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Inferences about Uniqueness in Statistical Learning 
 

Anna Leshinskaya (alesh@sas.upenn.edu) and Sharon L. Thompson-Schill (sschill@psych.upenn.edu) 
Department of Psychology, University of Pennsylvania 

Stephen A. Levin Building, 425 S. University Ave 
Philadelphia, PA 19104 

 
 

Abstract 
The mind adeptly registers statistical regularities in 
experience, often incidentally. We use a visual statistical 
learning paradigm to study incidental learning of predictive 
relations among animated events. We ask what kinds of 
statistics participants automatically compute, even when 
tracking such statistics is task-irrelevant and largely implicit. 
We find that participants are sensitive to a quantity governing 
associative learning, DP, independently of conditional 
probabilities and chunk frequencies, as previously considered. 
DP specifically reflects the uniqueness, as well as strength, of 
conditional probabilities; we find that uniqueness is equally 
affected by a single strong alternative predictor as by several 
weak predictors. Performance is well captured with an 
adapted version of the Rescorla-Wagner delta learning rule 
(Rescorla & Wagner, 1972). We conclude that incidental 
predictive learning is governed by considerations of 
uniqueness, and that this is computed by normalizing 
conditional probabilities by events’ base-rates. This opens the 
possibility of common mechanisms between statistical 
learning, associative learning, and causal inference.  

Keywords: statistical learning; associative learning 

Introduction 
Our minds adeptly register stable patterns in experience. For 
example, we spontaneously encode the predictive relations 
among sequentially presented stimuli (Saffran, Aslin, & 
Newport, 1996; Turk-Browne, Jungé, & Scholl, 2005). This 
phenomenon, statistical learning, takes place without 
conscious effort, feedback, or reward. It suggests the 
existence of a learning mechanism operating in the 
background of our minds to produce mental models of our 
world. Two major questions are just how inferentially 
complex this mechanism might be, and what are its relations 
to other learning phenomena. 

The literature on causal reasoning, contingency learning, 
and classical conditioning (for a review: Mitchell, De 
Houwer, & Lovibond, 2009) universally describes a core 
phenomenon of some inferential complexity: learners do 
more than register that two stimuli co-occur, but also 
compute whether they predict each other uniquely and 
independently, as if attempting to determine a causal model. 
Suppose two events A and B coincide, such that after most 
occurrences of A, B occurs. However, B also occurs without 
A at a very high rate. One would not represent a strong link 
between A and B in this case. This consideration is captured 
by a foundational learning formula, DP (Allan, 1980; 
Rescorla & Wagner, 1972; Shanks, 1985): 

 
 

 
This equation states that learning is a product of both how 

often B follows A, as well as how often it appears without 
it. This consideration is at the core of the Rescorla-Wagner 
learning rule, which accounts for phenomena concerning 
uniqueness in classical conditioning and contingency 
learning, termed cue selection or blocking effects (Kamin, 
1968; Rescorla & Wagner, 1972; Shanks, 1985). After 
learning that stimulus B coincides with an outcome (B+), 
learning that both A and B yield an outcome (AB+) leads to 
weak associative strength between A and the outcome; this 
less the case than if participants saw only AB+ trials. Thus, 
judgments about the predictive importance of A are affected 
by whether a different stimulus is also predictive. That is, 
learners care about the unique predictiveness of stimuli.  

Surprisingly, whether participants’ learning follows this 
uniqueness principle in statistical learning tasks has not 
been tested (c.f., Sobel & Kirkham, 2006, 2007). The 
extension is not trivial because statistical learning tasks 
differ substantially from those of causal reasoning and 
classical conditioning. There are two important differences. 
The first is that in statistical learning of temporal relations, 
stimuli typically appear one by one, and do not appear in 
compounds like in classical blocking paradigms. The 
uniqueness of a prediction from A to X would thus depend 
on whether X follows stimuli other than A (e.g., B) on 
separate trials. While different in form, this still captures the 
deeper principle behind cue selection or blocking: that 
causes should increase the probability of their effects above 
and beyond what one might expect otherwise.  However, the 
influence of such BX trials on AX representations would 
require a more sophisticated computation than the Rescorla-
Wagner model in standard form (Kruschke, 2008) for 
reasons we discuss in depth later, and furthermore, may not 
occur as robustly as classic blocking.   
    A second difference is that learning in statistical learning 
tasks is largely incidental. In associative and causal tasks, 
the goal to predict the relevant outcomes is strongly 
incentivized by task instructions or the inherent value of 
stimuli (shocks or rewards). By contrast, in statistical 
learning paradigms, participants passively observe streams 
of events, with no strategic advantage or instruction to 
identify predictive relations. The number of stimuli, and 
their rapid, continuous presentation, prevents explicit 
tracking of their rates of co-occurrences. Learning thus takes 
place incidentally, with contents typically unavailable for 
conscious report (Brady & Oliva, 2008; Kim, Seitz, 
Feenstra, & Shams, 2009). This is unlike all causal 
reasoning experiments and many conditioning experiments 
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(Mitchell et al., 2009). But while the learning situations 
differ, principles of learning may be preserved (Sobel & 
Kirkham, 2007). 

In Experiment 1, we demonstrate that statistical learning 
is subject to considerations of uniqueness: that learning 
reflects not just the conditional probability relating two 
events, a cause and an effect, but whether that relation is 
unique. Experiment 2 suggests that non-uniqueness can 
arise from either a strong alternate predictor, or the overall 
base-rate of the effect. We then adapt the Rescorla-Wagner 
learning model (Rescorla & Wagner, 1972) to account for 
these results. Overall, we suggest that during incidental 
learning, conditional probabilities are spontaneously 
normalized by events’ base-rates, and that learning takes 
place when these relative values are high. This results in 
sensitivity to uniqueness. In this way, we suggest that there 
is more in common between statistical and associative 
learning than previously considered. Experiment materials, 
data, and code are available at https://osf.io/up8qz/. 

Experiment 1 
We tested whether learners are sensitive to uniqueness in a 
visual statistical learning (VSL) task. Participants saw two 
distinct event sequences, each composed of a unique set of 
animated events (Figure 1A). Each sequence contained one 
strongly predictive event pair—a cause and an effect—
whose uniqueness we varied. In both sequences, the first 
term in the DP formula above was matched: the probability 
that the effect appeared given that the cause appeared on the 
previous trial was equally high in both1. However, in the 
low DP sequence, we increased the value of the second 
term, P(effect|~cause), by having the effect follow two other 
events and itself more often than in the high DP sequence. 
Thus, the two conditions were matched in terms of the 
transition probability from cause to effect, as well as in the 
number of times a cause-effect pair appeared overall (chunk 
frequency), but differed in terms of how uniquely the cause, 
rather than other events, predicted the effect. We expected 
learning to be worse in the low DP condition.  

Method 
Participants 100 participants were recruited and tested via 
Amazon Mechanical Turk. Participants provided electronic 
consent and procedures were approved by the Institutional 
Review Board of the University of Pennsylvania. 
Compensation was $3, with a bonus of up to $2.50 based on 
task accuracy. Participants were excluded if they had 
previously participated in a related experiment or this one 
(10), for failing an attention measure (8), for missing data 
(1) or reporting a technical glitch (1). 80 participants were 
included (43 female, age M = 33, range 19 – 62).   

 

                                                        
1 DP has been used to describe simultaneous co-occurrences as 

well as sequential ones. For example, a patient taking a medicine 
and experiencing a headache afterwards is a common example of 
the latter (Cheng, 1997). 

Stimuli & Design Stimuli were sequences of animated 
events which took place surrounding or involving a 
continually present object. Each participant was shown two 
types of sequences, low DP and high DP, each cued by a 
distinct object. Each sequence was 500 events long, split 
into a passive preview (100) and two cover task segments 
(200 each), and contained eight unique events (1.2s 
duration), plus a static event showing object standing still 
(3.6s). The eight events formed 4 pairs, which were subtly 
visually altered versions of each other (e.g., blue vs. pink 
bubbles). One alternate appeared 10% of the time instead of 
the other; this was for the purposes of the cover task (see 
below).  Eight different events composed the other 
sequence. The specific events and novel object assigned to 
each sequence type were selected randomly for 20 sets of 
materials; then, yoked materials were created by swapping 
the event assignments between the two sequence types. 
Each yoked set was then used twice, once for each possible 
order of presentation of the two sequences, creating 
materials for 80 participants fully counterbalanced for order 
and stimuli. The order of events in each sequence type was 
governed by a distinct pairwise transition matrix (Figure 
1B); this was specified over the 4 event types plus static (the 
rare alternate replaced its pair on 10% of randomly chosen 
instances). Each matrix specified that the effect followed the  
 

 
Figure 1. A) Static images depicting several of the stimuli, 
with common vs. rare alternates depicted in the top vs. 
bottom row, and the two objects which cued the distinct 
sequences. B) Mean transition matrices governing the 
appearance of events in each condition, and event 
frequencies below. 
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cause with a high conditional probability (~98%), whereas 
other transitions were lower. The critical manipulation was 
of the probability of the effect given other events, including 
itself, computed as the proportion of time any event other 
than the cause was followed by the effect vs. was not. In the 
high DP sequence, the effect was rarely preceded by any 
other event, yielding a high DP (97%). In the low DP 
sequence, the effect was often preceded by one of the two 
other, non-static events or itself, yielding a lower DP (61%). 
Individual sequences were generated stochastically 
according to an idealized transition matrix; the mean 
obtained matrix values are shown in Figure 1B. The 
sequence conditions were closely matched on the 
conditional probability of seeing the effect given the cause 
(high, 97.8%; low 97.4%), and their chunk frequency 
(number of times participants saw a cause-effect pair; high 
63.28; low 62.18). The conditional probability of the cause 
given the effect was lower for the low DP sequence (high 
.074, low .027) so that the number of times they saw the 
effect-cause pair (high 5.12; low 6.02) was relatively 
matched. We address any concerns about minor differences 
in the sequence properties in the Results.  
 
Procedure Participants’ cover task was to learn to identify 
the “common” vs. “rare” version of each event type. To 
ensure task comprehension, static images depicting both 
versions were shown (but not which were which), and a 20-
trial practice task required them to hit the spacebar in 
response to the start of each distinct event; 80% accuracy 
was required to continue. Subsequently, they watched a 
preview video to learn to identify the common vs. rare 
events, followed by 2 videos in which they were asked to hit 
‘r’ for rare and ‘o’ for common. They then saw the second 
sequence type, starting again with static images of the new 
events, the practice task, preview, and 2 task videos. They 
were given feedback on cover task accuracy following each 
task video. Order of the sequence types was 
counterbalanced across subjects within yoked stimulus set.  

Following all videos, a surprise forced-choice test probed 
participants’ knowledge of the cause-effect relation in both 
sequences separately. The critical questions (repeated 3 
times and responses averaged) showed the cause followed 
by the effect in one video, and the effect followed by the 
cause in the other; participants had to choose the video that 
seemed more typical or familiar. We chose this as the test 
question so as to match the two videos on individual 
stimulus frequency, and to match question difficulty across 
conditions (ensuring they have equal relative transition 
probabilities). Only the common stimulus versions were 
used in testing. The stimulus pairs appearing in these 
questions were also matched in chunk frequency between 
the conditions, and accordingly had a slightly larger 
difference in transition probability in the low DP condition 
(which would make it easier, counter to our hypothesis). 
Two filler questions were also presented to avoid giving the 
impression that the test was stuck on a single question. 

To probe explicit (verbalizable) access to the sequence 
statistics, participants were given a freeform question asking 
“Did certain events follow each other more often than 
others? Describe any you noticed for the first set and for the 
second set of videos”. They were also asked, “How 
confident are you that you detected any systematic order to 
the events in the [first/second] set of videos?”, for each set, 
and responded on a 1-5 rating scale, with 1 = Definitely 
False, 3 = Unsure, and 5 = Definitely True.    

Results  
Participants performed well on the cover task for both 
sequences (high DP M = 86.99, SE = 1.03; low DP M = 
87.37, SE = 0.94; t(79) = -0.39 p = .698). On the critical 
questions of the forced choice test, participants were above 
chance for the high DP sequence (M = 61.83%, SE = 3.90%, 
t(79) = 2.79, p = .007, d = 0.31) but below chance for the 
low DP sequence (M = 41.67%, SE = 3.89%, t(79) = -2.16, 
p = .034, d = -0.24), which were significantly different from 
each other (CI [8.43, 29.90], t(79) = 3.55, p < .001, d = 
0.55), as shown in Figure 2. This supports the idea that 
participants had a weaker representation of the cause-effect 
relationship in the low DP condition—despite the fact that in 
both conditions, cause-effect transitions occurred twelve 
times as often as effect-cause transitions. To rule out that 
this was due to the minor difference in the number of times 
participants saw a cause-effect transition relative to an 
effect-cause transition in the two conditions, we computed 
the difference in the number of times each participant saw a 
cause-effect pair vs. an effect-cause pair between the two 
conditions (M = 2). This difference was uncorrelated with 
the difference in accuracy between the two conditions (r(78) 
= -0.03, p = .791). There was no effect of training order 
(which sequence participants saw first), p = .273. 

Participants’ confidence that they noticed any systematic 
order among the events was not reliably above ‘unsure’ for 
either condition (high M = 3.20, SE = 0.13, t(79) = 1.57, p = 
.121; low M = 3.06, SE = 0.13, t(79) < 1 ), with no effect of 
condition (t(79) = 1.52, p = .132). In their freeform 
responses, 20/80 participants described a relation between 
the cause and effect for one sequence, but only 2/80 did so 
for both. However, participants were more likely to describe 
it for the high DP events (19/80) than the low DP events 
(5/80; C2 (1) = 9.61, p = .002). Thus, the high DP condition 

 Figure 2. Forced-choice test accuracy by condition in 
Experiments 1 and 2. ** = p < .001. 
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enabled participants to better notice the predictive pattern. 
In contrast, participants were not likely to report effect-
cause patterns in either condition: there were no cases of 
this for the low DP condition, and one in the high DP 
condition. This argues against the idea that they strongly 
believed in the effect-cause relation in the low DP condition.  

Discussion 
During a VSL task, participants’ learning of a highly likely 
transition between two events (a cause and an effect) was 
weaker when the effect was also preceded by other events 
(low DP condition), relative to when the effect was uniquely 
predicted by the cause (high DP condition). The cause-effect 
transition had a higher chunk frequency and transitional 
probability than the effect-cause transition in both 
conditions: participants saw cause-effect pairs a similarly 
high number of times, and effect-cause pairs a similarly 
small number of times. However, when asked which was 
more typical, participants chose the cause-effect pair 
reliably only in the high DP condition.  

This finding indicates that participants’ incidental 
learning is automatically informed by computations of 
uniqueness, in that neither participants’ cover task nor the 
test questions demanded it or benefitted from it. Answers 
based on chunk frequency or conditional probability were 
both valid, and computationally simpler. Thus, the 
computation of DP was a product of participants’ incidental 
learning process. Furthermore, a high DP between cause and 
effect led to a higher rate of reporting of this pattern when 
asked to describe any systematic order to the events. It 
seems unlikely that participants had noticed that the low DP 
cause was nearly always followed by the effect, but were 
less willing to report it. We thus conclude that the rate of 
awareness was itself influenced by DP.  

These results are in line with a related finding that 
participants have poor memory—not just low causal 
ratings—for non-unique (“blocked”) cause-effect relations 
(Mitchell, Lovibond, Minard, & Lavis, 2006). They are also 
consistent with demonstrations of more traditional blocking 
effects in infants in a paradigm somewhere in between 
classical conditioning and statistical learning (Sobel & 
Kirkham, 2006, 2007). Here we show that effects of 
uniqueness hold in a traditional statistical learning 
paradigm, characterized by sequentially presented events, 
incidental learning, absence of incentive or reward, and 
conditions which exceed the capacity to track event 
statistics explicitly.  

A puzzling fact of these data is the below-chance 
performance in the low DP condition: participants selected 
the effect-cause transition more often than cause-effect. It 
did not appear that participants strongly believed in this 
effect-cause transition, as they did not mention it even once 
in their freeform responses. This suggests that participants 
may have had an inhibited (implicit) belief in the cause-
effect relation.  

An additional open question is the source of this 
blocking-like effect. Here and elsewhere, it is ambiguous 

whether the weakened belief in a low DP cause-effect pair is 
due to a strong associative representation of an alternate 
event-effect pair, or from an increased base-rate of the 
effect’s occurrence. For example, participants might have 
developed a strong belief that random event 1 or 2 actually 
caused the effect, and subsequently inhibited their belief in 
other possible predictors. Alternatively, participants could 
compute DP by normalizing the conditional probabilities of 
the effect-cause pair by the base-rate of both the effect and 
the cause, having tracked that the effect event occurs often 
overall. We test this possibility in Experiment 2.  

Experiment 2 
As in Experiment 1, participants were exposed to two VSL 
sequences, each containing a strong predictive relation 
between a cause and effect. In the two-cause stream, the 
effect also followed a second, equally strong predictor, but 
no other events. In the many-cause stream, the effect 
followed the three other events and itself with a medium 
probability (~18%). Thus, the cause-effect pair in both 
conditions had an equal DP value (.80), but from different 
sources: a strong alternative or a high overall base-rate. If 
learning is impaired specifically due to a salient alternative 
cause, participants should perform worse in the two-cause 
stream relative to the many-cause stream.  

Method 
Participants 107 participants were recruited and tested via 
Amazon Mechanical Turk. Participants provided electronic 
consent and procedures were approved by the Institutional 
Review Board of the University of Pennsylvania. 
Compensation was $3, with a bonus of up to $2.50 based on 
task accuracy. Participants were excluded if they had 
previously participated in a related experiment or this one 
(7), for failing an attention measure (19), or for missing data 
(1). 80 participants were included (47 female, age M = 34, 
range 19 – 71).   
Stimuli & Procedure Stimuli and procedures were similar 
to Experiment 1, except that each sequence contained 5 
events plus static, and the first task video was slightly 
shorter (150 events). The transition matrices were similar, 
except that the two-cause condition had a 96% transition 
probability between random1 and effect; and the many-
cause condition had a ~18% transition probability between 
each non-static event and the effect. Conditions had similar 
counts for cause-effect and effect-cause pairs, and similar 
DP value between cause and effect (.80).  

Results 
Participants performed well on the cover task for both 
sequences (two-cause: M = 85.43, SE = 1.11; many-case: M 
= 86.63, SE = 1.09, t(79) < 1). On the critical trials in the 
forced-choice test (Figure 2), performance was not different 
from chance in either condition (two-cause: M = 51.25%, 
SE = 4.17, t(79) < 1; many-cause: M = 48.33%, SE = 4.04, 
t(79) < 1) with no difference between them (t < 1).  
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Discussion 
When shown a cause-effect relation accompanied by either 
an alternative strong predictor of the same effect (two-cause 
condition) or several weak predictors (many-cause 
condition), participants showed equally poor learning of the 
effect-cause relation. It seemed not to matter for learning 
whether there was a salient alternative cause, or simply a 
higher base rate of the effect. Of course, this null finding 
must be bolstered by positive evidence that performance is 
worse on the many-cause condition relative to an 
appropriately matched high DP condition. Preliminary data 
from an experiment with this manipulation, and otherwise 
identical methods to Experiment 1, are indeed in line with 
this prediction (t[37] = 2.30, p = .027, d = 0.53). Overall, the 
available evidence makes it unlikely that blocking (i.e., 
weak representation of non-unique relations) strictly 
requires a strong alternative predictor, and that rather, it can 
arise equally well from a high overall base rate.  

Modeling 
As introduced earlier, the Rescorla-Wagner (R-W) learning 
rule was developed to account for uniqueness effects (i.e., 
blocking) in associative learning tasks (Rescorla & Wagner, 
1972). Here we use an adaptation of this learning rule for 
sequential stimuli to test whether it can account for our 
effects. We thus assume that learners acquire all pairwise 
associative weights among the stimuli, which they can 
compare to solve the forced choice task.  

We first found that a straightforward implementation of 
the standard R-W rule did not account for our effect in 
Experiment 1: it was only minimally sensitive to the 
difference between the two conditions. This is consistent 
with prior observations that the R-W rule has difficulty 
accounting for certain types of blocking, specifically those 
which involve updating weights for stimuli using evidence 
(trials) in which those stimuli are not actually present—that 
is, using BX trials to update AX representations (Kruschke, 
2008; Shanks, 1985). Bayesian models like the Kalman 
filter circumvent this problem because they require the 
weights from all causes to an effect to sum to 1, since they 
must reflect probabilities (Kruschke, 2008). We adopted just 
this property here, by adding a normalization step at each 
trial: we required the set of weights to each event from all 
others to sum to 1. This meant that weights could trade off, 
such that stronger AX weights would naturally reduce BX 
weights. We found that this simple adaptation enabled us to 
capture the difference between conditions.       

Model Details 
The model learns the weight of links among all pairs of 
stimuli 1 to s, represented by matrix W with s ´  s entries. 
We allow the learner to know the number of stimuli, and to 
begin with the assumption that all transitions are equally 
likely; thus, all entries in W are initially set to 1/s. Learning 
operates sequentially over observed input stream o, which 
consists of a sequence of the stimuli from set {1:s}. At each 

observation oj, stimulus i is shown. The model compares 
this observation with its prediction for oj on the basis of the 
preceding n stimuli (oj-n … oj-1, which consists of stimuli k1:n 
also in set {1:s}) and the weights between k1:n and i, as 
represented in W. Its error in anticipating the stimulus is 
used to adjust the entries in W between stimuli k1:n and 
stimulus i, which are then used in subsequent predictions. 
Formally, the degree of anticipation of stimulus i on trial j is 
given by: 

 
ki 

 

For simplification, we set n = 1, such that this is the entry 
between the current stimulus i and the preceding stimulus k. 
The error is computed by: 

 
 

 
Because stimulus i occurred in binary fashion, its observed 
value is 1. If this was well anticipated by the previous 
stimuli, ai should be close to 1, resulting in a low error. The 
corresponding entries in W are adjusted by this error 
multiplied by a learning rate parameter a: 

 
 

 
Critically, following this adjustment, the columns of W 
(input weights to each event) are normalized to sum to 1.  

Model Results & Discussion 
The event sequences given to human participants in 
Experiment 1 served as inputs to the model. The outputs 
were the adjusted matrices W, for each set of materials 
(‘runs’). We assumed that forced-choice behavior reflects 
the relative weight of links between cause & effect and 
effect & cause pairs, and thus, compare these entries in W. 
Using a learning rate of .5, we found significantly stronger 
weights for cause-effect than effect-cause links, in both 
conditions (high DP, cause-effect M = 0.70, SE = 0.02;   
effect-cause M = 0.11, SE = 0.01, t(79) = 21.92, p < .001; 
low DP, cause-effect M  = 0.19, SE = 0.01,  effect-cause M = 
0.07, SE = 0.01, t(79) = 9.07, p < .001), with a significantly 
larger difference in the high DP condition (t(79) = 17.35, p <  

Figure 3. Difference in weights between cause-effect and 
across runs.  
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.001). The same pattern is seen consistently across settings 
of the learning rate parameter (.05 - .85; Figure 3). This is 
important because, given the relatively weak human 
learning, we expect that the actual learning rate is fairly low.  

Without column normalization, the model does less well; 
while it shows effects of condition at high learning rates 
(>.35), it does not reliably do so at lower learning ones, and 
across rates, effects are much weaker (Figure 3). This is 
intuitive: the weight from B to X will only be affected by 
evidence of A to X trials if the weights to X trade off, such 
that as one gets stronger, the rest weaken (Kruschke, 2008). 
This can also be seen as the effect of representing each link 
as proportional to the base rate of X, if the base rate of X is, 
as here, captured in how often it appears following the other 
events in the state space.   

Normalization—conversion to relative rather than 
absolute values—is a cognitively realistic and adaptive 
mechanism, although future research should investigate the 
circumstances under which associative strengths are 
normalized or not. Furthermore, our simplistic model will 
fail to exhibit the advantages of a Bayesian formulation, 
such as in explicit representation of uncertainty (Kruschke, 
2008) and should be compared to other versions of the R-W 
update rule (Dickinson, 2001). Our ongoing work 
investigates whether these factors also describe learning in 
VSL tasks.   

Conclusions  
Our key finding was that participants in a statistical learning 
task were sensitive to not only the conditional probability 
between two events, but also the uniqueness of that relation. 
We suggest that low uniqueness can be established by either 
a competing predictor, on the one hand, or an overall high 
base rate of the predicted effect, on the other. Both can be 
treated as the result of normalization: the assumption that 
predictors of the same effect trade off, and to be considered 
effective, must raise the probability of the effect above its 
rate of occurrence otherwise.  

This finding brings statistical learning in closer contact 
with the rich literature in associative learning and causal 
reasoning, despite differences in the nature of these learning 
tasks. Work on causal reasoning has extensively shown that 
participants use the uniqueness of a predictive relation to 
attribute causality (Cheng, 1997). We find that this 
computation additionally takes place incidentally and 
automatically, suggesting it is one consideration for how we 
register the naturally occurring statistics of our observed 
world.  
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