (in hot climates) heat pump retrofits, this po
tential market for full mitigation can be raised to at least ~60 % of 
homes in all 10 regions. Such a high percentage suggests that the tech
nical capabilities highlighted in this paper could serve a sizable portion 
of the residential building stock in the 10 locations studied. In places 
dominated by cooling loads, the heat pump retrofit increases the 
addressable market (e.g. Phoenix, Tampa) whereas in places dominated 
by heating loads, that retrofit significantly decreases the addressable 
market (e.g. Duluth, Denver, Boston). Of course, any customer’s deci
sion to install a backup PVESS would entail economic considerations 
that incorporate a customers’ value of electric resiliency or value of lost 
load. Such analyses were out of scope for this paper. 

We also analyzed how our building measure scenarios impact the 

Fig. 5. Waterfall chart showing impacts on median storage sizing as different efficiency and electrification measures are sequentially added.  

Fig. 6. Distribution in Required Storage Size across Homes in Each Location for three building measures: (1) baseline, (2) set-points and efficiency upgrades, and (3) 
heat-pump retrofits. 
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number of days a 30 kWh PVESS could provide backup power to the 
residential building models. In Phoenix, moving from the baseline 
building measures to the all measures case increases backup potential 
from 1 to 7 days. In cold locations, electrifying space heating tends to 
have the opposite effect and shortens the backup period for a 30 kWh 
PVESS in Denver and Boston from 7+ days to 2 days. Required storage 
sizing scales more-or-less linearly with interruption duration (right 
insert Fig. 9–13 in the supplemental data), as daily PV generation 
typically is not enough to fully replenish the storage, so initial state of 
charge gets drawn down over the course of the event. 

We did not explicitly model electric vehicles (EVs) in this study, in 
part because while they could potentially be an additional load for the 
PVESS to serve, they could also be a large source of energy storage for 
backup power (see Fig. 9–17 in the supplemental data), but also because 
current EV charging methods and data sources are based on typical 
operating rather than power interruption conditions, when customers’ 
driving behavior could differ significantly [52]. Our results illustrate 

several cases where the large kWh sized batteries in bi-directional EVs 
could be essential to enabling full mitigation of interruptions via PVESS: 
Customers with heat pumps in cold-weather locations, especially for 
extreme cold-weather events/locations or, more generally, customers 
with particularly high consumption levels (relative to the medians in 
each location). Future work would need to consider how driving and 
charging behavior may differ significantly from the norm during a 
long-duration power interruption and how customers might balance 
deploying an EV for backup power use versus for serving driving de
mand. Our results provide valuable information to policymakers and 
market participants considering storage sizes required to effectively 
manage electricity demand during power interruption scenarios. 

When replicating our analysis using AMY data from 2011 to 2021 
(see Fig. 10), Phoenix shows slightly larger required storage sizes, for 
interruptions starting on either the 90th or 99th percentile net-load day 

Fig. 7. Sensitivity of median results to interruption start day. The interruption start day is defined for each individual building model based on the daily net-load. 
This figure explores variation away from our baseline assumption of the 90th percentile netload day. 

Fig. 8. Impact of backup load scenarios on median building results.  

Fig. 9. Breakdown of distribution of homes that require storage less than 30 
kWh across various load measures. 
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(no difference for 50th). Results for Boston show the opposite trend 
(TMY3-based sizing > AMY-based sizing). Directional differences be
tween the hot-weather and cold-weather location might suggest the 
impact of a changing climate, since TMY3 data rely on data through 
2005, while our AMY data is for the most recent decade (i.e., weather 
patterns have generally become warmer). On balance, though, our 
storage sizing results were not significantly different, suggesting that 
TMY3 data can still be relied upon when applied in resilience settings. 
More important is the choice of net load percentile as suggested in Fig. 7. 
Nevertheless, a changing climate might pose more serious challenges in 
the future as TMY3 data becomes more outdated. 

5. Conclusions 

In this paper, we analyzed the performance of PVESS in providing 
backup power across a wide range of geographies and load scenarios. 
Our approach provides an assessment of the technical potential of PVESS 
to enhance customer resilience within the residential sector. Our results 
relied on load profiles statistically representative of the current United 
States building stock, and given deep decarbonization policy goals, 
evaluated the impact of energy efficiency, load flexibility, and electri
fication measures on the PVESS system size required to provide backup 
power over long-duration power interruptions. We were able to capture 
the inherently interactive nature of the various measures analyzed. 

In hot-weather climates, the set of efficiency, flexibility, and elec
trification measures reduce the battery sizing needed for backup power 
over a 3-day interruption from a median (across all homes in each 
location) of roughly 90 kWh for the baseline building stock to 20 kWh 
once all measures are applied. Given typical residential PVESS sizing 
observed in the market today, these load measures would increase the 
addressable market for PVESS backup power in those locations from less 
than 10 % of homes today to more than 60 % in a future with highly 
efficient, flexible, and electrified homes. This result illustrates, in part, 
the value of pairing PVESS with building efficiency upgrades and smart 
home controls. Conversely, in cold weather locations, the switch from 
fossil-based heating to electric heat pumps leads to a substantial increase 
in backup power battery sizing, even after accounting for load re
ductions from building envelope efficiency and load flexibility mea
sures. In one cold weather location, for example, the median required 

battery size rises from less than 20 kWh in the baseline stock to 50 kWh 
once all load measures are applied. Maintaining existing fossil-based 
heating systems as a backup heating source in cold-weather locations 
may therefore be necessary in some cases, if households expect to rely on 
PVESS for backup power during long-duration power interruptions. We 
found that PVESS backup power for homes with electric-resistance heat 
is impractical; replacing with a heat pump is effectively a prerequisite. 
Electrified cooking and water heating have marginal impacts on backup 
storage sizing. 

Though our results focused on median system sizes across the dis
tribution of building models, we did show that the required storage 
sizing does varies widely across homes in each location, given the va
riety of building characteristics in the residential building stock. We also 
found that our results were quite sensitive to the interruption start day, 
with some locations having a 10x change in median system size when 
moving from a typical weather day to an extreme weather day. Effi
ciency and load flexibility can reduce that sensitivity, effectively 
extending the range of interruption conditions over which a given 
PVESS can provide backup power. Nevertheless, identifying the 
preferred sizing criteria for will be a difficult decision for homeowners 
and system installers. 

Bi-directional EVs may be essential to enabling PVESS backup power 
in some circumstances, given their typically large kWh sizes compared 
to our storage system sizing findings, but future research would need to 
consider how electric vehicle transport demands would compete with 
the household backup power use case in the event of a long duration 
interruption. Future research could also evaluate load flexibility beyond 
temperature set point changes, especially as it pertains to non-heating 
and cooling demands. Finally, this paper was focused exclusively on 
long-duration interruption events, which can be extremely costly for 
electric consumers, but are also the least common form of power 
interruption experienced by customers in the United States. Future work 
should consider how stochastic, short-term interruptions may be met by 
PVESS backup, especially considering economic operations that PVESS 
might be performing leading up to a power interruption event. Such 
work could incorporate estimates of the VoLL to provide estimates of the 
economic resiliency value of PVESS across short- and long-duration 
interruption events. 
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