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A Numerical Method for Parameterization of Atmospheric Chemistry' 
Computation of Tropospheric OH 

C. M. SPIVAKOVSKY AND S.C. WOFSY 

Division of Applied Sciences and Department of Earth and Planetary Sciences, Itarvard University, Cambridge, Massachusetts 

M. J. PRATHER 

NASA Goddard Space Flight Center, Institute for Space Studies, New York 

An efficient and stable computational scheme for parameterization of atmospheric chemistry is described. 
The 24-hour-average concentration of OH is represented as a set of high-order polynomials in variables such as 
temperature, densities of H20, CO, 03, and NOt (defined as NO + NO2 + NO3 + 2N20$ + HNO2 + }INO4) as 
well as variables determining solar irradiance: cloud cover, density of the overhead ozone column, surface al- 
bedo, latitude, and solar declination. •'his parameterization of OH chemistry was used in the three-dimensional 
study of global distribution of CH3CCI3 (Spivakovsky et al., this issue). The proposed computational scheme 
can be used for parameterization of rates of chemical production and loss or of any other output of a full chemi- 
cal model. Coefficients for the polynomials are computed to provide the least squares fit to results of the full 
chemical model. Highly overdetermined systems are used with the sets of independent variables selected ran- 
domly in accordance with the distributions expected in the atmosphere. The least squares problem is solved us- 
ing the Householder method of triangularization (by orthogonal transformations). The method allows detection 
and rectification of ill-defined conditions (i.e., linear dependence among terms), as well as evaluation of the in- 
dividual contribution of each term of the polynomial in reducing the residual vector. On the basis of that infor- 
mation the terms that have litfie bearing on the residual norm are discarded. Once the domain and the statistical 
distributions of independent variables are chosen, the entire parameterizafion procedure is implemented as a 
complete sequence of computer programs requiting no subjective analysis. The output of the procedure in- 
eludes estimates of accuracy of the approximation against an independent sample of points, and computer writ- 
ten FORTRAN subroutines to compute the polynomials. 

1. INTRODUCTION 

Efficient computation of rates of chemical production and loss 
is essential in the three-dimensional chemical transport models 
intended to study distributions of reactive atmospheric tracers. 
Direct calculation of these rates requires solution of a nonlinear 
system of kinetic equations relating the unknown rates to tracer 
concentrations. The number of calls to a chemical module in a 

three-dimensional simulation is typically counted in millions, and 
even if advanced numerical algorithms are used, it is extremely 
expensive to solve the kinetic system directly within the chemical 
tracer model (CTM). An altemative approach, pararneterization, 
h•volves replacing the nonlinear system with a set of explicit 
expressions describing the functional relationships between the 
unknown chemical rates (or concentrations of radicals, e.g., OH) 
and input parameters, such as tracer concentrations, temperature, 
pressure, and photodissociation constants (J values). 

Dunker [1986] proposed to represent the N-dimensional domain 
of independent variables as a set of rectangular cells and to 
approximate the outputs of a photochemical model in each cell 
with a second-order Taylor expansion about the center of the cell. 
Marsden et al. [1987] replaced their photochemical model with 
quadratic polynomials obtained as a least squares fit (LSF) to the 
model results. These low-order approximations, when successful, 
have an advantage of algorithmic simplicity and low cost. The 
LSF polynomials reproduce the original function better in the 
integral sense than the Taylor expansions, which give an exact 
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value at the center of the cell and larger errors toward the boun- 
daries. 

In more complicated cases, however, higher-order approxima- 
tions are preferable to avoid using an excessively fine grid, which 
in the N-dimensional space may lead to astronomical numbers of 
grid cells and thus to impractical cost in computer time and 
storage. However, the LSF procedure for high-order polynomials 
is often regarded as unsuitable, unstable, or too risky. The pur- 
pose of this paper is to describe an efficient and stable parameteri- 
zation procedure based on computing high-order LSF polynomi- 
als. The procedure relies heavily on algorithms described by Law- 
son and Hanson [1974]. It was applied to parameterization of glo- 
bal OH used in the three-dimensional study of the distribution of 
CH3CC13 [Spivakovsky et al., this issue], and it is being presently 
applied to parameterization of tropospheric chemistry for studies 
of regional pollution [Jacob et al., 1989]. 

2. DESCRIFIION OF TtIE PARAMEIERIZATION PROCEDURE 

The concentration of OH (or any other output of a photochemi- 
cal model) can be regarded as a function of N independent vari- 
ables (parameters) such as concentrations of trace gases, tempera- 
ture, and radiation conditions. The task of parameterization is to 
f'md an analytical expression that mimics the functional relation- 
ship between the input parameters and the output of the full chem- 
ical model (FCM). As the first step of the parameterization pro- 
cedure, we thoroughly sample the function using the FCM to 
obtain a set of points designated below as true points. An ordinary 
regular scheme of sampling, with points in the parameter space 
forming a rectangular grid, leads to enormous number of the FCM 
calculations and results in a sample that, despite its size, still does 
not define the most useful higher-order terms. For example, if 
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three values were used for each of the N parameters in a regular 
sampling scheme, then, for N=10 as much as 59,049 FCM calcula- 
tions have to be performed, but only terms up to the second order 
in each variable can be used (the maximum order for each variable 
is determined by the number of projections onto the corresponding 
axis). 

We chose to generate true points by selecting values for param- 
eters randomly in accordance with the distributions expected in 
the atmosphere for each of the parameters. The random genera- 
tion scheme provides the following advantages: (1) it allows us to 
achieve the best accuracy for the most prevalent conditions; (2) 
the number of FCM calculations is not dictated by a particular 
design of the sampling scheme; (3) the number of points projected 
onto each axis in the parameter space is roughly equal to the total 
number of points and in practice does not present a limitation for 
using terms of any reasonable order in a given variable. To ensure 
that the resulting polynomial reflects the general properties of the 
original function rather than a particular alignment of points in the 
sample, we use highly overdetermined LSF systems with the 
number of data points exceeding the number of unknowns by at 
least a factor of 10. 

In solving the least squares problem we apply the method of 
Householder triangularization [Lawson and Hanson, 1974] to an 
overdetermined linear system A,• xn x Xn = B,•, where A,•,•, is a 
matrix of rn rows (with each row consisted of terms of the polyno- 
mial evaluated at the associated true point in the parameter space) 
and n columns (corresponding to n terms of the polynonfial); 
unknown polynomial coefficients form the n-dimensional vector 
X,,; ordinates of the true points (i.e., results of the FCM 
calculations) define the m-dimensional vector B,•. The House- 
holder method of solution for LSF problems is superior in stability 
to the use of normal equations (ArA),x, x Xn = A r x B,•, com- 
monly recommended in handbooks. As shown by Lawson and 
Hanson [1974] precision v 2 has to be used to form and solve nor- 
mal equations for the same class of problems that can be solved by 
the Householder method with precision v. 

The algorithm HFTI by Lawson and Hanson [1974] takes 
advantage of orthogonal transformations, which do not change 
euclidean length and scalar product of vectors. Combining 
orthogonal transformations with interchange of columns, the algo- 
rithm transforms matrix A,,,,• • into an upper triangular matrix with 
diagonal elements nonincreasing in magnitude. Columns with 
diagonal elements smaller than a certain threshold (and associated 
terms of the polynomial) can be discarded, eliminating ill condi- 
tions. Inherent to this method is an immediate evaluation of the 

role that each column of matrix A (and each term of the polyno- 
mial) plays in reducing the residual vector. 

The algorithm HFTI can .be outlined as follows. At step 1 
columns of A,,,,•, are interchanged to assign position 1 to a 
column of maximum euclidean length; the Householder t•ansfor- 
marion Qx is applied to A,,,,• • so that components 2 through rn of 
the first column in Q• A are zeroed; the magnitude of the first ele- 
ment of the first column rx then is equal to the euclidean length of 
the column. Note that if any of the columns of A are "almost 
parallel" to its first column, they will be transformed into columns 
"almost parallel" to the first column of QxA (because Q1 is 
orthogonal). Columns of this sort are easily detectable in Qa A as 
those with small magnitudes of the sum of squared components 2 
through m. At step 2 the column for which this sum is the greatest 
is interchanged with the second column of Qx A; the orthogonal 
transformation 

ø 1 Q2= 

where Q•t is in turn the (rn-1)-dimensional Householder transfor- 
marion that results in zeroing components 3 through m of the new 
column 2, is then applied to matrix Q• A; the magnitude of the 
diagonal element r2 is then equal to the euclidean length of the 
vector comprising components 3 through rn of column 2 kn Q• A. 
Again, if any of the columns of Q• A are "almost parallel" to the 
plane defined by the two first columns of Q•A, they will be 
transformed by Q2 into columns whose sum of squared com- 
ponents 3 through rn is small. Therefore at the next step, when 
candidates for position 3 in Q2Q• A are considered, these columns 
will be left behind. Note, that Q2 affects only columns 2 through 
n of Q• A and rows 2 through rn of Q• A and Q• B, as will transfor- 
mations QJ (/=3, '-' n) at subsequent steps affect only columns j 
through n of QOq)A and rows j through rn of Qø-•)A and 
Here Q0-•> denotes Qj_• x'"xQ•. 

Continuing in this way, one achieves the desired triangulariza- 
tion of A,,,,•,, as R = Qø0A, with the diagonal elements ra, r2'"r, 
which possess two important characteristics: they are non increas- 
ing in magnitude and each element ri provides a measure of linear 
independence for the first i columns of A,,,•,,. Consequently, if it 
is found that I r•l is smaller than a certain linear dependency toler- 
ance % the process of triangularization should be stopped at a step 
i and terms i through n of the polynomial discarded. 

As noted above, columns of A,,,,•,, can also be rated by their 
contributions to reducing the euclidean length of the residual vec- 
tor A= A,•x,X,•-B,•. Conveniently, these contributions arise as 
an additional benefit of the algorithm, in the form of components 
of vector Q('"IB. After step j, i.e., after triangularizarion of j 
columns is completed (and, hence, j terms of the polynomial are 
defined), the norm of the residual vector A (# satisfies the equation 

m 

I I A {d1112 = I I Q{J1(A,,, ,•j x Xj-B,,,) I 12 = I; b• O1 2 

where bi 0• denote components of QøIB. Since transformation 
Q•+•) does not change the sum of squared components j+l through 
m of vector Q•#B, 

I IA(/) 112 = I; bi (/+•) 2= bd+• (/+•) 2 + II A0+I)I 12 

i.e., adding a term j+l reduces the squared residual norm by 
bd+• •l) 2. Hence a measure of effectiveness of a term i can be 
given by I bi ½01 / II B,,, II. We therefore have a procedure for 
discarding the terms that are ineffective in improving the fit. 

Selection of appropriate terms for the polynomial is an essential 
part of the parameterizarion procedure. The goal is to compose a 
set that results in a well-conditioned matrix A and contains those 

and only those terms that significantly reduce the residual vector. 
This process is carried out automatically, without relying on intui- 
tion or a priori knowledge of the behavior of the function. We 
begin the process of selection by using a set of about 300 to 400 
lower-order terms. Prior to computation of the matrix A,,,,•,,, we 
rescale parameters to approximately [-1, 1] range. Using HFTI, 
we dispose of the terms that would cause ill conditions and of 
those that have little bearLag on the residual norm. We then redo 
the LSF calculation with the remaining terms or, if the residual 
vector is not sufficiently small, with the set expanded by a new 
portion of higher-order terms. On the basis of our overall experi- 
ence with parameterization of functions arising from chemical 
models, we exclude the crossterms of more than four parameters, 
thus speeding up considerably the selection process. Although 
this process usually leads to an acceptable approximation, it does 
not necessarily result in the optimal choice of terms, because the 
individual contributions of terms depend on contributions of other 
terms included in the LSF system. An alternative approach lead- 
ing to mutually independent contributions (e.g., singular value 
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decomposition) would involve a linear change of variables, i.e., 
the original function would be approximated by a linear combina- 
tion of polynomials, rather than monomials as in the present 
scheme. 

The HFTI algorithm provides solutions to the LSF problem for 
multiple right-hand-side vectors (e.g., various output quantities of 
the FCM) at little additional cost. We adjusted the HFTI algo- 
rithm for sequential accumulation of rows of A,, x •, also described 
by Lawson and Hanson [ 1974]. This modification is important for 
processing vast systems originating from problems that involve 
polynomials in a large number of independent variables (e.g., a 
typical size for systems we used was approximately 3,000 x 300). 
The number of computer operations (defined as a multiplication or 
division and an addition or subtraction) for the Householder 
method of solving LSF problem is approximately equal to 
mn2(k+l)/k, where k is the number of rows in the portion of the 
sequentially added data [Lawson and Hanson, 1974]. Thus the 
sequential processing of true points requires litfie additional time 
for solving the LSF problem. (In the extreme case of k=l it causes 
an increase in the number of operations only by a factor of 2). 

For computers with physical memory large enough to accom- 
modate the complete matfix Am,•,, the selection process can be 
organized more efficiently by discarding less useful terms as soon 
as the associated column is chosen for the next position in the 
upper triangular matrix R. At a step i, as soon as the column i in 
Rm,•i = Qt0 A•,•i is established, one can compute b! 0 and, depend- 
ing on the magnitude of I b?l / I I B• I I, either keep this column 
(and term) or discard it and resume the search for column i among 
columns i+1 through n of Qtt-•)A. 

Once the ranges and the statistical distributions of the parame- 
ters are chosen, the entire parameterization procedure is carried 
out by a complete sequence of computer programs, requiring no 
subjective analysis. The output of the procedure consists of coeffi- 
cients for the polynomials and computer-generated FORTRAN 
subroutines for efficient computation of the polynomials (e.g., 
within the CTM). The FORTRAN program that generates these 
subroutines is designed to ensure that polynomials are calculated 
with a minimum number of multiplications. Figure 1 gives an 
example of the computer-generated subroutine for calculation of 
the OH concentration as a function of five parameters x(/) which 

FUNCTION Fill IX, C) 
DIMENSION X15),C1146) 
Flll-0. 
FIll-Fill+ 

* C( 1) 
* +X (1) * (C ( 3) +X (1) * (C ( 9) +X (1) * (C (45) +X 11) * (C (50) +X (1) * ( 
* C( 20)+X(1)*(C( 51)+X(1)*(C( 15)+X(1)*(C( 24)+X{1)*(C{ 37) 
* +X(1)*C( 42)))))+X(2)*C( 69)+X(3)*C( 53)+X(4}*C( 83)+X(5)* 
* C( 77})+X(2)*C( 59)+X(3)*C( 44)+X(4)*C{ 57)+X(5)*C( 65))+X(2)* 
* C( 97)+X(3)*(C( 76)+X(2)*C( 79)+X(3)*C( 64))+X(4)*(C( 54)+X(2)* 
* C (101) +X(3)*C (89) +X (4) *C (116)) +X (5) * (C (109) +X (2) *C (107) +X (3) * 
* C( 87)+X(4)*C(137)+X(5)*C(120)))+X(2)*C{ 39)+X(3)*(C( 38)+X(2)* 
* C( 91))+X(4)*(C( 49)+X(2)*C( 74)+X(3)*C( 94))+X(5)*(C(60) 
* +X(3)*C( 85)+X(4)*C1 90)))) 

Fill-Fill 

* +X(2)*(C( 16)+X(1)*C( 31)+X(2)*(C( 18)+X(1)*C( 55)+X(2)*(C(47) 
* +X(1)*C(125)+X(2)*(C( 10)+X(1)*C( 88)+X(2)*(C( 25)+X(2)*(C( 7) 
* +X(2)*(C( 26)+X(2)*(C( 13)+X(2)*(C( 52)+X(2)*C( 33}))))}+X(4)* 
* C( 99))+X(3)*C(134)+X(4)*C(105)+X(5)*C(117))+X(3)*C( 92)+X(4)* 
* C( 62)+X(5)*C(82))) 

Fill-FIll 

* +X(3)*(C( 12)+X(1)*C( 35)+X(2)*(C( 63)+X(1)*C( 73))+X(3)*( 
* C( 48)+X(1)*(C( 61)+X(1)*(C(68)+X(4)*C(122)))+X(2)*(C(129) 
* +X (1) *C (136)) +X (3) * (C (32) +X(1) * (C (127) +X (1) *C (126)) +X (2) * ( 
* C(132)+X(1)*C(145))+X(3)*(C( 14)+X{1)*C(141)+X(3)*(C( 17)+X(1)* 
* C(144)+X(2)*C(143)+X(3)*(C( 8}+X(3)*(C( 21)+X(3)*(C( 11)+X(3)*( 
* C( 43)+X(3)*C( 30))))))+X(4)*C( 86)}+X(4)*C(81)+X(5)*(C(135) 
* +X (1) *C (146)) ) +X (4) * (C (113) +X (1) *C (111)) +X (5) * (C (138) +X (1) * 
* C (139)) ) ) 

Fill-Fill 

* +X(4)*(C( 6)+X(1)*C( 40)+X(2}*(C( 34)+X(1)*C( 78))+X(3)*( 
* C( 23)+X(1)*C(128)+X(2}*C( 70))+X(4)*(C( 22)+X(1)*(C( 46)+X(1)* 
* C( 71)}+X(2)*+X(2)*C(130)+X(3)*C( 96)+X(4)*(C(36)+X{1)*C(106) 
* +X(2}*C( 98)+X(3)*C{ 95)+X(4)*(C( 5)+X(1)*C( 93)+X(4}*(C(27) 
* +X(4)*(C( 2)+X(4)*(C( 29)+X(4)*(C( 4)+X(4)*(C( 56)+X(4)* 
* C(19)))))))+X(5)*C(131)))) 

Fill-Fill 

* +X(5)*(C( 28)+X(.1)*C( 41)+X(2)*(C( 58)+X(1)*C( 72))+X(3)*( 
* C (108) +X (1) *C (133) +X (2) *C (142)) +X (4) * (C (67) +X (1} *C (104) +X (2) * 
* C (100)) +X (5) * (C (118) +X (1} * (C (115) +X (1) *C (123) } +X(2) *C (124) 
* +X (4) * (C (119) +X (1) *C (121}) +X (5) * (C (75) +X (1) *C (114) +X (4) *C (140} 
* +X(5)*(C{103)+X(5)*(C( 66}+X(5)*(C(102)+X(5)*(C( 80)+X(5)*( 
* C(84) +X(5) * (C(112) +X(5) *C {110) ) ) ) ) ) ) ) ) ) 

RETURN 

END 

Fig. 1. The computer-written FORTRAN function to compute the concentration of OH expressed as a 
polynomial in five variables: NOt, 03, CO, water vapor, and temperature. 



18,436 SPIVAKI)VSKh ET AL.: PARAMETERIZATI{)N ()t, (;tlEMISIRS: NUMERI½'5 

correspond to concentrations of NO• (defined as 
NO + NO2 + NO3 + 2N2Os + HNO2 + HNO4), CO, 03, water 
vapor, and temperature, respectively. In addition to these subrou- 
tines and associated polynomial coefficients, the output of the 
parameterization procedure contains estimates for accuracy of the 
approximation, (namely, results of tests performed using a 
separate sample of true points that does not overlap with the sam- 
ple used to form the LSF system), and a list of the individual con- 
tributions of different terms to reducing the residual norm. 

For parameterization of the concentration of OH, the regions of 
different regimes were identified prior to the LSF computations 
(see section 3 and Table 1). Then for each region a single polyno- 
mial was obtained. However, when we extended the parameteri- 
zation for a study of regional O3 pollution [Jacob et al., 1989], 
which required adequate representation of chemistry in both 
remote and highly polluted environments, and thus the accommo- 
dation of a much wider range for free parameters, at a certain 

stage of the selection process the augmentation of additional terms 
was no longer reducing the residual norm at a satisfactory rate. 
Therefore the parameter domain had to be subdivided and a 
separate polynomial obtained for each regime. In general, the 
manual search for suitable subdivisions in the multidimensional 

space might be difficult. In the future we plan to implement a 
computerized search for optimal subdivisions based on the pro- 
cedure outlined below. 

The N-dimensional domain can be divided into two parts by a 
plane 

Y-atx•+an+z = 0 
b•.l 

where xl denote parameters. Coefficients at (for i-- 1, "-, N+I) can 
be obtained as a solution to the following optimization problem. 
Define function p(aa, a2, '", an.•) as a root-mean-square error 
(r.m.s.) for a piece-polynomial function composed of two second- 

TABLE 1. Ranges for Independent Variables Used in the Parameterization 
of Chemistry 

Independent 
Variable 

(Parameter) 

Tropics Middle Latitudes Middle Latitudes Middle Latitudes 
Year Round Summer Spring•all Winter 

NOt, pptv 5-1000 5-1000 5-1000 5-1000 

03, 10 • mol cm -3 1-15 1-25 1-25 1-25 

CO, ppbv 40-300 50-600 50-600 50-600 

H20 a 0.1-4 0.1-4 0.1-4 0.1-4 

ATemperamre', K -15 to 15 -20 to 20 -20 to 20 -20 to 20 

03 column, DU 195-295 250-430 250430 250-430 

Latitude 30øS-30øN 30o-90 ø 30ø-90 ø 30o-90 ø 

Solar declination • -23 ø to 23 ø 10 ø to 23 ø -10 ø to 10 ø -23 ø to-10 ø 

Ground albedo 0.05-0.3 0.05-0.45 0.05-0.45 0.05-0.45 

Cloudiness c 

below 800 mb 0-0.7 0-0.7 0-0.7 0-0.7 

800-500 mbar 0-0.3 0-0.3 0-0.3 0-0.3 

500-200 mbar 0-0.6 0-0.6 0-0.6 0-0.6 

200-150 mbar 0-0.3 

a Ranges for H20 and temperature are given in factors and increments, respectively, with respect to the mean seasonal 
vertical profiles [Oort, 1983]. 

• Ranges for solar declination are given for the northern hemisphere, with the appropriate change of sign for the 
southern hemisphere. 

c Cloud albedo is assumed to be 50%, 40%, 30%, and 20% for clouds below 800, at 800-500, at 500-200, and at 
200-150 mbar, respectively. 
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order polynomials with a separate LSF •?ynomial for each of the 
two parts of the domain: (1) Y•aixi+aml>0 and (2) 

•=1 
N 

Eaixi+aml < 0. Determine coefficients al (for i=1,2, ..., N+I) as 
i=l 

those that define a minimum of p(a•, a2, '", am•), using, for 
example, the method of steepest descent. Multiple calls to the 
LSF procedure will be necessary for solving this minimization 
problem. However, for a second-order polynomial, these calls are 
relatively inexpensive. An appropriate choice of the starting point 
for the descent may considerably speed up the minimization pro- 
cess. The same method, but with the first-order LSF polynomials 
(for which the LSF calculation is trivial) can be used to determine 
the starting point. After the plane of optimal subdivision is deter- 
mined the full procedure with the automatic selection of appropri- 
ate higher-order terms would be carried out for each subdivision, 
and, if necessaxy, further subdivision performed. 

3. PARA•RIZATION OF GLOBAL OH 

The 24-hour-average concentration of OH was expressed as a 
polynomial in 13 independent variables including temperature, 
radiation conditions, and concentrations of 03, NOt, CO and water 
vapor. Table 1 summarizes the range of applicable values for the 
independent variables. Separate polynomials were obtained for 
different pressure layers (see Table 2) and for four different 
regimes: for latitudes 30 ø - 90 ø in summer; in winter; in spring 
and autumn; and for the tropics (30øS-30øN) year around. 

TABLE 2. The r.m.s. Errors of the Polynomial Fit 

Table 2 summarizes results of a test based on extensive sam- 

pling of the OH surface in the 13-dimensional parameter space. 
For each pressure level in the table we conducted 3,000 simula- 
tions (in addition to those used in the LSF system) using the FCM 
and the polynomial expressions. To ensure adequate representa- 
tion of various atmospheric conditions, the input parameters for 
the test sample (as for the sample used in the LSF system) were 
chosen randomly in accordance with the distributions expected in 
the atmosphere. The r.m.s. given in percent of the mean OH for 
the sample is used as a measure of accuracy. The r.m.s. is signifi- 
canfly less than 10% for the tropics and for the low and middle 
troposphere at higher latitudes in all seasons but winter. A higher 
r.m.s. for winter (about 26%) and for the upper troposphere in 
other seasons (less than 13%) could have been reduced if required, 
but the effort was unwarranted since associated rates of reaction 

with CH3CC13, CO, CH4, i.e., tracers that we intended to study 
using the present parameterization of OH, are inconsequential. 
The mean error of the fit, a measure of systematic error for a given 
test sample, is less than 1% for all regions of parameter space. 

Figure 2 illustrates the accuracy of the approximation. The con- 
centration of OH is shown as a function of two parameters, O3 and 
NOt, with other parameters fixed at intermediate values. The sur- 
face was obtained using the polynomial expression. Also shown 
is a surface defined by the difference between OH concentrations 
computed using tile polynomial fit and the FCM. This difference 
is negligibly small; largest errors are associated with the edges of 
the domain. 

Figure 3 shows examples of vertical profiles for a range of con- 
ditions giving high, low, and intermediate OH values. The curves 
computed using the polynomials closely track results from the 

Pressure, 30øS-30øN 30ø-90 ø 30ø-90 ø 30ø-90 ø 
mbar Summer Spring•all Winter 
1000 4 6 8 22 

900 4 6 8 22 

800 4 6 8 24 

700 4 6 8 24 

500 4 7 8 26 

300 5 11 10 20 

200 6 13 10 21 

150 6 

100 6 

Root-mean-square errors are given for values of OH com- 
puted using analytic expressions compared with values cal- 
culated from the full photochemical model, for each region 
and altitude, in percent of the mean OH for the sample of 
3,000 points (chosen randomly). The percentage of annual 
loss for CH3CC13 (by reaction with OH) was 76, 17, 6, and 
1% in tropics year around, and in mid-latitudes in summer, 
spring and wi?:'•ter, respectively. 

Fig. 2. Concentration of OH cftculated using the polynomial (sur- 
face in solid lines). The surface given in dashed lines represents 
file difference between OH concentrations computed using the full 
scale chemical model and the parameterization. The concentration 
of OH is given as a function of the concentrations of O3 and NOt at 
the surface at 45 ø at the summer solstice. Other parameters were 
fixed at typical values, H20=2.37x10 -z volume mixing ratio, 
CO=90 ppbv, temperature = 302.6 K, ozone column =245 DU, 
surface albedo=0.09, cloud cover of 20%, 8%, 12%, and 6% at 
800, 500, 200 and 150 mbar, respectively. 
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Fig. 3. Examples of OH profiles calculated using the FCM 
(dashed lines) and the parameterization (solid lines). (a) Calcula- 
tions were performed for various background concentrations and 
temperatures, with insolation appropriate for the equator at 
equinox. Case 1 (Figure 3a) represents most probable conditions 
within the prescribed distribution: NOt = 100pptv, CO=90ppbv, 
Oa =6x10 n molecules can -a, with water vapor and temperature 
from mean tropical profries [0ort, 1983]. Case 2 (Figure 3a) 
represents higher values than in case 1: NOt = 300 pptv, 
CO--180ppbv, O• =9xlO • molecules cm 4, water vapor equal to 
twice the mean, with temperature 5" higher than the mean. Case 3 
(Figure 3a) corresponds to lower values than in case 1: 
NOt = 33 pptv, CO = 60 ppbv, Oa -- 3xlO • molecules cm -a, water 
vapor three .times lower than the mean and temperature 5" lower 
than the mean. Case 4 (Figure 3a) represents less probable condi- 
tions that result in especially high values for OH: NOt = 100Opptv, 
CO =40 ppbv, O• = 1.SxlO •2 molecules cm 4, water vapor equal to 
four times the mean. (b) Case 1 is the same as case 1 in Figure 3a 
and is given for comparison with calculations that assumed 
reduced and elevated levels of radiation. In all cases in Figure 3b, 
NOt, CO, Oa, water vapor, and temperature are fixed as in case 1 
Figure 3a. Case 2 corresponds to reduced insolation for 30øN and 
declination-23 ø (January) and ozone column of 295 DU. The sur- 
face albedo was set to 0.05 and cloud cover to 70%, 30%, 60% 
and 30%. Case 3 represents full insolation at the equator at 
equinox, with ozone column 195 DU, surface albedo of 0.3, and 
no clouds. 

FCM in all cases, including those with extreme values for insola- 
tion and background concentrations. In summary, results of 
extensive testing show that the polynomials derived here accu- 
rately represent the FCM for OH. At the same time, the computa- 
tional cost was reduced by more than a factor of 600. 

Solar irradiance as a function of wavelength is one of the 
factors that determine the OH concentration and rates for chemical 

reactions in the atmosphere. Solar irradiance in turn is determined 
by solar zenith angle, cloudiness, surface albedo, and density of 
the overhead ozone column. Clearly, it is in the interest of both 
expediency of parameterizafion procedure and efficiency of the 
CTM computations to separate the two functional dependencies: 
(1) chemical reactivity on the level of solar irradiance and (2) 
solar irradiance on the conditions determining the number of pho- 
tons available. Photolysis rates for reactions 

Oa + hv --> O(•D) + O2 

NO2 + hv -o NO+O 

correspond m two most important wavelength bands for the tro- 
pospheric chemistry and can be chosen as the parameters that 
describe radiation conditions. We applied this approach success- 
fully to later work. For the present parameterization, a sufficiently 
accurate (although somewhat less elegant) approach was used. 
For each of the regions a polynomial in such independent vari- 
ables as temperature and concentrations of NOt, Oa, CO, and 
water vapor was obtained for radiation conditions fixed at an inter- 
mediate level; a separate polynomial in such variables as latitude, 
solar declination, four layers of cloudiness, density of ozone 
column, surface albedo, and concentrations of Oa and NO, was 
defined as a correction factor to represent the full range of radia- 
tion conditions for the region. We also found in subsequent work 
that the detailed subdivision of the domain by pressure used in the 
present parameterization was unnecessary. Pressure can be treated 
as an additional parameter for three or fewer regimes, e.g., lower, 
middle, and upper troposphere. 

4. SUMMARY AND CONCLUSIONS 

The computational scheme described here allows us to represent 
a model output as a high order polynomial in the input parameters 
of the model. The following points are essential for the success of 
the procedure. (1) Highly overdetermined systems (rn>10n) 
should be used. (2) Regular rectangular schemes of sampling the 
domain should be avoided. Random generation of parameters in 
accordance with the distributions expected in the atmosphere pro- 
vides an excellent scheme. (3) The LSF system in the form 
A= x,,xX,, = B,, rather than in the form of normal equations should 
be used. (4) The Householder method for solving the LSF system 
should be used. It provides a mechanism for sorting out columns 
of the original matrix A (and hence the associated terms of the 
polynomial) to select those that do not cause ill conditions; in 
addition, it makes readily available the individual contribution of 
each colunto (and term) in reducing the residual norm, enabling 
further selection of the terms on the merits of effectiveness. 

Terms involving more than four parameters do not prove to be 
particularly useful in reducing the residual norm. When the 
number of parameters N is large, crossterms represent extensive 
sets and a priori elimination of this group may speed the selection 
process considerably. 

Rates for photodissociation of O3->O(•D) and NO2 can be 
used to characterize the level of solar irradiance. These J values 

can be used as input parameters in parameterization of chemical 
rates (or other components of the solution of the kinetic equa- 
tions). The J values, in turn, can be computed using separate 
polynomials describing the functional dependence on cloudiness, 
density of the ozone column, solar zenith angle, and surface 
albedo. 

The present parameterizafion of 24-hour-average global OH in 
the form of computer written FORTRAN subroutines and coeffi- 
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cients for evaluating the polynomials can be obtained from the 
authors. It was used in the three-dimensional study of the distribu- 
tion of CHjCC13 described by Spivakovsky et al. [this issue], and 
it is presently being used for studies of global distributions of CO 
and CH,• at Harvard and at the Goddard Institute for Space Stu- 
dies. 
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