
UC Irvine
ICS Technical Reports

Title
Transformational maintenance by reuse of design histories

Permalink
https://escholarship.org/uc/item/2bh4h1hq

Author
Baxter, Ira D.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bh4h1hq
https://escholarship.org
http://www.cdlib.org/

Transformational Maintenance
--by Reuse of Design Historie§

Ira D. Baxter
Department of Information and Computer Science

University of California, Irvine, USA
baxter@ics.uci.edu

Technical Report 90-36
November 1990

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

/.' (1,

UNIVERSITY OF CALIFORNIA

IRVINE

Transformational Maintenance

by Reuse of Design Histories

DISSERTATION

submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Ira David Baxter

Dissertation Committee:

Professor Peter Freeman, Chair

Professor David Rector

Professor Dennis Kibler

1990

@1990

IRA D. BAXTER

ALL RIGHTS RESERVED

The dissertation of Ira D. Baxter is approved,

and is acceptable in quality and form for

publication on microfilm:

Committee Chair

University of California, Irvine

1990

11

Dedication

To my wife, Linda, for her incredible patience,
to Ken Simms, who always liked Automatic Programming,

and to my friends and colleagues at UCI

111

Contents

List of Figures . . .

Acknowledgements

Curriculum Vitae

Abstract .

Chapter 1 Transformational Maintenance .
1.1 Introduction
1.2 Problem Context
1.3 Transformational Maintenance by Reuse of Design Histories
1.4 Research Assumptions
1.5 Thesis Statement
1.6 Research Approach
1. 7 Design Maintenance System Overview
1.8 Contributions
1.9 Thesis Organization

Chapter 2 Thesis Overview .
2.1 Transformational Implementation
2.2 A Transformation Control Language
2.3 Design Histories
2.4 Maintenance Deltas
2.5 Delta Integration into Derivation histories
2.6 Delta Integration into Design Histories . .
2. 7 Comparison to other Maintenance systems
2.8 Conclusion .
2.9 Summary

Chapter 3 Transformational Implementation .
3.1 Basic Concepts
3.2 Model of a Transformation system.
3.3 Properties of the design space
3.4 Summary

lV

Vll

lX

x

Xl

1
1
4

16
18
19
20
23
30
30

34
34
35
36
37
38
40
41
42
42

43
44
68
76
82

Chapter 4 A Transformation Control Language
4.1 Requirements for control knowledge
4.2 TCL: A Transformation Control Language
4.3 Related Control Mechanisms .
4.4 Open Problems
4.5 Summary

Chapter 5 Design Histories
5.1 Kinds of Design Information and Reuse .
5.2 Derivation Histories .
5.3 Design Histories .
5.4 Related Work
5.5 Summary

Chapter 6 Maintenance Deltas .
6.1 Using Deltas to Speed the Artifact Maintenance Process
6.2 Classification of change: Types of Deltas
6.3 What is a meaningful unit of change?
6.4 Form of Deltas .
6.5 Acquiring Deltas
6.6 Summary

83
84
86

100
123
124

125
125
127
129
140
148

149
152
153
158
160
167
169

Chapter 7 Integrating Maintenance Deltas into Derivation Histories 170
7.1 Delta Integration Overview for Various Types of Change 173
7 .2 Basic Mechanisms for Rearranging a Derivation History . 178
7.3 Integration of Technology Deltas Llc 200
7 .4 Integration of Functional Deltas .Ll f 203
7.5 Intertwining of Implementation with Specification 218
7.6 Evidence for Significant Commutativity in the Design Space 220
7. 7 Summary . 226

Chapter 8 Integrating Maintenance Deltas into Design Histories 227
8.1 Integration _ Revise, Mark, Prune, and Repair 228
8.2 Pruning the Design History 229
8.3 Repairing the Design History 232
8.4 Integration of Functional Deltas LlJ . 243
8.5 Integration of Technology Deltas Llc 243
8.6 Integration of Performance Deltas Lla . 246
8. 7 Integration of Performance Bound Deltas Llv 249
8.8 Integration of Method Deltas LlM 249
8.9 Integration of Library Deltas Llg and Llp . . 252
8.10 Integration of Range Deltas Llv and Order Deltas Llt 253
8.11 Processing order of Deltas 253
8.12 Summary . 254

v

Chapter 9 Related Work on Maintenance Systems
9.1 Informal Software Maintenance Systems
9.2 Specification Recovery
9.3 Control Knowledge Reuse for Reimplementation
9.4 Maintenance via Derivation History Replay .
9.5 Truth Maintenance Systems ...
9.6 Nonlinear Plan Repair and Reuse
9.7 Summary

Chapter 10 Conclusions and Future work
10.1 The main result ...
10.2 Analysis and Insights
10.3 Impact
10.4 Future Work .
10.5 Summary . .

Appendix A Notation.

255
256
261
263
267
279
282
291

293
293
294
298
303
309

311

Appendix B Procedure for Integrating 6.1 into a Derivation History 315

Appendix C Algebras used in linear replay example 324

Vl

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

List of Figures

Incremental Evolution by Integrating Deltas
Conventional Software Construction
Simple Transformational Software Construction/Maintenance .
Incremental Specification followed by Transformation
Incremental Evolution by Delta Integration
Preconditions for Transformational Maintenance
Transformational Design History including unfolded Design Plans
Design Maintenance System
Integrating Deltas
Implementing a Specification by Repairing a Partial Design .
Updating Support Technologies
Updating Program Specification
Pruning Design History according to Delta
Design Maintenance System Concepts . . .

Basic Concepts for Transformational Implementation
A tree program and some locaters
Notational overview for transformations mapping states
Model of development symmetric with respect to specification G
Model of transformation system
Simple model of transformation system
Huge design space with multiple solution paths
Reported costs on transformational implementation

Transformation system controlled by Methods
Cmeaning,sort,mergesort transform and "kthson"s .
Transformation via domain refinements
PADDLE procedure, taken from [Wil83, p. 908)
Tactic from [Gol89, page 6)

Design History as unfolded Method Execution

.·

Design History including justification for functional deltas
Design history agenda item
Locale-value dependency net
Shared agenda item in a design history

Vll

3
5
7
8

10
18
22
24
26
27
28
29
31
32

44
62
67
68
70
72
77
79

92
98

105
109
112

132
133
135
137
138

6.1 Incremental Evolution: A system for managing change . . 150
6.2 Types of delta induced by structure of transformation model 156
6.3 Model of transformational change 161

7.1 Changing performance: find new path in space . 174
7.2 Changing technology: reject an old path or enable a new path 176
7.3 Changing functionality: preservation of path across design spaces 177
7.4 Delaying undesirable transformation tf 180
7 .5 Procedure to partition derivation history using DELAY 183
7.6 Swapping order of two independent sequential transformations 186
7. 7 Swapping order of two overlapping sequential transformations 187
7.8 Swapping two transformations with considerable overlap 188
7.9 Deferring a transformation . 190
7 .10 Banishing a transformation 193
7.11 BANISH procedure . . . 195
7.12 Batch Banish procedure . . 199
7.13 Banish Lazily procedure . . 201
7.14 Producing a ladder from a !:::..1 204
7.15 Preserving a transformation 206
7 .16 Preserving transformation intact by revising delta locater 209
7.17 Preserving a transform by revising its locater. 210
7.18 Growth of delta by information spreading. 211
7.19 Preserving a refinement translates the delta . . . 212
7.20 Procedure to Integrate !:::..1 into derivation history 214
7.21 l:::..rintegration (replay) using a derivation history 215
7.22 Intertwining of Specification and Implementation 219
7.23 3x3, 2 blank N-puzzle problem 223
7.24 Speedup using Lexical Search in artificial design space . 224

8.1 Pruning a Design History back to an alternative 231
8.2 Pruning a shared agenda item 233
8.3 A shared agenda item that need not be pruned . 234
8.4 APPLYing a transformation as late as possible 238
8.5 Repair by Inserting a Replacement Transformation 239
8.6 Validating a PRESERVEd transformation 241
8. 7 Preserved transformation c~4 supporting unpreservable c~6 • 244
8.8 Integrating a Functionality Delta !:::..1 • 245
8.9 Propagating 8a from root to leaves of design history . 247
8.10 Nonprocedural invocation in design history . . . 251

9.1 Comparison of systems supporting maintenance 292

C.l The stack algebra
C.2 Algebra for Lisp fragment

Vlll

325
325

Acknowledgements

It is impossible to acknowledge appropriately all the support, encouragement,
and ideas I have received over the years. I cannot thank enough those who have
played major roles:

Dr. Peter Freeman, my advisor, who provided the right intellectual atmosphere
in which to work, and allowed me so much freedom of direction,

Dr. David Rector, for his patience with my mathematical ignorance and his
interest in my work,

Dr. Dennis Kibler, for his initial encouragement to enter the PhD program, and
continued interest over the years,

My friends and colleagues of the UC Irvine Advanced Software Engineering
Project, Guillermo Arango, Julio Leite, Chris Pidgeon, Ruben Prieto-Diaz, Veikko
Seppanen, and Yellamraju V. Srinivas for the time we spent growing intellectually
together, and the endless improvements they made to my half-baked schemes,

My friend Dr. Jim Neighbors, whose Draco system was such a fundamental
inspiration, and whose insights were always very sharp,

My friend and colleague, Dr. Ted Biggerstaff, for allowing me to explore my
ideas at MCC,

Rick Gros, Bill Morita, and Ken Simms, for their friendship over the years,

My parents, for suffering a perpetual student,

My wife Linda, for living in uncertainty about the future for so long.

This work has been supported by National Science Foundation CER grant
CCR-8521398, California Micro Grants #85-131 and #86-017 in conjunction with
Alcoa, Inc., California Micro Grant #87-055 in conjunction with
the Software Productivity Consortium, and the Microelectronics and Computer
Corporation/Software Technology Program summer intern program.

IX

Curriculum Vitae

.1952 Born in Alhambra, California

1973 Bachelor Degree in Information and Computer Science,

University of California at Irvine

1982 M.S. in Information and Computer Science,

University of California, Irvine

1990 Ph.D. in Information and Computer Science,
University of California, Irvine

Dissertation:
Transformational Maintenance

by Reuse of Design Histories

x

Abstract of the Dissertation

Transformational Maintenance by Reuse of Design Histories
by

Ira David Baxter
Doctor of Philosophy in Information and Computer Science

University of California, Irvine, 1990
Professor Peter Freeman, Chair

Keywords: software, maintenance, evolution, reuse, replay, history, design,
formal, transformation, implementation.

This thesis provides theory and procedures for modifying software artifacts im
plemented by a formal transformation process. Installing modifications requires know
ing not only what transformations were applied (a derivation history) to construct
the artifact, but also why the application sequence ensures that the artifact meets
its specification. The derivation history and the justification are collectively called a
design history. A Design Maintenance System (DMS), when provided with a formal
change called a maintenance delta, revises a design history to guide construction of
a new artifact. A DMS can be used to integrate a stream of deltas into a history,
providing implementations as a side effect, leading to an incremental-evolution model
for software construction.

We provide a broadly applicable formal model of transformation systems in
which specifications are performance predicates, subsuming the functional specifica
tions which are traditional for transformation systems. Such performance predicates
provide vocabulary used in the design history to describe the effect of applying sets
of transformations.

A nonprocedural, performance-goal-oriented Transformation Control Language
(TCL) is defined to control navigation of the design space for a transformation system.
Recording the execution of a TCL metaprogram directly provides a design history.

A complete classification of, and representation for, the set of possible main
tenance deltas is given in terms of the inputs defined by the transformation system
model. Such deltas include not only specification changes, but also changes to imple
mentation support technologies. Delta integration procedures for revising derivation

XI

histories given functional or support technology deltas are provided, based on rear
ranging the order of transformations in the design space. Building on these opera
tions, integration procedures that revise the design history for each type of delta are
described. An agenda-oriented TCL execution process dovetails smoothly with the
integration procedures.

Our DMS is compared to a number of other maintenance systems. By using
an explicit delta and verified commutativity, our DMS often reuses transformations
correctly when others fail.

Xll

Practical Tips for Maintainers
For a Friend Assigned to a Maintenance Group

by David H. H. Diamond

The fellow who designed it
Is working far away;
The spec's not been updated
For many a livelong day.
The guy who implemented it is
Promoted up the line;
And some of the enhancements
Didn't match to the design.
They haven't kept the flowcharts,
The manual's a mess,
And most of what you need to know,
You'll simply have to guess.

We do not know the reason,
Why the bugs pour in like rain,
But don't just stand here gaping!
Get out there and MAINTAIN!

From Datamation, June 1976, p. 134.
Copyright 1976 Cahner's Publishing Co., Inc.
Reprinted with permission.

Xlll

Chapter 1

Transformational Maintenance

Chapter summary. Software maintenance consumes the majority of energy
currently expended on software systems. This thesis describes methods for
integrating changes, defined formally as maintenance deltas, into an imple
mentation, given a previous implementation constructed via a formal software
construction scheme, and given the design decisions that drove the previous im
plementation. We summarize the context and focus of this work, and outline
research assumptions and questions for further reference. The chapter closes
with a summary of results and an outline of the rest of the dissertation.

1.1 Introduction

Software maintenance consumes a large fraction of the lifecycle costs of software
systems [Bro75, CSM+79, LS80, Boe81, Gui83, RPTU84]. Decreasing the cost of that
fraction of the lifecycle is naturally the first place to look in decreasing overall lifecycle
costs. It appears unlikely that the demand for change will decrease, leaving only the
hope of decreasing the actual cost of performing maintenance. Remarkably, there has
been less research effort in this area than one would expect [Sch87, HHSS] considering
the apparent payoff.

Maintenance is fundamentally concerned with change to existing artifacts1 .

Implementation is about constructing new artifacts. This thesis describes an approach
to software construction that we call Incremental Evolution. This approach blurs the
traditional software waterfall lifecycle phases of implementation and maintenance.
The idea is that software construction and maintenance would be better considered
as a process of integrating a stream of changes into an artifact and its supporting con
struction technologies to produce a stream of software versions with updated support

1 While this thesis is mostly about software artifacts, we see little difference between the construc
tion of software and the construction of (blueprints for) other types of artifacts. We use artifact in
the general sense.

1

2 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

tee hnologies, allowing the process to be cycled indefinitely (Figure 1.12). Artifacts
would then be built by a continuous design process [Mar86]; in our version, the result
ing artifacts would be compared against desires to produce deltas used as feedback
(Figure 1.5).

DEFINITION 1.1: Incremental Evolution. Any artifact construction process that
generates a stream of artifacts by integrating a series of changes, to an artifact spec
ification and/or its supporting construction technologies, into an implementation. D

Managing a software process without tools can be difficult. We describe a class of
tool for managing incremental evolution: a Design Maintenance System (Figure 1.8).
Such systems combine maintenance deltas, using a theory of delta integration, with
formal design information consisting of a program specification, its implementation,
and a design to produce a revised implementation and a revised design. The delta
integration procedures determine what parts of the design can be reused directly,
how to construct new parts of the design, and how to repair those parts which will be
only partially retained. We call such a system a Design Maintenance System because
the emphasis is on maintaining the design, with the implementation obtained as a
by-product rather than being the only product. This differentiates our approach
from conventional maintenance methods which usually end up maintaining just the
implementation. We need the design to decide what can be reused in the face of a
delta. We maintain the design because _that is more efficient than regenerating it on
demand.

DEFINITION 1.2: Design Maintenance System. A set of tools that revises an arti
fact design (and its corresponding implementation) according to formal maintenance
deltas defined by changes to inputs of the artifact construction process. D

Automation requires formality. We build a Design Maintenance System on
top of a Transformation System to provide the necessary base formality. Using a
transformation system provides us with a formal model of a software construction
process. This forces all aspects of specification, design, and lifecycle issues to appear
as formal entities of some sort, thereby making it possible, at least in theory, to
capture these entities. Implementing delta integration routines in the context of
transformation systems produces what we call transformational maintenance.

DEFINITION 1.3: Transformational Maintenance. Revision of an artifact carried out
in the context of transformation systems. D

Implementing altered specifications is likely to be more efficient if one reuses
relevant design decisions made in previous implementations. For a transformation

·2Throughout this thesis, diagrams composed solely of boxes and arrows are SADT diagrams
[Ros77, Fai85, MM88] unless otherwise noted.

1.1. INTRODUCTJOl\T

Requested
Changes

~ 6.

Integrate
Deltas

Implementation
Technologies

Code

Updated
Technologies

Figure 1.1: Incremental Evolution by Integrating Deltas

Software
Versions

3

system, such design decisions can be captured in a structure we call a design history.
Thus efficient transformational maintenance is made possible by the reuse of a design
history.

This thesis provides definitions, mechanisms, and an architecture for a
Design Maintenance System, built on top of transformation systems, to show that
Incremental Evolution is possible.

Our work focuses on reducing the cost of software over its life by making main
tenance more effective. We avoid the high cost of rediscovery of design information
by choosing a formal software construction method based on a transformation system
and capturing that design information during software construction. Captured design
information is compared to formal changes, and obsolete design decisions are removed.
A new implementation is then derived from the remaining design information.

The rest of this chapter provides a brief overview of the problem of design
maintenance for transformation systems and our particular solution.

4 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

1.2 Problem Context

We start by considering a number of lifecycle models to establish a motivation
for incremental evolution. We then move on to consider design reuse as a means for
enhancing the artifact maintenance process.

1.2.1 Software Lifecycle Models

We will briefly discuss several lifecycle models to establish a motivation for the
notion of Incremental Evolution:

• Conventional

• Transformational

• Incremental Specification

• Incremental Evolution

Conventional Lifecycles: A conventional software construction lifecycle is shown
in Figure 1.2. Somehow, informal requirements are converted into some informal
specification of the desired program, and the program is constructed manually. The
result is compared to the desires, and informal specification of the errors are somehow
converted into changes in the code. A benefit of the conventional approach is that
the implementation, although expensive, only has to be constructed once; changes
are added incrementally by very smart agents called programmers. The problem is
that it is difficult and therefore costly for those agents to determine how to install a
change.

Transformational Implementation: The transformational implementation ap
proach to software construction [PS83, Agr86, Fea86] constructs an implementation
in a conventional programming language by repeated application of optimizing trans
forms to a formal program specification constructed from informal requirements
(Figure 1.3). Balzer [Bal85a] suggests that the transformational paradigm could
significantly aid the maintenance process, by focusing maintenance on the abstract
specification rather than the code. The formal specification or its implementation
is validated against the requirements, and any noted inconsistencies cause the for
mal specification to be changed appropriately. After each change, the transformation
system is presented with the entire revised specification and derives a new implemen
tation from scratch. The benefit of this approach is that changes are made directly to

1.2. PROBLEM CONTEXT 5

Informal Informal
Requir c t ements Specification oncre e

Requiremts Program -- Analysis ~
Design/

__.. Coding

.....
Validation

~

..
Validation

Testing
Rapid

1--
Prototyping

Prototype
Tuning

Maintenance

Figure 1.2: Conventional Software Construction

6 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

the specification rather than the code, and are presumably easier to make and under
stand because they are not buried under a mountain of programming optimizations.
We call such an approach transformational maintenance, as maintenance takes place
in the context of a transformation system.

While such an approach technically solves most of the maintenance problem,
it does so by changing it into the transformational implementation problem. Initial
transformational implementations are expensive to obtain and we would expect that
the cost of each full re-implementation will be approximately the same as the cost
of the initial implementation (if the changes are small). Such a naive approach to
re-implementation would leave transformational maintenance impractical. One pos
sible way to speed the re-implementation process to reuse design information from
preceding implementations of the same artifact to avoid the cost of making all the
design decisions again. To do this, one must somehow be able to decide what design
information is relevant for the revised specification. With a pure transformational
implementation model, the transformation system sees only a new specification, and
at best possesses only an old design. How is it to decide what part of the design is
relevant to the new specification? We will return to this topic shortly.

Incremental Specification: Feather [Fea84] suggests that specifications are not
constructed en toto; rather, that they may evolve by elaboration of simpler specifi
cations. The idea is that the informal requirements describe a number of differing
aspects, and that one constructs a formal specification by starting with a simple formal
specification that characterizes one of those aspects, and then changes that specifi
cation to accommodate the rest of the informal requirements as convenient. Using
formal evolution transforms to modify a formal specification, Feather and Johnson
[JF90, Fea89a] pursue the notion of incremental specification, assuming the lifecycle
model in Figure 1.4. The monolithic revised specifications are fed to a transforma
tion system for implementation. While the incremental specification approach may
ease the problem of acquiring and maintaining the specification, it does not particu
larly help in obtaining an implementation; it has exactly the same problem acquiring
revised implementations as transformational implementation. The incremental speci
fication paradigm qualifies as a limited type of incremental evolution by our definition
(it fails to address changes to the supporting construction technology), but it is not
necessarily efficient.

Incremental Evolution: We envision carrying the incremental process to the ex
treme by integrating formal entities called maintenance deltas into the ultimate arti
fact (Figure 1.5) rather than just the specification. We call this process incremental
evolution. The difference between incremental evolution and Balzer's scheme of reim
plementing a modified specification is how far into the implementation process the

1.2. PRO BLEM CONTEXT 7

Informal
Req uirements Formal pecification Program

_., Requiremts (Prototype)
...... Trans-

s Concrete

Analysis ' formation

...
Validation

~

.,___.
Testing

-
~

Maintenance
-~ ~

~ Tuning

-

Figure 1.3: Simple Transformational Software Construction/Maintenance

8 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Evolution Formal Specification
Transformations (Prototype)

Informal Concrete
Req uirements Program

Requiremts Update Trans-
Analysis -- Specification -- formation --

t--j
Validation 1------o

...... r--
... Testing
....

~
Maintenance 1------o

~

-- Tuning

Figure 1.4: Incremental Specification followed by Transformation

1.2. PROBLEM CONTEXT 9

deltas survive. In Balzer's scheme, the deltas disappear once the specification has
been changed. For incremental evolution, we expect the deltas to directly guide
changes to the implementation.

We generalize the idea of evolution transforms by allowing two sources of formal
deltas:

• customer desires compared to the current version of the artifact (requirements
analysis and validation)

• new or changing support technology used to specify or implement the artifact
(domain engineering [Ara88])

These two sources of change remain active regardless of artificial divisions of lifecycle
phases into implementation and maintenance. The deltas must be with respect to
something; we assume that deltas induced by failure to meet requirements are applied
to some sort of a specification, and that deltas to support technology are applied to
reusable libraries of mechanisms available to the implementation process. We remark
that commitment to the notion of specification does not, however, necessarily commit
an incremental evolution scheme to any underlying transformation system, although
we will pursue that approach in this thesis.

The requirements analysis process produces a stream of deltas as in the in
cremental specification approach; the initial stream provides the basis for an initial
specification. The validation, testing and tuning processes are expected to compare
the informal, desired effects of executing the current version of a software artifact
against its actual effect, and suggest changes that need to be made to the speci
fication; how this is accomplished is outside the scope of this thesis. The domain
engineering process is expected to determine the support technologies (implementa
tion mechanisms and successful implementation criteria based on understanding of
the problem domain and the possible implementation technologies) and suggest cor
rections to the support technologies available; this activity is similarly outside the
scope of this thesis. Both processes affect the design and implementation of desired
programs.

The advantages of an incremental evolution paradigm are:

• The unification of implementation and maintenance

• Incremental specification/maintenance

• Support for a dynamic support technology base

• Potential for formal documentation, literally, of the changes made

Such an incremental evolution system will be practical only if we solve the prob
lems of generating formal maintenance deltas, and integrating those deltas efficiently

10

Informal
Requirem en ts

Problem
Domain

Knowledge

+-

CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

System
Analyst

•
Requiremts

Analysis

Domain
Engineering

Deltas

--•

f---

...

~

Software
Engineer

'
Integrate

Deltas

Validation

Testing

Tuning

Specifica
Concrete P

tion,
rogram

Figure 1.5: Incremental Evolution by Delta Integration

1.2. PROBLEM CONTEXT 11

into an existing implementation. This thesis concentrates on those aspects, shown in
bold in Figure 1.5, implemented in a manner to make transformational maintenance
much more efficient than simple transformational re-implementation of a changed
specification.

1.2.2 Effective Maintenance Needs the Design

An essential part of a program for maintenance purposes is the design} and it is
usually lost} abandoned} incorrect or inaccessible. Without the design, understanding
and modifying a program is nearly impossible [Sol87, Nin89]. Sneed [Sne89] describes
4 major software engineering efforts that ended in disaster precisely because trying
to maintain the design was perceived as impractical; consequently the design was
abandoned and the projects spiralled into chaos.

One can attempt to retrieve the lost design information by inspecting the code;
Chikofsky [CC90] provides a brief overview of this area. There are number of re
search efforts whose purpose is to recover lost design information, [ABFP86, Wil87,
Wat88, Big89b, Nin89, BCC89, SJ88]. Recently, an entire industry has appeared,
called "re-engineering" [CS89, RD88] which provides tools for reorganizing existing
software systems based on recovered low level design information. But we think those
approaches are mis-directed: the design should never have been lost in the first place.

The reason that designs are lost is partly due to their informality in conventional
design processes, which makes them difficult to record, and partly due to short-term
organizational pressures to complete a product rather than document its structure.
One approach to design capture and retention is to combat informality by using a
formal software construction method, and adding automation to that construction
method to capture the design as the implementation occurs, so that completing. the
product ensures the design is captured. This suggests the use of a transformation
system to generate formal design information, and finding ways of storing that design
information.

1.2.3 Design Information

To capture design information about an artifact, we must first know what design
information is. We summarize the notion of designing with Pidgeon's remark [Pid90]

To design is to decide.

Surveys of design can be found there and in [Mos85b].

12 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

There are numerous types of design information, of which the following are
critical for our purposes:

• Design knowledge: understanding of desired properties and construction tech-
niques for classes of artifacts

• The specification of a particular artifact

• Design decisions (traditionally called the design) for that artifact

• Design rationale: a demonstration that the design decisions produce a satisfac
tory artifact

Design knowledge provides general information needed to describe and imple
ment similar artifacts. The description knowledge provides vocabulary and metrics
with which one can characterize or measure interesting properties of an artifact or
its component structures. Implementation knowledge provides alternative implemen
tation possibilities as well as information useful in determining tradeoffs between
choices.

A specification gives a description of satisfactory artifacts. Without a specifica
tion, a design would have no purpose.

Design decisions describe alternatives chosen while implementing the artifact.
We assume that any artifact design process involves a series of decisions about measur
able properties of the final artifact, especially those which determine the component
structures of that artifact. We insist that any reasonable artifact have only consistent
properties. Following Pidgeon [Pid90], we define:

DEFINITION 1.4: Design Choice. An unresolved choice of value for an artifact prop
erty, represented by the property name of interest and a set of mutually exclusive
possible alternatives. D

The alternatives may list different possible implementations of portions of the
artifact. It is the purpose of the design process to make such choices in a way that
the resulting artifact satisfies the specification, although a design may be inconsistent
with a specification3 . Design choices are resolved as decisions:

DEFINITION 1.5: Design Decision. Specification of a constraint on a design choice
determining a subset of alternatives from which a selection will be made. D

3 A specification is an artifact produced by design from customer requirements, but that is design
at another level.

1.2. PROBLEM CONTEXT .· 13

One or many decisions related to the same design choice may be required before
a unique alternative is determined, depending on the strength of the constraints; it is
even possible to overconstrain a design choice so that the set of selectable alternatives
is empty. The minimal information about a design decision is a:

DEFINITION 1.6: Design Selection. A property name and a distinguished alternative
defining its value. D

The classic blueprint is a representation of a set of design selections; it contains no al
ternatives. Design information should ideally include all design decisions made during
the implementation process, or at least enough design selections to uniquely determine
the outcome of any possible design choice. This uniquely determines the implemented
artifact. Classes of satisfactory artifacts are defined by sets of design selections that
uniquely determine properties of the artifact relevant to the specification.

The design rationale explains how the various design selections satisfy the spec
ification.

DEFINITION 1. 7: Design Rationale. An information structure that justifies how the
implementation (consequences of the design selections) satisfies its specification. D

Technically, a design rationale is not required because one should be able to deduce
satisfaction from the design decisions alone. In practice, however, the cost of deter
mining just how the specification is satisfied is so complex that a design rationale
provides an immense aid to those that would understand the design.

Collectively, the design rationale, the design decisions, and the specification
make up design information (see Figure 1. 7) specific to a particular artifact. Design
knowledge is needed to generate the design rationale.

1.2.4 Design Reuse

For conventional software construction processes, considerable research has been
focused on reuse of code. Reusing other software process products, such as design
information, has been proposed as a method for lowering implementation costs [Fre80]
of new artifacts.

Arango [Ara88] models reuse roughly as follows:

1. Identification of a class of interesting reusable information

2. Selection of a method for reusing that type of information

3. Capture of appropriate reusable information for the method

4. Discovery of a situation for which the method has promise

5. Application of the reuse method with the captured information

14 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Each type of design information can be reused in possibly different ways.
Captured design knowledge can be used to produce and answer queries about a de
sired artifact, or to propose new implementations. A specification can be reused as
a starting point for similar artifacts. Design choices can be reused to regenerate al
ternatives, while design selections can be reused only to determine outcomes of such
choices. Design rationales can be reused to check the validity of design choices.

Design knowledge related to descriptions is implicitly reused as vocabulary for
specifications. Most transformation systems reuse design implementation knowledge
in the form of a transformation library. Higher level design implementation knowledge
has been reused in the form of implicit control knowledge such as the refinement
phases of REFINE compiler [Gol89]. and TAMPR transformation system [BM84], as
well as in the form of explicit procedural metaprograms such as PADDLE ([Wil83])
and Feather's nonprocedural notion of CONTEXT [Fea79].

1.2.5 Design Replay

A form of design reuse of great interest is that of design replay, which reuses
design decisions to implement a new artifact given a slightly changed specification4 .

A design history is a (possibly partially ordered) sequence of actions taken by
a designer during a design process. Such actions can include analysis of consequences
as well as making design decisions. A design history contains information that was
probably hard to obtain, and therefore has potential reuse value.

If one has a design history, then a particular reuse method is to replay it by
applying its component actions in the specified order in the context of a changed
specification. Problems occur when actions reference entities that are irrelevant to
the new specification, when replayed design selections ultimately fail to satisfy the
new specification, and when the existing actions fail to address new needs imposed by
the new specification. What makes a replay method interesting is how it addresses
these problems.

Capturing a design history requires that design actions be representable. A
way of ensuring that at least some aspects of the design process are capturable is
to implement that process as a transformation system. In a transformation system
context, one can treat the sequence of applications of particular transformations as
design selections and capture just the transformation sequence. This kind of design

4A situation in which one has a library of designs and an absolutely fresh specification can be
converted into this case by choosing the design library element whose artifact specification most
closely matches the new specification. Since we are interested in maintenance, we do not consider
the matching problem further.

1.2. PROBLEA1 CONTEXT 1.5

history is called a derivation history. For replay, one reapplies these transformations
in their original sequence.

Mostow [Mos85c, Mos86] provides a list of reasons why design derivations are
hard to replay. One of difficulties is that goal information is not present in a derivation
history; there is no design rationale. A second problem is that one can only trivially
replay the derivation up to the point where a change is required; replaying from this
point on is blocked because the original conditions no longer apply.

A key insight is that the decisions, made beyond the point where a change is
required in a design history, are not necessarily invalidated by the change. 5 We argue,
in fact, that the very large scale of any transformational implementation ensures that
many of the decisions beyond the change point are, in fact, applicable. Effective reuse
of a drvh requires reuse of decisions beyond the blocking point. Even those decisions
which no longer apply directly may contain some useful information extractable by
analogy [Car85]. A consequence of these insights is that methods for replay hardly
ever use the trivial method without some interesting variations.

A number of transformation systems exist that do some form of design his
tory replay for software construction (PADDLE [Wil83], <P-NIX [Bar89], finite dif
ference synthesizer [DKMW89], REFINE [Gol89], IDEA [Lub89], PDS [CHT81]),
DIOGENES [MF89a], [MF89b]). Design replay has also been used for hardware de
sign (REDESIGN [SM84, SM85], ARGO [HA87], BOGART [MB87], although we
don't think the problems are fundamentally different. We sketch a few of these sys
tems here.

Partsch [PS83] describes replay in Cheatham's system as repeated application of
previously used refinement (transform) rules until none is applicable. The implication
is that the transform sequence is also lost. This is undesirable as many optimizing
transformations in an implementation require other conditioning transformations be
applied first [Fic82, Fic85], so loss of sequencing must imply some loss of optimiza
tions. Also, .different early sequencing will lead to implementations radically different
than the original, and this is surely not desired. We see that order is important and
must be preserved.

Goldberg's system [Gol89] records the exact sequence of the applied set of trans
formations. The point where each replayed transformation is applied is adjusted in
an attempt to account for the change in the specification. This system appears to
block when a replayed transformation fails to be applicable.

5 Baxter [ABFP86) suggests that the actual historical order is not always relevant, and, in fact,
hinders the ability to maximize the re-use of an established design.

16 CHAPTER 1. TRkVSFORMATIONAL A1AINTENANCE

The BOGART system [MB87] constrains a derivation history to consist of re
cursive decompositions of a functional specification into successively more primitive
functions. The derivation history actually takes the form of a tree, with the root
being the initial specification, and the set of branches emanating from a node specify
the decomposition of that node into sub-nodes. The tree-structure provides a par
tial order on the application sequence of the transformations. Such histories can be
replayed by replaying each branch until a blocking point is reached along that branch.

The PADDLE [Wil83] system, rather than capturing a derivation history, in
stead captures a derivation history generator, called a program development as a set of
plans for implementation. This language shares some similarities to hierarchical plan
ning systems [Sac77]. A plan may be achieved by any of several subplans, providing a
method of handling decisions which no longer apply. Replay consists of re-executing
the generator. Even so, PADDLE still blocks at the first decision it cannot handle.

1.2.6 Problem Context Summary

We are interested in implementing tools to support an Incremental Evolution
lifecycle model. Doing so seems to require the reuse of design information captured
for a predecessor implementation. Such design information comes in several forms,
including design knowledge, the specification, a design history containing the design
decisions, and a rationale for the design. Such design information can be captured
in the form of a design history, and reused when the specification changes. A major
obstacle to such reuse is taking into account the effect of the specification change.

1.3 Transformational Maintenance
by Reuse of Design Histories

Incremental Evolution requires that changes be integrated into implementations.
If we choose a transformational implementation base model, then we can formalize the
changes as maintenance deltas. Application of such formal maintenance deltas to the
specification and supporting infrastructure of the transformation system followed by
reimplementing provides us with an inefficient form of transformational maintenance.

The formal transformation system also allows much of the design information
involved to be formalized. Such formalization presents us with the possibility of
providing procedures for integrating the maintenance deltas into captured design his
tories. We are reusing the design to produce a new design. A revised implementation
can then be extracted from the updated design. Assuming relatively small changes to

1.4. RESEARCH ASSUJ\tJPTIONS 17

the design, updating and extracting should be cheaper than having to reimplement
our specification from scratch.

A Design Maintenance System can be regarded as an efficiency enhancement to
the batch transformational maintenance model. Incremental Evolution implemented
via a Design Maintenance System avoids the repeated cost of rederivation by reusing
the design information (including the previous specification) collected in the previous
implementation cycle. It determines what part of the design information is still
relevant by comparing it to maintenance deltas; design information that is no longer
relevant is discarded, and a repair to the design that covers the delta is generated. The
effect over time is that of integrating deltas to achieve the desired implementation.

Existing design replay systems cannot express or use performance specifications,
and assume a fixed implementation technology base. We explicitly address perfor
mance specifications, both in a transformational implementation context, and in a
replay context. Most replay systems capture and replay of just a derivation history;
we insist on the use of the entire design history, as it provides structuring for the
derivation history, thereby allowing a kind of damage control. Our design history
also suggests alternatives for portions of the derivation history which become invalid
because of the desired change. Our methods for delta integration preserve trans
formations following blocking point in a derivation history to maximize reuse of the
history.

18 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

l. It is possible and practical to specify, formally, a software system.

2. Such specifications can be formally converted into implementations.

3. Specifications are more frequently modified than replaced when change is desired.

4. Revisions to specifications are not massive.

5. Statistically, small changes in specification lead to small changes in implementation.

6. There is an explicit relationship between specification and implementation called a
"design".

7. All of the possible changes one could possibly wish to make to an artifact are express
ible as formal changes.

Figure 1.6: Preconditions for Transformational Maintenance

1.4 Research Assumptions

Our research has several fundamental assumptions, listed in Figure 1.6.
Reasonable justification for these assumptions can be found in everyday computing,
including:

l. Many systems are specified informally, or more formally by coding them in con
ventional computer programming languages such as Fortran or Prolog; special
languages for application generators are heavily used [Cle88].

2. Compilers [ASU86], application generators, and transformation systems [PS83,
Agr86, Smi89]) convert "formal" specifications from a less executable form to a
more executable form.

3. Most of the work invested in software is in maintenance, indicating that the
original specification was worthwhile; rarely is a specification entirely replaced.

4. When requests for changes to software are made, the request itself is many times
made in incremental terms with respect to the original specification ["add this
function", "speed that up", "use this new hardware", etc.].

5. The amount of code changed in an application as a result of a change request
is relatively small compared to the size of the implementation [LQ89, Sin83].

6. Designers convert specifications into programs; they rationalize each part of the
program as serving some purpose with respect to the rest of the program or the
specification, and thus a relationship between implementation and specification
really does exist.

We think none of the above points are really controversial. Precondition (7.) does
not have an everyday justification, so we will provide one in Chapter 6.

1.5. THESIS STATEMENT 19

Since our emphasis is on maintenance, we assume the necessary prerequisites
for a maintenance situation. In a transformational context, this consists of:

• the existence of a transformation system populated with transforms and control
hueristics sufficient to transformationally implement some class of specifications.

• a specification G - the goals for a particular software artifact,

• an implementation f G derived from the specification G

• a derivation history H consisting of the sequence of transformations applied to
generate the implementation

• a design history D which justifies the individual transformations chosen.

For each desired change, the following must be true:

• The desired change can be explicitly described.

• The transformation system must be able to implement the modified specification
in the absence of a design maintenance system.

• The expected cost of installing the change must be significantly less than simply
re-implementing.

It is not obvious that every desired change is describable. We will show, however,
that specification changes can be written down as formal expressions (maintenance
deltas) under reasonable assumptions about formal program specifications.

1. 5 Thesis Statement

Our long term objective is to develop practical tools for performing incremental
evolution. Previous experience and research suggest that reuse of the current artifact's
design is necessary for this to be effective. Since tools manipulate formal representa
tions, we must use a formal software development process from which formal design
information for an artifact can be extracted. We have chosen transformation systems
to realize a formal software process.

It is our thesis that: We can efficiently maintain software generated
transformationally by integrating formal deltas into design histories.

In support of this thesis, we provide definitions and mechanisms to guide instal
lation of changes to a software artifact using design information captured during its
transformational construction.

20 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

To accomplish this, we must:

• Define a representation for change requests

• Define the nature of the design information we will reuse

• Determine what part of the design information is reusable and how to reuse it
based on a particular change request

• Provide a mechanism for completing the resulting partial design

The problem then becomes:

• How to capture an artifact specification, design, and implementation

• How to exhaustively define possible types of change

• How to define individual changes of each type

• How to integrate each type of change into the specification, design and imple
mentation

• Defining an architecture combining the change integration components into a
monolithic whole forming the Design Maintenance System.

The resulting solution should have the following properties:

• Always produces a revised, possibly partial, design consistent with the desired
change, to allow repetitive cycling of the process

• Degrades gracefully into a purely constructive procedure when most or all of
the previous design turns out to be unusable

Our intention is to lay the foundation for a Design Maintenance System.

1.6 Research Approach

To construct a Design Maintenance System, we need a basis software construc
tion process. This process will serve to construct implementations from specifications
when little or no design is present, and will help repair the reusable part of an existing
design. We have chosen transformation systems to act as that basis.

Most of our solution flows indirectly from a formal model given for a transfor
mation system. There are few such formal models, so we provide one. The notion of a
performance goal turns out to be central to our characterization, and is virtually ab
sent from other models. We also define a goal-oriented metaprogramming language
for controlling the application of transformations in the form of a language called
TCL.

1.6. RESEARCH APPROACH 21

Such a model determines all inputs 1 outputs and vocabulary used to control
the operation of the transformation system. These definitions provide an exhaustive
means for defining changes as formal maintenance deltas applied to these inputs in
terms of the vocabulary. We define one type of maintenance delta for each possible
input to the transformation system.

We capture design information in the form of a design history (see Figure 1. 7).
The actual historical sequence of transformations that convert an abstract program
(satisfying the functional part of the specification) into a concrete implementation are
recorded in a part of the design history called a derivation history, shown as a chain of
circles. This information only shows how the abstract program was implemented, but
it contains no design information in the sense of justifying how the implementation
achieves the (rest of the performance) specification. These justifications are captured
in the form of goal/plan decompositions shown as the tree in the figure. Each square
box represents a performance goal, with the arcs leading downward providing the
decomposition of that goal into subgoals or actions (in the form of applied transfor
mations) whose composed effect achieves the goal; each subaction is then justifiable as
achieving some higher level effect recorded in the design history. Design histories are
generated effectively by tracing execution of a TCL metaprogram. The goal nodes
also provide indexes back into a TCL metaprogram for use during plan repair. A
partial design history is one in which some of the goal nodes do not have sons, so the
entire performance specification is unsatisfied. The notion of design history is closely
related to that of plan from the AI planning domain [CM85).

Given a maintenance delta, it is our desire to revise the design information,
instantiated as a design history, to be consistent with that delta. We divide this
problem into two parts, not necessarily sequential:

• revising the derivation history to be consistent with the delta

• revising the balance of the design history

A useful property of a derivation history is the commutativity of the many
individual applied transformations: most can be exchanged without affecting the end
result of the derivation history. We can consequently rearrange the derivation history
for our convenience into two parts: a (possibly) reusable part, and a (definitely)
reuseless part. Such rearrangement is controlled by the particular main~enance delta
we desire to apply; transformations which interfere with the maintenance delta are
banished into the reuseless portion. After rearrangement, simple truncation of the
derivation history at the point of the first reuseless transformation retains the reusable
part. We provide a number of procedures for rearranging the derivation history in
the face of particular types of maintenance deltas.

The design history is revised by a pruning process which deletes goal nodes
from the bottom towards the top when subgoals or transformations are discovered to

22 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Specification = (Jo, Go)

Gs

Legend:

Transformation

0 G
Functional Performance

Specification Goal

' ' '

Go

~-----,
I I
I Gg I
I I L ___ _J

~
achieve subgoals

left- to-right

r-----,
I

G·
I

I I
I J I
L ___ _J

Alternative
Subgoal

tf
6

~
achieve subgoals

in any order

i
I

tg
7

1 0R

' Subgoal Alternative
Decomposition Decomposition

·Figure 1.7: Transformational Design History including unfolded Design Plans

1.1. DESIGN l\!!AINTENANCE SYSTEM OVERVIEW 23

be no longer usable (for transformations, this occurs when the derivation history is
truncated). A top-down revision occurs to handle change in performance goals. There
is some interaction between derivation history and design history revision when a bad
transformation is identified; all of its siblings according to the design history are also
bad and must be banished.

Having obtained a partial design history, we repair it by turning it back over to
the transformation system core of the Design Maintenance System. The transforma
tion system can find ways to finish incomplete goals by using the indices stored with
those goals to locate fragments of the original TCL metaprogram to re-execute. Since
the transformation system can have its attention switched between portions of the
original TCL metaprogram depending on the necessary repairs, execution of the TCL
metaprogram is agenda-oriented rather than sequential as with most metaprogram
ming languages. This cleanly unifies initial design history construction with design
history repair, so that only a single mechanism is necessary.

These individual components must be combined together to form a complete
Design Maintenance System, which we discuss next.

1. 7 Design Maintenance System Overview

In this section, we provide a broad overview of the components of a trans
formational Design Maintenance System. SADT diagrams representing the major
subsystems are sketched. We gloss over some of the detail because we have not yet
defined our vocabulary; in following chapters, we will detail the procedures more
carefully.

Delta-integration, the top level of a DMS, interfaces (Figure 1.8) to the re
quirements analysis, validation, and domain engineering processes (Figure 1.5). The
delta-integration process must take the deltas produced by these processes, and revise
the support technology, the design, and the implementation of the desired artifact.
Often, a number of changes to various aspects (specifications, support technologies)
come bundled as a composite delta; ideally, delta-integration would handle the com
posite delta in parallel rather than dealing with each aspect in a serial fashion. The
feedback arcs should probably be implemented using some kind of database for long
term storage; these databases are initially empty.

Delta integration requires revision of specification and support technology, as
well as revising the design of the end artifact. We can see the composite delta split
into its components and processed in Figure 1.9. Revising specifications and support

24 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

SADT diagram key:

Input

Control

Mechanism

D lt e a

('

Output

\

-

...

Software
Engineer

'

Integrate
Deltas

Design

Support Technology

Specification

Figure 1.8: Design Maintenance System

Cod
(Softw

e
are
ns) Versio

1. 7. DESIGN MAINTENANCE SYSTEM OVERVIE\tV 25

technology is relatively straightforward, as these objects have relatively simple struc
ture. Constructing a new implementation is accomplished by reusing parts of the
design; this is accomplished by first pruning away those parts that are incompatible
with the changes desired, and then repairing the pruned result. The repair mecha
nism is intended to complete the partial design and produce the final artifact, given
the revised specification G' and some set of support technologies. It must be robust;
it may be required to accept an empty design. In practice, it may produce a partial
design and no artifact because the specifications are too constraining for the avail
able support technologies. This is not serious; in fact, we expect this occur naturally
during the process of implementing a large specification. This simply triggers the
generation of a new delta to either shore up the support technologies, or weaken the
specification. Because we do not emphasize actual production of an implementation,
this is within our model.

We use a transformation system to generate and repair partial designs
(Figure 1.10). The transformation system requires a specification G' = (!~, G~est) of
an artifact to implement, design history D' describing partially how it is implemented,
and support technologies (transforms (C), design methods (M), goal predicates (G),
performance measuring functions (P), etc.) with which to control and carry off the
implementation. In Chapter 3 we will provide definitions of these support technolo
gies, and we will see how the specification splits into a program part to be transformed
f~ and a termination predicate Grest. The transformation system produces a result
ing program f G' satisfying the specification G', as well as a design consistent with
that implementation. The transformation system may actually change as opposed to
merely augment the partial design in order to complete it; the partial design has had
only the obviously incorrect parts pruned away. The control process for the trans
formation system must be agenda-oriented if we want repair to mesh naturally with
construction. Chapter 4 describes a metaprogramming language, TCL, used to gener
ate the design decisions, and Chapter 5 shows how to capture this design information
as a design history.

Revising the support technology is conceptually straightforward, but has a num
ber of cases. For each class of support technology used by the design repair process,
that class needs to be updated according to changes defined by a composite delta
Osupport (Figure 1.11). The composite support technology delta Osupport is split into
component deltas, one for each support technology class. Each support technology
class is revised by updating a corresponding database. The fact that some support
technologies are built using others induces a consistency requirement on the compo
nents of a composite support delta. Details defining the support technology deltas
and these revision procedures are provided in Chapter 6.

A program specification has a two part representation (10 , Gmt), consisting of
an abstract program and some additional performance constraints, determined by

26

Specification

Support
Technolog

Design

G

--y

.....

CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Delta Software Engineer

' '
0 specification

Integrate

l
Deltas

Revise G'
Specification

)°'"""''
Revise

..... Support
Technology

8

l t ' 1

..... Prune r--- Repair
Design

'
Design

Partial Design

Figure 1.9: Integrating Deltas

~

.....

.....

Revised
Specification

Revised
Support

Technology

Code

Revised
Design

1. 7. DESIGN MAINTENANCE SYSTEM OVERVIEW

Partial
Design

(History)

Revised
Specification

•

G'

. G~est

f 6
~

D'

Repair
Design

Revised
Support

~ h 1 ec i:q o ogy

Software
Engineer

h

r-----,

h

h

' , • Q ,
MCGPV >--

Apply
Transformations

via Methods
with Backtracking

fa1

D"

27

Code

Revised
Design

(History)

Figure 1.10: Implementing a Specification by Repairing a Partial Design

28

Support
Technology

•

CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Osupport

Revise
Methods

Method
Library

Transform
Library

,
Revise

Transforms

Revise
Support

Technology

Revise Predicate Library _____________ Performance ~

Goals

bp

Revise
f'--. Performance 1----+------+----

Measures

Performance
Measures

....
Performance

Values

Revise
Performance --------- 1

Values

Revise Subsumption Library
------------- Subsumption f..---/

Relations

Figure 1.11: Updating Support Technologies

Revised
Support

Technology

1.7. DESIGN MAI1VTENANCE SYSTEA1 OVERVIEW

0 specification

'
OJ

Specific i 8a
a ti on Jo revise f f 6

~ program
(scheme)

1 G~est

..... revise a 8v

Grest
r----,

Grest

'
Revise

"-----
revisev

1-------1
Specification Great

Figure 1.12: Updating Program Specification

29

R evised
cification Spe

--

the way the transformation system operates, as described in Chapter 3. Revising the
specification consequently requires revising these parts (Figure 1.12). Deltas to per
formance specifications come in two flavors, with 8v being a specialized version of the
other, 8a, accounting for the two processes that update the performance specification.
These deltas and their revision procedures are also defined in Chapter 6.

The design pruning process (Figure 1.13) must consider all the aspects of the
composite delta. Roughly, pruning removes those parts of the design history that are
no longer valid by mark and sweep passes. Changes to the support technology make
design decisions (including at least the applied transforms) that depend on those
technologies illegitimate; these choices must be removed from the design history.
Changes to the specification make other design decisions inappropriate; these, too,

30 CHAPTER 1. TRANSFORA!JATIONAL MAINTENANCE

must be removed. We have separate procedures for each type of delta that simply
mark the design decisions invalidated by that delta. A final pass removes all of the
incorrect design choices in one sweep (BATCHBANISH) for efficiency reasons. Our
preference is to maximize the invalid-marking at any point so that sweeps catch as
much as possible on each pass, and to delay sweeps as long as possible. Details of the
pruning process are spread across Chapters 7 and 8.

1.8 Contributions

The major contributions of this thesis are:

• A formulation of incremental evolution in terms of a design maintenance system

• An architecture for a design maintenance system based on a general transfor
mation system model

• A formal classification of maintenance types

• The recognition of explicit performance goals as a necessary component in any
design representation usable for a wide variety of maintenance tasks

• Procedures for revising design histories according to maintenance deltas based
on a generalized notion of commutativity in the design space.

The essential value of the thesis is providing theory and building blocks needed
to implement a Design Maintenance System. This is expected to lead to an incre
mental evolution software construction process in which formal deltas are installed
via tools into implementations.

1. 9 Thesis Organization

In this section, we briefly summarize the balance of the thesis. We first provide
a brief overview of the organization in terms of chapters. We provide an in-depth
summary of each chapter in Chapter 2.

A number of ideas and methods are required to implement the notion of
Incremental Evolution. A dependency net of the major concepts is shown m
Figure 1.14. We have chosen to present these concepts in the following order.

Chapter 3 provides a theoretical discussion on the nature of transformation
systems, providing us with the concepts and vocabulary necessary as a prerequisite to

1.9. THESIS ORGANIZATION

Design
History Mark

Useless
Xfmns

Mark Useless
~Agenda Items from i-----.,

changed Methods

Mark Useless
'------. Agenda items affected i---,

by performance change

Prune
Design History Integrate of

t

"--- Prune useless agenda items
Banish useless transformations

Figure 1.13: Pruning Design History according to Delta

31

Partial
Design
History

32 CHAPTER 1. TRANSFORMATIONAL MAINTENANCE

Chapter 4

Goal-oriented
Metaprograms

Performance goals,
Transforms,

Lo caters

Chapter 3

Derivation
Histories

Chapter 5

Chapter 5

Design
Histories

Chapter 6

Maintenance
Deltas

depends on

Chapter 8

Integrating
Deltas into

Design Histories

Integrating
Deltas into

Derivation Histories

Chapter 7

Figure 1.14: Design Maintenance System Concepts

1.9. THESIS ORGANIZATION 33

understand transformational maintenance. The theory describes any transformation
system and so has very broad applicability.

Chapter 4 defines a Transformation Control Language, used to guide the appli
cation of transformations and provide the raw design information justifying the use
of each transformation. A comparison to other control schemes is provided.

Chapter 5 shows how we can capture the sequence of transformations actually
applied (the derivation history of an artifact), and the justification for applying them
(a design history). This information is what we desire to reuse during transformational
maintenance.

Chapter 6 characterizes transformational maintenance in terms of inputs to a
transformation system, describes the notion of maintenance delta, or change to an
input of a transformation system, gives an exhaustive list of such deltas for our model
of transformation system, and provides representations for each. This allows us to
capture a change as a formal entity.

Chapter 7 shows how we can use commutativity in the design space to provide
basic mechanisms for rearrange a derivation history. Such rearrangements need to
take into account the actual delta being processed. A practical scheme for installing
commonly-occurring deltas is presented, along with a key example (Section 7.4.3).

Chapter 8 show how the design history can be used in conjunction with some of
the delta types to determine useless transformations, and thereby provide direction
to the derivation history rearrangement process.

Chapter 9 compares our Design Maintenance System with other (research sys
tems) having related purposes or mechanisms, point out strengths and weaknesses of
our approach.

Chapter 10 concludes by analyzing our Design Maintenance System, defines
future research necessary to construct and validate a practical design maintenance
system, and considers the impact of a design maintenance system on software engi
neermg.

Appendices provide a notation index and psuedo-code for a complete system to
integrating functional deltas.

Chapter 2

Thesis Overview

Chapter summary. A brief overview of the chapters in the thesis is provided,
discussing each chapter topic and insights.

This is a rather large thesis. Trying to keep all the threads simultaneously may
be difficult for the reader; it was for the author. \,Ye have included this chapter to
provide a summary overview of the topics covered in the rest of the thesis, in the
hopes that if the reader loses the thread, he can return here to pick it up again.

Each section corresponds to a chapter. vVe provide motivation for the chapter,
a list of insights found in the chapter, and a discussion of the utility of these insights.

2.1 Transformational Implementation

Any mechanical scheme for managing change must be based on some formal
construction process. We have chosen to build our DMS on one of the few truly
formal construction processes known to us: Transformational Implementation. To
ensure that our work is not limited to a single transformation system, or dependent on
idiosyncratic properties of.the same, we analyze transformation systems in Chapter 3.
This provides us with vocabulary, concepts and definitions of the components of
virtually any transformation system, as well as pointing out shortcomings of many
existing ones. Such concepts and formal definitions are necessary to:

• define mechanisms for controlling the search through the design space

• define formal design histories

• shape the definition of types and representations of maintenance deltas

• allow us to reason about interactions between the design history and mainte
nance deltas.

34

2.2. A TRANSFORMATION CONTROL LANGUAGE 35

This chapter provides the following insights:

• Specifications are always predicates (goals G). Most conventional transforma
tion systems implicitly define a "specification" as a program fragment to be
optimized, with no performance specifications. Our view unifies "conventional"
specifications and performance specifications.

• The idea of a correctness-preserving transform is an instance of the more general
notion of property-preserving transforms.

• The essence of a transformation system is its asymmetric treatment of subgoals
Ginvariant and Grest of the entire specification G to provide low-level control
knowledge.

• Few transformation systems acknowledge the existence of performance speci
fications. Without them there is no formal motivation for the transformation
system to apply any transforms!

• Absence of performance specifications limits the types of deltas expressible and
therefore eventually processable by tools

The analysis of transformation systems is useful for several reasons:

• It is one of very few available. We claim a broader perspective in terms of
performance predicates and the notion of property preservation for ours.

• It provides formal definitions for the concepts. These definitions can be used to
classify existing systems.

• The notion of locater as a constraint over possible transform bindings. Locaters
will be useful for reasoning "geographically" about interactions of transforma
tions.

We expect our definitions to be helpful to those that are involved in the use,
analysis or design of transformation systems simply by virtue of being formal. The
concepts are defined in a general way so as to cover quite a wide variety of transfor
mation systems, making comparisons of such systems simpler. The notion of locater
we think will be an essential idea for any system that stores a derivation history.

2.2 A Transformation Control Language

A transformation system must somehow choose a sequence of transformations
to apply. The control knowledge used to make those choices can come in a variety of
forms. We explore one, TCL, designed to not only provide such control but also to
generate the information needed to justify the final form of the program produced by
the transformation system.

36 CHAPTER 2. THESIS OVERVIEW

The ideas presented in this chapter include:

• Using AI planning ideas for metaprogramming.

· • A method: a pair consisting of a plan and its purpose. This is used as con
trol knowledge by using purpose to nonprocedurally locate a plan to apply.
Recording method application provides design justification by connecting ap
plied transformations back to purpose; this information is needed during design
repair.

• Plan-like structure of methods

• Locales: computations over binding constraints, providing a mechanism for fo
cusing the attention of the transformation system

• Clean separation of transformation actions from metaprogram. This allows
reasoning about the transformations independently of the metaprogram, which
is needed for managing derivation histories.

We provide

• The definition of locale, and an analysis of useful operators over locales

• A definition of a plan-like metaprogramming language, TCL

• A demonstration of its utility by modeling control mechanism of other trans
formation systems, showing that a number of implicit control schemes can be
made explicit

• A comparison of TCL to existing control schemes

TCL is expected to be useful even if one does not want to perform transfor
mational maintenance. It provides control in a way compatible with our general
characterization of transformation systems. Its structure, based on methods, allows
easy incremental addition of control knowledge. As an intermediate step to efficient
transformational maintenance, it can be used for simple dynamic replay by mere
re-execution.

2.3 Design Histories

While control languages such as TCL technically provide the ability to reim
plement a changed specification by simply re-running the transformation process, it
is our expectation that this process is expensive because navigation errors made will
require considerable backtracking. Rather than rediscovering the choices made, it
would be better to reuse stored choices. Design histories are the storage mechanism.

2.4. MAII\TTENANCE DELTAS 37

We record histories in two forms: derivation history and design history, with
each design history including a derivation history. The derivation history provides a
record of the actual transforms applied, where they were applied (lo caters), and in
what order. The design history provides justification for the applied transformations
by capturing how the TCL metaprogram satisfied the original specification in terms
of a goal/plan tree. The design history can consequently be used for explanation, but
our interest is in using it to provide justifications for transformations proposed for
reuse, and to provide indexes back into the generating TCL metaprogram for repair.
During the design pruning process, we can use such indexes to locate portions of the
TCL metaprogram that generated now-inappropriate transformations. The design
repair process can reuse the purpose of a broken plan, and take advantage of TCL's
nonprocedural nature to find a replacement method and therefore transformations.
Lastly, a design history tells us which transformations work together to accomplish
some purpose, and is therefore useful in locating the set of transformations made
useless because a member transformation is no longer valid. Design histories are vital
to reuse.

This chapter:

• formally defines a derivation history as a sequence of applied transformations

• defines operations useful on derivation history, such as indexing, splitting, con
catenation and composition

• defines a design history as tree-structured plan capturing execution of a TCL
meta program

We think that both the notion of derivation history and design history will be needed
by any system which attempts to reuse the design choices. We expect the definition of
a derivation history to stay the same in other systems1 . The design history should be
usable in explanations about the final program's structure to any software engineer.
While the actual structure we use depends on TCL, any other transformation system
using structures relating transformations to purpose will likely use something similar
to our design history.

2.4 Maintenance Deltas

Given a formal development process, a formal maintenance process is possible
only if we have formal descriptions of the desired changes: maintenance deltas.

Our view of maintenance is broad: it covers changes to every variable aspect of
the underlying development process (we assume the development mechanism, i.e., the

1 With the exception of nonlinear plans as an additional efficiency enhancement.

38 CHAPTER 2. THESIS OVERVIEW

transformation system, is itself a constant). It handles changes to implementation
technologies and definitions of performance (support technology deltas) as well as
the conventional changes to a specification (specification deltas). Each change type
requires procedures specific to that type to integrate a maintenance delta of that type
into the design and the end artifact.

This chapter provides:

• A simple way of defining the set of maintenance deltas for a formal development
process: one maintenance delta type per possible input

• Definition of an exhaustive set of delta types for our model of a transformation
system

• Formal representations for each type of delta

• Definition of low-level (support technology) delta integration procedures

Our definition of delta types is more useful than that of conventional software engi
neering (informal) maintenance types in the following ways:

1. Formal definitions prevent confusion about what kind of change is desired

2. We have hope of providing mechanical procedures to handle each type of formal
delta

Our rich model of transformation systems and supply of formal deltas make it ev
ident that other researchers considering maintenance in a transformational context
must consider more than just the so called evolution deltas currently popular. The
support technology deltas also mesh cleanly with the pragmatic notion of domain
engineering: the idea that one's implementation technology will evolve along with
one's understanding of the problem domain.

2.5 Delta Integration into Derivation histories

We wish to install changes defined by maintenance deltas into existing artifacts.
One way to do this efficiently is to reuse the design decisions from a previous trans
formational implementation. A derivation history contains many of those decisions,
cast as applied transformations. We must consider how to reuse those transforma
tions in the face of each type of delta. This is a necessary prerequisite to using the
information from the design history.

2.5. DELTA INTEGRATION INTO DERIVATION HISTORIES 39

What we learn in this chapter:

• reuse prune then repair
Surprisingly, reuse in transformational maintenance context consists mostly of
identifying and removing obviously reuseless transformations, followed by re
generation of needed transformations. It is too hard to easily identify truly
reusable transformations.

• The effect of several maintenance deltas on the shape of the design space

• That equivalent sequences of transformations (commutativity) can be used to
rearrange a derivation history, for our convenience, into a likely-reusable part,
and a definitely reuseless part

• maintenance deltas can guide the rearrangement process; this is why transfor
mational maintenance with deltas is more efficient than simply reimplementing
after applying a delta.

• Retaining a transformation may require changing its locater in a way dependent
on the maintenance delta

These ideas are cast in the form of a number of essential procedures for rearranging
a derivation history:

• defer: Put off application of a transformation until later

• banish: Move a transformation into the reuseless part of the derivation history.
This can additionally serve as a kind of dependency-directed backtracking mech
anism for the transformation system.

• preserve: Compute impact of a delta on a reusable transformation and vice
versa

These techniques are shown to preserve the legitimacy of the rearranged deriva
tion history, so that any truncation (of the reuseless part) leaves a legal derivation
history to be directly reused. The essential procedures are used to build certain delta
integration procedures:

• /::,.c integration: Revise a derivation history according to a change in the available
set of transforms

• t:,.1 integration: Revise a derivation history according to a change in functional
specification (a frequent type of deltas).

All of these procedures are illustrated with tree transformations. A key example
of all these mechanisms at work is provided in Section 7.4.3. Lastly, since the tech
niques depend so heavily on commutativity in the design space, we present a number
of empirical arguments as to why we should find that commutativity, including an
experiment expressly conducted to measure it.

40 CHAPTER 2. THESIS OVERVIEW

Any system using a derivation history should be able to take advantage of these
methods; we expect AI planners in general to be able to use these techniques to
handle plan repair when faced with a change in world state. We emphasize that
backtracking based on banish is more effective than use of a dependency network
because only essential interference ("different result") rather than the dependency
nets' more conservative "uses result", determines what must be undone.

2 .6 Delta Integration into Design Histories

Our original purpose was to maintain software efficiently by reusing design in
formation. The preceding chapter showed how to use the design information available
in a derivation history to handle certain deltas. However, just because a transforma
tion from a derivation history initially appears to be reusable does not mean it serves
a useful purpose in solving the revised problem defined by the maintenance delta. We
must re-validate apparently reusable transformations to ensure that they still serve
the purpose for which they were intended. Information about which transformations
serve what purpose is recorded in the design history. We must also prune those parts
of the design history which will be inappropriate for the revised artifact. Finally,
we must repair the pruned design history by completing it, ideally using the same
mechanisms that generate a fresh design history. This chapter is about integrating
deltas in a design history.

The following points are made:

• All the transformations supporting the purpose defined by a method are reuse
less if any one of them is (contamination)

• So called reusable transformations are only likely-reusable: they may no longer
serve a useful purpose, or they may become contaminated

• Reuse of a design history consists of pruning away those parts which

- are generated by now-invalid support technology

- generated now-reuseless transformations

and repairing the balance.

• Maintenance deltas identify invalid support technology and eventually reuseless
transformations, providing a guide to pruning the design history

• Pruning should optimistically stop where the design history records the presence
of an untried alternative

2 ,.,
. I . COAJPARISON TO OTHER lv1AINTENANCE SYSTEMS

Using these ideas, we present theoretical procedures to:

e Further revise a derivation history to handle contaminated transformations

• Prune a design history for many of the identified delta types

41

• Execute TCL metaprograms by use of an agenda, unifying design history con
struction and repair

The utility of these insights and mechanisms is in providing the foundations for a
practical Design Maintenance System:

• efficient transformational maintenance

• application to incremental evolution

• application to incremental domain evolution

2.7 Comparison to other Maintenance systems

Having defined the notion of a Design Maintenance System and provided mech
anisms for supporting it, this chapter compares our methods to those of other existing
production and research systems. Such a comparison is useful in determining how
Design Maintenance System integrates existing ideas or advances new ones.

We primarily find that:

• Few maintenance systems use performance goals or record design histories con
taining performance goals. without such information, there is no way to validate
the utility of a re-used transformation.

• Many derivation history replay systems block when encountering a problem

• No other derivation history replay systems reorder the sequence of transforma
tions

• Explicit deltas are rarely used to guide installation of change.

• Nonlinear planners offer a notion of partial state which would be useful in further
research.

To perform our comparison, we must often cast the concepts and methods of
other systems in terms related to those of our broad transformational model. Such
a recasting makes it easier to understand the relations between the systems, and the
state of the field as a whole.

42 CHAPTER 2. THESIS OVERVIEVl

2.8 Conclusion

We conclude by analyzing the Design Maintenance System.

Interesting ideas that come from the analysis include:

e Essential versus artificial modularity: the true relation of design entities versus
the firewalls installed in conventional software systems

• A perspective on architecture: those design aspects which are expensive to
change (as opposed to those which are coincidentally present, such as friezes on
Greek temples)

Last but not least, this chapter provides:

• An analysis of the problems with our system

• A list of topics for further research

The ultimate point of this work is to provide a solid foundation for the construc
tion of a software process that supports a continuous model of design, Incremental
Evolution.

2.9 Summary

A summary of the chapters of the thesis, in terms of content, lessons, and
contributions has been provided.

With the overview completed, we turn our attention to the technical details.

Chapter 3

Transformational Implementation

Chapter summary. We provide definitions of basic concepts on which trans
formation systems are built, emphasizing performance specifications, left im
plicit in most transformation systems. The transformational implementation
process is defined and analyzed. We discuss properties of the transformational
design space. Both the definitions and the properties are needed to characterize
and implement transformational maintenance.

Any approach to (semi-)automated software construction requires a formaliza
tion of the notions of specification, implementation, and some software construction
process. Such a formalization is also a prerequisite to formalizing the notion of main
tenance.

This chapter provides a formalization of the basic concepts involved in the soft
ware transformational implementation process, at the level of the artifacts manipu
lated directly, the mechanisms for manipulating the artifacts, and means for deter
mining completion of the transformation process.

A number of papers about the theory and practice of particular transformation
systems include [BD77, GB78, Kib78, Fea82, BM84, Nei84a, SKW85, BU86]. We
describe a general model of transformation systems that emphasizes explicit perfor
mance specifications, which are implicit in most extant systems1 , and compare our
model to some systems in detail.

We also consider aspects of the design space through which the transformation
system must navigate to find a solution. The scale aspect provides us with the
motivation to perform incremental maintenance rather than simply reimplement from
scratch. Structural aspects of the design space will provide us with critical insights

1 Mostow notes, [Mos85b]:

Somewhat surprisingly, most of the systems ... leave the goal structure of the
design implicit.

43

44 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

• Program(Scheme)s: Objects manipulated by a transformation system

• Performance Measures: functions that determine qualities of programs

• Performance Predicates: tests that programs have certain properties

• Specifications: Descriptions of desired properties of final programs

• States: Program plus cached inferences about program

• Transforms: Program modifiers

• Bindings and Locaters: Places on a state and place specifiers

• Transformations: Bound Transforms

• Property-preserving vs. Non-property-preserving transforms

Figure 3.1: Basic Concepts for Transformational Implementation

about how to accomplish such maintenance. In Chapter 4, we will discuss the higher
level issue of control of navigation through the design space.

3.1 Basic Concepts

Transformation systems are used to "transform" specifications into desired pro
grams. A very simple model is that an abstract-but-inefficient program, taken as the
specification of a desired computation, is incrementally changed into a concrete and
efficient implementation by repeated application of "correctness-preserving" transfor
mations [Fea79, pp. 2-10]. The individual transformations replace program fragments
containing inefficient constructs with efficient program fragments that have identical
properties concerning the computed results (thus the term correctness-preserving).

Our model is a bit more detailed. Before we can discuss the transformation
process, we need to consider the fundamental concepts (Figure 3.1).

We first discuss the artifacts manipulated by transformation systems, called
programs. Arbitrary qualities of programs can be determined by applying appro
priate performance measures. Performance predicates over programs determine if a
program has some desirable property, and usually are defined in terms of a relation
between a performance measure and some fixed performance value. We then consider
specifications, which ultimately determine which program a transformation system is

3.1. BASIC CONCEPTS 45

supposed to produce. Specifications used in practical systems can be divided into a
number of performance goals, which determine if a program achieves a desired aspect;
this information is eventually used to control the search for a solution. Performance
goals are defined in terms of performance predicates.

We then move on to define the notions of transform, which cover the notion of
rewrite rules, and transformation, which are applications of the rules. We discuss the
idea of binding, which defines a place in a program, and locaters, which are a specifi
cation of a place. These ideas are need to define the mechanics of the transformation
process. The characterization of transforms as property-preserving or not turns out
to be a key aid to guiding the transformation system.

A very interesting alternative characterization is provided by [BEH+s7, Part II];
our approach shares the notion of program schemes, and a version of performance
predicates. Another good general survey of transformation systems can be found in
[Fea86].

Practical transformation systems must have the the basic concepts instantiated
before they can be used. This process has been called domain engineering [Ara88] and
is a difficult problem in its own right. We will touch on the role this plays occasionally
in this section.

3.1.1 Program Schemes

The main purpose of a software development process is to produce an exe
cutable computer program. A transformation system must consequently manipulate
representations2 of computer programs as data objects. It is convenient to process
generalizations of computer programs which are identical in all but a few places; we
represent the differing places by parameters3 standing for program fragments, and
call a program with zero or more scheme parameters a program scheme:

DEFINITION 3.1: Program Scheme. A syntactic construct representing a class of
programs, allowing parameters where one would expect complete syntactic constructs.
Scheme parameters can be instantiated by substituting other program schemes. D

We use "?name" to denote program scheme variables.

2The conventional wisdom is that of Agresti [Agr86]:

Transformational implementation is an approach ... to apply a series of trans
formations that change a specification into a concrete software system.

This implies that a transformation system "transforms a specification" into a program. They trans
form programs, not specifications.

3 Not the typical variables of procedural languages.

46 CHAPTER 3. TRANSFOR1'v1ATIONAL IMPLEMENTATION

An example program scheme is the PASCAL program fragment containing both
a PASCAL program variable x and a scheme parameter ?m for the body of the loop:

while x do ?m

A program scheme without parameters is just a particular program. This defi
nition follows that of the CIP project [BEH+87, BMPP89], which suggests that one
should not only use transformation systems to develop programs, but also to develop
program schemes. This potentially allows a transformation system to participate in
the construction of its own transforms, as many transforms have representations which
include a pair of program schemes with shared scheme parameters [EM85, p. 124],
[PS83].

Since our intention is to characterize the transformation process without com
mitting to representational details, we avoid (as far as possible) defining any particular
structure for program schemes (or any other objects involved in the transformation
process), although we will use some in examples. Instead we depend on the interac
tions of the objects to define their essential properties, in the style of category theory
[AM75, Gol84].

To prevent cluttering the text, we shall use the term "program" to mean "pro
gram scheme". We use :F to denote the set of possible programs, and fi E :F to denote
particular instances. The symbol J was chosen because historically each program im
plicitly represented some desired functionality in transformation systems. The notion
of performance measures in the next section makes it clear that functionality is merely
a derived property of each program. As a mnemonic aid, we suggest you think offs
as program forms.

3.1. BASIC COI\TCEPTS 47

Programs are represented in a variety of ways. We provide some sample program
representations:

• Strings representing a sentential form (string derivable from the goal symbol) of
a chosen grammar [ASU86, p. 168], with named nonterminal instances. For a
simple PASCAL grammar, the following is a program with scheme parameters
?x and ?y for nonterminals TARGET and EXP respectively:

(?y: TARGET)[i] :=alpha+ (?x: EXP);

• Trees representing terms t E Top(X) determined by a signature (S, OP) with
S being a set of sorts, X being a set of parameter names, and inductively
defined by recursive composition of OP, a set of constant and operation symbols,
over terms [EM85, p. 17]. Tree nodes represent operators from OP or scheme
parameters.

• Jungles: forests of acyclic hypergraphs, with nodes and edges labeled with sorts,
operation symbols, and parameter names taken from a signature [HKP87] used
to represent terms with identical substructures.

• Graphs representing algorithmic programs, with nodes representing operators,
program variables, or scheme parameters, and arcs representing connections
between them [Ehr78, vdB81, Sow84]. Edges can reflect "consumes" for value
producing operators, "transfers-control-to" for control-operations, "defines" for
variable declarations.

• Semantic networks with virtual links (see Section 9.4. 7)

3.1.2 Performance Measures

A transformation system must determine if the program it is currently manip
ulating has some desired property. To do this usually requires two steps: computing
some quality called a performance measure, and then comparing that measure to some
reference value. There are typically many possible aspects of an artifact of interest;
most will require a performance measure.

DEFINITION 3.2: Performance Measure i. A function Pi : F _,.Vi from programs to
a set of performance values Vi. D

We denote individual values in Vi as vk, or Vi,k when the performance value
type would be otherwise unclear. We use P to denote the set of possible performance
measures, and P to denote particular sets of performance measures.

48 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

This definition covers such diverse measures as:

• implementation technology measures such as programming language:

Planguage : :F--+ Vianguage = {FORTRAN, c, c ++, SNOBOL, LISP, PROLOG, ... }

• source line count: Psloc : :F--+ Vsloc =Nat (Natural numbers)

• GOTO count: Pgotos : :F--+ Vgotos =Nat

• McCabe's cyclomatic complexity numbers:

PMcCabe : :F--+ VMcCabe =Nat

and Halsted's volume/level measures [Fai85, p. 324]:

PHalsted : :F--+ VHalstead - Real

• Module coupling and cohesion [Fai85, pp. 148-149]:

Pcoupling : :F--+ {content, common, control, stamp, data}

:F { coincidental, logical, temporal, communication
Pcohesion : --+ sequential, functional, informational }

• 0 complexity cost computations [AHU74, p. 2]:

Pcomplexity : :F --+ V complexity = Polynomials

• Denotational program semantics [Sto77, Pag81, All86]:

Pmeaning : :F --+ V meaning Functions

Another possible form for Vmeaning are input/output predicates and extensional
relations [MDG86].

• Theories (complete set of facts known about a program [TM87]):

Ptheory : :F --+ Viheory = {theories}

• Models of programs as algebraic specifications [ST88]:

Pmodels : :F--+ Vmodels powerset(Algebras)

• Termination [BPW80]:

Pterminates : :F --+ Vterminates = {true, false, unknown}

3.1. BASIC CONCEPTS 49

• Vague "-ilities" such as

Preadability : :F---+ Vreadability = {low, medium, high}

assuming they can be formalized.

In particular, performance measures are intended to cover those properties which
are a consequence of the particular form of the program rather than its derivation.
Pidgeon [Pid90] characterizes similar measures as "observation channels", but also
allows observations on resources consumed during development.

Functionality (Pmeaning) is commonly assumed to be the aspect intended by
a program. However, our perspective is that a program has multiple measurable
aspects, of which functionality is merely an arbitrary choice. 4

Performance measures are not always easy to compute. In some cases, ap
proximations will do. For computational complexity, determining the actual cost
can be very hard to do in general, but one can build conservative estimators as is
done by MEDUSA [McC88]. Sometimes, however, we can actually finesse comput
ing a performance value entirely (we will see later that the non-symmetric nature of
transformation systems allows us to get away with this). When treating algebraic
specifications as programs, one would not ever want to actually compute the set of
algebras which are models for a particular algebraic specification [ST88], but one does
want to reason about that set, and so the notion Pmodels is still useful.

Reasoning about performance values is aided by an abstract notion of perfor
mance subsumption: the intuitive idea is that some performance values are at least
as good as others. For every set of performance values Vi, we assume the existence
of a (possibly trivial) binary subsumption relation, in which every value subsumes
itself and possibly some other values. We will use this later to define a class of
property-preserving transforms.

DEFINITION 3.3: Subsumption. A preordered relation Ci~ Vix vi. If x Ci y, we say
that x subsumes y. D

Many subsumption relations are actually partial5 orders, although we have little need
of that fact.

4This perspective is given strength by an unsolved problem in secure operating systems: pre
venting covert signaling channels (example: a supposedly trustworthy Trojan program leaking con
fidential information as a bit stream by changing the page fault rate to signal ones versus zeros to a
detection device outside the system). From the point of view of the spy, the program's functionality
is to leak bits, not to perform the service asked by the application. This is simply a instance of
choice of an unusual performance measure as "functionality".

5Preordered: Vx, y, z: x !: x, and (x !: y) /\ (y !: z) :::> (x ~ z). A partial order also requires that
(x ~ y) /\ (y ~ x) :::> x = y.

50 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

Likely examples of subsumption relations are:

• Vsloc: the complete standard ordering :::; over NAT defining V1 ?=sloe V2 = V1 :::;

V2.

• Vcohesi~n: degree of cohesion [Fai85, p. 149]:

informational ?= functional ?= sequential ?=
communication ?= temporal ?= logical ?= coincidental

• Vcomplexity: asymptotic polynomial domination

0(1):::; O(n):::; O(nlogn):::; O(n2):::; 0(2n)

defines

0(1) ?=complexity O(n) ?=complexity O(nlogn) ?=complexity O(n2) ?=complexity 0(2n)

• Vianguage: language subsetting:

c ?=language c++

A program is surely in C++ if it is in C; there is no relation between C and
PROLOG.

• Vianguage: use of language in production software development environments:

FORTRAN ?=production-oriented C ?=production-oriented PROLOG

and
C ?=production-oriented FORTRAN

We interpret this as "FORTRAN is just as production-oriented as C" and vice
versa, with both being more production-oriented than PROLOG. Since it is
obvious that FORTRAN "I C, ?=production-oriented is only a preorder.

• Vmeaning: function generalization:

f ?=meaning g ~ Vx : defined(g(x)) :J defined(f(x)) /\ g(x) = f(x)

i.e., f computes everything that g computes, and perhaps something else be
sides.

• Y'iheory: theory inclusion:

Ptheor·u(fi) ?=theory Ptheory(h) ~ Ptheory(f1) 2 Pth.eory(h)

This is the notion of implementation defined by (TM87].

3.1. BASIC CONCEPTS

• Vmodels: model subsets:

Pmodels (11) 'c models Pmodels (/2) {=::::} Pmodels (f 1) ~ Pmodels (]2)

This is the notion of implementation defined by [ST88].

• Vreadability: "more readable":

high 'c readability medium 'c readability low

51

Broy [BPW80] argues for the utility of program relations constrained to be pre
orders, and provides quite an interesting list of possible relations, including some for
nondeterministic programs. We emphasize preorders on the more primitive notion of
performance measures because of their value as generators of such program relations.

3.1.3 Performance Predicates

Performance predicates verify that a program has a desired property (say, com
putes the desired result by virtue of denoting a particular function), rather than
determining some performance measure.

DEFINITION 3.4: Performance Predicate. A predicate G; ~ :F over programs. D

The symbol G was chosen in anticipation of using performance predicates as goals in
the transformation process. We use g to represent the set of possible performance
predicates, and g; to represent particular primitive predicates. We use G to represent
predicates when we know little about any structure they might have, or when they
are explicitly composed from primitive predicates, such as a conjunction. We will
sometimes treat conjunctive predicates as a sets and use set notation to manipulate
such predicates; e.g., we will write g E G if G = ... /\ g /\

Performance predicates are not given extensionally, but can be supplied as char
acteristic functions G; : :F -+ Boolean or specializations. A rather trivial example
is GFoRTRAN(/), which is true if f is written in FORTRAN; another example, for
structured programmers, is Gno-GOTOs·

Performance predicates G; are often definable terms of performance measures:

G; : (:F-+ Vj)-+ Boolean= G;(J) = g;(pj(J))

We might define Gno-GOTOs(/) = 9is-zero(PGOTO-count(f)). In fact, we can often
encode a performance predicate as a relation between a performance value computed
by some p; and an explicit desired performance value constant, Ve E Vi=

G; : (F-+ Vj) x Vj-+ Boolean - G;(f) = g;(pj(f), ve)

An example is Gfits-in-one-page (!) = Psloc(/) :::=; 66; our FORTRAN tester becomes
GFORTRAN(J) := Planguage(f) =FORTRAN.

52 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

For a performance predicate G defined in terms of a relation between a per
formance measure Pi and a desired constant Ve E V;, the relation g is often the
subsumption relation t;, as with Gfits-in-one-page. A more interesting case is
GrFT(J) Pmeanin9 (J) t VFFT, which says a program J is an FFT program if it
computes FFTs, and perhaps something else besides. We shall have use for perfor
mance predicates based o.n subsumption relations.

In analyzing a number of algorithm syntheses, Steier [SA89, 104] found that
most 'nonfunctional' (i.e., performance) goals were not explicitly represented, al
though they invariably drove the synthesis process. He claims that we do not know
how to express useful performance goals yet, and that further research is required to
determine this. We make no claim that our characterization completely solves the
problem; we suggest that one must start somewhere with an explicit representation,
and our characterization seems like an obvious first choice. We obviously have not
determined which performance measures or goals are useful.

3.1.4 Specifications

A software development process must convert a vague notion of a customer ideal
into a running computer program (system). There are, conceptually, two major steps
to this process:

• Conversion of "vague notions" into concrete goals.

• Construction of a program that achieves those goals.

The process of converting such "vague notions" into concrete goals is generally
called requirements analysis [Pre87, Lei87, Lei88] and is an extremely difficult problem
in its own right. Part of the difficulty is in acquiring the proper vocabulary in which
to state the goals, and has been pursued to some extent by others [Nei80, Ara88]
under the name domain analysis. Another problem is the conversion of a customer's
desires into a description using a predefined vocabulary and validating that conversion
[Fic87, RW88, Lei88]. Yet another difficulty is encoding a goal achievable with the
implementation technologies at hand; Arango [Ara88] outlines a domain engineering
methodology that defines vocabularies for implementable solutions using a set of
reusable components.

As the point of automatic programming is to convert desires into programs,
a necessary step is to acquire a fully formal statement of the requirements, on the
assumption that automatic programming cannot occur with informal descriptions.

3.1. BASIC CONCEPTS 53

For the purpose of transformational implementation, (and to clarify our view of
what the terminology of traditional SE should be), we define:

DEFINITION 3.5: Requirements. An informal statement of the goals to be achieved
by an artifact. D

and we define:

DEFINITION 3.6: Specification. A formal statement of the goals to be achieved: a
predicate ~ :F. D

Specifications are usually defined intensionally with performance predicates over
programs.

DEFINITION 3. 7: Performance goal. Any performance predicate used in a specifica
tion. D

We note that the goals for an artifact may cover not only its functionality, but
also its form and properties derivable from the form. Thus our notion of specification
covers not only functionality of programs in terms of input and outputs, but also
what is conventionally termed performance, such as space, and time, as well as less
conventional properties such as target language, degree of module cohesion, or models.

The problem of acquiring the requirements, and maintaining traceability from
requirements to specifications is important, but beyond the scope of this thesis.

A traditional SE definition of specification emphasizes that the specification de
scribe what is desired, rather than how the final artifact should work [Fai85, p. 88].
This is valuable in the sense that it decouples possible implementations from charac
terizations of what are valid solutions, leaving the implementors as much freedom as
possible. In this view, "how" is essentially an executable program.

We do not see specifications as necessarily what. A formal specification may,
in fact, insist on the use of particular programs for accomplishing certain aspects of
a desired computation (probably requiring a G contains : :F -t boolean in order to
state it), without making it any less of a specification6 . This view of specification is
consistent with very high level specifications such as predicate calculus with sets, and
very low level specifications such as state machines and procedures, depending on the
particular specification formalism used.

We explicitly avoid the notion of process specifications: constraints over re
sources consumed during the construction (or modification) of an artifact, such as
CPU-time (especially that expended to compute performance or other process mea
sures/predicates), man-hours, dollars, LISP-machines, number of transformations ap
plied, etc. We do this to restrict the scope of the research to manageable size.

6Further discussion of specifications as programs and programs as specifications can be found in
(TM87].

54 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

3.1.5 Specifications defined by multiple Performance Goals

The extensional characterization of a specification (as a subset G ~ :F) is not
appropriate for practical use, because it is impractical to construct. Given various
domains of discourse i for describing relevant aspects of a desired artifact, a single
monolithic predicate 'specification' is likely to be expressed as the conj unction of a
number of sub-predicates G; each expressing conditions for a particular performance
aspect i:

n

specification - /\ Gi
i=l

Typically, one performance goal will constrain what is traditionally termed the
functionality (Pmeaning); this term specifies what the ultimate program J is to supposed
to compute (as opposed to how "well" it does it), and is the goal traditionally given
primary importance. The remaining goals specify "lesser" performance properties of
the implemented program. Functionality is emphasized over other performance goals
simply because, in practice, most customers prefer non-functionality-performance de
graded programs over functionality degraded programs. We observe that tradeoffs do
exist, and functionality is sometimes traded away to achieve better performance on
a lesser functionality; typical is the implicit acceptance of bounded-size integers in C
programs due to their efficiency in widely available machines with fixed word sizes.
Note that the specification is stated in terms of the syntactic structure of the ultimate
program f; this allows us to extract function and other performance properties by
inspecting what f actually does.

3.1. BASIC CONCEPTS 55

Specification Styles

In practice, some representation of the specification must be provided to a trans
formation system. Assuming a conjunctive specification, what is really required are
representations for the individual performance goals. We see several practical styles
of representing such individual goals, possibly mixed in any one conjunctive specifi
cation:

• direct specifications, providing G; directly

• performance bound specifications, defining G;(f) = p;(f) ti v;,j in terms of a
"specification" (p;, v;,i). The value v;,j is called a performance bound.

• indirect specifications, defining G;(f) = p;(f) t; p;(f0) in terms of a "specifica
tion" (p;, Jo)

• base specifications, defining Gbase(f) =·Phase(!) tbase Pbase(Jo) in terms of a
"base specification" program fa. Which performance measure Pba.e is used is
a constant for each transformation system; obviously a transformation system
can have at most a single base specification in a conjunctive specification. Such
specifications are conventionally known as functional specifications because of
the frequent additional assumption that Phase = Pmeaning. This is, unfortunately,
the conventional meaning of specification accepted in the transformational com
munity.

We call a specification containing mixed styles a mixed specification and write it as a
tuple containing style instances as elements, so (!0 , v;, 9i) is a specification containing
a base specification fa, a performance bound v;, and a direct specification 9i·

56 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

Direct specification is just that; the system analyst must encode his desired
performance goals directly in some predicate-constructing language understood by
the transformation system, or perhaps select a performance goal from a list built into
the transformation system (such as the frequently built-in, very complicated predicate
G optimizedsomewhat). We are not very interested in the structure of such a predicate
constructing language for this thesis, as the special cases that are interesting to us are
covered by the other specification styles. A simple example of such a language would
allow the vocabulary we have defined so far, i.e., allow references to performance
measuring functions, performance values, and various relations between them. An
example direct specification might then be represented as:

Pmeaning (J) tmeaning Vmeaning,FFT

/\pcomplexity (f) tcomplexity 0(inputsize(f) log inputsize (!))
/\psloc(f) tsloc 1000
/\p1anguage (J) t language LISP
/\preadabi/ity t readability medium

This would describe a program that computed a particular function Vmeaning,FFT (say,
a Fast Fourier Transform), had O(nlogn) running time or better, was at most 1000
source lines in size, was coded in LISP or some subset of LISP, and was anywhere
from moderately to highly readable.

Performance bound specifications take advantage of the fact that many perfor
mance goals are simply upper bounds on acceptability of some performance measure;
it is sufficient to simply supply the upper bound, as the rest of the predicate is styl
ized, and can be generated automatically. A common shorthand for specifications of
this form is simply a list of performance value constants Vi,j E V; implicitly defining
the specification:

/\p ·(J) >-·v·. I _I l,J

i

The preceding specification is then written simply as:

(vmeaninu,FFT, n log n, 1000, LISP, medium)

We will see variations of this type of specification when we attempt to change the
(non-"functional") performance of an existing artifact.

Indirect specifications derive a performance bound specification from a supplied
pair (Pi, fo). This ca:q. occur in practice when an existing implementation fg3 is
satisfactory for some performance aspect Pi, but not another, and the engineering
organization wishes a new artifact at least as good as the old; thus (Pi, f 93) as an
indirect specification. Another good reason for using indirect specifications is that v =
Pi (f 0) may be difficult to represent, especially if V; is constructed in a very general way,
whereas Jo may be encoded in a specialized problem domain language suitable for the

3.1. BASIC CONCEPTS 57

job at hand7 . This is one of the essential idea behind the Draco paradigm [Nei84a], and
Draco specifications are in fact precisely such pairs (Pdomainmeaning, fdomaininstance). The
complications are then effectively hidden in Pi and fall on the domain engineer rather
than the specifier, at the price of having the specifier learn a specialized language,
and mentioning Pi along with his program.

Base specifications occur not only for the same reasons as indirect specifications,
but also for a practical reason that we outline in more detail in Section 3.2.2: the need
for a transformation system to start with a program. Most often Phase = Pmeaning is as
sumed because of its complexity, and the specification]0 , often an instance of a wide
spectrum language, is called a functional specification. More specialized transforma
tion systems such as TAMPR [BM84], accepting functional LISP, and Belkhouche's
abstract-data-type implementor [BU86] also allow functional specifications with as
sumed Pmeaning .

Wide spectrum languages with predicates and set notations tend to make it easy
to confuse a direct specification with a program. Confusing the problem description
with the actual specification is consequently common. Example: any procedural
program denotes some function. The function is what the transformation system is
to implement; it does so by manipulating the program.

We see that specifications for practical transformation systems are always per
formance goals, albeit in various 'disguises.

7Traditional transformation systems with wide spectrum languages [SKW85, Bal85a, BMPP89],
fit this characterization if we simply treat the wide-spectrum language as a domain language. It
is interesting to note that Smith [Smi89] describes the specification acquisition process for a wide
spectrum-language-based transformation system as first requiring definitions of appropriate formal
terminology for the problem, before specifying the problem itself; the difference is thus one of make
domain-now versus use-pre-existing domain.

58 CHAPTER 3. TRANSFORNIATIONAL IMPLEMENTATION

3.1.6 Design States

In practical situations, the transformation system will have a program f;, and
a set of specific consequences Qi = { q;,j} inferred and cached about that particular
program scheme. Caching is needed to avoid repeated re-computation of the same
results. Typical consequences may be:

• data flow analyses

• value range restrictions induced by context

• estimated execution frequencies

Such consequences can be defined as performance measures over programs, but are
usually not used in goal predicates.

DEFINITION 3.8: Design State. A pair Si = (!;,Qi) consisting of a program fi and
a set Q; ~ { (p,p(f;)) Ip E P} U { (g,g(f;)) I g E g} of cached conclusions drawn
about k D

We use S to represent the set of possible design states, with s representing individual
states. We extend the definition of performance measures p and performance predi
cates g to allow application to states, by applying them to the program component
of a state, as follows:

Vp E P, s = (!, Q) :J p(s):::: p(f)

'Vg E Q, s = (!, Q) :J g(s):::: g(J)

Practical versions of performance measures and predicates may take advantage of the
cached facts Q to speed up the computations.

An instance of what we call design states is the representation scheme dubbed
"webs" by [MSNT88]. This scheme captures both an abstract syntax tree for a
program, and also captures used and ref data fl.ow analysis results as labeled links
between nodes in the abstract syntax tree.

Pidgeon [Pid90] proposes that design states include not only a program, but also
the desired specification G, measures of consumed resources, as well as the definitions
of the performance predicates themselves. All this information was necessary to model
rationality of the transforming agent, even in the face of learning. Our states are much
simpler because we do not deal with resource management, and our specifications are
static during the course of implementation.

3.1. BASIC CONCEPTS 59

3 .1. 7 Transforms, Bindings, Lo caters and Transformations

Intuitively, a transform is simply some formal modification to be applied to a
program. We extend the notion to transforms applied to states composed of programs
and consequences; this allows many consequence-generation rules to be defined as
transforms (as is done for webs). Transforms often can be applied to several places
in a state, and so we have a need of a mechanism, traditionally called a binding, to
specify precisely where and how a transform "matches" to the state. Bindings are
always dependent on the transform and the state in which it is applied.

DEFINITION 3.9: Transform. A two argument partial function:

t: S x bindings(t, s)-+ S

which maps state (programs) via bindings to new states (programs). 0

The set of possible transforms is denoted T. Individual members ti E T are dis
tinguished by subscripts. Sets of transforms are denoted T. We use B to denote
the set of all possible bindings of all possible transforms to all possible states, and
understand that application of a particular transform requires a binding appropriate
to that transform and the state to which it is being applied.

Since a binding must specify some sort of connection to the state, and we wish
eventually to record transitions between states (s1 , s 2) caused by applications of trans
forms without reference to the actual state, we introduce the notion of a locater as a
kind of state-relative pointing device. Unlike bindings, a locater value is independent
of any transform or any state, but acts as a constraint on bindings when used for any
particular transform on a state.

DEFINITION 3.10: Locater. A constraint on bindings:

£ : S x T -+ powerset(B)

0

We denote the set of possible locater values by£, with individual members£ E £. For
the purposes of this thesis, one can think of locaters as specifying a place in a state
according to some "geometry" dependent on the state representation, but in general
they are just simply constraints8 . Finding a suitable set of locaters for various state
representations may be a difficult problem which we ignore for this thesis (but see
the definition of path, below, for a practical locater for states represented by trees).

8If one considers that transforms might be parameterized, the locater also includes constraints
on the parameters.

60 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

Most transformation systems contain a pattern matcher to decide precisely how
a transform matches a state; since a locater may allow a transform to match a state
in more than one way, this is the set-valued total function:

match : T x S x .C---+ powerset(B)

The pattern matcher is used by a transform applier (partial function) to apply
transforms to states given locaters:

apply : T x S x .C -+ S

The value of this function is well-defined only when a unique binding is chosen by the
matcher:

defined(apply(t, s, t')) = match(t, s, f) = {b }, b E B

We will find it useful, for transformational maintenance, to capture the potential
application of a transform at a specified location. We call this potential application
a transformation. The intuitive distinction between transform and transformation is
the same as the distinction between the AI notion of operator and operation.

DEFINITION 3 .11: Transformation. A pair (t, t') with t E T and f E .C, denoted tl.
D

We define the notation tl(s) = apply(t,s,i!.). We use the notation X to mean the set
of possible transformations T x .C, with x representing individual transformations.

Often a transform is represented by some concrete object r from an arbitrary
representation set R, and a general transform-constructing mechanism e : R -+ T
embedded in the transformation system is used to construct the actual transform
from its representation when it is applied. We abuse the notation and write tname or
tr to stand for some 8(rname), or even rname itself if we have a specific transform in
mind. We will also write t : S x .C -+ S when defining a particular transform, the
states it manipulates, and the form of the locaters.

3.1. BASIC CONCEPTS 61

Examples of transforms, transformations, and locaters

To show the generality of the definitions, we present some example transforms
and locaters, followed by discussion of a variety of representations used in systems
that we would call transformation systems.

The string production with nonterminals:

tAbcA===>cAb : strings x (Nat--+ Nat)--+ strings

The subscript on t is a representation in this example. The symbol ===} is read as
"transforms to". A state in this case is a particular string. A locater is a map from
origin-one indices of symbols in a string to be rewritten to the indices of the symbol
in the lefthand pattern side of the production, indicating which string symbols match
which pattern symbol; string symbols not matching the production are mapped to a
fixed value, say, zero. As an example, the locater

£61 = {1 --+ 0, 2--+ 1, 3--+ 1, 4--+ 2, 5--+ 3, 6--+ 1, 7--+ 1, 8--+ O}

ensures
t ("b b " /)) "b b " AbcA===:.cAb ZZ czzq , ;:,51 = CZZ q

The tree transform:

tdistribute-multiply : Tree X Path --+ Tree

with its representation being the tree rewrite:

T'distribute-multiply =?a* (?b + ?c) ===}?a* ?b +?a* ?c

where states consist of expression trees.

Locaters for tree transforms are paths, a sequence of integers i selecting succes
sive one-origin subtrees [BEH+87] to select the point of proposed application of the
transform, expressed as a sequence (i 1 , i 2 , · · ·).

62 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

(1) * szn (2)

x (2, 1)

y

Figure 3.2: A tree program and some locaters

As an example,

tdistribute-multiply(x * (y + z) - sin(j * (k + l), (2, 1)) = x * (y + z)- sin(j * k + j * l)

Figure 3. 2 shows the program before transformation and the locater used.

We shall use tree transforms in other examples later. When we define a tree
transform and specify a locater simultaneously, we write the transform representation
followed by a locater value:

(treepattern ===? treereplacement) @(path)

We typically drop the outer parentheses:

?a* (?b + ?c) ===??a* ?b +?a* ?c@(2, 1)

or, if we use a known tree transform,

i distrihute-multiply@(2, 1)

3.1. BASIC CONCEPTS 63

A conditional tree rewrite:

tuseless-WHILE : (Eqn, Facts) X (Path, Nat) ---+ (Eqn, Facts)

with its representation being:

while ?x do ?y =?skip if ?x =false

States consist of a directed acyclic graph representation of a program coupled with
a fact database resulting from symbolic execution. The locater consists of a pair,
consisting of a Path as defined in the last example, and an index into a fact database
specifying which fact justifies the conditional in the rewrite.

The theory morphism:

istack-to-LISP : Term X Any ---+ Term

represented by

{top==} car, pop =? cdr, push =? cons, empty=? nil}

which maps states consisting of a term from a simple stack algebra to a term in an
algebra defining a version of LISP, by mapping the individual operations in the stack
algebra to operations in the LISP algebra. In this case, a locater is unnecessary, as
the transform is applied to the entire state:

istack-to-LJsp(top(push(x, empty)))= (cdr(cons(x, nil)))

LALR parser generators:

iLALR-parser-generator : (Domain, Term) X Any---+ (Domain, Term)

which maps BNF-style syntax equations into parser tables. The Domain is a tag
indicating to a potential Pmeaning how to interpret the particular term. The locaters
in this case are also ignored.

Discussion: Having seen a few examples, we now describe a range of schemes used
for transforms.

A typical representation for a transform is a tree-to-tree rewrite [SHFN76,
Kib78, Nei84a], with pattern variables used as scheme parameters. This choice is com
mon apparently because many programming languages are easily parsed into abstract
syntax trees, encouraging use of such abstract syntax trees as specific representations

64 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

for programs. Often such rewrites are augmented with an applicability condition to
form conditional rewrites [CHT81, Rea86, Hec88, BMPP89]. The combination of a
tree-rewriting mechanism with a particular tree-to-tree rewrite and locater instance
form the actual map from programs to programs. The representation for transforms
is generally compatible with the representation method used to encode the programs.
Graph-to-graph transforms have been used [Nag78, Ehr78, vdB81, Sow84, YNT86,
Wil87, YNTL88, PP89] because of the ability of graphs to syntactically express se
mantic relations poorly expressed by trees, such as symbol definitions, control flow
graphs and shared entities. More specialized directed acyclic graph-rewriting systems
[HKP87] have been proposed to gain the advantage of shared entities without the
pattern-matching costs necessary for full graph matching. String-to-string transforms
are theoretically useful [Pos43] but don't seem to be used much for transformation
systems, probably because tree rewriting is almost as easy to implement and is more
natural for expressions.

In practice, the representations of values for locaters are, like the transforms,
usually dependent on the representation structure of the programs. For tree-to-tree
rewrites, locaters can be paths, as defined earlier in the examples. Such locaters can
be used to generate bindings of values to pattern variables; the relation between nodes
of the pattern tree to nodes in the subtree being revised is determined uniquely by a
path. For graph transforms, bindings can be specified by an injective map from nodes
of the pattern graph to the program graph [Ehr78]. Locaters for graph transforms
are problematical at this time, but a sequence of graph patterns to select successively
smaller subgraphs may work.

There are classes of transforms that affect the entire state. While not usu
ally found in conventional transformation systems, parser generators (such as LALR
parser generators like YACC [Joh80]) constitute transforms by our definition, which
map BNF-like programs into parsing tables, as well as data-flow analyses [ASU86]
which simply augment the set of cached consequences. So, too, do theory morphisms,
useful for mapping terms (a particular representation for programs) defined in one
algebra into terms defined in another algebra. For such transforms, the corresponding
transformations have effectively trivial locaters.

Although our simple characterizations of transform, binding, locater and trans
formation are satisfactory for this thesis, these notions are considerably more complex,
especially if one is interested in the actual mechanics of rewriting and how those me
chanics are related to the representation of the programs being transformed. Some
initial investigation of the foundations of rewriting is being pursued by [Sri91].

3.1. BASIC CONCEPTS

3.1.8 Property-preserving versus
Non-property-preserving transforms

65

Transformation systems usually operate by applying so-called "correctness
preserving transforms" 9 . Using this terminology, transformational maintenance is
often initiated by applying non-correctness-preserving transforms; more on this in
Chapter 6. Consequently we shall have need for definitions for both.

Partsch [PS83) generalizes the notion of "correctness-preserving" by defining a
transform to be correct if a certain, arbitrary [BPPW80), transitive semantic relation10

holds between its input and output, i.e., there is a fixed, pre-determined relation
p(f,t'·(f)). Bauer defines a (correct) transform to be an inference rule [BEH+87,
·pp. 30-31) concluding such a semantic relation. As these definitions of correctness
preserving are imprecise with respect to what a correctness-preserving transform is
correct, we prefer instead to define property-preserving transforms in terms of pre
served properties as follows:

DEFINITION 3.12: G;-preserving transform c. Relative to a performance predicate
G;, any transform c E T with the property:

Vs,f: defined(/(s)) ~ (Gi(s) :::> Gi(/(s)))

The set of property-preserving transforms with respect to G; is denoted11 C;. D

9 An interesting difficulty with this formulation is the notion of approximate transforms. Useful
transformation systems have been built with transforms that are not provably correct, but are in
tuitively close to correct; this is analogous to floating point arithmetic versus the mathematical
notion of real arithmetic. Kant [DKMW89] describes a system that implements finite differencing
programs for solving partial differential equations by replacing continuous functions with approxi
mations. Perhaps such transforms can be treated as merely missing the additional conditions which
make them correct, although such conditions may be difficult to define in practice.

100ur performance predicates g are only defined on a single program, not a pair of programs.
11 We chose the letter c to stand for property-preserving transforms because of their historical

association with the term correctness-preserving transforms.

66 CHAPTER 3. TRANSFORMATIONAL J1VJPLEMENTATION

If Gi,J = p; (s) '.:::: Vi,j, then a transform c is Gi,j-preserving if:

One 'Nay to ensure this is to require the transform c to be monotonic in p;:

DEFINITION 3.13: p;-monotonic transform t. Relative to a performance measure Pi,
any transform t E T with the property:

Vs,£: defined(l(s)) :J Pi(l(s)) '.::::i p;(s)

D

Each p,-monotonic transform c is Gi,j-preserving for all j.

DEFINITION 3.14: p;-preserving transform c. Any p;-monotonic transform c. D

Using this terminology, the conventional definition of correctness-preserving transform
is simply Pmeaning -preserving.

A significant advantage obtained from the notion of p;-preserving is the iden
tification of the set of Ci. If Pi is a frequently used performance measure, such as
i = meaning or i = complexity, sets of transforms that preserve those properties can
be identified in advance of transformational implementation.

The definition of monotonicity is motivated by the definition of refinement pro
vided by Sanella [ST88], in which an algebra specification fa is defined to be an
implementation of algebra specification fb if models(fa) ~ models(fb)· If one is im
plementing an algebra-specification transformationally, then an algebra-specification
is a program, and Pmodels is a performance measure by our definition. The "~" idea
provided the inspiration for subsumption 12 . This formulation covers neatly the notion
of implementation of [TM87], in which implementations are super-theories.

Defining property-preserving transforms automatically determines a comple
mentary set of non-property-preserving transforms:

DEFINITION 3.15: Non-property-preserving transform n. Any n E (T - Ci)· D

Figure 3.3 provides an overview of the relation between various basic aspects of
a transformation system.

With the basic concepts defined, we are now ready to consider transformation
systems as a whole.

12Thanks to Y. V. Srinivas for a hint along these lines.

3.1. BASIC CONCEPTS

binding b,
determined by locater e

Pcomplexity(fj) = O(n2)

Transformational Invariant

Ginvariant(/) =
Pmeaning (f) '?:meaning Pmeaning (Jo)

Jo = original program

c=:

while ?z do ?m ~ skip
if ?z =false

Pcomplexity Ui+i) = 0(n)
'?:complexity Pcomplexity (fj)

Figure 3.3: Notational overview for transformations mapping state_s

67

68

Specification G

CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

-

Software Engineer

Software
Development

System

Implemented f----........ Software

Jc

Figure 3.4: Model of development symmetric with respect to specification G

3.2 Model of a Transformation system

In this section we provide a model of transformation systems using the basic
concepts developed. We first characterize general software development systems to
provide a reference used to highlight a characteristic feature of transformation sys
tems. Our model of a transformation system is then described and analyzed. We
discuss how a practical asymmetry in its operation leads to use of particular speci
fication styles. We close with a comparison of the model to existing transformation
systems.

3.2.1 Purpose of a Software Development System

A software development system (SDS) (Figure 3.4) is intended to somehow
produce a program meeting its specification, that is, is to find a program f that
satisfies the specification G:

3f: G(f)

So we define:

DEFINITION 3.16: Implementation. A program fa that satisfies a specification G.
0

3.2: MODEL OF A TRANSFORMATION SYSTEM 69

This characterization does not give any leverage to the software development
process. About all one can do to construct an implementation (find an Jc) with this
level of detail is to naively enumerate programs for f G and apply the predicate G until
an one is found that passes. Such a naive SDS treats the usual internal structure of
the specification,

in a completely symmetric fashion: none of the individual performance goals G; has
any special status over any other performance goal. Every proposed implementation
JG must be tested against all of the performance goals to ensure that all are satisfied.

The problem of determining how to obtain an implementation efficiently is called
the control problem. We shall discuss this in more detail in Chapter 4, but trans
formation systems have a basic, low-level control mechanism built in from the start,
which we discuss in the next section.

3.2.2 Actual Transformation system Model

In this section, we describe the purpose and mechanism of a transformation
system.

Transformation systems are software development systems with a sophisticated
approach to generating the implementation. They have a peculiar, but practical,
asymmetry about how they handle the individual performance goals. Such asymmetry
can lead to faster operation of the the software development system; this asymmetry
is precisely what distinguishes a transformation system from a blind enumeration.

A transformation system (Figure 3.5) accepts a specification (consisting of a
program and some performance specifications), and attempts to find a sequence of
transformations to apply to a program representing one aspect of the specification,
such that the transformed program satisfies the balance of the specification. The
transformed program is output as the implemented software.

DEFINITION 3.17: Transformation system. Any mechanism which applies a se
quence of property-preserving transforms to a given program scheme to find an
implementation 13. D

13We distinguish Synthesis Systems as those which accept only a specification and invent a program
to meet that specification; thus synthesis systems are more ambitious than transformation systems.
It is our expectation that they are also much harder to implement, hence our concentration on
transformation systems. Practical tools along these lines may actually end up being hybrids, similar
to REFINE [SKW85] as augmented by KIDS [Smi89].

70 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

Specification C entire =
Cinvariant /\Crest

ariant

program Jo
satisfies Ginvari ant

nes Transform Libra
C1ibrary = {C;}

tes Library Predica
C library = { C; }

sures Performance Mea
P1ibrary = {Pi}

ues Performance Val
Vlibrary = {V;}

tions Subsumption Rela
'?:library= {'?:;}

.....

....

--

Crest

'

Software
Engineer

'

Apply
Transforms

Figure 3.5: Model of transformation system

~

Implemented
Software fa

Derivation
History H

A transformation system may optionally produce the sequence of transforma
tions used, called a derivation history. This sequence will be of value when attempting
to construct a modified implementation. We defer further discussion of this output
until Chapter 5.

Other inputs used by the transformation system are a set of performance predi
cates and performance measures, which provide a vocabulary for stating the program
specification and actual functions used to extract qualities of states, and a transforma
tion library of property-preserving transforms C, indexed by the goals they preserve.
Control knowledge is also needed, but we will discuss that in Chapter 4.

The generation of the transformation sequence is difficult enough so that we
expect a human designer (called the Software Engineer) to provide assistance to
the transformation system essentially in the form of breaking ties between possible

3.2. MODEL OF A TRANSFORMATION SYSTEM 71

choices the transformation system might face. If the grand dream of transformation
systems is achieved and the process is nearly automatic, then human assistance will
be small but nontrivial [Bal85a]; in the meantime, human assistance may provide
the bulk of the direction with the transformation system merely handling clerical
detail [BEH+s7, BMPP89] such as listing choices and applying the transformations
mechanically.

Like any SDS, the problem for a transformation system is to find a program
j such that G entire(!). The specification G entire is assumed to be decomposable into
smaller specifications of which we have some knowledge. Frequently Gentire takes the
form14 :

Each transformation system defines a decomposition of G entire:

Ginvariant(f) /\ Grest(f) ~ Gentire(f)

The particular performance goal Ginvariant chosen15 is such that an initial approxima
tion fa of the desired program faentire can be divined from the structure of Ginvariant,

by a mechanism outside the transformation system. This has the nice effect that now
one of the terms, GinvariantUo), of the implicant is satisfied; the transformation system
need only find out how to satisfy the rest (obviously, if we have only a single predi
cate, then the implementation process is complete). The state of the transformation
system is initialized to (so, Ginvariant, Grest), where so = (Jo, 0) is the initial design
state consisting of the initial program scheme and the empty set of consequences. It
remains for the transformation system to find a way to satisfy Grest by transforming
so. Ginvariant is called the transformation invariant.

For each performance goal Gi, there is a set of property-preserving transforms
C;. The task of the transformation system when in state (so, Ginvariant, Grest) is to
choose sequences of members of Cinvariant with appropriate locaters, ci1 , c~2 , • • · ,·4k,

such that G rest (c~ (cik__-11 (• • • (ci1) (so)))) is true. By applying only members of Cinvariant,

the property Ginvariant cannot be lost16 and therefore need not be continually tested.

14Should a specification be disjunctive, the transformation system can simply treat it as multiple
conjunctive specifications, and an implementation need only be found for one.

15Current transformation systems each have a fixed decomposition method. In principle, there is
no reason why this decomposition cannot be dynamic, but there is little evidence that such an ap
proach has been tried. Such a dynamic decomposition would provide an additional backtrack point in
case the transformation process failed on the initial decomposition, a luxury present transformation
systems do not have.

160ne could apply some chain of non-property-preserving transforms ni, n 2 , · · ·to Sj at any point,
provided that the composition Iln; is property-preserving. In practice this is rarely done, as few such
sequences appear to be interesting; further, ifthe composition is a property-preserving transform and
interesting, one can expect it to be present in C;. One can expect groups of non-property-preserving
transforms to be applied in transformation systems in which the representational constraints on

72 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

function TransformationSystem(program:s, Predicate:G invariant,
Predicate:G rest, Transforms:C invariant)

returns program
while Grest(s)=false do

choose c; E C;nvariant
choose£ E [, suchthat defined(cf(s))
s +- cf(s)

end while
returns

end

Figure 3.6: Simple model of transformation system

For a complicated Ginvariant, or for large-scale states s, this can be a big computational
savings. This is a key architectural feature of transformation systems: staying on a
plateau of achieved property by only applying property-preserving transforms17 .

Typically, a transformation system will be manipulating a state which implicitly
defines a computation (Gimp licit - Gmeaning,j), and applying computation-preserving
transforms c E Cmeaning in an attempt to find a state in which the other desired
performance goals, such as the amount· of code Gs1oc,rnoo, are achieved. However, it
is perfectly reasonable for the state to initially describe a program which consumes
a desired amount of code space (satisfies Gs1oc,10oo), and apply code-space-preserving
transforms c E Csloc to see if the desired computation is achieved.

transforms prevent one from directly stating a desired property-preserving transform. An example
of such a system is TI [Bal85a], whose transforms are coded in a language called PADDLE [Wil83],
in which a property-preserving transform is achieved by a series of structural "edits" applied to
the syntax tree representing a program. Such systems should require explicit notions of sequencing
and atomicity of transactions to ensure that all the non-property-preserving transforms are either
applied in the correct order, or not applied, as a group. In PADDLE's case, the need for atomicity is
not explicitly acknowledged, but is implicitly present due to the execution rules for PADDLE, and
usually indicated by the transform designer by grouping the non-property-preserving transforms
into a single syntactic PADDLE entity like a procedure. In any case, our model does not cover
grouped non-property-preserving transforms; one must assume a corresponding property-preserving
transform.

17If one could constrain specifications to a purely conjunctive form, and could easily compute
intersections of sets of property-preserving transforms for different performance measures used by
the performance goals, then one might be able to do true hill climbing in the design space. This would
be accomplished by moving up to each plateau as successive goals were achieved, and constraining
the applicable property-preservl.ng transform set to be the intersection of all property-preserving
transform sets for the remaining goals.

3.2. MODEL OF A TRANSFORMATION SYSTEM 73

A transformation system can theoretically switch from using one type of
property-preserving transforms to another, by changing which performance goal is
preserved. Assuming that at step m, for some Gj and G~est:

• the transformation system state is (sm, Ginvariant 1 Grest),

• Gj /\ G~est => Ginvariant /\ Gresl,

• Ginvariant(sm) =true and Gj(sm) =true

then the transformation system can change its focus of attention from Ginvariant to
Gj by changing the state to (sm, Gj, G~est)· When the form of Grest and G~est are
conjunctions of individual performance predicates, this amounts to swapping a single
predicate from the invariant slot with a predicate in the to-be-achieved slot. Further
transforms must then be chosen from Cj rather than Cinvariant. The utility of this can
be seen when designing time-critical routines for operating systems; it can be more
efficient to enumerate routines having extremely tight constraints if there are only a
few such routines. No systems familiar to this author change the focus in this manner;
this is not surprising since doing so would require Ginvariant to be explicit, whereas it
almost always implicit.

A complication occurs in practice. The sets Ci are not actually available to
the transformation system. Instead, for each set Ci, there is an approximating set of
transformations Ci. The transformation system uses Ci whenever Ci is desired. This
approximation occurs as a consequence of human fallibility in the construction of the
transform set; the supply of transforms is nearly the desired set, but may include
some faulty transforms or be missing some needed transforms. This approximation
requires occasional action be taken to bring the sets C; more in line with their ideal
C;. Similarly, we expect all the reference inputs used by the transformation system
(Gi, Pi, V;, >-i) to only be near approximations of the truth. Correction of these
approximations is one source of evolutionary pressure.

3.2.3 Partitioning the specification

Now let us consider how the initial partitioning of the specification G occurs.
Transformation systems must operate on a program, but specifications technically
only come as a set of goal predicates. Somehow an initial program Jo must be man
ufactured.

Such an fa can be obtained by use of a synthesis system. Given a specification
of the form Gmeaning /\ Grest, transformation systems containing synthesis subsystems
(such as KIDS [Smi89]) use the synthesis subsystem to generate Jo from the supplied
Gmeaning; Ginvariant then becomes the specification Gmeaning, and the transformation

74 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

system is started in state ((Ji, 0), G meaning , G rest), effectively partitioning the specifi
cation.

However, most existing transformation systems finesse the need to decompose
the initial specification at all, by assuming a particular Ginvariant and requiring the
specifier to supply the mixed specification (Jo, Grest)· Consistent with the definition
of base specifications, the invariant is defined as:

Ginvariant(/) = Pbase(f) t Pbase(Jo)

in which Pbase need not be made explicit, as Ginvariant never needs to be evaluated
by the transformation system. This indirectly defines the set of usable transforms to
be the Phase-preserving transforms; this set can be constructed in advance of seeing
the specification since Pbase is a constant for the transformation system. Usually,
Pbase is defined to be a semantic function like Pmeaning. This is characteristic of
systems with both wide-spectrum language approaches [BBG+78] such as REFINE
[Rea86, SKW85], CIP-L [BMPP89], or GIST [Bal85a, Sca86], and domain-specific ap
proaches like Draco [Nei80, Nei84a]. An apparent advantage for the implementors of
the transformation system is that Pmeaning need not be explicitly defined. In practice,
leaving Pmeaning implicit/informal can make determining property-preserving trans
forms Cmeaning difficult, and for domain-oriented transformation systems, can lead to
semantic earthquakes [Bax86].

3.2.4 Comparison of transformation model to real systems

This model of transformation systems is a synthesis of the best features of a
number of existing systems. CIP [BMPP89] has programs with scheme variables.
LIBRA [Kan81] and MEDUSA [McC88] have explicit performance measures; some
work has been done on an efficiency analyzer for KIDS [Smi89]; MEDUSA allows
only a single performance bound, computation complexity, to be explicitly specified.
All other transformation systems mentioned in this section have implicit performance
goals. A base specification fo is supplied to the TAMPR [BM84], Draco [Nei84a],
LIBRA, TI [Bal85a], CIP, MEDUSA, and REFINE [Rea86, SKW85], CIP-L systems;
the CYPRESS synthesis subsystem [Smi85] of KIDS being the exception, accepting
Ginvariant, and manufacturing fa for processing by REFINE. Every transformation
system considered had sets of property-preserving transforms defined only for the
Pbase = Pmeaning implicit in the programs manipulated.

The practice of supplying only a program as a specification has the dubious
advantage of not requiring any performance properties or performance predicates to
be defined to that transformation system before it is used to apply transformations.
We believe that this absence of performance predicates is a key stumbling block when

3.2. MODEL OF A TRANSFORMATION SYSTEM 75

it comes to providing transformation systems with control mechanisms. In fact, since
extant systems are almost never provided a Gresl, it is hard to understand why any
transformations are applied at all (after all, Ginvarianl is satisfied by definition) until
we realize that these systems must have an implicit Gresl = Gimp licit, such as the
REFINE transformational compiler18 . A minor variation is the TI system [Bal85a],
in which Crest is not implicit in the transformation system itself, but is implicit in the
control supplied to the transformation system in the form of a set of PADDLE [Wil83]
procedures. A third variation is a purely interactive transformation environment such
as CIP [BMPP89], in which Crest = Gdesigner, as the designer looks at intermediate
states, and if he is not satisfied with their performance, directs applications of further
transformations. Lastly, there are hybrid semi-interactive systems such as KIDS
[Srni89], which have Crest = Gimplicit /\ Gdesigner with the implicit performance goals
being inherited from the underlying transformation system (in this case, the REFINE
compiler). The only advantage to implicit performance specifications is that they need
not be formalized; in the long run, we think this benefit is not as great as the need
to provide control for navigation.

A model of MEDUSA

Our model is probably best exemplified by the MEDUSA system [McC87],
which "synthesizes" routines to solve planar inter.section problems from computa
tional geometry, given complexity constraints. A mixed specification (10 , Vcomplexity)

is provided to MEDUSA. Ginvariant(f) = PmeaninuU) t PmeaninuUo) is assumed;
Pmeaninu is never instantiated or computed, and Crest is defined as Gcomplexity (f) :=
Pcomp/exity (!) t complexity Vcomplexity. fo itself is defined by a single typed scheme vari
able representing the desired function by being typed (named) for that function; we
will call this a placeholder. Transforms are replacements of placeholders representing
functions by code skeletons implementing those functions; the code skeletons may in
turn contain placeholders. The set of placeholder-to-skeleton maps defines the set of
property-preserving transforms Cmeaning which are Ginvarian1-preserving.

Each MEDUSA transform c; is associated with a cost formula for computing
Pcomplexity (c;) from Pcomplexity values for the instantiations of placeholders inc;. Starting
with a symbolic complexity Vcomplexity,o for fo, a lower bound estimate on Pcomplexity for
any f; can be incrementally maintained by substitution of the cost formula of c;_1 .

Monotonicity of growth of the lower bound on Pcomplexity as components are refined
occurs as a consequence of the purely functional nature of all of MEDUSA's programs,

18Unsurprisingly, [SA89, 104] found that most design decisions involved in a number of documented
algorithm syntheses were based on non-functionality properties, what we call performance properties,
and that such performance goals were not explicitly represented

76 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

the absence of any transforms that can simplify away code, and the compositional
nature its trap.sforms.

This monotonic growth allows MEDUSA to cut off an overly expensive imple
mentation early by using t complexity. Whenever a proposed cf has the property that
Pcomplexity (cf (Ji)) 'i Vcomplexity, no further property-preserving transforms can lower the
cost, and thus application of cf is useless and can be ignored. This is MEDUSA's main
hueristic, and is quite close to our earlier characterization of stepping up plateaus of
increasing partial specification satisfaction by restricting sets of allowable property
preserving transforms.

Having defined a model of transformational implementation, we now turn our
attention to properties of the transformational implementation space.

3.3 Properties of the design space

The design space (Figure 3. 7) is the set of possible implementations determined
by application of property-preserving transforms to the initial program, assuming the
transformation invariant is held constant. Design states are shown as circles. The
initial state s0 = (!0 , 0) forms the root of the space. Each arrow represents a partic
ular transformation from one design state to another; the number of transformations
leaving any particular state is widely variable, depending on the state and on the set
of available property-preserving transforms. We call the average number of transfor
mations leaving a design state the branching factor. The nodes along the bottom
represent possible implementations (although implementations may be "interior" to
the space), each satisfying a different set of performance goals. The bold arrows
represent a particular derivation history, the string of transformations leading to a
particular implementation satisfying some set of performance goals.

There are several interesting observations about the nature of typical design
spaces:

• The average derivation history is quite long: 104 transformations.

• The design space is (consequently) enormous: 1043 states.

• There tend to be cross-links, or multiple paths, to many of the states in the
space; for very small spaces, the number of paths 19 is at least 10.

19See the discussion in Chapter 7.

3.3. PROPERTIES OF THE DESIGN SPACE

Depth::::; 104

transformations

Legend:

Property
preserving

transformations

Jo

0
program

Grest

Derivation
History

Figure 3. 7: Huge design space with multiple solution paths

77

78 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

3.3.1 Long chains of transformations are required

Experience suggests that even for moderate size specifications (represented by
moderate size initial programs Jo) a large number of transformations are required to
locate an implementation, Figure 3.8:

• Goldberg [Gol89] reports that a very small functional specification for a topo
logical sort requires roughly 40 transformation "steps" to get an efficient imple
mentation. The steps are what Lowry [LD89, p. 285] calls "large grained rules",
which are really metaprograms (packages) of what we define as transforms, so
we think this value is low by an order of magnitude.

• The TAMPR system reportedly used about 10,000 steps to transform a 1300
line functional LISP program to FORTRAN [Boy84].

• Porting the core of the Draco system (roughly 2400 lines of LISP source code)
transformationally from a DEC20 to a VAX [ABFP86] requires roughly 40,000
transformations [Bax87b]. Since both Boyle's conversion and our porting reim
plement an already mostly-implemented (procedural specification) system (as
opposed to implementing a really abstract specification) it should be clear that
this number of transformation steps is conservative.

• Barstow [Bar88, Bar89] estimates that he will need to apply 10,000 transforma
tion steps20 to implement a 500 line specification. The transform application
sequence is specified by a manually-generated script.

• Paulson [Pau87, p. 10] reports on two verification projects: verifying an asso
ciative memory unit (AMU) and the Viper microprocessor21 . The AMU proof
(control) took 30 part-time man months to develop, occupied 4800 lines of ML,
and required 10.5 hours of computer time to validate. Verification of the Viper
microprocessor required "a million primitive inferences".

These results are consistent with Wile's [Wil83] comment that the problem of scale
is one of the most critical to handle.

20It is surprising to observe the consistency (same order of magnitude) in the number of transfor
mation steps required for specs in the multiple-thousand line case. Perhaps there is some property
of the level of specification language, or its distance from an implementation, that leads statistically
to such a result?

21 While verification proofs and transformational implementation do not produce the same results,
both types of tools do considerable numbers of rewrites, so we feel justified to use the statistics here.
Both technologies require reuse of the derivation history to make them practical.

3.3. PROPERTIES OF THE DESIGN SPACE 79

Who What Specification size Transformations

[Gol89] topological sort < 10 lines REFINE 40 large-grain
[Boy84] TAMPR system 1300 lines functional LISP ~ 10000
[Bax87b] Draco system port 2400 lines abstract LISP ~ 40000
[Bar89] Device control 500 lines <I>-lang ~ 10000
[Pau87] assoc mem unit 4800 lines ML 10.5 cpu hours
[Pau87] Viper verification unstated 106 inferences

Figure 3.8: Reported costs on transformational implementation

3.3.2 The design space is enormous

Let us consider Barstow's q,-NIX system [Bar88, Bar89] as an example. Assume,
with extreme optimism, that an average branching factor of 1.01 was achievable22 .

Given that 10, 000 transformations are expected to produce an implementation from
a specification [Bar88], we compute that roughly 1.0110000 = 1.6 x 1043 possible se
quences of applications of transformations to the original programs leading to possible
implementations, of which some are acceptable. Clearly, a complete exploration of
this space is impossible. Some means for navigating the space is a necessity.

We discuss navigation and control in Chapter 4.

3.3.3 Multiple paths between connected states

A specification determines a family of possible implementations depending on
individual design decisions (each transformation representing a decision to apply it);
an overly simplistic view is that there is a single path from the initial state to a
particular implementation leading to a tree-like view of the implementation space
[Par76, GB78, KB81]. In practice, however, for each path between a pair of states! it
is likely that there are alternative paths between the same states [SA89] (Figure 3. 7).

This multiple-path-to-a-state property is a consequence partly of the algebraic
properties of the transforms, but it is mostly due to the sheer size of the state. The
typically large "diameter" of a state allows pairs of transformations over parts of the
state separated by some distance to trivially commute [Bax88]. As a consequence,

22If we use trees to encode states, a better estimate is one transformation per tree node. The
Draco port [Bax87b] had trees with easily 10, 000 nodes, so a branching factor of 10, 000 would be
far more realistic.

80 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

many times two sequential transformations will "commute"; this tells us that often the
end result does not depend on the exact decision order. An important consequence
is that two accidentally adjacent transformations can almost always be exchanged
without affecting the result. This is an essential property of many search spaces which
we feel has been greatly underrated23 • Note that we have no guarantee of a multiplicity
of paths; just a reasonably high likelihood. Chapter 7 provides a number of different
arguments as to why this should be true for the search spaces of transformational
implementation. We will also see how to use this property to help revise a derivation
history in Chapter 7.

Knowledge of the multiplicity of paths can also help us reduce the apparent size
of the search space by eliminating some obviously redundant paths. An arbitrary
labeling of the transformations can provide a basis for a lexical ordering of paths that
are equivalent under commutation of transformations; only the path with the least
ordering need actually be considered. A search method based on this insight was
implemented and is described in [Bax88].

3.3.4 On the high cost of transformational implementation

If one expects that there are potentially several transformations, representing
different implementation technologies and possible locaters, that can be applied to a
particular state, then the problem of choosing among the transformations arises. With
a fully automated specification-to-code system, the implementation of a specification
is very likely to require a considerable amount of search in order to choose a good path
through the design space from program to the final code (this occurs in the LIBRA
system [Kan79, KB81]). Because of the size of the design space, it is probable that
any such system will visit nodes only within a fixed distance d of the path defined by
the final derivation history followed. 24 The area covered by this band is the length of
the band (the actual number of design choices k) times the width of the band (bd for
branching factor b), or kbd. For k = 10, 000 (a moderately complex program), b = 2
and d = 5, with 250 ms. per transformation25 , it would take about 25 hours of CPU
to obtain an implementation this way. Even an order-of-magnitude speedup makes
the machine cost per implementation fairly large. It is perhaps an unavoidable cost to

23Parnas [Par76] noted the commutativity of some decisions, but did not make any observations
as to frequency or how that might help one during development or maintenance.

24The Draco port was done in such a way that only one transformation was applicable at any point
(d = 0) in the program (i.e., there were no alternative transformations); no human intervention was
required. The consequence was that while we succeeded in porting the system, the resulting code is
quite "vanilla" (and consequently inefficient) in its flavor.

25The rate of transformation application determined by the Draco porting project, 40000 trans
formations in about 3 hours on a Sun 3, holding d = 0 to avoid the control problem.

3.3. PROPERTIES OF THE DESIGN SPACE 81

explore this region for a first implementation, but if it (mostly) replaced a dedicated
designer, we would likely accept it.

Until such choices can be made entirely automatically, we must expect that
human designers will be called upon to make at least some of those choices; Balzer
[Bal85a] makes a convincing argument that we will never be able to entirely auto
mate the process. If even a small percentage of the transformations require designer
intervention, a valuable resource (the designer's time) will be consumed during the
implementation process. Each such intervention requires that a designer be shown the
problem, determine an explanation of its cause, possibly by examination of its con
text, determine a resolution, and enter the solution (as the application of a property
preserving transform) into the transformation system, at the cost of some fraction of
an hour for each. The GLITTER system [Fic82, Fic85] was able to automatically
produce 45 out of 50 required transformations; if this is average and scales linearly, we
could expect a designer to be involved in about 10% of the transformations. Assuming,
with good tool support, 10 minutes of designer time per necessary interaction, a typ
ical string of 10, 000 transformations will require 1000 designer interactions, or about
166 hours of concentrated designer time for each fresh reimplementation. Of course,
this time is not all likely to come in a block, so the designer may have to be idle
waiting for the next interaction to occur.

We see that considerable energy is required to acquire an implementation, both
on the part of the machine, and on the part of a participating designer. If we could
build an artifact just once, such costs might in fact be considered extremely rea
sonable. The pervasive need for maintenance suggests that we will actually need to
repeatedly modify the artifact. The "modify specification and reimplement transfor
mationally" model of Balzer [Bal85a] would make us pay this price for each imple
mentation. Even if the machine time were acceptable, the designer would soon grow
tired of the interactions needed for each implementation. If we believe that much of
the implementation does not change, the designer will especially object to handhng
the same problems each time.

A solution is to reuse the derivation history (including the transformations cho
sen by the designer) from a previous implementation to guide the next implemen
tation. Reusing the derivation history requires we be able to validate its individual
steps, for which we need a design history, or justification, which we shall address in
Chapter 5.

82 CHAPTER 3. TRANSFORMATIONAL IMPLEMENTATION

3.4 Summary

This chapter has provided a formalization of the transformational construction
process. It has defined terminology necessary for the rest of the thesis, and provided
some details about on the nature, size, and costs of the search space, which will be
useful in engineering future transformation systems.

It contributions are:

• A general model of the transformation process, emphasizing the role of perfor
mance predicates, and explicitly defining the transformation system inputs and
outputs

• a classification of specifications in terms of how they interpreted to produce goal
predicates

• The notion of an explicit locater as a pointing device, or more generally, as a
constraint on transform application.

• The careful distinction of transform and transformation, based on the idea of
lo caters.

• A survey of existing transformational implementation costs, showing the current
high costs, and an extrapolation of those costs

• Recognition of the existence of multiple paths in the design space between two
identical states, which will later be necessary for revising an implementation

It has also identified some general weaknesses on the part of extant transforma
tion systems:

• The general absence of explicit performance specifications Grest

• The consequential non-obviousness of motivation for the transformation system
to apply any transforms whatsoever

• The absence of explicit specification of Ginvariant limits choice of which trans
forms are legitimate to apply

We do not pursue these further in this thesis. We remark that these weaknesses
also appear to be present in conventional software engineering methodologies, and
solutions might consequently improve conventional practice.

Chapter 4

A Transformation Control
Language

Chapter summary. A performance-goal oriented, semi-procedural lan
guage for controlling the transformational implementation process is described.
Satisfaction of intermediate goals provides purpose, and therefore justification,
for the transformations generated, necessary during maintenance.

Determining a path through the design space to an implementation is a diffi
cult problem. Considering the number of steps involved in a typical transformational
implementation, it is clear that a manual scheme for choosing and applying transfor
mations will be ineffective in all the but the simplest of cases. Consequently, (semi-)
automated means for navigating the design space are needed.

Hardwired control regimes are one possible answer, but suffer from being inflex
ible, and requiring that the control knowledge be acquired before the transformation
system is ever used.

Explicitly specified control knowledge alleviates the problems of hardwired
regimes, but to date have been purely procedural. The control knowledge coded
procedurally has been termed a metaprogram [Fea79, Fea86). Procedural languages
have long suffered the problem of requiring that all the interactions of knowledge
used in an application be thought out in advance of use; non-procedural languages
offer the possibility of simple encoding of knowledge and use of that knowledge in
problem-specific fashions without explicit planning for that case.

We additionally desire a control regime which can help us understand how the
applied transformations effect the final implementation, and which is non-procedural
to simplify coding. We think such a combination has considerable synergism. The
understanding of the relation of goals to applied transformations is crucial to effective
determination of transformations reusable during maintenance.

In this chapter, we describe the essence of a semi-procedural metaprogramming
language, TCL, for controlling the transformational implementation process.

83

84 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

4.1 Requirements for control knowledge

We believe that navigation techniques should:

• provide focus-of-attention similar to rule and data filtering

• be explicit as opposed to implicit

• be decoupled from the transformations they use

• be somewhat non-procedural

• be easily added to existing libraries of techniques

• be easily referenced or indexed for use in explanations

The key problem in controlling the transformation process is deciding what
transformation to apply next, and where to apply it. Similar problems occur with pure
production systems, in which two major themes for controlling production application
are [BFKM85]:

• rule filtering: choosing a subset of rules to consider for each firing cycle

• data filtering: limiting rule firing to a subset of database facts

Without such filtering, the branching factor at each point of the design space is very
large, and the transformation system will be bogged down simply trying to enumerate
the choices.

Most early transformation systems have either very little control knowledge, or
have this knowledge "wired-in". The CIP system [BBG+7s, BEH+s7, BMPP89], has
literally no control knowledge; interactive application of individual transformations
was expected. Transformation systems such as [BM84, BU86, SKW85, McC88] have
hardwired navigation in the sense that the techniques are entirely procedural, and
are not open to revision once the transformation system has been constructed. For
example the TAMPR system [BM84], knows procedurally to apply transformations to
push the program through seven stages to achieve an implementation; the REFINE
transformational compiler is similar, using 5 major phases [Gol89]. Furthermore, the
control regimes are opaque in the sense that information about why the various applied
transformations were chosen is unavailable. Nonexistent or implicit control knowledge
cannot be used to justify why transformations were applied once implementation
is complete. We desire the control knowledge to be explicit so it can at least be
referenced for explanatory purposes.

4.1. REQUIREMENTS FOR CONTROL KNOWLEDGE 85

A single property-preserving transform may have several different effects as
seen by various performance measures, each effect being useful in one or more plans.
Consider the distributive law:

?x * (?y + ?z) =? ?x * ?y + ?x * ?z

Its application has negative effects on PH a/stead as the program volume grows without
any increase in function. Yet embedded in a simplification routine that is trying to
eliminate multiplications by possible application of multiplicative inverses, the law .is
quite useful. Consequently a particular transform may play different roles in different
navigation methods. We should keep the transforms separate from the plans in which
they are used: 1) to economize on reasoning about the possible useful effects, 2) to
allow us to reason about effects of interactions of multiple transforms independent of
the the plans in which they participate (this will be necessary for transformational
maintenance), and 3) to allow us to recognize effects common to several transforms.
Recognition of shared effect is key to the generalization leading to code optimiza
tion by finite differencing as characterized by [Smi89], in which distributive laws (a
generalization of transformations with a certain kind of structure) play a key role.

Non-procedural navigation knowledge is desired in the sense that we want the
transformation system to decide for itself how to the apply the knowledge. Yet we
cannot go too far in the direction of purely declarative knowledge, for really efficient
application of this knowledge is only possible when knowledge has been compiled in
the form of procedures. Since general compilation of control knowledge from desired
effects is unlikely to be efficient in the near future, useful navigation knowledge must
have an element of procedurality to it. Our hope is to minimize the amount of
reasoning required by the transformation system during the implementation process.
We consequently expect that control knowledge will always be a mixture of declarative
and procedural knowledge.

Addition of control knowledge to existing libraries is necessary for the long-term
growth of utility of a transformation system, and necessary for short-term application
when needed control knowledge is absent.

Capture of application of control knowledge must be relatively easy, so that
we are encouraged to do so for the purpose of explaining why each transformation
was applied. "Why" ultimately boils down to the synergism of the indirect effects
on performance predicates of all the transforms triggered by the containing method.
We will need this information to allow a design maintenance system to reason about
which transformations in a derivation history are still useful.

86 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

4.2 TCL: A Transformation Control Language

We designed a metaprogramming language, TCL [Bax87a], to meet these re
quirements. The most important insight behind TCL is how much of the planning lit
erature seems to have gone unnoticed (or at least, unmentioned) in the transformation
system literature; in particular, the notion of explicit hierarchical plans (procedure
plus goals). Explicit control mechanisms with hierarchical procedures have appeared
for several transformation systems [Wil83, GMM+78, GMW79, Pau87, Gol89, KB88,
KB89b]. However, these all miss a major point:

A procedure needs to be associated explicitly with its intended purpose.

Without such information, a procedure cannot be looked up by its purpose,
cannot be validated after application in either its original context or a new context,
and cannot be used in any serious explanation. Considering that performance predi
cates are needed to state such goals, and that few transformation systems make any
performance predicates explicit, the absence of plans with described purpose is hardly
a surpnse.

In this section, we discuss an abstract characterization of a navigation process
based on the primitive mechanisms we identified for TCL,

The main ideas in TCL are:

• Methods- heuristic procedures for controlling the transformation process

• Mixture of procedural and non-procedural invocation of methods

• Implicit and explicit alternatives

• Indexing of methods by performance predicates in postconditions

• Binding locales (this and locaters are new additions to [Bax87a])

We begin with discussion of locales as a necessary prerequisite to understanding
actions involving locales, and thus methods.

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 87

4.2.1 Locales and locale expressions

A locale is a region of a program constraining the bindings of a potentially
applicable transform . Henceforth we will limit the use of the term locator for locales
that are expected to generate just a single binding. Locales are consequently a form
of data filtering.

DEFINITION 4.1: Locale. A (loose) constraint on bindings:

R. : S x T--+ powerset(B)

D

Given a state and a transform, a locale can be used to determine if a locater value
is legitimate. It is convenient to name locale values with locale variables, designated
lv, to allow a locale to be multiply referenced.

Locale operations compute new locales. Such operations can acquire the value
of a locale variable, limit a locale value to a narrower region, or expand the scope
of a region somewhat. A locale expression e is simply one or more composed locale
operations computing a single locale. In a sense, a locale expression is a procedural
construct, in that it states how to limit the area in which a transform should be
applied. A nonprocedural characterization of locales might delay the definition of a
region until more information had been collected or it was actually needed.

88 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

The set of appropriate locale operations is currently a little unclear. One needs
ways of delimiting the scope of application of possible transforms to particular regions
of programs. Obvious candidates for locale operations are:

• locale generators, such as "entirestate", locater constants (such as tree paths
(2, 3, 1)) and actual locater values of applied transforms. PADDLE [Wil83]
provided implicit locale generation via pattern matching, used to define where
later tree edits would apply; we insist on locales as first class objects, so that
they may be manipulated.

• locale references: a locale variable name stands for the locale value it names.

• those provided by the structure of the underlying representation for the pro
grams, such as:

- locale-narrowing, similar to the subtree selection provided by the LOCALE
commands of the Draco system [Nei84b]

- locale-moving, such as tree-navigation techniques (strings of operations
"up" and "kthson" operations) used by SPECIALIST [Kib78]

- locale-expanding operations, such as "anywhere in the subtree" for a locale
selecting a node in a tree-based representation scheme, "expand to include
neighbors of current locale" in a graph-based representation scheme, or
"locaters of any property-preserving transforms which intersect the current
locale." The ARIES specification assistant [JF90] allows walking a parse
tree via semantic links.

• locale performance partitions of the programs implicitly generated by scope
of-effect on performance value functions, such as basic blocks (for Psloc) or
name scope (for Pmeaning). A very interesting partitioning called program slices
[HPR87, HR88] is used to divide a program into semantically well-defined but
independent pieces (one should actually be able to optimize separate slices in
dependently, although no work of this nature has been tried.)

• locale combining operations, such as unions, intersections, and complements;
these operations are well defined because locales are (binding) set functions.
Intuitively, these combine regions of the state.

The utility of these constraints will be determined by their effectiveness in encoding
useful methods. We simply assume that some locale operations are available.

4.2. TCL: A TRANSFORlVIATION CONTROL LANGlJAGE 89

4.2.2 Methods and Actions

Individual property-preserving transforms applied by a transformation system
by definition preserve Ginvariant. However, the transformation system has to somehow
achieve Gresl by applying strings of such transformations. How can it determine such
a string?

Following the lead of conjunctive planners whose goals are sets of propositions
[Sac77, CM85, Wil88, Kam89] we split the target specification Gresl into smaller parts,
each of which is achievable by (logically) separate (but possibly overlapping) plans.

In a transformational context, we use the term "method" to refer to plans cou
pled with the descriptive information describing their effect. The name "method"
reminds us of their heuristic nature; we do not expect to always be able to code con
trol algorithms, either because our techniques only work on special cases, or because
it is sometimes cheaper to simply try the method than it would be to evaluate an ac
curate test defining when the method worked. The term "method" and its definition
are inspired by work on meta-level inference [Sil86], which uses heuristic methods to
solve college-entrance-examination algebra equations. Each TCL method consists of
a postcondition indicating what effects it is expected to achieve, and a body that gives
a procedure for how to accomplish the result. TCL methods can have preconditions;
but as they are not important to this thesis, we don't make any effort to give them
special status.

DEFINITION 4.2: Method. A triple m = (i, a, G) consisting of an identifier i, a
procedure a and a performance predicate G, called the method postcondition. The
intent is that if it is legitimate to apply procedure a to a design state s j, then G(a(s j))
is true with reasonable probability1 . Thus, a method mis a heuristic procedure a for
achieving the effect G. D

We extend performance predicates in method postconditions to allow variables stand
ing for arbitrary predicates or values; this is used match method postconditions with
arbitrary predicates, in a fashion similar to Prolog. The identifier i of a method is
used to distinguish methods collected in a set of methods M.

1 A useful piece of information that might be associated with each method is an empirically
estimated probability of success; then one could rank methods, providing a natural trial order.

90 CHAPTER 4. A. TRANSFORMATION CONTROL LANGUAGE

Each procedure describes a collection of steps, as well as sequencing of those
steps. Steps may be transform applications, direct calls to sub-methods, or non
procedural invocations of methods, as well as ordering of steps2 •

DEFINITION 4.3: Procedure. A collection of actions with sequencing constraints.
The set of procedures is denoted A (think of these as "actions"), with individual
procedures a; E A. Procedures are recursively defined from the following actions:

• APP LY (c;, e), applies transformation cf somewhere in locale selected by expres
srnn e.

• SEQ(a1 , a2), defining sequential composition of actions.

• AND(a1 , a2), defining parallel composition of actions.

• OR(a1 , a2), defining a choice between actions.

• ELSE(a1 , a2), defining a secondary choice between actions.

• CALL(name, a) where name is the name of a method, and a is an argument list
consisting of performance predicates or locale expressions. We use the notation
namea to mean the action name with a substituted appropriately.

• REQUIRE(G, e) where G is a performance predicate, and e is a locale expres
srnn.

• ACHIEVE(G, e) where G is a performance predicate, and e is a locale expres
srnn.

• ACHIEVEBY(G, e, a) where G is a performance predicate, e is a locale expres
sion, and a is an action.

• PLAN(A, >plan) where A is a set of actions, and >plan~ A X A is a partial
ordering (specific to the plan) over those actions, constraining order of execu
tion. Sometimes an empty partial order (no constraints) is useful; applying a
bag of transforms in non-overlapping locales is such a circumstance. An empty
partial order is represented by the symbol 0. A PLAN captures the notion of a
nonlinear plan [Cha87, CM85, Kam89].

• RETURN(e1 , e2 , e3 , •.•), computing multiple locale values to be passed to a
parent action. This is useful only as the last action of a plan.

• LET(lv1 , lv 2 , ... , a), capturing multiple locale values returned from action a.
The scope of the lv;s are plan elements necessarily following the LET.

• LOCALE(lv, e, a) where lv is a variable name whose scope is the action a, and
e is a locale expression, possibly containing references to locale variables. This
construct allows locales to be computed and passed by name to sub-actions.

D

2TCL also has commands for displaying state information and querying the software engineer
about choices. These have little actual effect on the nature of control for TCL, and we consequently
leave them out for brevity.

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 91

More complex actions could be defined but they would mostly be compositions
of these primitive actions, so we do not discuss them further here.

Note that LOCALEs and LETs form a single-assignment language with static
scoping similar to the notion of let in functional languages.

We remark that methods only attempt to apply a limited subset of the trans
forms available to the transformation system: those directly invoked via APP LY, and
those indirectly invoked via ACHIEVE. Thus methods are a form of rule filtering.

Since methods are a kind of program, it could be useful develop them transfor
mationally, as proposed by [KB89a].

4.2.3 A goal directed transformation process

A transformation system is supplied with a set of methods Mribrary as well as a
(partial) specification when it starts (Figure 4.1). Initially, the system constructs the
procedure ACHIEVE(Grest, entirestate) and "executes" that procedure.

Procedure execution consists of performing actions as specified by the procedure
steps, starting with the outermost. Flow of control is explicitly given by the various
actions. An action may fail; if so, backtracking occurs to a choice point and an
alternative action is tried. Given that the current state is Sj, each of the consequences
of possible actions are given in the following paragraphs:

APPLY(ci,e) changes the design state to Sj+l = cf(sj) for some£ such that
e(sj, £) = true. The value£ is logically RETURNed to a parent action; see discussion
of RETURN below.

SEQ(a1 , a 2) executes a2(a 1(sj)). If either action fails, then SEQ fails.

AND(a1 , a2) executes any interleaving of a1 or a2 under the assumption that
the serialization is equivalent to both a2(a 1 (sj)) and a1(a 2(sj)). If either action fails,
then AND fails.

OR(ai, a 2) establishes a choice point, and then executes, nondeterministically,
either a1 or a2 . If the chosen action succeeds, then OR succeeds. lf the chosen action
fails, then the other action is tried. If both a1 and a2 fail, then OR fails. A parent
action of OR does not hear about OR failing unless both alternatives have been tried.

92 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

Specification G entire =
Ginvariant /\ Grest

program Jo
satisfies Ginvari

ariant

ant

Transform Libra
C/ibrary = {Ci

nes
}

Library Predica

G1ibrary

tes

Performance Mea
Piibrary

sures

Performance Val

Vlibrary

Subsumption Rela
tlibrary

ues

tions

Method Librar

M1ibrary

y

.....

.....

....

......

~

-

Grest

,

Software
Engineer

i

Apply
Transforms

via Methods

·~

Implemented
Software fa

Design
History D

Figure 4.1: Transformation system controlled by Methods

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 93

ELSE(a1 , a2) establishes a choice point for a 2, and executes a1 . If a1 succeeds,
then ELSE succeeds. If a1 fails, then a2 is tried. If both a 1 and a2 fail, then ELSE
fails. The difference between OR and ELSE is that for ELSE, a2 can be designed
with the additional knowledge that a1 failed.

REQUIRE(G, e) succeeds if G(F(e, Sj)) is true, otherwise fails; this basically
just a test. F(e, Sj) refers to a region of the program fj defined by the possible
locaters determined by e; this region must be a well-formed program sub-scheme.
REQUIRE can be used to establish a filter [Kam89] precondition for a method
by structuring the method as SEQ(REQUIRE(Gpre), a body). A filter precondition
is one that is necessary for success of the method, but is inappropriate to try to
ACHIEVE; usually filter conditions test unchangeable attributes of entities, e.g., the
type of a variable. REQUIRE is used to check that part of a method postcondition
which is not provably true after method body execution by structuring the method
as SEQ(a body, REQUIRE(Gprobablytrue)).

CALL(name, O") logically executes the procedure
SEQ (anameO", REQUIRE(GnameO")) defined by the components of the named method
(name, aname, Gname) E M; in practice, it simply executes anameO"· The substitution O"
provides values for variables defined in the named method. CALL fails if the body of
the method fails, or the postcondition G is false on completion of method execution.
Postcondition checking is optimized by structuring methods as outlined under the
description of REQUIRE. This avoids the need to actually evaluate expensive per
formance predicates (and their underlying performance measures) which are provably
true by means outside the transformation system.

94 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

ACHIEVE(G,e) attempts to solve the performance goal G(F(e,sj)) by parti
tioning it into subgoals of which at least one appears readily solvable by an existing
method, and then attempts to solve the rest of the subgoals. In detail, ACHIEVE
succeeds immediately if G(F(e, Sj)) = true. Otherwise it performs a -version of
means-ends problem solving by establishing nondeterministic choices for each method
mk = (i, ak, Gk) in the method library such that there is a substitution CTk,x, and
performance predicate Gx with3 GkCTk,x, Gx I- G. Each choice is tried in turn
by executing the procedure AND(CALL(mk,(e,CTk,x)),ACHIEVE(Gx,e)). Success
of any choice causes success of ACHIEVE. Failure of all choices causes failure of
ACHIEVE. The identifier i in retrieved methods is ignored. Note that ACHIEVE
can accomplish, non-procedurally, parallel actions that end in a desired result be
cause it breaks a desired goal into multiple subgoals. It can also accomplish non
procedural sequential composition of actions to effect a goal if methods have a struc
ture SEQ(ACHIEVE(Gpre, e), abody); then backwards chaining for goal decomposition
takes place when the method is invoked.

ACHIEVEBY(G, e, a) is identical to ACHIEVE(G, e) with the proviso that
action a is attempted first. This provides a way of designating a favored action.

RETURN(ei, e2 , e3 , •••) computes multiple locale values to be passed to some
ancestral LET. This can be used to pass locations of interest from a plan or method
back to a higher-level plan.

LET(lv1 , lv 2 , ..• , a) captures multiple locale values RETURNed by action a
and assigns to the variables lv 1 , lv 2 , in the order RETURNed.

LOCALE(lv, e, a) assigns the value of locale expression e to the new variable
lv, and executes action a with variable lv visible for use in locale expressions in a.
Any previously visible lv may be used in e, but is not visible in a.

PLAN(A, >plan) executes the actions ai E A in any order consistent with the
partial order >plan· Failure of any action ai causes failure of PLAN. Note that each
ai can be an OR or ACHIEVE action, so there may be multiple ways for a PLAN to
succeed.

3This requires second order matching facilities [HL78] and a theorem prover. We don't dictate
how strong; a very simple one might simply compare subterms of conjunctive normal forms for
unifiability. The theorem prover may even reside externally in the form of a software engineer who
supplies the right values. We do expect that implications based on dominated performance bounds
(using various ;::: relations) would be included in such a theorem prover.

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 95

Nonlinear plans are generalizations of both

and
AND(a1 , a2) :::: PLAN({ a 1, a2) }, 0)

Consequently, we shall allow use of SEQ or AND in examples, but shall deal only
with PLAN in theoretical developments.

4.2.4 The role of the Software Engineer

The software engineer, during operation of the transformation system, is limited
to at most selecting from possible choices available to the transformation system when
executing the following actions:

• APPLY: the engineer chooses the exact locater

• ACHIEVE: the engineer chooses which method to use, the partition goal Gx
and/or the substitution a

• OR: the engineer chooses which alternative

Whether or not, and how this interaction takes place is beyond the scope of this
document.

Both Balzer and Cheatham suggest the need for an interactive transformational
implementation process because of the virtual certainty that the transformation sys
tem is incapable of performing all possible optimizations [Bal85a, CHT81]; some opti
mizations will invariably come from an outside agent. The software engineer (wearing
his domain engineering hat) may have insights for useful new transforms and/ or meth
ods while guiding an implementation , but is not allowed to introduce them directly
during the implementation process according to our model. Such insights must be
introduced instead as support technology deltas (Chapter 6). This requirement does
not prevent an interactive process of switching between implementation and applying
deltas to revise information known to the transformation system.

4.2.5 TCL Examples

In this section, we provide several examples of TCL to give the reader an idea
of its scope.

96 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

Control via Script

TCL can express any specific transformation sequence, or script, of transforma-
t . £1 £2 fk £ 11 ions c1 , c2 , ... , ck as o ows:

m specific = (specific' a specific' ? g)

with action

a specific (lv) =SEQ(APPLY(C1, £1),
SEQ(APPLY(C2,l2),

SEQ(APPLY(c3 ,l3), ...

. . . APPLY(Ck,lk))))

The "?g" postcondition (meaning 'unknown') of the method will match a top
level ACHIEVE(true, entirestate), and a specific will then run.

The constructibility of any transformation sequence allows TCL to be used to
build a method for constructing any specific implementable artifact, although that
method may be useful only for that single artifact.

Barstow [Bar88, Bar89] apparently expects to use scripts of some type to apply
transformations in <I>-NIX. He does not give enough detail to determine what locaters,
if he has them, look like.

Blind Search Control

This example uses TCL to describe a transformation system with completely
blind search, i.e., is willing to try any property-preserving transform anywhere, any
time. All one need to do is to package all the property-preserving transforms Ci in a
single method

ffib/ind =(blind, ab/ind, ?g)

with action

ab1ind(lv) = OR(REQUIRE(?g, lv),
SEQ(OR(APPLY(c1 , lv),

OR(APPLY(c2 , lv),
OR(APPLY(c3 , lv), ...

. . . APPLY(c1c1, lv))))
ACHIEVE(?g, lv)))

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 97

The REQUIRE action in this example does not act as a precondition of mblind

because it is not part of a SEQ(REQUIRE(...), ...) idiom. Instead, the REQUIRE
acts as a loop termination test of the tail-recursion caused by the trailing ACHIEVE.

Starting TCL with ACHIEVE(Grest, entirestate) will run mblind because its post
condition, ?g, has the property that ?g, true f-- Crest with () = ?g --+ Crest, causing
TCL to propose the procedure

AND(CALL(blind, entirestate), A CHI EVE(true)))

Mb/ind will then nondeterministically try every possible sequence of transforms, and
test the resulting string for the desired Grest via the substitution of() on ? g. A failed
test will cause a backtrack, and an alternative will be generated.

Using the same form as mblind, and using just transforms which monotonically
decrease some performance value (e.g., transforms which decrease execution time such
as ?x + 0 ===} ?x), one can form "simplification" methods similar to those of PADDLE
[Wil83], but constrained to operate over a specified locale, which PADDLE cannot
express.

Control for MEDUSA

In Section 3.2.4 we briefly described the MEDUSA system. We emulate some4 of
the implicit control of MEDUSA which achieves complexity limits, using explicit TCL
methods. Rather than using an example from MEDUSA's domain of computational
geometry, we use a more familiar example of sorting.

4 MEDUSA also has built-in constraint propagation to further minimize poor choices. TCL does
not provide constraint propagation, although it would appear to be a promising addition.

98 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

(1)

split(X)
to(A,B

>

(3)

merge
sort(B

Figure 4.2: Cmeaning,sort,mergesort transform and "kthson"s

(5)

return
(R)

Remembering that MEDUSA transforms substitute code-skeletons for place
holders, we assume the existence of a set of Cmeaning,j,k : j -+ codeskeletonk for every
placeholder j. For each such transform, we define a method

I j-to-k,)
ffij,k(lv): \ APPLY(cmeaning,j,k,lv), .

Pcomplexity (codeskeleton k) ?:. complexity Pcomplexity (J)

For instance, assume the placeholder "sort", with two transformations:

Cmeaning,sort,bubblesort : sort(X) =====? ••• codeforbubblesort ...

and

Cmeaning,sort,mergesort :sort(X) =====?

split(X)to(A, B);
mergesort(A);
mergesort(B);
merge(A, B)to(R);
return(R)

A possible tree transformation to mergesort is shown in Figure 4.2 where each
(k) indicates a kthson of the right hand side, used in amergesort below.

4.2. TCL: A TRANSFORMATION CONTROL LANGUAGE 99

These two transforms induce the following methods, decorated with complexity
costs:

and

with

(
sort - to - bubblesort,)

ffisort, bubbles art (lv) = · · ·APP LY (Cmeaning ,sort,bubblesort, lv), · · ·
Pcomplexity(e) = O(n2)

(
sort - to - mergesort,)

msort,mergesort (lv) = amergesort'
Pcomplexity (e) = 0(n log n)

amergesort(lv) =
SEQ (LET(lvo, APP LY (Cmeaning,sort,mergesort, lv)),

PLAN(LOCALE(lv1, lthson(lvo), ACHIEVE(Pcomplexity t O(n), lv1))
LOCALE(lv2, 2thson(lvo), ACHIEVE(Pcomplexity t O(n log n), lv2))
LOCALE(lv3, 3thson(lvo), ACHIEVE(Pcomplexity t O(n log n), lv3))
LOCALE(lv4, 4thson(lvo), ACHIEVE(Pcomplexity t O(n), lv4))
LOCALE(lvs, 5thson(lvo), ACHIEVE(Pcomplexity t 0(1), lvs))
0) % no ordering on plan steps

The amergesort plan steps restrict the attention of the transformation system to
the various placeholders in the code skeleton for mergesort, and ensure that each
such step is implemented with the proper complexity to support the postcondition
of the method5 . For instance 4thson(lv0) refers to the merge(A, B) step, which is
constrained to performance level 0(n) to ensure the overall 0(n log n) performance
of the entire mergesort. Notice that no checking for a correct postcondition is made,
because it is a provable consequence of the plan.

Now a MEDUSA mixed specification (sort, O(n log n)) will set fo = sort,
cause the the implied TCL command ACHIEVE(O(nlogn), entirestate) to reject
msort,bubblesort and try msort,mergesort' leading to a correct implementation.

5This method is one for which the method postcondition need not be evaluated, as it is provably
true.

100 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

4.3 Related Control Mechanisms

TCL was influenced by a number of other control mechanisms. In this section we
review the ideas behind some other control mechanisms and discuss, where relevant,
how TCL implements or improves on some of those ideas. The mechanisms that we
considered fell primarily into the following categories:

• Procedural control

• Production systems

• Metaprogramming

• Planners

We consider each of these in turn. Readers not interested in comparisons may
skip to the summary without loss of continuity.

4.3.1 Procedural control

Purely procedural control consists of control programs using the full range of
constructs (such as loops, conditional, procedure calls, etc.) from an arbitrary pro
cedural programming language (such as LISP) not designed specifically to handle to
the control problem.

Transforms may be implemented directly in the language, or may have be in
voked as entities defined in a different notation. The REFINE system [SKW85, Rea86]
is a good example of a transformation system with procedural control. It allows con
trol procedures to be coded in the REFINE wide-spectrum language containing pro
cedural primitives. REFINE transforms are coded as tree rewrites using REFINE's
transform operator, applicable to a predefined tree data type, or can be implemented
by direct surgery on such trees.

We have already argued against purely procedural control for metaprogram
ming. The fundamental reasons are that such control is hard to code and hard to
reason about. Commercial vendors can perhaps afford to amortize the costs of coding
a fully procedural control such as that of the REFINE language transformational com
piler (SKW85] by amortizing those costs over the large customer base. However, we
think that the need to mechanically reason about plans, individual transformations,
their interactions, and how they justify the final artifact, especially for maintenance,
will eventually force nonprocedural elements to appear in every metaprogramming
language. Such a need to reason about the plans requires that those plans also be
explicit, as opposed to implicit as they are in REFINE compiler.

4.3. RELATED CONTROL lvIECHANISMS 101

We want to reiterate the value of a semi-procedural language, providing both
the efficiency benefits of procedural execution by avoiding repeated reasoning about
how to accomplish some effect, coupled with declarative descriptions of effect. This
is the fundamental reasons for the notion of METHOD in TCL: a linkage between
procedural acts and the explicit effect they are supposed to achieve. The limited
set of control primitives in TCL (ELSE, CALL, PLAN) are an attempt to provide
the needed element of procedurality without making the set too rich for maintenance
analysis; further discussion of this will have to wait for Chapter 8.

4.3.2 Production Systems

Production systems consist of a fact database, and a set of inference rules used
to augment the database by adding new facts or deleting existing facts [BFKM85].
A production system cycle consists of determining which rules match (perhaps, for
each rule, in many ways) to which facts, performing conflict resolution by choosing
just one rule/binding pair, and updating the database according to the consequences
of the chosen rule with the chosen binding. The branching factor induced in such
a space is roughly proportional to the number of facts in the database times the
number of rules; with a large data- and rule- base, the production system can spend
most of its time performing conflict resolution rather than actually applying inference
rules. Consequently emphasis on control for production systems is on rule- and data
filtering which limit the focus of attention to a subset of the available rules and data.

A transformation system has the identical problem when attempting to deter
mine which transformation to apply. TCL provides data filtering via the notion of
locale, which restricts the attention of transformation system to semantically-defined
regions of the state. Locale expressions compress or expand locales according to the
semantic structure of the program being manipulated, and can be passed between
methods as a means of ensuring continued focus. While locales are present in various
forms in some other transformation systems, they are not first class entities, cannot
be manipulated, and cannot be passed explicitly. We cheerfully admit the need for
considerable further work on locales to identify the useful locale "scaling" operations.

TCL provides rule filtering via method bodies, which either explicitly specify
which rules (transforms) are to be applied via APP LY, or implicitly specify rules via
indirect applications caused by methods invoked by CALL or ACHIEVE. Hierarchical
planners have long had this sort of rule filtering, but the focusing effect is not dis
cussed.

Systems like OPS5 [For82] perform a metamatch of each rule to all the other
rules. The value of the metamatch is that it identifies, for any particular rule, what
other rules might potentially apply once this rule has been used, and which data used

102 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

or generated by this rule would be relevant. Rule- and data- filtering are then achieved
by only trying the rules that metamatched the previously fired rule; this shortens
the conflict resolution considerably. The DRACO transformation tool [NeiSOJ uses
metamatching in this manner. TCL does not use metamatching in any fashion. It
is not clear how valuable this technique would be considering TCL's already existing
focusing mechanisms.

Another approach to lowering the cost of applying the productions is to apply
multiple productions in parallel. Schmolze [Sch89] suggests methods for determining
sets of productions whose parallel effect is identical to their serial effect by inspecting
their interactions.· It might be possible to do this with TCL methods since they are
really just complex transforms; the explicit postconditions should make this somewhat
easier.

While both metamatching and parallel application shorten the time required to
apply productions (or transformations), they do little for the problem of choosing the
right productions, i.e., those that lead to a desired conclusion. In a Church-Rosser sys
tem, one need not choose the right productions because any sequence productions will
do, but few practical systems have that property. Consequently we have not invested
any energy on these techniques. Metamatching of transforms from various methods
could be used to automatically identify potentially applicable "next" methods, but it
is not clear how valuable this would be.

One can operate a production system in either a forward-inferencing (facts plus
rules give new facts) or backward inferencing (from what facts and rules can a de
sired fact be deduced?). Transformation systems rarely do any backward inferencing
(application of transformations in reverse) because to doing so is tantamount to look
ing for a specification of an artifact already possessed. While this might be valuable
for design recovery of existing code, it is not the purpose of transformation systems.
Backward inferencing is necessary in TCL when matching method postconditions
with ACHIEVE actions.

4.3. RELATED CONTROL MECHAJ'v'ISMS 103

4.3.3 Metaprograms

We now compare TCL to several control schemes for transformation systems,
generally called metaprogramming schemes. The most influential systems were Draco
(simply because of our early experience with it, and the idea of domains), PADDLE
[\i\Til83] and PRESS [Sil86]. The control schemes we cover, and their fundamental
ideas, are:

• Draco: Transformation by refinement through domains

• PRESS: Meta-level inference and hueristic methods

• PADDLE: Procedural metaprogramming language

• Goldberg's metaprogramming language: program regions as first-class values

• PROSPECTRA: Functional metaprograms specified algebraically

• SPECIALIST: Dynamic chaining

• Zap: Functional goals with focus by data-filtering

• Glitter: Automatic application of subsidiary transforms

Draco: Domain-oriented Transformation system

The DRACO transformation system [Nei80, Nei84a, Nei89] transforms programs
written in abstract problem domains into programs written in target execution lan
guages (domains). It does not neatly qualify as a metaprogramming system, nor as
any other simply described system, because it used a variety of built-in mechanisms
to control navigation:

• domain refinements

• global assertion/ condition constraints on refinements

• transform priorities

• metamatching

• a primitive form of LOCALE

• simple user-definable tactics

Part of the original motivation for TCL was to unify and make explicit many of these
mechanisms.

Domains are problem-description languages; domain refinements are a special
kind of transform (similar to the theory morphisms outlined in Section 3.1.7) used

104 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

to map programs in an abstract problem language (say, natural language query pro
cessing) into programs in a more concrete problem language (e.g., parallel LISP).
Use of abstract problem domains is encouraged by the Draco paradigm in an effort
to make problem specification simpler 6 . A reasonable domain network (graph of
domains plus refinements directed from one domain to another) allows conversion of
an abstract problem statement to be refined to concrete executable languages such as
FORTRAN. Such a refinement sequence is shown in Figure 4.3. In practice, Draco
applies simplifying transformations at each domain level before refining down to the
next domain.

A domain network provides considerable guidance to the transformation process.
If one has simply an enormous library of potentially applicable transforms, and a large
specification, the branching factor at each point in the implementation space is large;
since a typical derivation history is tens of thousands of steps long, the number of
potential paths is overwhelming. One method for limiting search is using the notion
of "islands" in the search space [BF81, Pea84]. The islands analogy likens the search
space to an enormous ocean to cross; the crossing process is much easier if there are
many islands scattered over the ocean, some of which are not too far out one's desired
path. Islands along the path act as short term achievable goals. Each domain in the
a domain network acts as an island in the search space. Navigation is aided because
major steps in the implementation process are implicitly defined by directionality the
domain network from abstract domains to concrete domains (the TAMPR system
levels of abstractions [BM84] form such a domain network).

While the Draco tool could be told to refine to specific individual domains one
at a time, there was no way to tell it to find an implementation by refining the
specification "somehow". This can be done with TCL by defining a performance
measure Pdomain which determines the domain type of a program, and providing a
representation of the domain network graph as a method library composed of a set
of methods of the following form:

mrefineJtoK = (refineJtoK, arefineJtoK, Pdomain (lv) = K)

arefineJtoK (lv) =SEQ (A CHJEVE (Pdomain (lv) = J),
SEQ(CALL simplifyindomainJ(lv)

APP LY (xfmdomainJtodomainK, lv)

6It is interesting to note that other transformation systems with active research groups are evolv
ing towards the domain notion (for the TI system, they are called local formalisms [Wil86]; we
see them in TAMPR as the language levels between the phases of the transformation process (ap
plicative LISP, recursive FORTRAN with local variables, recursive FORTRAN with no parameters,
nonrecursive FORTRAN, etc.) [BM84, p. 580], and in REFINE in the form of encouragement to
build problem-domain specific languages.

4.3. RELATED CONTROL MECHANISMS 105

/ ""\

Modal Logic
()-,p

\.

t

/ \

FOPC

3t: t 2'.: to A •p(t)

\.

• / Pascal \

t:=to
while p(t)

\.
dot:= t + 1

• / Assembler
""\

L1: LDA T; CALL P
JF L2; INC T

\.
JMP L1;L2: ...

t

/ \
Silicon

COUNT connect COMPARATOR
COMPARATOR enable ...

\...

Figure 4.3: Transformation via domain refinements

106 CHAPTER 4. A TRANSFORlvlATION CONTROL LANGUAGE

One method is needed for each transformation xfmdomainJtodomainf{ that
refines domain J to domain K. Invoking TCL with ACHIEVE(Pdomain (!) =
FORTRAN) will then find, by a backward chaining process, a sequence of domain
simplifications and refinements to produce a FORTRAN program. Such a set of
methods implements the essential Draco implementation paradigm.

Draco refinements were actually rules that rewrote fragments of a program at
one level into program fragments at lower levels. Since a fragment had multiple pos
sible refinements to other domains, a difficulty was ensuring that several separate
domain fragments at one level refined consistently with one another; this was ac
complished by assertions and conditions. Assertions were declared when a domain
fragment was refined in a certain way; conditions attached to a refinement could
check that a consistent assertion was already established. Assertion/ condition con
straints are not implemented in TCL directly; rather, our belief is that the entire
program representation must be refined as an entity in accordance with [ST88], and
so the design of TCL assumed an algebraic view in which theory morphisms act as
the mechanism for refinement [TM87]. This allows the refinement to be represented
as a single transform. We unfortunately did not have time to explore this thoroughly
for this thesis, but feel this is a promising avenue.

Within a Draco domain, simplifying transformations are prioritized; the pri
orities allow groups of transformations to be designated and applied by priority
range. Metamatching caused simplifying transformations from the same domain to
be matched against one another at transform definition time; this allows the runtime
application of one simplifying transformation to efficiently "suggest" (because of a
successful metamatch earlier) the application of other simplifying transformations,
saving a considerable amount of matching time. The value of transformation priori
ties as priorities was not demonstrated by the Draco tool; if anything, we found the
priorities ended up being used simply as a means of grouping transformations. We
have already discussed how TCL can collectively apply an arbitrary group of trans
formations in our earlier discussion of msimplify· Metamatching could be useful for
such simplifying methods.

The Draco notion of LOCALE, a specified subtree of a tree program scheme,
we have generalized as locaters and locales for TCL. Commands for moving up and
down in a tree locale correspond to TCL locale scaling operations.

While Draco did provide choices in terms of multiple possible refinements, and
multiple possible transforms, it had no ability to backtrack in case of a bad choice.
TCL assumes such backtracking ability to back out of poor choices, and a controlled
sequencing of alternatives via the ELSE action 7.

7We will see in Chapters 7 and Chapters 8 a kind of dependency-directed backtracking mechanism
expected to complement TCL.

4.3. RELATED CONTROL MECHANISMS 107

Finally, user-definable Draco "tactics" allow a software engineer to establish
a preference for certain types of refinements over others (such as in.line substitu
tion of code (MINIMIZE-TIME) vs. creation of subroutines for instantiated code
(MINIMIZE-SPACE)); this is effectively a procedural encoding of a goal predicate.
The emphasis with TCL is to express the performance goal (which Draco simply
cannot do) and let an appropriate method accomplish the effect. TCL carries the no
tion of user definable tactics quite to the extreme by being virtually a programming
language in its own right.

Overall, TCL seems to be expressive enough to describe Draco's control mech
amsms.

Neighbors has argued that simple control mechanisms such as Draco's simplify
in-domain, refine-to-next-domain are sufficient for transformational implementation.
Glitter's order-of-magnitude reduction in manually-specified transforms [Fic80, Fic82,
Fic85], the PADDLE system [Wil83] of complex, problem-specific metaprograms to
control transformation sequencing, and LCF's proof plans [GMM+78, Pau87] have
shown that complex implementation plans are required to carry off complex imple
mentations. Again, these observations lead to TCL as a necessary part of the design,
and therefore maintenance, mechanisms.

PRESS: Meta-level Inference

A technique for controlling search in large search spaces, called meta-[e'l)el in
ference by Silver [Sil86], groups problem-space operations having the same effects on
states into "method" (this inspired the name for TCL methods, although a PRESS
method corresponds to a set of TCL methods with identical postconditions). Each
PRESS method becomes, in effect, an equivalence class of operators. Method postcon
ditions specify the effects; method preconditions state necessary (but not necessarily
sufficient) conditions for method to achieve its postcondition. The methods then
treated as operators in an abstract space whose actions are defined by the method
postconditions; this is similar to hierarchical planning (discussed later). Problem solv
ing consists of blind forward searching by application of methods until the desired
effect in the original problem space is achieved. Search savings over the original space
occur because each method tried represents an entire class of operations, and the
preconditions often eliminate application of a method altogether. Postconditions are
checked after method application to verify that the method has truly accomplished
the shared effect; Silver argues that it is often cheaper to have a weak precondition,
with a dynamic postcondition check that catches those cases when the method runs
incorrectly, than it is to encode a necessary and sufficient precondition.

108 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

The utility of the idea was shown by PRESS, an expert algebraic equation
solver. Silver outlines a number of specific methods for solving algebra expressions;
such techniques might be useful in solving in a constraint-propagation subsystem
or simplifying conditions on conditional equations. Since TCL is similar to Silver's
methods, we think that coding his particular methods would not be difficult, but are
of no further interest for this thesis.

Silver's "meta-theory syntactic features", such as "term-occurrence count", used
in his method postconditions are formalized as performance measures used in TCL
method postconditions. Silver gave no justification for his choice of his syntactic
features; we think they are problem-domain dependent and expect the same will
be true with TCL. An unsolved domain-engineering problem is determining which
performance measures and goals to define; knowing that one will be operating in
the domain of algebraic equations does not obviously lead to the notion of "term
occurrence count" as useful.

PRESS actually tries its methods in a particular hand-selected hardwired order;
this order presumably had to do with the probability that a particular method had
of solving a random problem or leading a step closer. Ranking TCL methods for
application according to a dynamically-updated ratios of past successes to failures we
think would give the same result with less effort.

TCL directly incorporates the idea of "method" with its dynamically checked
pre- and post- conditions. TCL allows a complex plan to form the body of a method,
which generalizes PRESS view of method as "bag of equivalent-effect operations".
Further, a number of TCL methods rriay have the same postcondition; this allows
incremental addition to a knowledge base of methods. TCL also differs from PRESS in
using goal-directed backward inference to select methods to apply; the post-conditions
tell TCL when a method might be useful. Apparently the size of problems handled
by PRESS was small enough so the notion of locale was not needed.

PADDLE Metaprogramming Language

PADDLE [Wil83] is a procedural language (and supporting system) for defin
ing a program developments, i.e., a metaprogram to generate the steps used by a
transformation system to implement a program scheme. A PADDLE metaprogram
consists of a set of parameterized procedures called "commands"; command names
consist of arbitrary English text strings which summarize the action of the procedure.
Each procedure may contain program pattern-matching operations, replacement op
erations (which substitute new program fragments at points designated by previous
pattern-matching steps), invocations of "goals" (procedure calls to other named com
mands), and compound operations for conditional branching and looping operators.

4.3. RELATED CONTROL 1\!IECHANISMS

command divide and conquer(function,set)
begin

split set = { ei, e2, ... } into subsets s1, s2, ... ;
by

choose from
partitioning into s1 = {ei} and s2 = {e2,e3, ... };
binary partitioning into s1 = { ei, ... , ek/2} and s2 = { ek/2+1, ... , ek};
basis partition so, si, s2, s4, s21

where each en is a linear combination of the s2J;
end

compute a related function Ji on the subsets;
combine values of Ji on subsets via a new function h;

109

note You must ensure that function applied to set= h applied to {f1(s1), h(s2), .. . };
end

Figure 4.4: PADDLE procedure, taken from [Wil83, p. 908]

Transforms are defined by the distributed effect of pattern-matching and replacement
operations. PADDLE metaprograms also appear to be augmented by procedural
LISP when convenient. An example PADDLE command is shown in Figure 4.4. A
PADDLE metaprogram is started by invoking a particular command.

A goal is traditionally an evaluable predicate that can be applied to a state,
which is true in desirable states. By this definition, the term "goal" as used by
PADDLE seems unconventional; it refers instead to subplans. Thus, while one of
the stated intentions behind PADDLE is to capture the implementor's goal struc
ture, what it truly appears to capture is the implementor's plan for implementing a
program8 . Goals are simply not present.

Given a specification, executing a PADDLE program generates an implementa
tion by executing the "goal" structures in sequential order (just as in any conventional
procedural language executing statements); no variability in order is allowed. Failure
to successfully execute a "goal" (including failed execution of a pattern-matching
primitive for which no explicit alternative has been provided in the metaprogram)
halts the development process; a designer may then direct the development by hand
by changing or adding new PADDLE procedures, or hand-invoking PADDLE com
mands. There is apparently no facility for backtracking; to "undo" the kth applied

8 Certain planning systems such as FORBIN [DFM90] also seem to overload action names to also
represent desired effects. This is reminiscent of the use of functional specifications for a true speci
fication. This idea can work well when the functional specification is very abstract, but functional
specifications in a low level language have many consequences which are usually irrelevant to the
task at hand.

110 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

transform, one simply executes the PADDLE program forward from the beginning
until k - 1 transforms have been applied. Since transforms are distributed over the
procedure, it is not clear just how this counting process takes place.

PADDLE provided the initial inspiration behind TCL, including the notion of
subordination of "goals" (TCL CALL command), and conditionals (ELSE). TCL
deviates from PADDLE by insisting on transforms as monolithic entities so that in
teractions between transforms can be reasoned about (see Chapter 7) without having
to know how to extract a transform distributed across the body of a command. TCL
postconditions express the goals that a method is supposed to achieve, so that the
goal structure that drives an implementation at least has a chance of being extracted
from a TCL implementation process. TCL backtracks on failed methods instead of
blocking in an attempt to automate more of the implementation process. Selection
of TCL methods by means-ends analysis should allow a method to be used in con
texts not exactly chosen in advance, whereas PADDLE commands can only be used
in circumstances designed in advance. In fact, a PADDLE metaprogram may at
tempt to apply a complex transformation inappropriately, simply because it has no
performance goal condition to prevent it, nor any way to determine after such an
inappropriate application that the attempt failed.

REFINE Language and compiler

Smith [SKW85] describes REFINE, a transformation system that, like Gist,
uses a high level wide spectrum language called V. Unlike Gist, there does not seem
to be an explicit requirement for executability at the specification level. The language
provides declarative structures using predicate-calculus notions and sets, procedural
notions (conditionals, function calls, loops, arrays, etc.), a special datatype used to
construct abstract syntax trees, and a tree-transform operator. Functional specifica
tions are written using the declarative structures where possible. Such specifications
are converted directly into the tree data structures understood by the REFINE sys
tem. The tree data type and the transformation- operator do not appear to be intended
for general specifications; rather, they appear to be in the REFINE language only so
that transformation control mechanisms can be coded in REFINE directly. This way
the REFINE system need only support one language.

The pattern-directed tree-transforms allow one to state the desired form of
the resulting tree, and REFINE will find some way to transform the tree to match
the desired result. A typical example is to state a E b ==? a ¢ b; this causes a
DeleteElement (a, b) operation to be inserted into the syntax tree. The ability of
REFINE to satisfy such requests is unclear, but it apparently only works for very low
level transformations. One is also allowed to code arbitrary conventional tree-to-tree
rewrites with these transforms.

4.3. RELATED CONTROL MECHANISMS 111

Transformation control in REFINE is essentially procedural. A single primitive
transform can be applied, or a low-level REFINE procedure can be coded to apply
some set of transforms in an arbitrary fashion. Special built-in procedures allow
a sequence of transforms to be applied in order, or to repeat a set of transforms
starting at the leaves of tree working up, or at the root working down to the leaves.
The REFINE compiler is apparently coded as a very large set of such procedures
that transform high-level REFINE code through several phases and ultimately into
Lisp. The fact that the REFINE compiler is coded in REFINE provides a convenient
bootstrap. No explicit notion of domain is used to organize the transformations, but
recent work [Rea86] seems to be providing domain-tags in the form of class-entities
as containing-super-types of objects to be transformed.

An interesting but apparently little-used facility in REFINE is the ability for
the transformations to "explore" partial implementations and backtrack if they prove
to be unpromising [Kan79].

TCL treats both state and transforms as primitive objects rather than complex
data structures. Nearly arbitrary procedures can be coded using the procedural com
ponents of TCL: APPLY, CALL, and ELSE. We will see the utility of restricting
TCL operators to a well-defined set when we attempt to reuse a design history.

Goldberg's Metaprogramming System

Goldberg [Gol89] describes a tactics (metaprogramming) language to be used
with the KIDS [Smi89] enhancement of the REFINE transformation system [SKW85].

Primitive tactics implement the actual transformations, and are implemented
as REFINE procedures. Higher level tactics consist of compositions of primitive
tactics, predefined control mechanisms such as "sequence", "paralell-execution"; IF
THEN-ELSE with a conventional boolean test (calling a REFINE function to get the
boolean result to be tested), a failure trap (like TCL ELSE), looping mechanisms
such as WHILE loops, and tactic procedure calls. All tactics may return multiple
results for use by the caller.

Similarities to LCF are claimed, but LCF constructs tactics by use of higher
order functions, which Goldberg's tactics language does not seem to have. This tactics
language seems to be most similar to PADDLE in terms of control mechanisms. Its
most interesting feature is the notion of "program-part", which is apparently inher
ited from the underlying REFINE abstract-tree representation of the program being
manipulated; a program-part represents a syntactically complete program fragment,
and can be passed around as an entity from one tactic to another. A sample tactic is
shown in Figure 4.5.

112 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

Combine-Loops(p: program-part)=
let loop-1: program-part,

loop-2: program-part,
combined-loop: program-part

in while exists-combinable-loop(p)
do find-combinable-loops(p) returns loop-1, loop-2;

merge-loops(loop-l,loop-2) returns combined-loop;
simplify(combined-loop) end

Figure 4.5: Tactic from [Gol89, page 6]

Goldberg's tactics language, like PADDLE, is entirely procedural; unlike TCL,
there are no goals to achieve or postconditions defining the effect of a tactic.
Apparently the decision to avoid postconditions is conscious, as he believes that spec
ification of postconditions is "unwieldy". Unwieldy or not, we think they are hard to
live without, especially if explanation of the final artifact is desired. The notion of
program-part shows up in TCL as a locale. TCL's RETURN construct was inspired
by Goldberg's.

PROSPECTRA

The PROSPECTRA transformation system [KB88, KB89b] is intended to con
vert specifications in Anna [LvHKB87], a semantic annotation language, into Ada.
Higher-order algebras with functionals (functions allowing functions as arguments
and/ or results) provide a unified approach used to specify modules, transforms, and
control knowledge [KB89a].

Abstract data types are specified using algebraic specification techniques ex
tended with functionals. (Ada) modules are defined using the properties of the ab
stract data types they manipulate. Transforms are defined as operators over abstract
syntax trees (which are just an abstract data type) and can be given algebraic char
acterizations in their own right. Control knowledge is encoded as functionals ap
plied to transforms and/ or other functionals, in the same vein as LCF (discussed in
Section 4.3.3); as an example, a MAP functional can apply a simplification functional
to the enumerable components of a particular program. This scheme is much nicer
than LCF's in that algebraic specification of control functionals can also be given.
This offers the possibility of specifying the control knowledge algebraically, allowing
one to reason about it, and even implementing functionals that meet the specification.
Control knowledge treated as functionals leads to the perspective that control proce
dures are really just more complicated transforms. It is claimed that working with

4.3. RELATED CONTROL lv!ECHANISlvIS 113

functionals leads to a higher degree of abstraction. with repetitive processes reduced
to application of homomorphic extension functionals. Uniformity of definition allows
both transforms and metaprograms to be defined using the same approach; in fact,
the control language is a subset of the transform language.

TCL does not provide any functional features, although we have no fundamen
tal objection to them. However, it is paramount to a control language like TCL that
methods be described in terms of their effects. While the PROSPECTRA control
language does not offer this facility directly, it would seem to be relatively easy to en
gineer using the algebraic specification tools that are integral to PROSPECTRA9 ; this
would seem to be a promising avenue of research. As it stands, the PROSPECTRA
control language is purely procedural. TCL allows non-procedural execution.

There seems to be nothing similar to the notion of locale in PROSPECTRA.
This absence may be due only to the sketchiness of the available literature.

LCF

Any system for generating proofs is a kind of planning system; the emphasis is
on the construction of a proof (a path from the antecedents to the consequent) and
not on the final result, which is presumably known before the proof process starts.
LCF [Pau87] is a remarkably simple proof construction system in which control pro
cedures are built on top of a functional programming language ML [Har86, HMM86],
based on the notion of tactic and tactical for backwards inferencing. It has been
used to construct very large proofs, on the order to 106 inferences [Pau87, p. 10], so
its techniques should be usable for large scale control necessary for transformation
systems. We go into rather more detail because this system is so unique.

Theorems (LCF's version of program schemes) are encoded as syntax trees rep
resenting PP A statements, a kind of logical formalism, of a form

assumptions f-- conclusion

An operator in this space is a logical inference rule, which is procedurally encoded as
an ML function mapping theorems to theorems.

A tactic is an ML function applied to a goal theorem; it is supposed to determine
a possible proof of the theorem by decomposing it. Each tactic returns two values, the
first being a list of subgoal theorems, and the second being a function which combines
the subgoal solutions into a complete solution (i.e., is an inference rule). The full

9In a similar vein, we briefly considered the notion of performance algebras to allow coupling of
TCL transforms to their effects.

114 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

procedural power of ML can be used in the decomposition process provided only that
the tactic's inference rule properly re-composes the decomposition to produce the
argument.

If a tactic cannot decompose its argument: it can signal an exception; another
tactic at a higher level can catch the exception. TCL handles failed methods via its
OR and ELSE sequencing primitives, as well as by alternative methods with identical
postconditions. Both LCF and TCL seem relatively unique in the planning world in
having conditional plans.

Tacticals are ML functions that map tactics into tactics. An LCF tactical
ORELSE, taking two tactics and applying either, can be implemented by applying
the second tactic if applying the first tactic produces an exception. Much more
complex tacticals can be built, including REPEAT, THEN and list generalizations
such as EVERY and FIRST by simple variations of this idea. Much of the power of
LCF tactics (as with PROSPECTRA control mechanisms) stems from the ability to
pass (tactical) functions as arguments and apply them. TCL has no such ability.

LCF tactics and tacticals correspond to TCL methods, but, being totally pro
cedural, have no postcondition stating their purpose. This is a major problem if one
wants automated control, because that tactics cannot be reasoned about conveniently
or, for maintenance purposes, incrementally replayed. This means that no automated
tool can conveniently combine a set of tactic(al)s to provide a proof automatically;
the tactics controlling an entire proof must be assembled by hand.

A big advantage to ML tactic(al)s is that new ones are easily coded, so the goal
decomposition rule need not be fixed as it is in TCL.

SPECIALIST

The SPECIALIST system [Kib78] simplified Algol-like programs when given
input data constraints. A typical application of SPECIALIST could reduce a gen
eral matrix multiply, with an input constraint that one argument was an identity
matrix, into a matrix copy routine. Knowledge about input constraints is converted
into special transformations and thereafter treated identically with other transforma
tions. Control of the application of transformations is by dynamic chaining. Dynamic
chaining requires that each applicable transformation be decorated with procedures to
generate lists of other transformations that could apply if the current transformation
was successful, and where they would apply, relative to the application of the current
transformation (this corresponds to TCL locale moving operations). Successful appli
cation of a single transformation then suggests others to apply via dynamic chaining;
SPECIALIST could apply up to 90 transformations by itself this way. Carrying this

4.3. RELATED CONTROL MECHANISMS 115

idea of pointing out potential next applications to an efficient extreme leads to the
notion of metamatching as used in Draco. TCL can accomplish the same effect by
defining a locale relative to the current locale in which simplifying METHODs can
be applied. Implicit in control by dynamic chaining is the assumption that what
ever the chain of transformations is doing is what is desired; the implicit goal for
SPECIALIST is code simplification. An important difference is that SPECIALIST
ties the transforms directly to their intended use, while TCL methods decouple the
transforms from intent.

Zap

Feather's Zap system [Fea79] transforms a program consisting of sets of "inef
ficient" functional equations (a form of functional specification) into a more efficient
set of functional equations. Transforms consist of equation definition unfolding (sub
stitution of body for call) and folding (substitution of call for body) rules. The key
idea for transformation control is to provide Zap with goals for the "shape" of inter
mediate functions, and let Zap determine the actual function by applying a number
of lower-level transforms on its own. Rather than being a true metaprogramming
language, the intention was to remove much of the burden of applying individual
transforms manually. Goals are specified by writing a functional equation containing
pattern variables with constraints over their instantiations defined by a surrounding
"CONTEXT". Given a goal, Zap nonprocedurally finds a sequence of unfolds, built
in simplifications, and folds, that produce a functional equation satisfying the pattern
constraints. Rule filtering is virtually nonexistent, because the transforms used by
Zap are so few: fold and unfold. Data filtering (which equations are folded/unfolded)
occurs by defining such goals in CONTEXTs, which allow the specification of which
equations may be (un)folded, and what function (equation) names are legitimate for
use in instantiating the patterns. Transformational implementation consists of Zap
satisfying a series of externally-defined goal equations defined by a corresponding
series of CONTEXTs. Feather provides some hand-hueristics for choosing the goal
equations, but these are not expressible in Zap. One additional transform rule is the
deletion of useless named equations from a state. One achieves the effect of a complete
metaprogram by linearly reading a disk file containing CONTEXT and goal-equation
defining commands as well as equation-deleting commands. All of the CONTEXTs
defined seem to be very specific to the actual problem being transformed because goal
equations must necessarily specify an intermediate, problem-specific equation. It is
consequently difficult to believe that general-purpose CONTEXTs can be easily de
fined. The problem seems to be that goals are defined in terms of the exact function
to be computed.

116 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

TCL allows the entire metaprogram to be defined as a set of cooperating meth
ods. Locales provide data-filtering, and controlled invocation of transforms provides
rule-filtering. Goals are defined in terms of ultimate problem performance. It remains
to be seen whether intermediate TCL goals must be defined in terms of function.

Glitter

The Glitter system [Fic80, Fic82, Fic85], like Zap, is used to automatically apply
mundane transformations needed for a major implementation steps. The intent is
that the designer specifies major desired effects, and Glitter applies "conditioning"
transformations as needed to make the major transformation applicable.

It accomplishes this through use of a language for stating "transformational" (as
opposed to performance) goals such as OPTIMIZE, DEVELOP, GLOBALIZE and
REFORMULATE applied to entities existing in the current program. Glitter satisfies
transformational goals by finding methods which can achieve them. Each Glitter
method has a goal slot (like TCL's postcondition), a filter slot (with effect similar
to TCL's REQUIRE(condition)), and an action slot, specifying some action which
will help achieve the goal. Posting a method causes Glitter to collect all methods
which can possibly satisfy the goal by matching goal slots (note the similarity to
the production system problem of conflict resolution). A separate knowledge base of
selection rules chooses between the candidate methods by inspecting the current state
for interesting features and voting for or against candidate methods; the method with
the most votes wins and is executed. Glitter achieved an order-of-magnitude reduction
in the number of designer selected transforms required for an implementation.

Glitter often had to query the designer about interesting features; TCL provides
access to such features via arbitrary predicates. References in Glitter to entities in the
program are by name of entity in the program; this appears to be a sort of symbolic
locator. TCL allows each method to decide for itself if it is applicable, and needs no
other mechanism to make the choice. Glitter requires the separate selection rules,
and can choose among many methods before trying any one of them.

TCL chooses candidate methods via postconditions in much the same way as
Glitter. A difference is in the vocabulary used to define the postconditions; Glitter
allows certain informally defined, approximate process predicates such as OPTIMIZE.
We feel uncomfortable with this, and have currently chosen to avoid such predicates,
although they would be simple to add to TCL with the same sort of operational
semantics they have in Glitter. The selection rules used by Glitter to choose between
methods strike us as unneeded; they are obviously measuring something, and if what
is being measured is not process information, then some performance predicate should
be able to do the job.

4.3. RELATED CONTROL MECHANISMS 117

Even assuming the existence of a tool such as Glitter, there is still a need to
specify the major transforms to carry off an implementation as a metaprogram, if
nothing else, for documentation purposes.

Having considered a number of metaprogramming systems, we now turn our
attention to comparing TCL to planning systems.

4.3.4 Domain independent Nonlinear Planners

Classical domain-independent nonlinear planning is defined as the problem of
determining a set of operations (operators plus bindings) and a partial ordering over
that set specifying constraints on order of application, that changes a given initial
state into a final state with specified properties (usually termed goals) [Kam89, p. 11].
An introduction to planning can be found in [CM85]. A thorough formal analysis of
nonlinear planners is provided by Chapman [Cha87]. An excellent collection of papers
on planning in general can be found in [AHT90].

When transformation systems are characterized via performance goals, mecha
nisms used in classical planners seem obviously relevant; both have goals stated in
roughly the same way, and the fundamental problem for both is finding a path to
reach a goal state. The notions of plans and subplans for achieving a purpose are so
natural that we find it hard to imagine a control system like TCL without them, and
indeed, even procedural metaprogramming languages such as PADDLE [Wil83] have
the idea of subplans in the form of procedure calls. TCL was not designed with the
intent of advancing the state of the art for planners, but rather with the intent of
using available planning technology in a transformational context. As a result, TCL
as a metaprogramming language is unique in connecting each plan explicitly with
its purpose as a postcondition. Another property of planning systems is the need
for replanning in the face of plan failure. Such techniques can possibly be used for
transformational maintenance; we shall return to these ideas in a later chapter, but
their use in conjunction with planners provided some of the impetus to define TCL
in a planner-like way.

The value of a nonlinear plan is simply that unnecessary sequencing constraints
are not present [Sac7 4, Sac77]; this is closely related to the idea of a dependency net
[Fik75, Lon78]. While we do not consider dependency nets in this thesis, we expect
them to prove valuable in enhancing the maintenance process as an aid for revising
derivation histories. We consequently assumed that TCL should be designed so that
generation of such nonlinear plans was possible. We have incorporated the notion of
nonlinear plan directly into TCL as the PLAN construct.

118 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

Hierarchical abstract planners [Geo87, Kor87, Sac7 4] perform planning not only
in the target problem space, but also in abstractions of the target problem space. The
idea is that it is simpler to solve problems in a simpler space, and an abstract solution
can be used to guide the construction of a concrete one by combining solutions in
the concrete space to problems defined by pieces of the abstract solution. Usually
abstract spaces are formed by weakening the goal predicates, many times by simply
dropping obscure but assumed-easily-achieved terms. In a transformational context,
an abstract space might be formed by simply dropping some of the performance
predicates comprising Crest; solving a problem in this space would produce a nearly
satisfactory program. The resulting solution could perhaps be "tuned" to meet the
other performance goals; this corresponds to operating in the target problem space.
TCL does not implement strictly hierarchical planning, nor does any other transfor
mation control system known to us. A key problem is identifying performance goals
that are "easily achieved" so that abstraction spaces can be formed.

How Transformation system control is different than Classical Planning

Transformation system control is similar, but not identical to classical AI plan
ning. We outline the differences and how those differences affect TCL, and transfor
mational control in general.

Scale: Many state-of-the-art planners solve problems with only tens or hundreds of
steps [CT85, Kam89, Wil88]; transformation systems must deal with tens of thousands
of steps. We see that transformation systems must handle problems that are orders of
magnitude larger than current ambitions for planners. Transformation systems must
focus their attention more tightly to prevent scale from simply overwhelming them;
thus the TCL notion of locale as a device focusing attention on a region.

Representation Change: Planners and transformation systems differ in the rep
resentations used to describe initial and final states. For conventional planners, the
properties of the desired final state are usually stated in the same terminology which
defines the initial state, and is used to describe operators: as a set of propositions
about relations between objects in the world [Cha87, CM85]. Typical is the predicate
0 N (x, y) to represent the knowledge that a block x is on top of another block y.
Planning languages for such planners use this terminology directly, and are thus com
mitted to a particular representation. For transformation systems, the representation
of the initial state Jo and the final state are likely to be very different; consider an
Jo stated in functional programming terms, with the final state satisfying 9FORTRAN.

4.3. RELATED CONTROL MECHANISMS 119

The transformations will use terminology at the same level as the current state (as
does Draco [Nei80]).

Rather than commit TCL to representations for a specific transformation sys
tem, we have chosen instead to APPLY the transforms by name. A consequence of
the notion of monolithic transforms are monolithic locaters. In conventional planning
systems, locaters and locales show up as constraints on operator arguments. For the
blocks world operator ON (x, y) the constraints blue(x) and y = BLOCK913 are a
locale. Use of a bound variable (say, y), in a plan corresponds to a locale expan
sion operator (weaken the locale by dropping the constraint blue (x)). Like planning
systems, we do require TCL to represent goal predicates consistently across states.

The frame problem: Current planners and transformation systems differ with re
spect to solutions to the frame problem: controlling the ripple effect on the world of
caused by changes to specific facts. Most planners operate under a STRIPS represen
tation (usually limited to ground logical formulas) and STRIPS assumption (Lif86]:
only facts changed by the operators change in the world. The world is represented
by a database of currently-true relations between individual objects. Queries are al
most always satisfied by direct inspection of the state for the relations in the queries.
This is effective because planning situations are generally involved with the physical
movements of objects, and the interesting queries are generally about how one object
is placed with respect to another. Rarely are questions asked about derived prop
erties of configurations of objects, such as "How high is this stack of blocks?"; the
emphasis seems to be on objects as individuals. With transformation systems, it is
not convenient to represent all the possible facts in the current state; properties of
portions of the state are frequently of interest ("How fast is this subroutine?"). It is
therefore difficult to retain the STRIPS assumption for transformation systems. As a
consequence, conditional transforms may require considerable energy to validate. In
a transformation system, there doesn't seem to be any special emphasis on objects;
rather, properties of structures are of interest. If objects do exist in transformation
system representations, they tend to be more anonymous (i.e., the operator "+" can
be considered an object, but it is freely exchangable among all its instances). The no
tion of locale as choosing semantically interesting regions of a program for REQUIRE
and ACHIEVE is necessary to describe structures whose properties are interesting
to extract. As planning systems become more ambitious, we expect the emphasis to
shift towards configurations of objects, and so the differences should diminish.

Our perspective is that transformation systems handle the frame problem by
having transformations map states, and use performance measures to project the state
into performance values. This is rather like Georgeff's characterization of an extended
STRIPS representation (Geo87, page 15] with states containing basic facts, operators
manipulating only the basic facts, and planning predicates computing derived facts

120 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

from the basic facts on demand. TCL does this by referencing performance goals;
costs of evaluation are partly kept down by transformation system strategy of only
applying property-preserving transforms, assuring that at least one derived (very
complex) property need not be recomputed at all. In our transformational model, the
cache component of states is intended to keep cost of evaluating other predicates low,
but TCL does not specifically help here. Other planning systems such as SIPE [Wil88]
and FORBIN attempt to separate derived facts from basic facts, and provide special,
eagerly-evaluated inference rules to update derived facts, that trigger on detection of
changes to classes of relevant basic facts. The classic example is eager inference of the
derived fact -, CLEAR(x) when an operator produces the new fact ON (x, y) in the
blocks world. We do not believe there is much value in this solution in transformation
systems; the scale of states is likely to make such eager inference of all possibly
referenced derived properties unreasonable. An interesting unexplored possibility is
how to compute derived facts on demand using what remains of a previously valid
analysis based on dependency nets.

Usable Transforms/Operators: Both planners and transformation systems op
erate with a fixed set of operators at any instant. From the point of view of the
planner and the transformation system, the set is completely arbitrary. External to
the planner and the transformation system, the usable operators are limited to those
that make sense. For a planning system, the operators allowed are those which model
some world; a blocks-world PUTON operator is not expected to explode the block.
For transformation systems, there is also the need to use just Ginvarianrpreserving
transforms at any point in time.

In the face of scale, this is actually an advantage because it limits the applicable
set of transforms. Planners do not have this constraint.

Often, for planning, simple means-ends analysis can compare the current state
and goal descriptions to determine a likely candidate operator. For transformation
systems, any means-ends analysis must check the consequences of a proposed oper
ation on the observable effect of the other performance measures, so it is harder to
determine transformations with desired effects; a theorem prover may be required to
do means-ends analysis to choose plans.

Purpose of Planning vs. Purpose of Transforming: A transformation system
and a planning system differ in their ultimate purpose. A planning system is given a
specific, possibly partial, target world configuration, and is tasked to find a sequence
of operations that when executed actually achieve that configuration; the total ending
world state is usually not of any particular interest. The emphasis on applying the
operations has to do with the need to truly move objects around in the world. A

4.3. RELATED CONTROL MECHANISMS 121

transformation system is not given a specific target world configuration, but only a
way to recognize a desired world. It must also find a transformation sequence, but
unlike planning, the sequence is not the point10 ; the complete final state is the result
desired. This difference in emphasis seems have have had little effect on planning
versus transforming methods, to date, but see the discussion on resource management
that follows. It is the shared need to find a sequence that makes many planning
mechanisms applicable to transformational control, and thus to TCL.

Resource management: Recent work in planners includes resource management:
how to choose a plan that stays within problem-domain resource bounds such as
total time to execute a plan, consumable supplies of objects, or total operator costs.
Deadlines are handled by FORBIN [DFM90]. Consumable resource and recyclable
supplies are considered by SIPE [Wil88]. Resource management problems also appear
in the planning process itself.

In planning systems, problem domain resources constrain legitimate sequences
of operations, whereas in transformation systems problem domain resources constrain
legitimate states (programs) but not sequences of transformations. If one considers
transformation systems as planning systems that produce plans (for computing values,
i.e., programs), the problem domain resource constraints appear in the same place.

Describing and managing such problem domain resources requires explicit spec
ification of those resources and how they are consumed, as well as providing special
mechanisms for handling resource interactions. Conventional transformation systems
do not even address the descriptive aspect of resource management. TCL handles
this indirectly by performance goals built on performance measures such as Pcomplexity

(a time resource measure).

Process-domain resource bounds such as total planning time or external restric
tions on allowable sequences of operators (such as length) are just beginning to be
considered. We have avoided handling process aspects entirely in our characterization
of transformation systems and TCL, but it is clearly important in the long run to be
able to place bounds on resources consumed by a transformation system and yet still
produce an effective program product; this is the purpose of software engineering.
Because of the similarity of planning and transformation systems, we expect that
planning research on resource issues will be transferable.

10although it is critical for maintenance purposes!

122 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

FORBIN

The FORBIN planner [DFM90] is typical of many nonlinear planners in terms
of its representation of plans. The space of operators is broken into three parts:

• Task invocations (task name plus list of objects used by task)

• Task descriptors (expected postconditions of tasks)

• Task bodies (plan for accomplishing task)

Task descriptors and task bodies together act as the equivalent TCL methods.
Operators (task invocations) in the abstract space seem to be poorly modeled in
FORBIN, as they can match different task descriptors with different postconditions.

TWEAK

TWEAK [Cha87] is, among other things, a constraint-posting planner. The
size of the search space is reduced by constraining bindings on objects referenced by
operators until unique objects are selected.

The notion of "object" does not make much sense in transformation systems,
so the utility of such constraints for transformational implementation is unclear. One
might be able to apply such constraints to implementation domain-specific notions of
reusable resources, such as variables in conventional procedural languages.

SIPE

The SIPE planner [Wil88] can handle resource management, including what
amounts to cost of plan steps (a plan step that decrements a fuel resource by a plan
step dependent amount). Remaining fuel is tantamount to a process measure; a
predicate testing for positive fuel remaining would be a process predicate. Since our
model of transformation does not consider process predicates, TCL has no support
for them. SIPE's approach might be a good place to start.

As well as providing for goal decomposition by application of methods with
postconditions, SIPE has a set of built-in critics for resolving plan bugs: parallel
interactions, phantom goals, ordering constraints, etc. TCL has no critics, but this
may be an artifact of complete versus partial states. Since critics make choices about
how to resolve plan inconsistencies, they amount to implicit control.

4.4. OPES PROBLEMS 123

SIPE provides methods, complete with bodies, called "plots", and postcondi
tions, much like those of TCL. A CHOICEPROCESS action corresponds to TCL's
OR node.

SIPE also allows a human agent to irlteractively modify a partially constructed
plan via a graphical interface, with the intention that the human can redirect the
planner away from poor solutions, thus making the result plan more effective. Such
an interactive process is likely to be of use in a practical transformation systems.
The KIDS transformation system interface [Smi89] allows interactive specification
of individual transformation steps, but apparently not any overview or modification
of the design plan, as there is no explicit representation of that design plan. TCL
provides the basis for storing an explicit design plan (called a design history, see
Chapter 5, so it is possible to contemplate such an interactive interface.

In an attempt to avoid the frame problem, SIPE operators specify only main
effects, with causal deductive theories deducing side effects from generated main ef
fects. SIPE's planner ensures that main effects of parallel plans are preserved, but
does nothing for side effects. To define performance measures or predicates neces
sary for a transformation system, one would need to use side effects in SIPE. The
fact that SIPE pays little attention to those effects would make it a poor system for
implementing at transformation system.

4.4 Open Problems

Work on explicit control mechanisms for transformation systems is just get
ting started; the earliest work we know is [Wil83]. There is little real experience
with metaprograrnming, or understanding of what techniques will be the most useful.
Consequently there a number of obvious open problems:

• What performance measures are useful in practical metaprograms?

• What are useful forms for and operations on locales?

• How can one take resource costs into account in the navigation process?

• How do we acquire metaprograms?

• How effective will functional metaprograms be?

• How can we combine functional metaprograms with nonprocedural metapro
grams?

We do not address these issues further in this thesis.

124 CHAPTER 4. A TRANSFORMATION CONTROL LANGUAGE

4.5 Summary

In this chapter, we defined requirements for a metaprogramming language. We
observed the utility of planning systems for metaprogramming, and described the es
sential features of a metaprogramming language, TCL, based on those ideas. Locales
are identified as a means of focusing the attention of the transformation system. TCL
draws on ideas from planning: nonlinear plans, and method postconditions, which in
turn requires the usually-implicit Grest be made explicit, The value in such postcondi
tions is that they provide a link between the actions of the method and the interesting
effects caused; this information is needed for maintenance purposes as well as con
trolling the metaprogramming process. Examples showing the utility of TCL were
provided, including an example covering one of the few existing transformations sys
tems that use explicit performance predicates. A comparison to navigation techniques
used by other systems was made.

Con tri bu tions:

• TCL, a metaprogramming language that associates plans with postconditions

• A metaprogramming language consistent with the model of transformation sys
tems based on performance predicates

• The notion of locale as first class value m TCL constraining application of
transform

• A concise set of primitives for defining TCL-like languages

• An analysis of strengths and weaknesses of TCL with respect to other control
systems

Chapter 5

Design Histories

Chapter summary. A trace of the execution of the transformation system, es
pecially that of the control mechanism, provides a design history. This is useful
for explaining how an implementation was achieved, and what role each trans
formation played in the process. The content of a design history is examined.
These structures will guide and be modified by transformational maintenance.

Execution of the transformation system produces not only an implementation,
but also a derivation history: the sequence of transformations that were actually ap
plied. It is important to record, for explanatory purposes, not only the chosen deriva
tion history, but also the motivation for each transformation in the derivation history:
the design history. The design history will be of considerable use to maintainers for
understanding, and to tools for revising the constructed artifact. Many transforma
tion systems suggest the value of a similar output [Bau77, CTH79, Nei80, BMPP89)
but, by and large, it is not produced in a usable form. For our work, it is essential.

In this chapter, we describe the structure of both the derivation history, and
the enclosing design history, constructible by tracing the dynamic execution of TCL
meta programs.

5.1 Kinds of Design Information and Reuse

Possession of the "design" of an artifact is essential if one wishes to make changes
to it. Consequently we must capture design information in some form. We must
choose a particular form.

Given a definition of a design as the justification of a transformationally con-
structed final artifact, we perceive three different possible kinds of design information:

• Derivational: Sequence of transformations applied to achieve result

• Motivational: Structured justification of derivation

• Generative: Executed to generate a sequence of transformations

125

126 CHAPTER 5. DESIGN HISTORIES

The derivational design information tells procedurally how the (various parts of
the) final artifact were derived, by specifying exactly the sequence in which of trans
forms (and their locaters) were applied. Such information is essential when deter
mining the impact of changing a transformation. It can also be used for naive replay
by simply attempting to re-execute the sequence of transformations; such replay has
the distinct advantage of being fast, in that no decisions regarding what transform
or where to apply it need be made. Such naive replay always works to some extent
because the transformations are supposedly "correctness" -preserving. Consequently, if
a transformation from a derivation history can legally be applied, the result is by defi
nition legitimate; there is simply no guarantee that any particular replayed transform
does any useful work with respect to desiradata of the new artifact. What is missing
is from such naive replay is understanding of the role the individual transformations
play in achieving performance goals.

Generative design information contains not the design information for the arti
fact, but the potential to generate that design information. It usually takes the form
of a metaprogram, which is really a mechanism for guiding the transformation system,
by telling what transformations to apply where; thus it generates derivational design
information. While metaprograms have the advantage that they are easily replayed,
by simply re-executing the transformation system with the same metaprogram, they
have the disadvantage of requiring that re-execution in order to rediscover the trans
forms and locaters needed. This is a major cost we wish to avoid when performing
maintenance. In practice, transformation systems will require metaprograms to guide
them anyway, so this is certainly an attractive form.

A design plan (or design history) includes not only the derivation history, but
also structures the derivation according to the effects that the parts of the derivation
are expected to achieve. It also records, along with the structuring information,
the purpose of the particular structure in the form of subgoals. As it includes the
derivation history, it can be used for naive replay by simply attempting to execute
the derivation history. A more reasonable scheme will also re-validate the applicable
transformations according to the recorded information in the design plan to ensure
that they have the desired effect. A particular advantage of this form is that the
scope of effect of a particular transformation is more easily determined by examining
the subplan structures in which it takes part. A considerable gain over generative
(dynamic) replay comes because reuse of a design plan means that the transformation
system need not try to determine either the transforms or the locaters to use for much
of the resulting artifact. Use of a design plan has not been applied in transformation
systems to date, and is one of our major contributions. In fact, a metaprogram
can generate design plans if properly organized; a good metaprogramming system
will blur the boundary between dynamic execution of the metaprogram and and the
static design history of a particular artifact, allowing design plan repair to fall back
on parts of the metaprogram as needed. Our TCL metaprogramming language was

5.2. DERIVATION HISTORIES 127

designed to achieve this purpose. We will discuss the execution model for TCL in
Chapter 8.

We keep all three of these types of design information for an artifact. We
retain the derivation history because of our expectation that most design decisions
(applied transformations) will remain intact in the face of small changes. We keep
the design history so that those design decisions which appear to be unaffected by a
change can be validated to ensure they still continue to serve their intended purpose.
Lastly, we keep information about how the design history was generated as the TCL
metaprogram in case parts of the design history need to be regenerated.

5.2 Derivation Histories

A derivation history captures the precise path through the design space traversed
by a transformation system. This path is the construction information for the final
artifact. Should we wish to construct a similar artifact, a similar path is likely to be
needed. Thus considerable information is likely to be available in the current artifact's
derivation history.

DEFINITION 5 .1: Derivation History. A sequence of transformations1 . We denote a
derivation history Hof length k by H = [t~1 , t~2 , • • • t~]. Alternatively, we may denote
a derivation history by a triple H = (k, HT, H,e,), where length(H) = k is the length
of the history, H7 : 1..k -t T and H,e, : 1..k -t £, are functions which generate the
individual transforms and locaters representing the history. Thus, H = (k, HT, H,e,)
can be written as:

D

We use H to represent the set containing every possible derivation history.

1 Both Carbonell [Car85] and Mostow [Mos85c] use the term "derivational" to include the notion
of goals. We prefer to use it in the stricter sense of "derived from", being a purely mechanical
process without motivation.

128 CHAPTER 5. DESIGN HISTORIES

In practice, we expect each derivation history to include both property
preserving transforms and non-property-preserving transforms, because of the prac
tice of constructing Jo from the empty specification c (a possible instantiation of c
would be skip) by application of non-property-preserving transform ns [JF90, Fea89a,
Fea89b]:

e' e' e
fa= n/(n/_-11 (- .. (n11 (c))))· ..)

The value of thens lies in their use for "elaborating" an initial functional specification
to include details not covered by the initial specification; we will see these later as
functionality deltas.

An implementation f c is achieved by applying property-preserving transforms:

Consequently, a derivation history can have the structure:

Current transformation systems do not produce a derivation history with this form,
but are moving in this direction; the ARIES system [JF90] captures just the evolution
of the functional specification.

5.2.1 Operations on Derivation Histories

It is convenient to perform various conventional operations on sequences forming
derivation histories, both for mathematical description and for actual manipulation.
We define the following operations:

• Length: length(H) = kif H = (k, H7 , He)

• I d . . H['] - tHL(i) n exmg. i = HT(i)

S b . [. '] _ [HL(i) HL(j)l • u sequence. H i .. J = tHT(i)' ... , tHT(j)

• Tail: rest(H, i) = H[i .. length(H)]

• Subset: H1 C H2 = 3i,j I H1 = H2[i .. j]

• Concatenation:
H1 + H2 - [H1[l], ... , H1 [length(H1)], H2[1], ... , H2[length(H2)]]

5.3. DESIG:V HISTORIES 129

5.2.2 Compositions of Transformations

We shall have need for notation for the composition of transformations. Since
transformations are partial functions from states to states, their compositions are well
defined functions.

DEFINITION 5.2: Composition operator o : (T x £) x (T x £) ---+ T x £. A partial
function composing two transformations:

tf 1 o t;2 := t~0 I Vs E S : defined (t;2 (tf (s))) ::i defined (t~0 (s)) /\ t~0 (s) = t;2 (tf (s))

D

We assume that the representation of transforms and locaters is rich enough so such
a composition is well defined.

The product composition operator defines the effect of applying a derivation
history to a program.

DEFINITION 5.3: Product composition operator IT. Given a derivation history H,
the effect of the individual transformations can be composed to form a single large
transformation II(H) = H[length(H)] o H[length(H) - 1] o · · · o H[l] D

Thus II(H) (E) is the program obtained by applying the entire string of trans
formations in the history H to E.

Usually associated with each derivation history are a program ff! or a state s{f
from which the derivation history was initially ~enerated. For derivation history H
starting from c, fl/= E. For any H[i .. j] CH, fa [i .. j] = (ITH[i .. j])(f~).

5.3 Design Histories

Most extant systems that attempt any kind of replay use just a derivation history
as the replayee [Gol89, MB87, SM84]. Mostow [Mos85c] implies this is not going to
be greatly successful as the justifications for applying the individual transformations
are lost.

The correctness of implementation of a specification must be justified somehow.
We call a design justification any structure that shows precisely how each step taken
by the implementing system is justified in terms of its ultimate effect. Such a structure
is essentially a proof that the implementation meets the specification, derived only
from the initial specification and the transformation steps used.

130 CHAPTER 5. DESIGN HISTORIES

5.3.1 Design Histories as Unfolded Goal/Plan Structure

In practice, such a detailed proof is expensive to construct, and of little practical
use. All that we really need is a justification of the implementation down to the level
of believably reliable steps. With the right kind of control, plan structure comes to our
rescue; proofs of the correctness of compositions of transformations can be replaced by
references to methods that achieve the effect by applying those transformations. We
can leave the proof of the method [A1190], if we have it, attached to the method itself,
thereby conserving on the size of a design justification. Even the hueristic nature of
the method need not concern us; since TCL ensures the (untrustworthy part of the)
postcondition of a method by actually testing it, we know that a successful method
achieves the desired effect in the context in which it is tried, even if it does not work
under all circumstances. This knowledge tells us that a proof of the value of the
method in this context is possible, even if we do not have the general proof; we don't
actually want to construct such proof. The mere knowledge that it is possible is
sufficient justification for application of the method.

We can capture a useful part of such a design justification by tracing the execu
tion of a goal-oriented metaprogram. A derivation history and the unfolded execution
of a goal-oriented metaprogram are collectively called a design history.

DEFINITION 5.4: Design History. A structure showing how goals are achieved using
plans. D

Coupled with the proofs that plans actually achieve goals, a design history provides
us with indirect justification for every transformation present in a derivation history.

A design history is shown schematically in Figure 5.1. Horizontally we see the
design states (minus the consequences Qi, for clarity) coupled by the transformations
produced by APPLY steps; the horizontal bold arrows form a single path through
the design space as shown in Figure 3.7. Vertically we see the performance goal
decomposition by use of plans implementing method postconditions; such decompo
sition is accomplished fundamentally by ACHIEVE steps. Each node represents a
performance goal to be achieved. A set of arcs emanating from the node represent the
decision to carry out that goal by the application of some plan; each arc represents
a step in the plan. Dashed arcs represent untried alternatives. Links across arcs
represent required sequencing of plan steps. In the interest of keeping the diagrams
uncluttered, we have adopted the diagrammatic convention that, unlike interior arcs,
each arc from leaf nodes to transformations in the derivation history represents an un
shown node whose plan is to APPLY a transformation. To denote this, the notation
APPLY is written explicitly on the leaf arcs in this diagram, but is implicit in later
diagrams. Also for clarity, the diagram shows every step in a plan as having a gen
erating goal by the simple artifice of attaching a postcondition of true; in a practical

5.3. DESIGI\" HISTORIES 131

design history we do not do this. A successful REQUIRE goal or a serendipitiously
A CHIEVEd goal2 is treated as if it used a plan consisting of application of an iden
tity transform to those parts of the satisfying state that imply the achieved condition.
For our figure, G3 : is effected by any-order execution of methods for achieving G4

and Gs. G4 is accomplished by applying cf1 and then c~2 • Goal G5 is accomplished by
applying c~5 ; an unneeded alternative for solving Gs is shown by the dashed arrow.
G1 shows a 3 step PLAN with only a single ordering constraint. The vertical arrows
are drawn in time-order of trace generation; reversing them would produce the design
justification information.

A design history in which every node has an implementing plan is called com
plete; if nodes exist which have no implementing plan, then the design history is
incomplete.

The diagram does not show non-property-preserving transforms used to con
struct Jo from t:. We believe that such transforms also belong in the design history,
along with their justification. The only justification we can use for the collection of
non-property-preserving transforms is "the system analyst says this is needed", which
is essentially the goal Ginvariant, with an unstated but nonetheless real plan consisting
of applying all of the individual non-property-preserving transforms. Materialization
of Jo directly can be modeled as II(Hn)(t:) = f 0 • An overview of the extended de
sign history taking the non-property-preserving transforms into account is shown in
Figure 5.2. Such a complete design history shows how the entire specification G is de
composed into Ginvariant and Gmt to effect the desired result, for those transformation
systems which hold Ginvariant constant. The ordering established under Ginvariant will
depend on interaction properties of the non-property-preserving transforms [JF90].
The derivation history He are the transformations produced by the transformation
system.

5.3.2 Design History abstract representation

We now look more closely at the representation of a design history. We use the
symbol 'D to represent the set of possible design histories, with D being an individual
design history. While our diagrams uniformly group a goal and a plan together as
a node, in practice the design history consists of nodes which may be either. We
call such nodes agenda items3 , because each represents the potential need for work
to accomplish the effect. Each design history D is a set of individual agenda items,
designated ai.

2Called a phantom goal in non-linear planning terminology.
3 Similar nodes are generally called "task nodes" in hierarchical planning literature [Kam89]

132 CHAPTER 5. DESIGN HISTORIES

Sort

OR ------

G1

'

G3

Implementation path

Alternative subgoal

Grest O(nlogn) /\FORTRAN

O(nlogn) G2 FORTRAN

' -,. ___ ,
I I
I Gg I
I I
L ___ _J

/6
6

G6

/1
7 Merge

Sort

~ achieve subgoals left to right

~ achieve subgoals in any order

Figure 5.1: Design History as unfolded Method Execution

5.3. DESIGN HISTORIES L33

G entire

Crest

invaria t

Figure 5.2: Design History including justification for functional deltas

134 CHAPTER 5. DESIGN HISTORIES

Agenda items stand for instances of actions as outlined in Chapter 4. Each
agenda item contains the following information (Figure 5.3):

• action(a), indicating what needs to be accomplished, being any of the TCL
actions (defined in Section 4.2.2), including APPLY, ACHIEVE, REQUIRE,
PLAN, OR, CALL, etc. One can think of this as a pointer into a TCL method
body formed by instantiation of the method according to its parameters (a body CJ).
As terminology, we characterize "an a (agenda) node" as one whose action
aspect is action a; thus an agenda node whose action is CALL is termed a
"CALL" node.

• sons (a), being a set of sub agenda i terns that purportedly accomplish the effect.
In the case of APPLY, the son is the applied transformation.

• order(a), which is a partial order> over sons(a). If action(a)= PLAN, this is
determined by the partial order given in the PLAN step.

• completed (a), which is true if the action required by this agenda item has been
accomplished, and otherwise false. For example, an agenda item will be marked
completed if action(a) =APPLY and the transformation has actually been ap
plied, or if action(a) = ACHIEVE and a sons and its order have been estab
lished. We say an agenda item with completed(a)= false is incomplete.

• parents(a), which lists agenda items whose sons include a. We define
ancestor(a) = parent*(a). The root of the design history has an empty set
of parents.

• symboltable (a), consisting of a set of triples (lv, f, dependents) each containing
a locale-variable name (lv), a locale-value (£), and a list of dependent agenda
items which use the locale-variable name in a locale expression evaluated by
action(a). This stores named locale values for reference by necessarily-following
agenda items. Nodes which always contain non-empty symboltables are those
with action LET or LOCALE.

Agenda Item Symbol Tables

The symboltable serves two purposes:

• As a mechanism for implementing LET and LOCALE constructs

• As a dependency net tracing the usage of locale values

When a locale value f is bound to a variable lv by the action of agenda item a,
the triple (lv,f, 0) is added to symboltable(a). For APPLY agenda items, a dummy
variable is used to capture the locater resulting from transform application. Looking
up a locale variable in the context of a particular agenda item a consists of searching

5.3. DESIGN HISTORIES

parent1 parentk

action

{ (lvi, localei, dependentsi)}

SEQ(CALL(... ,
PLAN(APPLY ... ,

partial order
on sons

... ,

... '

Figure 5.3: Design history agenda item

135

136 CHAPTER 5. DESIGN HISTORIES

the design history in reverse order according to order(parent(a)), continuing the
search upwards towards the root when there are no necessarily preceding brothers,
until an agenda item containing a symboltable with a matching variable name is found;
its associated value is the desired value. Whenever agenda item a 's locale expression
e resolves a variable reference to lv of agenda item as, a locale-value dependency is
added to the dependency set for lv in node as· This dynamically constructs a network
of locale value dependencies among the agenda items in the design history. Such a
network is shown in Figure 5.4. Note that an incomplete agenda item has an empty
symboltable. Because it would clutter design history diagrams, we do not show locale
dependencies in them.

Shared agenda items

A design history can actually take the form of a directed acyclic graph, where
certain transformations and/or methods can achieve several higher-level effects. Many
conventional optimizing transformations such as ?x + 0 ===? ?x both increase the
speed of the ultimate program and also decrease its size. Separate goals requiring
space optimization and time optimization can often be satisfied by a single optimizer,
as with node G8 in Figure 5.5.

5.3.3 Design Histories as Basis for Program Explanation

While we do not explore the subject, we believe the design history also provides a
considerable amount of infrastructure necessary for design explanation. A derivation
history is directly analogous to explanation in expert systems via fired-rule traces
[WHR78, BS84, Nin89) for individual transformations. The goal structure captured
by the design history corresponds more closely to the annotated derivations used in
the Explanation of Expert Systems work by [NSM85).

A key difficulty in maintenance is discovering how a program works. Such un
derstanding is a necessary precondition to any successful attempts at modifying the
program's function, and many times, when attempting to enhance the performance
of a program, to know where optimization can pay off. We claim that the specifica
tion plus the design history provides much of the information necessary to describe
how the program achieves its purpose, by relating how the specification drove the
implementation.

A crucial part of understanding a program is understanding precisely its func
tion, and knowing just how well it was designed to perform. Conventional software
implementation environments have a very strong tendency to lose even the informal

5.3. DESIGI\i HISTORIES

SEQ(...)

son

~ locale-dependency

LOCALE(lv2,
----+-----.. Ji (lv1), .. .)

< lv2, fi(l1), >

APPLY(c3, h(lv2))

< *,£3,• >

APPLY(c2, h(lv1))

< *,£2,• >

Figure 5.4: Locale-value dependency net

137

138 CHAPTER 5. DESIGN HISTORIES

G rest size < 5 f\ speed > 3 /\ ...

G1 size < 5 /\ ... G2 speed > 3 /\ ...

Implementation path

AP LY
simp ifying
tran form

~ achieve subgoals left to right

~ achieve subgoals in any order

Figure 5.5: Shared agenda item in a design history

5.3. DESIGI\' HISTORIES 139

description of the software, leaving a would-be maintainer to fall back on out-of-date
documentation, the shared knowledge of his co-workers, and the source code itself to
divine the purpose of the program. Clearly, retaining both a formal specification and
a design history would alleviate the problem of understanding the program's purpose.

Letovsky [LS86] describes a problem in conventional software maintenance he
called delocalized plans. A fragment of the source code at one place in the text
operates in conjunctions with other fragments of source code "far away" in program
text. Such fragments are the consequence of a coherent conceptual plan on the part
of the original implementor that has scattered by the implementation process. Such
components are encountered individually by the maintainer, who assumes that the
fragment currently under consideration has a purpose, but that abstract purpose,
and the location and the roles of related fragments in a larger context is unknown to
him, and must be rediscovered before any modifications are considered. The solution
proposed was to require comments near each code fragment implementing a plan
part to identify the plan explicitly and to "point" at distant parts of the of the plan
implementation.

A captured design history can provide precisely that, in a more formal way.
Questions of the form "what purpose does this code fragment serve?" can be answered
by tracing back through the generating transformations in the derivation history to
the portion of the functional specification which caused that fragment [DKMW89].
Thus this information can serve as explanation of functionality in the same sense
that a rule trace can be used for expert systems [NSM85] Similarly, functionality
can be traced forward to the code fragments that implement it. Each performance
goal is tied explicitly to the plan(s) that achieve it, and each plan to the subgoals
or transformations that accomplish the plan steps; this allows traceability from the
implemented source back to the performance requirements and vice versa.

Additional information could be recorded to enhance our design history for
further explanation. We only capture design choices (Section 1.2.3), intensionally as
performance goals, and design selections, in terms of the actual plan to carry out
a goal. Information about possible design decisions, their tradeoffs, and the costs
of generating and evaluating those decisions are not captured in our framework. A
simple possibility is to store the amount of energy expended on making a particular
choice, as this can approximate the importance of the decision. Kant [DKMW89]
marks forced decisions (those where there is only a single possible choice) specifically
to document important design decisions. We also do not capture why a possible
decision was eliminated; near misses could be valuable for detecting bugs or guiding
the design by suggesting what needs to be changed to convert the near miss into a
hit.

140 CHAPTER 5. DESIGN HISTORIES

Of course, using this information with the intent of modifying the implemented
program directly is inappropriate in a transformational context. Chapters 7 and 8
describe a better use for this information.

5.4 Related Work

Design histories have been proposed or used for a number of other systems.
These can be grouped roughly as follows:

• metaprograms

• linear historical trace of actions

• tree-structured history

• nonlinear history

• heirarchical plan history

• goal-structured history

A metaprogram is a designated set of procedures (coded in a metaprogram
ming language) for controlling the transformational implementation of a particular
specification. This really constitutes generative information rather than a design
history, since it is really the potential of generating a design history. However, a
metaprogram loses useful information that was is difficult to obtain: precisely how
goals were decomposed, and precisely where transformations were actually applied.
We include systems that record metaprograms in this section because they are often
used for design replay purposes. Our notion of a Design Maintenance System records
metaprograms in a library of TCL methods.

A linear history captures the actions of the development system in the time
sequenced order of occurrence. Linear histories have the virtue of being very easy
to capture; a simple transaction log suffices. Our derivation history is such a linear
history. When recording such a history, one should capture as much as is available
from the transformation system; in our case, we capture both the transform and
its locater. In some cases, notably in text derivations of algorithms, one sees only
the transforms listed; presumably this is because the examples are small enough so
the transform can only apply in a single place, and the authors simply leave the
locater out. We note that a purely linear history cannot record that a single action
accomplishes more than one useful effect, as does our notion of shared agenda item.

A tree-structured history can capture the actions of a system which always de
composes a problem into nearly independent subproblems; constraint propagation

5.4. RELATED WORK 141

"leaks" parameter, but not structural, information from one subproblem to another.
The history is organized as a tree of decompositions of the functional specification
represented by the root. Tree-structured histories are easy to capture, but makes
the unrealistic assumption that implementation process can always implement sub
modules. Our design history requires a performance specification at the root, and
agenda items do allow pure decomposition (via AND and ACHE!VE), but also allow
sequencing (via PLAN).

A nonlinear history contains only the essential sequencing constraints, usually
represented by a directed graph (thus the term nonlinear); nodes in the graph rep
resent actions, and arcs represent ordering dependencies. It is possible to construct
a nonlinear history from a linear history by performing a dependency analysis, but
it is simpler to insist the the mechanism generating the history supply the ordering
information directly. The agenda items in our design history capture the nonlinear
sequencing directly from the generating TCL PLAN; the convenience of such capture
was the motivation for installing this construct in TCL in the first place. We were
prevented by time from fully treating a nonlinear representation for the derivation
history, although we think this is a useful approach.

A hierarchical history captures the breakdown of the development process in
the form of hierarchical (procedural) plans. One can have hierarchical histories with
either linear or nonlinear subplans. A purely hierarchical history suffers from the same
defect as a purely procedural program: there is no explanation of intent. Another
view is that the plan is purely operational in meaning. Our design history captures
a hierarchical history via agenda items with multiple sons in a nonlinear subplan.

A goal-structured history provides motivation for a hierarchical history; in par
ticular, it somehow provides linkage between plans used and purposes to be achieved.
As stated earlier, such goal information is critical to explaining why an action or
plan is used. Our design history provides goal structure by recording agenda item
complexes for goal achievement, containing the dynamically generated subplans of
SEQ(CALL(k, D"), ACHEIVE(Gx, e')).

5.4.1 Metaprograms as design histories

PADDLE: "Program Developments"

PADDLE [Wil83] Section 4.3.3 is a procedural metaprogramming language. If
the metaprogram is specific enough, it has only possible execution path for the partic
ular program, and therefore can act as a peculiar kind of history. However, PADDLE
is also apparently intended that general transforming methods be coded in PADDLE,

142 CHAPTER 5. DESIGN HISTORIES

to be reused for implementing a wide range of specifications. In this case, such meth
ods are not likely to uniquely apply, and the ability to indirectly represent a history
is weakened. We have chosen to capture both generative knowledge (in the form of
TCL methods) and an artifact-specific design history to avoid this schizophrenia.

PROSPECTRA

The PROSPECTRA transformation system system [KB88, KB89b] uses
transforms as functions over abstract syntax trees and higher-order functionals
(Section 4.3.3) as transformational control. A "development" is defined as the compo
sition of all the transformations/functionals used; the unevaluated composition forms
a tree-like structure which we can consider to be a metaprogram. In the absence
of special transformations to combine states, such developments effectively force a
linear sequence on the transformations. Given the ability to reason about transforms
and functionals, one can perform various operations on a development, such as op
timizing out unnecessary steps, etc; the point is that tacticals and developments in
this scheme can be modified using the same mechanisms as apply to the original
program specification. Given such reasoning mechanisms, it is possible to discover
that certain sequencing is nonessential, although this is likely to be very painful in
the face of complex functionals. No performance goals are provided, so developments
are unmotivated. It is not clear whether developments have actually been used in
PRO SPECTRA.

5.4.2 Linear histories

Zap

The fundamental control concept of Zap that of a CONTEXT which determines
which transformations are carried out, and guiding transformation by pattern-directed
transformation. The operation of CONTEXTs were described in Section 4.3.3, and
can be summarized as nonprocedurally determining a sequence of transformations
to achieve a state in which selected equations have a form specified by a goal in
the current CONTEXT. The individual CONTEXTs seem to be very specific to the
program being transformed. Sequences of contexts form a metaprogram for generating
an entire implementation. Such sequences are established by constructing a script file
containing a series of CONTEXT descriptions. The individual CONTEXT can be
considered analogous to TCL methods, and the script file considered a high-level
derivation history. Zap histories thus provide low-level goals, but no goals for the
higher purpose.

5.4. RELATED WORK 143

Closely related. but more formalized than Zap's notion of design history, is that
of [Imp86]. This defines a development history as a sequence of nodes (G, R) where
G is a goal, R is representation, and a development step consists of manipulating R
to achieve G. This captures Zap's approach of nonprocedurally specifying what is
done at each step.

Goldberg

Goldberg [Gol89] records a linear version of a hierarchical history:

"We define a derivation history as a trace of the tactics invoked, either manually
or as part of the execution of some other tactic, together with the values of the
actual parameters passed to them."

Goldberg's "primitive" tactics (4.3.3) correspond to our transforms, whereas
nonprimitive tactics are a procedural version of our methods. Because arguments to
the primitive tactics are retained, Goldberg's system effectively captures each trans
formation cf including the locater. However, the relation of a high-level tactic to
the lower-level tactics that it invokes and follow it in the history is not retained; in
practice, Goldberg in fact only seems to capture invocations of the primitive tactics.
No goal information is maintained.

5.4.3 'free-structured histories

BOGART

The BOGART system [MB87] captured the history of the top-down refinement
of a VLSI circuit functional specification. Such specifications define abstract cir
cuit components and information flows between them, much like data flow bubbles.
Abstract components are recursively refined into subassemblies of components un
til only primitive components remain; the refinements depend on constraints (signal
timing, etc.) from sibling components. The design history forms a tree isomorphic
to the component refinement structure; one can think of a refinement tree attached
to each component in the original specification. The advantage of this structure is
that questions about how one component is refined are decoupled from any other
component which is not a parent or descendent. A severe disadvantage is that such
histories cannot represent commonly found optimizations that are possible because of

144 CHAPTER 5. DESIGN HISTORIES

juxtaposition in context4, and therefore the use of such a history is likely to prevent
the construction of even a near-optimal artifact. The authors also acknowledge the
absence of performance goals in this type of history.

SIN APSE

The design histories we have discussed so far provide the design history of the
components making up a single artifact. The SIN APSE system [DKMW89], used to
synthesize finite-difference programs, keeps a tree-structured history to record design
selections (Section 1.2.3) where branches in the tree represent branches in the space of
possible implementations. In essence, this is a tree "slice" of the design space shown
in Figure 3. 7, and is an implementation of almost exactly Parnas' notion of program
families [Par76]. The tree root is the most abstract functional specification. Each
tree node represents the decision to refine some component (thus capturing a locater);
each tree arc represents the choice of a particular refinement. This particular model
also has trouble recording juxtaposition optimizations, but that is because tree nodes
are defined to be decisions to refine a component, rather than the decision to apply
some transformation. The actual history is recorded as a set of pairs representing
explicitly named design choices and explicitly named design selections for critical
design choices. Design choices for which a selection is forced, or for which the built
in control knowledge chooses a satisfactory default result are simply not recorded.
This corresponds roughly to choosing an "important" subset of our linear derivation
history. Being able to explicitly name critical decisions and selections requires that
such decisions and selections are known well in advance of actual transformation; for
large scale implementation, we do not think this is generally possible, as as a similar
decision may apply in more than one place during a derivation, and a unique name
will not be able to differentiate between these. We think our directed acyclic graph
like structure would been more appropriate for recording this type of history.

5.4.4 Nonlinear Histories

Cheatham's PDS

The Program Development System (PDS) [CHT81, Che84] transformationally
constructed software in stages. Each stage either performed a type analysis and prop
agation or applied a particular set of transformations according to transformation

4If component A is connected to component B, A is refined to A' with an inverter on the output
to B, and B is refined to B' with an inverter on the input, then a juxtaposition (called peephole
for compilers) optimization removes both inverters. This cannot be recorded in a tree-structured
history.

5.4. RELATED WORK 145

application instructions (a kind of metaprogram) to a functional specification from
a previous stage. PDS recorded with each entity (stage result, and we presume,
transformation sets, application instructions, and type analyzers) the tool name and
parameters that generated it, and a version number equal to one plus the maximum
of the version number of that entity's parents. All this information taken collectively
forms a dependency network [Fik75], or a nonlinear history of the derivation process
of the final stage. PDS did not allow stages to be sequenced by a higher level control
mechanism; TCL methods and plans allow this.

Nonlinear Planners

Nonlinear planners (NOAH [Sac77], NONLIN [Tat77], TWEAK [Cha87], intro
duction [CM85], survey [Geo87] capture plans as networks of actions with a partial
order on the actions. When such actions are transformations (or invocations of meth
ods), and the networks represent workable plans for implementing a specification,
then it becomes useful as a design history. The inspiration for the PLAN construct
and the organization of the agenda items in our design history was taken from this
technology. The notion of a nonlinear plan requires the notion of partial state, which
is easily obtained in problem domains where the problem is conveniently described
in terms of conjunctive normal form, and most terms are independent of one an
other, such as the archetypical blocks world. One of the difficulties with partial state
representations and nonlinear plans is evaluating the truth of a predicate immediate
before a particular action is applied (this is known as the modal truth criterion); one
may have to enumerate an potentially exponential number of possible orderings of
previous operators to determine possible full preceding states [Cha87]. In an attempt
to avoid facing this problem in the short term, and not wishing to prematurely place
any fixed structure on the content of a state so that our transformation model would
be widely applicable, we chose to leave states as monoliths in our representation of
design history.

5.4.5 Hierarchical plan histories

Hierarchical planners (NOAH [Sac77], survey [Geo87], FORBIN [DFM90], in
contrast to component decomposition schemes, decompose high-level plans for ac
complishing an effect into lower level plans. Essentially the lower level plans are
subroutines for achieving the effect of the higher level plans. The high-level plans are
simply names of the lower level subroutines, and therefore have only an operational
semantics. Recording the plan breakdown produces a hierarchical plan history, but
no explanation as to why the plan should should work or its purpose. TCL can gen
erate such histories by nested PLAN s or making procedural CAL Ls to methods. In a

146 CHAPTER 5. DESIGN HISTORIES

hierarchical plan history, one cannot have phantom goals simply because the notion
of goal is defined. However, our notion of shared agenda item, begin not necessarily
non-procedural in nature, is a useful addition to hierarchical plans; this allows at least
the representation of shared actions in a plan, generalizing Mostow's [Mos85b J call
for shared design goals.

Abstract heirarchical planners (ABSTRIPS [Sac74], survey [Geo87], [Wil88])
first solve a problem in an abstracted problem space, and then instantiate a partial
solution in the problem space and attempt to fill in the details. We have not considered
carefully histories for such planners because we have not had to to consider how to
abstract the performance goals in the design history.

[Mos85b J suggests that a lattice should be used to represent an idealized design
history to allow shared design goals; we have chosen to use a directed acyclic graph
to represent shared design goals and actions.

5.4.6 Goal-structured histories

NONLIN

The NONLIN [Tat77] planner uses goals to guide its choice of plans. As the
planning process proceeds, a heirarchical task network is built up, showing how a
high-level goal is achieved by some plan, possibly having subgoals and eventually
terminating in primitive actions. The completed task network is a goal-structured
history of the planning process. An interesting structure that appears in nonlinear
goal-structured networks are phantom goals, nodes representing some desired goal
effect which is serendipitiously true, either because of the initial world state or because
of some necessarily-preceding action in the plan. One can represent the simultaneous
achievement of separate subgoals in a nonlinear network with an action followed
eventually by a phantom goal, but this places a false asymmetry into the network
and therefore the algorithms that process it. A TCL design history captures the
goal/plan relationships.

The SIPE planner [Wil88] uses essentially the same goal-structured history as
NONLIN. However, SIPE also handles abstract plans, constraints, and extended at
tribute language used in goal expressions. The additions add considerable interesting
detail to the design history which we do not have room to discuss here.

5.4. RELATED WORK 147

PRIAR

The PRIAR nonlinear planner [Kam89] starts with a plan structure essentially
identical to that produced by N 0 NLIN, and annotates it further with validations.
Validations exist for every precondition of leaf actions a in the form (C, a1 , E, a),
meaning "The action of agenda item a1 changes the world to produce condition C,
which provides necessary support for precondition E required for a to act." Each
validation (C, a1 , E, a) implicitly requires that a 1 <a in the nonlinear plan ordering.
The entire set of validations (Ci, ai, E, a) for E of a must have the property { C;} f- E.

Each node a in the plan structure is decorated with relevant annotations of the
following types:

• E-conditions (external effect conditions): validations provided by the subplan
under a to parts of the plan other than the subplan at a. These are the used
effects of the subplan under a.

• E-preconditions (external preconditions) are the validations required by the
subplan under a from the rest of the plan

• ?-conditions (persistence conditions) are validations that the subplan under a

must be preserved by the subplan; these correspond to protection intervals, and
are conditions that must nqt be disturbed by execution of the subplan under a.

Each node is also annotated with the schema which generated it, and filter conditions
(those the planner will not attempt to achieve, but will simply use if present, such as
BLOCK(B) in the blocks world).

Annotations on a node record validations used, generated, or preserved by the
subplan below that node. This allows simplified reasoning about what the entire
subplan requires, accomplishes, or must not change by virtue of simply knowing the
subplan. We think this approach has considerable promise for a Design Maintenance
System once we move away from monolithic states.

Carbonell's "Derivation" Histories

Carbonell [Car85] suggests that a problem solving trace capture not only the
resulting goal-structured plan for a solution, but also alternatives considered and
rejected, near solutions and the cause of their failure, and references to knowledge
used. All of this information has potential value for explanation and in similar
problem solving situations. Carbonell only sketches of how this knowledge can be
used.

148 CHAPTER 5. DESIGN HISTORIES

We add that costs to generate and evaluate each piece of stored information
would also be of great interest; a design selection achieved at great cost should gen
erally be protected. Knowing the costs of certain design selections also allows better
estimates to be made in the face of a proposed change. Finally, such costs are also
a key to controlling storage costs, by using the strategy of recording only informa
tion whose cost to acquire exceeds some threshold. Cheaply acquired information is
probably not worth the trouble to store.

5.5 Summary

This chapter has defined the notions of derivation history and design history,
discussed how such information can aid program understanding, and compared our
notion of a design history with those found in the literature. Such "understanding"
can be used by tools to install changes in the artifact described by the design history.
In the following chapters, we define how changes are specified and how those changes
can be installed into a design history.

Chapter 6

Maintenance Deltas

Chapter summary. This chapter gives a theoretical characterization of trans
formational maintenance. The notions of maintenance delta and delta integra
tion are defined. Classification and formal representations for each type of delta
are provided in terms of transformation system inputs.

Given an existing artifact, and a possible modification, we would like to con
struct a new artifact having that modification. The process of deriving the modified
artifact from the existing one is traditionally termed maintenance.

Transformational maintenance is using a transformation system to aid modi
fication of an artifact. We believe there is great value in using a transformational
perspective to guide a maintenance process. Such a perspective provides us with a
way of classifying types of changes. The change type, in turn, leads to type-specific
procedures for integrating the change into an existing artifact. Since revision of the
design history is really a prerequisite to constructing the changed artifact, we call
such a system a Design Maintenance System. Combining such procedures with the
conventional transformational implementation paradigm provides one not only with a
mechanism for implementing the maintenance process, but also the possibility using
the identical mechanism to implement an incremental design process. The integrated
process we term Incremental Evolution.

149

150

Requested
Changes

.....

CHAPTER 6. MAINTENANCE DELTAS

Software Engineer

'
~ Code

Design
Delta Revised

Integration Design

Implementation Updated
Technologies Technologies

Support Technology

Design Information

. Software
Versions

Figure 6.1: Incremental Evolution: A system for managing change

151

An overview of the transformational maintenance process (Figure 6.1) is de
scribed in the following procedure:

Incremental Evolution:

1. Specify an artifact formally

2. Construct a (partial) implementation using a transformation system, cap
turing the design information (a design history) and the technological sup
port used to construct the implementation

3. Repeatedly

(a) Determine a desired modification of the (partial) implementation

(b) Specify a formal change, called a maintenance delta, that states the
modification

(c) Integrate the maintenance delta into the existing implementation sup
port technology, the design information for the artifact, and artifact
itself

The desired change may have some effect on the implementation technologies
(property-preserving transforms and methods) used by the transformation system.

The delta integration process is roughly:

Delta Integration:

1. Determine the type of the maintenance delta

2. Revise the support technology if required

3. Analyze the maintenance delta with respect to the design history, using a
type-specific process to determine which design history elements must be
dropped

4. Regenerate the remainder of the design history by re-running the transfor
mation system

This chapter will motivate and define maintenance deltas. We will assume the
preconditions to transformational maintenance: the existence of a specification, a
(partial) implementation of an artifact, a captured design history, and some new, but
informal requirement desired for the existing artifact.

152 CHAPTER 6. MAINTENANCE DELTAS

6.1 Using Deltas to Speed
the Artifact Maintenance Process

Assume we have an implementation of a specification G:

fa= IMPLEMENT(G)

and somehow managed to formulate a desired change as a formal specification delta,
8. The effect we desire from maintenance, for some specification combining operation
EB9, is:

fa!J'Jr;;ti = IMPLEMENT(G EB9 8)

We argued earlier that running IMPLEMENT transformationally is expensive; we
wish to avoid a computation of similar complexity.

Following an analogy to differential calculus, we would hope to find some in
cremental computation to allow use to perform this computation cheaply, assuming
that the change is small. Such an approach is explored in formal differentiation
[Pai81] in which complex computations are incrementally adjusted by applying some
reduced-strength operation to a base computed value and a delta. Described in terms
relevant to our problem, the base computed value is fa = IMPLEMENT(G). A
reduced-strength operation (INTEGRATE) is found by considering the effects of the
delta-combining operation (E99), combining the delta 8 with the original argument G,
on the complex computation (IMPLEMENT). Using this approach we could ideally
construct a function INTEGRATE : .6. x :F---+ :F so that:

faffir;;ti = INTEGRATE(8, fa)

with cost(IMPLEMENT)>> cost(INTEGRATE). We call such a revision operation
a delta integration procedure, because it knows how to install a delta into an existing
implementation.

Given that a transformation system actually has multiple inputs, and that each
input to the transformation system affects the final implementation and design history
in a different fashion, there must be different delta integration procedures for each
input, much as with partial differentials. Given TRANSFORM(x,y,z), if input y
changes by a small value .6.y, then

TRANSFORM(x,y + .6.y,z) = INTEGRATEy(.6.y, TRANSFORM(x,y,z))

assuming some analog of continuity of TRANSFORM in the region near y. For
each different input x, y, or z, we need a different delta integration procedure
INTEGRATEx, INTEGRATEy, or INTEGRATEz.

6.2. CLASSIFICATION OF CHANGE: TYPES OF DELTAS 153

Consequently, we need to identify the types of change that are possible in a
transformational context, and must provide different integration procedures for each
type of delta.

If we were able to simply integrate a delta directly into an implementation,
without the aid of any other information, then we would have an implementation
maintenance system. This is difficult to do in practice, because one must regenerate
explanations of the roles of the parts of the program, just as in conventional main
tenance. Rather than regenerating this design information, we insist that we simply
not lose it. Now we must also integrate the delta into the design information 1) as
well as the implementation, so that we are ready to handle a successor delta:

INTEGRATEtype : 6type x g x (:F x V) -+ g x (:F x V)

Just as constructing a design is most of the work involved in obtaining an
implementation, so integration of deltas into a design is most of the work involved in
revision. Consequently, we call a system that accomplishes this effect for many kinds
of deltas a Design Maintenance System.

Each integration procedure can conceptually be considered independently of
the others. In a practical Design Maintenance System, a number of delta integration
procedures will need to be run to effect a change affecting several aspects. Those
procedures should be combined so as to minimize duplication of effort. We will find
that most of the procedures consist of identifying reusable portions of the design in
formation, stripping away the reusless portion, followed by design repair (replacing
the missing design information). The design repair can be delayed until all the inte
gration procedures have had their chance to strip away reuseless design information.
Understanding this proviso, we will show the integration procedures separately.

6.2 Classification of change: Types of Deltas

Traditional maintenance classifies change types into perfective, adaptive and
corrective [1880, Wed85]. Perfective changes are those that improve a software system
somehow without affecting its existing capabilities, i.e., decreasing resource utilization
costs, etc. Adaptive changes are those that allow the software to operate in a newly
changed context. Corrective changes include bug fixes.

These classifications of change are unfortunately not only informal, but they
only label the work or the end product; as classifications, they provide very little help
in actually accomplishing the desired change.

154 CHAPTER 6. 1\!IAINTENANCE DELTAS

A viewpoint based on a model of a formal transformation system classifies
changes in terms of entities involved in the transformation system, and can do so
in a formal fashion 1 . Our approach to discovering change classifications is to inspect
all the inputs, outputs and structures of the transformation system and to propose a
change type for each. The value in this approach is that for each delta type, there is
some hope of producing a transformation system specific procedure for handling that
type of delta by inspecting the transformation system itself, rather like a generaliza
tion of the notion of finite differencing [Pai81, Pai86].

An earlier work [ABFP86] classified transformational changes into performance
change, environmental change (as a subset of performance change), functional change,
and design error correction, and provided informal methods for managing change on
each of these categories. This work follows in the same vein, but classifies the the
change types more carefully, and provides concrete procedures for managing change.

Obviously, the more detailed the transformation system model, the more delta
types we can propose. From the point of view of what programs can be produced
by the transformation system, proposing a delta type for each possible input is suf
ficient to cover all possible types of deltas. Allowing changes to the other aspects
of the transformation system can at best provide additional convenience, but not
greater theoretical power. Similarly, for any particular input, one can further classify
the input values, leading to even more detailed delta characterizations; an example
of this can be found in Section 9.4. 7. We have chosen a set that we think consti
tute the major classifications, recognizing that further work may identify interesting
subclassifications.

1 Balzer [Bal85b] classifies structural changes to domain models into one of 15 types. While the
changes are formal, they are only to one aspect of software construction, and so his classification is
much too limited for our purposes.

6.2. CLASSIFICATION OF CHANGE: TYPES OF DELTAS 155

We observe that a transformation system (Figure 4.1) has the following inputs:

• G, the entire performance specification, usually composed of the parts:

Jo, the initial program satisfying Gimplicit

Grest, composed of

* pure predicate specifications 9i

* performance bound specifications via values v1,j

• P, the set of available performance value observation functions Pi, indirectly
defining V;, the set of performance values

• Definitions of the various performance predicates Gj (usually in terms of some
b)

• C = {Cj}, the approximate set of Gj-preserving transforms, especially Chase for
those transformation systems with fixed Phase

• M = { mk}, the available methods for navigating the design space

• The software engineer

A change to any of these inputs gives rise to new potential implementations.
Consequently we define a delta type for each input as shown in Figure 6.2. Any
object representing such a change we call a maintenance delta.

It is tempting to collectively call these changes "specification deltas", but we
do not, because not all of the deltas apply to the specification; some apply to the
implementation knowledge that the transformation system possesses that is indepen
dent of the specification. Furthermore, not all the changes to the specification G are
actually made directly to it; some are made to the base specification represented by
the program J0 , and so affect the total specification G only indirectly. We use the
term specification delta to refer to any of the specification changing operations 6.G,
6.v, 6'.1. We use the term support delta to refer to any of operations affecting the
supporting databases used by the transformation system: 6.c, 6..9, 6'.p, 6.ti 6.v, 6.M,
6..£.

In the balance of this section, we describe each type of delta. We give explicit
definitions for each type of delta in Section 6.4.

Since we do not know how to represent changes to software engineers, l':::i.c, we
ignore them in this thesis. We expect this problem to remain unsolved for a very long
time.

Performance deltas (!:::i.G) to G are the essential specification changes. Such
changes affect the performance aspects of the desired program. They are generated

156 CHAPTER 6. MAINTENANCE DELTAS

• Specification deltas:

6c : Change of performance (modification of specification G)

6..v : Change of performance bound (modifications to performance bounds v;)

6 f : Change of functionality (modifications of Jo)

e Support deltas:

6c : Change of technology (modification of C;)

69 : Change of performance predicate library

6..p : Change of performance measurement functions

6;o- : Change of orderings C::i

6v : Change of range of performance values

6..Jvt : Change of method library

6..t: : Change of software engineer

Figure 6.2: Types of delta induced by structure of transformation model

when a customer compares an implementation against reality, and discovers points of
difference between what was specified and the current requirements. An example of
a performance delta is a change of desired implementation language from GFoRTRAN

to GPROLOG·

Performance bound deltas (D.v) are a special kind of performance deltas. These
arise when some performance bound is either too loose, so the final artifact is unsuited
for its ultimate application, or too tight, and the desired artifact cannot be built at a
reasonable cost. A typical performance bound delta might be to change a Pcomplexity

performance bound from 0 (n 2) to 0 (n). Many times, revising one performance
bound specification will require adjusting another performance bound specification;
as an example, a tighter time bound usually requires a looser space bound.

So-called functional deltas (6 f) occur because of the practice of providing mixed
specifications containing a base specification Jo to the transformation system instead
of Gentire· Such changes are generated whenever the expected performance Pbase (Jo) of
the initial "specification" Jo does not meet the requirements. The term "functional"
delta comes from the common practice of defining Ginvariant in terms of Pmeaning, but
is not limited to this case. An example functional change would be modifying the
functional program Jo sin 2 (x - 3) to be sin(x + 1). The evolution transforms
of Johnson [JF90, Fea89a] are examples of functional deltas; initial specifications
(10 's) in the form of GIST programs are modified by applying a series of built-in

6.2. CLASSIFICATION OF CHANGE: TYPES OF DELTAS 157

non-property-preserving transforms (.6. /s) to convert the initial fa into functional
specifications believed to better suited. In practical systems, we would expect the
bulk of changes made to be functional changes; performance tuning usually comes
after achieved functionality.

Technology deltas (.6.c) occur when software engineers realize that a desired
transform does not exist in the library of property-preserving transforms available
to the transformation system, or when an existing one is discovered to be incor
rect. An example of such a delta is the change from an incorrect LISP trans
form (cons ?x t) ===?-(list ?x) to the correct version (cons ?x nil)===?- (list ?x).
Incompleteness of the library is expected because of the impracticality of engineer
ing a complete transform library in advance of use of the system (Bal85a, CHT81].
Errors in existing transforms will occur simply because human designers are falli
ble; many transformation systems (DRACO, REFINE, TI) allow domain engineers
to install and use transforms without verification of correctness. Errors in transforms
can even be introduced at implementation time, if one allows incremental domain
engineering as in the CIP system [BEH+87, BMPP89]; a designer can define and use
transforms whose validity he will verify later, and a transform must be retracted when
its validation later fails to go through. Even correct transforms can be invalidated
if the problem domain to which they apply changes, as is expected in the domain
engineering process (Ara88]. Rarely-used property-preserving transforms might be
retracted if the transform library gets too large to manage conveniently; this is a
tradeoff between power of transforms and the branching factor of the design space.
We consequently expect that technology changes will be necessary both during pro
gram construction and during maintenance. However, we expect that the rate at
which technology changes are generated will drop as the transform library matures
and becomes validated; all users of the transformation system will benefit from such
changes.

Method deltas (.6.M) capture knowledge of new implementation techniques, or
fix errors in existing techniques. An error in the action amergesort (Section 4.2.5),
for example, a complexity goal of O(n2) performance in locale lv4 , would require a
method delta to correct it. Such changes take place for the same kind of reasons that
technology changes occur. Some methods will be applicable over a broad range of
programs, but, unlike technology changes, our expectation is that for each program
implemented, some new methods will be generated, mostly due to our inability to
encode effective heuristics for every possible program (Bal85a], and because of limits
on the completeness of the control mechanisms. Such program-specific methods we
do not expect to augment the general utility of the transformation system, and so we
would expect them to be stored with each individual design history 2 .

2This implies that the transformation system has two sets of method inputs, one for generically
useful methods, and the other for methods specific to the problem at hand. We ignore this distinction
in this thesis.

158 CHAPTER 6. MAINTENANCE DELTAS

Performance predicate library deltas (Li9) change the vocabulary available to the
transformation system to express performance specifications and/ or postconditions of
methods. Such changes occur when new performance predicates are added, or existing
ones are deleted due to lack of space or utility, or revised due to error. Such deltas
would occur when an incorrectly implemented predicate defining Gfits-in-one-page was
fixed.

Deltas relating to performance measurement functions !J,.p, changing a subsump
tion ordering over a set of performance values Li~, or to the range of performance
values Liv are possible but expected to be rare; such changes indicate an error on
the part of the domain analyst defining these entities, or incorrect implementation of
these in the transformation system proper. We do not address them further in this
thesis, but we think that the techniques outlined for the other deltas can be adapted
to handle them.

There is yet another class of changes which are beyond the scope of this thesis:
changes to process performance predicates, or constraints over resources consumed
by the transformation system while constructing an artifact. First, our transforma
tion model does not account for process costs or predicates; augmenting it to do so
would be a necessary first step. Secondly, there is a conceptual problem with process
predicates with respect to maintenance: given that an existing implementation has
achieved some process predicate, what does it mean to change that process predicate?
The resources have already been consumed. What we currently expect is that a new
process predicate will be supplied for each installed change.

6.3 What is a meaningful unit of change?

A unit of change is one for which the changed entity is well-defined, and for
which it is worth investing significant energy to install.

We distinguish between micro-changes and true change. A micro-change mod
ifies a specification, leaving it in a possibly ill-formed state. A true change to a
specification must leave the specification well-formed, and must achieve some useful
goal desired by the designer. Micro-changes occur as a consequence of using tools that
manipulate the representation for a specification without regard to whether the ma
nipulation leaves the specification in a consistent state with respect to the semantics
of the specification, or a useful state from the point of the designer. No effort should
be expended attempting to handle a change until a true change has been made; the
micro-changes installed by the tools must be composed3 into a unit change.

3 This is similar to to the problem of composing a property-preserving transform from a bundle of
non-property-preserving transforms. The difference here is that the composition of the deltas need

6.3. WHAT IS A MEANINGFUL UNIT OF CHANGE? 159

Consider using a text editor to modify the textual representation of a PASCAL
program. Adding an additional test to a subroutine will likely require several editor
commands to accomplish the desired effect; the editor commands would effect the
micro changes. It is important that any system for installing changes do so only
when a complete set of such micro-changes has been made; otherwise, considerable
effort may be wasted. There is no point in compiling the program until the test
statement is completely coded and the declarations which support it are adjusted
properly.

An example from [GKS86] shows that several unit changes made to a speci
fication may work together to accomplish a desired effect. Consider a sequence of
changes to a particular BNF production rule:

1. x ::= y z
2. x ::= z
3. x ::= z y

In 1., we see the original specification for a particular rule. In 2., the designer
has deleted the first component of the right hand side (this is a valid change from
the point of consistency of the "spec"). In 3., the designer inserts a new second
component. The desired result took two steps for the designer to state, neither of
which was a micro-change. Clearly, installing change immediately after the first step
is complete is inappropriate.

Secondly, there is potential ambiguity introduced: is the Y introduced at step 3.
the same Y deleted in step 1.? Answering YES or N 0 leads to two different specified
changes. We see that the individual steps must compose unambiguously or the user
must specify which is intended when more than one composition is possible.

We avoid this problem by requiring specification of the entire change desired as a
single entity. Any practical system performing incremental evolution must handle the
composition of the micro-changes made to obtain the change specification we require
for our approach. It is likely that the interface to the software engineer specifying
a change will need to be made on a database-like atomic transaction basis; this is
probably necessary anyway in any environment where a number of software engineers
can simultaneously be working on a project. Johnson's system for applying evolution
transforms [JF90] provides this effect by offering the specifier a menu of specification
changing operations which leave the specification well-formed; collection of a unit
change is handled by requiring the specifier to explicitly invoke the transformation
system on the specification, which effectively signals the end of a transaction.

not be a property-preserving transform in any sense of the word; simply that the composition be
interesting.

160 CHAPTER 6. MAINTENANCE DELTAS

In practice, a unit change will be a number of deltas of each type assembled to
form a composite 6 to be applied:

There are some obvious consistency requirements for a composite delta. The
foremost is simply that no 8; and Dj in the composite delta should conflict; it is
not meaningful for a composite delta to simultaneously delete a transform from the
transform library, and also add a method that applies that transform. We note that
independent delta types do not necessarily imply independence of deltas; a technol
ogy delta i6.c may require method deltas 6.M for those methods using the affected
transforms. Producing a detailed model of delta consistency is beyond the scope of
this thesis.

The composite 8 is given to a composite INTEGRATE procedure to be inte
grated into the design, the implementation, and the technology support, as shown in
Figure 6.3. The composite INTEGRATE procedure must decompose the composite
6 into its constituent parts, shunt each part 8type to an appropriate INTEGRATEtypei
and combine all the results. A more detailed overview of the process of break
ing up the composite delta and shunting it to appropriate procedures was shown in
Chapter 1.

6.4 Form of Deltas

Delta types only allow us to classify. To process deltas, we need concrete def
initions of their form. We give domain definitions for each type of delta as a set of
values, as well as the effect of "applying" individual deltas. Such definitions provides
us with a means for representing changes as formal entities, and allowing tools to
inspect the deltas for interactions with the existing specifications and artifacts.

In general, since changes to an object can be captured as a function from ob
jects to objects, an instance of each delta type is a parameter to a revision function
appropriate to that kind of delta:

REVISEtype : 6.type X object --+ object

Given a particular delta instance 8 of type 6.type(o) and object instance w, we define

8(w) := REVISEtype(o)(8, w)

as a convenient notation.

6.4. FORM OF DELTAS

Compos ite 8

program

Jo
Previous

Specificatio
Pr

Perfo
Spe

Previou
Risto

:vious C
rmance

C Grest

s Design
ry D

Method
M1ib

Library
rary

Library Transform
C1ib rary

Library Predicate
G1ib rary

e Measures Performanc
P1ibr ary

Performan

Viibr

ce Values
ary

.....

.....

~

.....

n Relations Subsumptio

bibr ary

81
oa ov

' ' •

\

8c op
09 ov

' ' . '

Integrate
Delta

b'c.

Software
Engineer

OM

'

Figure 6.3: Model of transformational change

.....

.....

--..

--..

~

Revised
Software

fa1

10

G~est

D'

Glibrary

P{ibrary

v~brary

.,_,
-library

161

162 CHAPTER 6. MAINTENANCE DELTAS

Our current approach can be characterized as defining a fixed set of specialized
definitions for certain interesting subtypes of each change type. The subtypes are, like
the types themselves, determined by specialized techniques for handling the subclass.
An unexplored possibility is to consider using transformations to represent changes
to all input entities of the transformation system, as we have with method bodies in
the following.

6.4.1 Performance Deltas 6.c

For performance deltas, any representation for l:ia requires that we place some
structure on G entire. Fortunately, a natural structure suggests itself due to the usually
conjunctive nature of G entire = G1 /\ G2 /\ · · · Gn: represent a conjunctive predicate
specification as a set of individual predicates G;. ~G then becomes a means of
mapping sets (of predicates) to sets (of predicates). In practice, we expect that
specific predicates will be added, deleted, or replaced; replacement can be handled
by deletion followed by addition. We define:

!:la = powerset(Q) x powerset(Q)

For each 8a = (Ge, Gffi) E l:ia

8a(G) = (G - Ge) U Gffi

Here, - and U stand for set difference and set union respectively.

6.4.2 Performance Bound Deltas 6.v

Performance bound deltas, being a special kind of performance delta, have a
more specialized form. We do not need to handle deleted performance bound goals;
those can be handled by !:la. We only need to worry about added or revised perfor
mance bound deltas. We need to capture which performance goal i is being changed,
and the replacement value Vi,j:

6.4. FORM OF DELTAS 163

.6.v = powerset(Vcurrent) X powerset(Vcurrent)

where Vcurrent = { Vi,j I Pi E p /\ Vi,j EV;}. For each Dv = (VEB, V6.) E .6.v:

with G 8 being performance goals to delete, Gffi being new performance goals, and
G6 being revised performance goals:

Ge = Uv,,J EV£> { Pi(!) C::: Vi,x I Pi(!) C::: Vi,x E G}
Gffi - Uvi,; EV ill {Pi(!) C::: Vi,j}
G[::,. = Uvi,jEV£>. {pi(!) C::: V;,j}

Performance bound deltas that revise provide more information than perfor
mance deltas. This information is the relation between the revised performance bound
and the old performance bound, which is one of the following:

8 Vi,revised C::: Vi, original

8 Vi,original C:::i Vi,revised

8 Vi,revised C::: Vi,original /\ Vi,original C:::i Vi,revised

8 Vi,revised 't. Vi,original /\ Vi,original 'ii Vi,revised

This additional information can make the integration procedure for performance
bound deltas potentially more efficient than that for performance deltas.

6.4.3 Functional Deltas 6.t

Functional deltas .6. 1 are simply maps from a specified Jo to a revised f~; these
turn out to be precisely our definition of transformation, including a locater value. We
thus assume that whatever form the transformation system uses for transformations
will be used for .6. / s.

61 = { l J t ET,£ E £}

For each 81 E 61:

Such deltas may be either property-preserving transforms or non-property
preserving transforms with respect to Ginvariant, although the interesting ones are

164 CHAPTER 6. MAINTENANCE DELTAS

non-property-preserving transforms. We allow property-preserving transforms for
8/s only for generality. In normal practice, one does not expect to see specification
changes which have no effect; a property-preserving transform 81 is probably an error
if produced by a system analyst4 .

Because of limitations on what transforms are representable in a particular
system (simple tree-transforms don't handle global changes well) it is possible that
the form used for deltas may not be able to express a desired change concisely. This is
merely a shortcoming of the chosen representation for programs and transforms, not
our methods. We shall assume that a larger-grain transform that includes a desired
precise change is always possible to construct; in extreme cases of representational
weakness, we can always fall back on total state transforms5 like fo ===} f~.

6.4.4 Method Deltas ~M

Method deltas 6M can affect an existing library of methods M in a number of
ways:

• add new methods

• delete existing methods

• revise existing method postconditions

• revise existing method procedure body

More detailed characterizations of method changes are possible due to their rich
internal structure (cf. discussion on TCL), such as changing parameter lists, etc., but
we shall model such changes using the above list6 , as the utility of finer grain forms
is currently unclear.

4Johnson [JF90, p. 241] seems to think differently; his "evolution transforms" include "reor
ganizing" transforms, whose purpose is simply to shuffle the functional specification around, and
"data-flow modifying" transforms which apparently insert buffers between agents. To us, these ap
pear to be early implementation decisions. We can see some utility for functional deltas produced
by a software engineer.

5 An interesting alternative representation is to allow 6.1 to be sets of transformations; then
assuming that the transforms can collectively effect any set of local changes, any global change can
be represented.

6 Parameter list modification can be modeled by method replacement. Revising a method is a
special case of revising its postcondition and revising its procedure body.

6.4. FORM OF DELTAS 165

We define:

~M = powerset(M) x powerset(I) x powerset(I x ~G) x powerset(I x ~J)

with I being the set of possible identifiers. Each

has the the following parts:

• Mffi = { (i, a, G)} is a set of methods to be added.

• ~Me = { i} is a set of identifiers of methods to be deleted.

• ~M postcondition = { (i, 8G)} is a set of method post conditions to be revised.

• ~M action = { (i, 8 f)} is a set of method actions to be revised.

Since a postcondition is a performance predicate, we represent a change to a
particular postcondition as a performance delta 8G or its specialization 8v; each such
performance delta must be associated with a method identifier to indicate which
method postcondition is to be changed. ~Mpostcondition is then a set of pairs (i, 8a) of
method identifiers and performance deltas.

Method bodies can be treated as a kind of program, so a change to the proce
dure content of a method can be captured by a transformation7 81. Similarly, each
such delta must be paired with an identifier indicating to which method in the library
that it applies. ~Maction is a set of pairs (i, 81) of method identifiers and function
ality deltas. For this thesis, we shall ignore the possibility that method bodies as
programs require different representations than the objects the transformation sys
tem is intended to manipulate, with the consequent problem that action transforms
might require different representations than are normally used by the transformation
system.

7This does not mean that other kinds of deltas are necessarily transformations.

166

as

with

CHAPTER 6. MAINTENANCE DELTAS

We define application of method deltas:

REVISEM : 6.M x powerset(M) -+ powerset(M)

8M(J'vf) = (Jvl - Me) U A1m U l'vfepostcondition U Mmaction U Mffiboth

Mffipostcondition

Mffiaction

{ (i, a, G) I i E 6.Me} U

{ (i,a,G) [(i,81) E 6.Maction} U
{ (i, a, G) I (i, 8a) E 6.Mpostcondition}

{ (i, a, Oc(G)) f (i, Oc) E 6.Mpostcondition /\

(i, 81) r/. 6.Maction /\

(i, a, G) EM}

{ (i, 81(a), G) f (i, 81) E 6.Maction /\

(i, 8a) r/. 6.Mpostcondition /\

(i, a, G) EM}

{(i,81(a),8a(G)) I (i,8a) E 6.Mpostcondition /\

(i,81) E 6.Maction /\

(i, a, G) EM}

While this looks formidable, all it really says is that the set of methods is
updated by deleting unwanted methods, adding new methods, and revising methods
that need to be changed.

We limit changes to method bodies to transforms rather than allowing appli
cation of methods, to allow us some hope of eventually analyzing the effect of the
changes.

The richness of the delta for methods stems from the need to save work in the
maintenance process; we can use the additional detail to avoid re-executing parts of
the method later.

6.4.5 Technology Deltas 6c

Technology deltas 6.c are changes to the sets of available property-preserving
tr ans forms:

6.c = powerset('I! x T) x powerset('I! x T)

where 'If = { p I p E P1ibrary } U { g I g E G1ibrary } is a set of property names for the
sets of property-preserving transforms.

6.5. ACQUIRIIVG DELTAS 167

Remembering that transforms actually available to the transformation system
are packaged as sets of approximations of property-preserving sets of transforms, i.e.,

8c(C) = { c; / Ci E C, c: = C - { t / (i, t) E t:..s} U { t I (i, t) E t:..E1d}

Notice that several sets of property-preserving transforms may be updated at once.

As a consistency requirement, technology deltas are assumed to be presented
in advance, or coupled with, method deltas that change the set of transforms used
(APPLY'd) by a method.

6.4.6 Form of other Deltas

Performance library deltas £:..9, performance measurement deltas £:..p,
subsumption-ordering deltas t:..!:::: and performance range deltas t:..v are all similar in
structure: a list of identifiers for those which are being deleted, and (identifier, value)
pairs for those being revised. The value portion of £:..9 and t:..p consist of functions
that can be applied to states to extract qualities (booleans and performance values,
respectively). For t:..>-i value is the replacement boolean function comparing two
values.

6.5 Acquiring Deltas

We do not intend to solve the problem of acquiring particular deltas for a
given program; for this work, simple possession of a desired set of deltas is suffi
cient. However, we outline some methods for obtaining the desired changes for the
sake of completeness.

One general requirement is shared by all of the delta collectors: the ability to
inspect the aspect of the transformation system affected by the delta type. In the
case of functionality deltas, inspection of the supplied value fa by conventional pretty
printing techniques is well understood. For libraries of methods and transforms, some
means for selecting and displaying the objects of interest needs to be provided.

Acquiring technology changes £:..c are relatively straightforward; a tool for defin
ing new transforms to add to the transformation library, as well as designating the

168 CHAPTER 6. MAINTENANCE DELTAS

set of disallowed transformations is required. The essential parts of such a tool must
have been present when the transformation system was constructed. The CIP sys
tem [BEH+87] uses the transformation system itself to construct new transforms, to
ensure that the constructed transforms are property-preserving transforms.

Since specifiers may wish to make arbitrary modifications 6. 1 to functional
specifications, some means of directly entering non-property-preserving transforms
is needed; portions of the same mechanism which allows definition of new transforms
can likely be pressed into service for this. Changes to functionality could also be
captured by use of a program editor, a special tool to allow a designer to edit the
representation of a specified program f 0 . Structure editors for programs could pro
vide a convenient basis [Rep84]. Upon completion of an editing session, the editor
would compose the individual edits to obtain a specific o1. The ARIES system [JF90]
provides a different approach: a designer selects "evolution transforms" from a set
of those found to be generically useful in the past, and selects bindings by pointing
with a mouse at a graphic display of the program. The selection process occurs either
by pointing at a menu item, or by specifying some desired effect on the program,
such as "promoting a type declaration" to encompass a larger type using a prede
fined type lattice. Even for ARIES, it seems clear that a way of defining deltas not
present in the set must also exist. A poor third approach, standard in conventional
software engineering environments, is to allow arbitrary text editing of a linear text
representation of a functional specification, and to generate a functionality delta8 by
comparing the resulting f~ with the original f 0 .

An interesting possibility is the generation of functional deltas that enable
method application at some later stage of the transformation process. The idea
is that at some point during transformational implementation, a particular method
achieving some interesting performance result (via some available set of transforms)
may not quite apply. The failing part of the method postcondition may be satisfi
able if the initial specification is changed appropriately. This obviously will generate
maintenance deltas. This is reminiscent of goal regression [Wal 77], for which tools
are necessary. We shall say a little more in Chapter 7.

A difficult open problem is that of generating deltas at a abstraction level con
sistent with the specifications given to the transformation system. Observation of
failures at the level of the running program does not necessarily translate easily into
the abstractions the specify the program.

8 The transformation replay scheme used in [Gol89], and conventional software development
paradigms only allow such edits; no delta is ever generated.

6.6. SUMMARY. 169

6.6 Summary

This chapter has provided:

• A means for defining a complete set of maintenance deltas based on the possible
inputs of a transformation system

• Motivated the real utility of such maintenance deltas in terms of delta-type
specific integration procedures for integrating the delta into an existing imple
mentation

• A specific list of maintenance deltas defined by our model of transformational
implementation

• Defined forms for each maintenance delta type

• Considered mechanisms for acquiring such maintenance deltas

We are now ready to consider delta-specific integration methods.

Chapter 7

Integrating Maintenance Deltas
into Derivation Histories

Chapter summary. A revised artifact can often be efficiently constructed by
reusing parts of a derivation history from an existing artifact, and integrating
a formal delta. This chapter provides procedures for technology and functional
delta integration based on commutativity in the design space. A number of
arguments for the presence of significant commutativity are considered.

An implementation is found by a difficult search of the design space for a path
leading from fo to some implementation fa. Given a maintenance delta, and a desire
for a new implementation fa1 that takes that delta into account, we could search
the design space again, but that is expensive. If the change is relatively small, the
derivation history for fa may not be far from the correct one. We hope to reuse
significant portions of the derivation history, avoiding much of the search involved in
a pure reimplementation.

Reuse of the derivation history implies that we can somehow start the transfor
mation system up after applying the transformations contained in the reusable deriva
tion history. The transformation system must continue as though it had generated
those transformations itself, adding new transformations to complete an implemen
tation and/ or backtracking to repair the partial derivation history it has as needed.
While we have not discussed this, changing a transformation system to continue in
this fashion is trivial enough so we will simply assume this ability.

170

171

Reuse of the derivation history implies reuse of the individual transformations.
We can do this if we can somehow validate the effect of individual transformations
with respect to the specification we are trying to implement. Such validation is only
possible if we possess the original specification, the revised specification, some notion
of their difference, and the design history, to tell us the role each transformation
played in achieving the original result. We shall pursue this approach in Chapter 8,
but we can get considerable mileage out of a first approximation:

Assume1 unless it can be easily shown otherwise1 that every transformation in
the original derivation history will serve a useful purpose in a new one1 and attempt
to use it again.

This approximation is effective because of scale-induced commutativity in the
design space; we expect that maintenance deltas will generally only have a small
effect on our desired artifact. Most replay schemes (including ours) [MB87] make
this assumption, and then use various strategies to clean up errors induced by the
assumption.

A particularly simple scheme is naive replay. For a functional delta o 1 E ti fl
naive replay sequentially tries to apply the transformations t] = H[i] from the old
derivation history H, in order of application i = l.. length (H), to the revised specifi
cation fri = 81(10). Successful application causes t] to be retained; failed application
causes that transformation to be dropped. Such a scheme has the disadvantage of
blindly trying transformations without considering the effect of the change. We pro
vide an analogy to show the flaw: naive replay is like hammering a nail into wood
block coordinates (5, 12) to get a first implementation, deciding, next time, to move
the nail to (6, 9), and then trying to hammer again at wood-block coordinates (5, 12)
simply because that worked last time. Our heart is in the right place, but the hammer
is not. We did not take into account the effect of the change on the locaters.

We have a different approach to derivation history reuse, which integrates the
maintenance delta. A key insight is based on the observation of commutative paths
in the design space; often1 the derivation history can be locally rearranged without
affecting the end result. It is important to notice that such local rearrangements
may retain the transforms1 but change the locaters, and still achieve the exact same
result. This allows us the theoretical potential to rearrange a derivation history for
our convenience into two parts: a part which we want to save, and a part which
we do not know how to save. The rearrangement is determined by the maintenance
delta. Reuse then consists of performing this rearrangement, and simply throwing
away the part we do not know how to save. We replay the saved portion Hsaved,

constructing an end state Ssaved = ITHsaved(fri) for the saved portion. Finally, we turn
the transformation system back on to regenerate the tail of the derivation history from
Ssaved· In fact, we must allow the transformation system to attempt implementation

172 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

by extending and/or revising the "reusable" part of the derivation history; so "reuse"
really consists of purging the obviously unusable portions of the derivation history.

Delta Integration then consists of the logical steps:

1. Adjustment of specification or support technology according to the delta

2. Derivation history rearrangement consistent with the delta

3. Truncation of rearranged derivation history

4. Direct reuse of truncated derivation history

5. Completion of implementation from the end point of derivation history.

In practice, these logical steps may be interwoven. The directly reused part has many
of the original transforms, with different locaters; we are reusing something more than
just the transforms, but something less than the actual transformations1 .

The challenge:

• How do we know which transforms can be preserved?

• How do we change the locaters on preserved transforms?

• How do we rearrange the history before truncating?

We can determine transformations that are problematic by inspecting their interac
tion with a given delta; the transformations that can be saved are the ones without
troublesome interactions. Rearranging consists of taking advantage of local commu
tativity in the design space to change the order in which transforms are applied;
this will often dictate how to change the locaters. In practice, it is more efficient to
truncate the derivation history during the rearrangement process.

Without the design history, it is difficult to detect interactions of most types
of maintenance delta with individual transformations. Consequently, this chapter is
mostly about integrating !:11. This is expected to be one of the more common types
of deltas used in practice; the ARIES system [JF90] for managing evolution trans
forms implicitly assumes that !:11 are the only interesting kinds of deltas, and most
current transformation systems cannot even express other types of deltas because
their performance goals are implicit. Furthermore, the basic techniques we use to
handle functional deltas will turn out to be very useful for managing the other types
of deltas. We will return to the other maintenance deltas in Chapter 8.

In this chapter, we provide methods for preserving portions of derivation history
in the face of functional deltas, a theoretical basis that justifies the method, and some
evidence that the method will work well in practice. A detailed example is provided
to illustrate the method.

1 Y. V. Srinivas (personal communication) has suggested that in a properly chosen topology, the
transformations are indeed preserved intact. This idea has not been pursued in detail.

7.1. DELTA INTEGRATION OVERVIEW FOR VARIOUS TYPES OF C'HANGEl 73

7 .1 Delta Integration Overview
for Various Types of Change

We first provide an overview of certain delta integration processes. We examine
the effect of the delta integration process on the design space, emphasizing the key role
commutativity plays (refer back to Figure 3. 7). For a related view of how maintenance
can take place in a conventional software construction process, see [ABFP86], in which
alternative paths through the design space are stressed, but commutativity does not
play a key role.

We consider this for the following types of delta:

• Performance: .6.a

• Technology: .6.c

• Functionality: f:.1

This order of presentation is chosen because each one has successively larger effects
on the shape of the design space. The other support deltas have an effect on the
design space similar to that of performance deltas, so we do not examine them here.

We will formalize .6.c-integration and ~rintegration in Sections 7.3 and 7.4.
Formalizing .6.a-integration must wait until Chapter 8 where we have access to design
goals, although it is conceptually the simplest.

7 .1.1 Effect of Performance Delta f::ic

We restrict our attention to performance deltas applied to Grest, as performance
deltas applied to Ginvariant are usually cast as functional deltas 81' which we will
discuss later.

Figure 7.1 shows a design space, and a particular implementation fa found
traversing a path from Jo of property-preserving transforms. Now, fa satisfies the
remainder of the performance predicate, Grest· In fact, there is a set of nodes in the
design space satisfying Grest, of which fa is only one; Steier [SA89, p. 106] makes
this same observation after examining 7 different algorithm syntheses. A delta 8a :
Grest -+ G~est results in a new performance goal Ginvariant /\ G~est, which picks out
another set of implementations in the same design space.

The revision procedure in this case can retain much of the design history (i.e.,
cf1 and c~2) if it discovers implementation fa1. Transformations c~3 and c~4 must

174 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

States satisfying
Grest

Possible implementation path

Original Implementation path

New implementation path

c4 reusable because it commutes with c3

Figure 7 .1: Changing performance: find new path in space

G~est

7.1. DELTA INTEGRATION OVERVIEW FOR VARIOUS TYPES OF CHANG El 75

be removed from the derivation history by virtue of being the last steps leading to
the now undesirable implementation f G· The derivation history can be repaired by
choosing c~5 and c~7 , leading to JG'.

The repair process must somehow choose these new transformations. We first
observe that transform c4 can be reapplied (assuming that it eventually leads to f G')
because J a = c~4 (c~3 (h)) = c~6 (c~5 (h)) implies that c~5 (h) is well defined; we loosely
say that transforms c3 and c4 commute. What is not reusable is the locater for c4 . c~7
must be generated fresh by the repair process; there is no hint of it in the derivation
history.

The interesting problems here are:

• which transformations must be dropped?

• which transformations can be preserved intact?

• which can be preserved with new locaters?

• what should be the value of the new locaters?

• when should new transformations be generated?

Making the desired change explicit (8a) will provide us with the needed answers. We
will take this up in detail later.

The support deltas other than Lie only affect the set of implementations pre
sumed desirable. At the level of the design space, they are indistinguishable from the
overall effect of Lia on Grest because they only change the the performance goal Grest,

so we do not consider them further.

7.1.2 Effect of ~c

In Figure 7.2, we see the effect of changing the set of property-preserving trans
forms Ci usable by the transformation system. The only changes one can make to
a set are to delete elements (as shown for c2), and to add new elements (c5 , c6).

Changing the set of property-preserving transforms changes the shape of the design
space. 0 ld possible paths (c~4 (c~3 (c~2 (f1)))) and implementations (! G) disappear; new
potential paths (c~6 (c~5 (c~7 (Ji)))) and implementations fa satisfying the performance
predicates appear.

Even though c2 is no longer legitimate, we can use commutativity in the original
design space with respect to c~3 to note the potential reusability of c3 . We do this by
noting that in the original design space, h = c~3 (c~2 (!1)) = c~8 (c~7 (!1)), which implies
that c~7 (11) is well defined even in the revised design space. Consequently we can

176 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

New technology
C5 :=

(cons ? x nil) ==::} (list ? x)

,,,.--- ... , '
I \

/-7
3

I I
I I

I ,'

', ,,,," __ _

Addition to design
space enabled by
new technology

/1
1

Deleted technology
C2 :=

(cons ? x t) ==::} (list ? x)

Possible implementation path

Original Implementation path

New implementation path

c3 reusable because it used to commute with c2

Figure 7.2: Changing technology: reject an old path or enable a new path

7.1. DELTA INTEGRATION OVERVIEW FOR 'lARIOUSTYPES OF CHANGE177

Jo= sin2(x - 3) f~ = sin(x + 1)

c3 = "implement 'squared' " C4 = "implement 'sin' "

~7

~
c4 reusable in new sp.ace because it commutes with c3 in old space

Figure 7.3: Changing functionality: preservation of path across design spaces

reuse transform c3 with the new locater £7 . The transformations c~5 and c~6 must be
generated as repairs, as there is no hint of them in the original derivation history.

7.1.3 Effect of D-1

Changing the functional part .of a specification (8 f) completely changes the
design space from that of Jo to J~, in which the new implementation must be found
(Figure 7.3). In one sense, the original path is entirely irrelevant, and so an entirely
new path must be constructed in the new space. In another sense, there should be a
close analog of the original path in the new space.

A pp lying 8 f changes G invariant to Gin variant. Now, any preservable transformation
cl must have the property c E Ca. . t /\ c E Ca' , for otherwise it would

invarian invariant
be a non-property-preserving transform for one of the two spaces and could not be

178 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

preserved. For delta types which do not change Ginvariant, this is trivially true, and
we therefore need not check this condition. With 81' we must· check this condition,
with one exception. If we know that Ginvariant(f) = f C==invariant Pinvariant(fo), as
it is with most transformation systems, and the transforms c used are all Pinvarianr

preserving, then the condition is always true and we can avoid the check. We call
such a legitimately applicable transform 8rpreservable.

Given a 81-preservable transformation, it can be tried in the new design space.
If it doesn't fail to apply, it is at least safe to use, even if it does not help with Grest·
(We remind the reader that a functional delta does not affect Crest)·

From the beginning of the new path (!~), the old transformations can be tried
sequentially. Each transformation which is applicable can still be legally applied (as
exemplified by ci1 and c~2); transformations which no longer apply (such as c~3) can
simply be dropped (naive replay). We depart from naive replay by using a more
sophisticated technique to save inapplicable transformations: if an undesirable trans
formation commutes with its successor, we can delay the undesirable one and attempt
to preserve the successor instead (note that c!4 (c~3 (f2)) =fa= c~6 (c!5 (/2)); this al
lows us to propose c!5 when c~3 fails to be preservable). Once again, commutativity
rescues us.

7.2 Basic Mechanisms for Rearranging
a Derivation History

In each case where we wish to reuse a derivation history, we find it valuable to
rearrange that derivation history, leaving the net effect alone, before trying to apply
it to the new problem. This rearrangement is usually necessitated by the presence
of a transformation which will be inappropriate in a solution to the new problem.
We have shown in Section 7.1 that "commutative" transformations play a key role in
such rearrangements.

7.2. REARRANGING A DERIVATION HISTORY 179

We categorize some basic mechanisms, based on commutativity, for exiling an
unwanted transformation as follows:

• Delay: delay application of a transformation until later

• Swap: exchange the order of two transformations in a derivation history (a
special case of Delay)

• Banish: push a transformation down to the end of a history (and delete it)

These mechanisms are used in virtually all of the delta integration procedures as
removing an inappropriate transformation is a fundamental need. We will discuss
each of these in turn before turning to specific delta integration procedures.

We assume that we have an existing derivation history H = [tf1 , .•. , t~], and
some predicate:

undesirableH: {l..k}-+ Boolean

where {1..k} C Nat. The predicate undesirable specifies which transformations in
H are no longer appropriate. (Its complement identifies transformations which are
not known to be undesirable, as opposed to known to be definitely reusable). This
predicate is the result of some analysis of a delta with respect to the derivation
history. A sample undesirable useful for pedagogical purposes designates the first
transformation as undesirable, and the rest as acceptable, i.e., undesirable(l) = true.
We will see some actual definitions of undesirable later.

7.2.1 Delaying an undesirable transformation

We delay undesirable transformations, by taking advantage of commutative
paths of the design space. The idea is to revise the original derivation history H
in such a way that the original program fiength(H) = IT(H)(ff) is not affected, but
application of the undesirable transformation is delayed until a later time, and is
replaced by a transformation which is not undesirable. In this section, we characterize
an idealistic DELAY procedure to help us accomplish this. It is difficult to construct
such a general DELAY procedure in practice for a number of reasons we will outline,
but we can construct interesting specializations using related procedures called SWAP
and DEFER. Thus DELAY provides theoretical motivation.

Our ultimate intention is to delay application of undesirable transformations
until all the acceptable transformations have been applied. We do this by re
peatedly replacing a subsequence Hreplaced ~ H of transformations by another se
quence Hreplacement with equivalent effect, but different initial transform Hreplacement [1]
(Figure 7.4).

180 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

H

Undesirable
H[j] = tf

Original
Subhistory

Hreplaced

I Hjront

.. :' U ndesirabl

New Subhistory

H replacement

with delayed i;

Hrest

Figure 7.4: Delaying undesirable transformation tf

H'

7.2. REARRANGING A DERIVATION HISTORY 181

We define the function

DELAY: S x 1i x (Nat-+ Boolean) x Nat-+ Boolean x 1i x (Nat-+ Boolean)

acting on a state s{f, a derivation history H, a predicate undesirable, and an index j
such that

DELAY(s{f, H, undesirableH,j) = (b, H', undesirableH')

where b is a boolean signifying success in delaying H[j], H' is a derivation history
in which application of H[j] has been delayed, and undesirableH' marks undesirable
transformations in the revised history.

After invocation of DELAY, the following will be true:

undesirable(j) =true/\ b =true ::::>

3Hjront, Hreplaced, Hrest, Hreplacement :
H[l..j - 1] + Hreplaced + Hrest = H
H[l..j - 1] + Hreplacement + Hrest = H'
Sj-l = II(H[l..j - l])(s:)
Sz = II(Hreplaced)(sj_i) = II(Hreplacement)(sj-1)
length(Hreplacement) ~ 2
undesirableH1[1..j -1] = undesirableH(l..j -1)
undesirableH1(J) =false
undesirableH'[j + length(Hreplacement) .. length(H')J =

undesirableH[j + length(Hreplaced) .. length(H)]

If b = false, then there is no way to delay H[j] further.

The DELAY operation allows us to push a single undesirable transformation
H[j] "deeper" into H', and temporarily allows us to avoid dealing with it. This
pushing process can technically make H[j] disappear as a recognizable entity, but
this is unimportant to us, as we are only interested in equivalence of effect. It is
entirely possible that H[j] and even H7 [j] are not present in Hreplacement (we will
discuss an example of this in Section 7.2.2).

We leave open precisely how undesirableH'[j + 1..j + length(Hreplacement)] is de
fined and/or computed. One could repeat the delta-versus-H analysis process to fill
it in, or one could very conservatively define undesirableH' to be i;ue over this en
tire interval, depending on the cost of the analysis. Irrespective of how Hreplacement is
defined1 at least one of its transformations must end being marked as undesirable if
we assume that the reason that a transformation is undesirable is its effect. DELAY
doesn't remove the problem; it merely delays it.

Because delaying a transformation does not depend on any property
preservation effects, DELAY may be applied to any transformation in the derivation
history, including the evolution transformations between E and f 0 •

182 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

A suitable Hreplacement may not exist, that is, it may not be possible to delay
H[j] any further in the history (i.e., b =false). We shall address this topic further
during the discussion on the BANISH procedure.

We note that the multiplicity of paths in the design space allows the DELAY
function to produce any of several possible results, of which we arbitrarily accept any
one. Future research is needed to determine how to choose a potential Hreplacement

that maximizes reusability.

Given DELAY and the predicate undesirable it is easy to construct a conceptual
procedure to rearrange a derivation history into reusable and reuseless parts:

PARTITION : S x 'H. x (Nat -7 Boolean) -7 'H. x 'H.

The procedure operates by scanning the derivation history from beginning to end,
and delays undesirable transformations until some undesirable but undelayable trans
formation is found. Code for such a procedure is shown in Figure 7.5. Since the
procedure only applies DELAY to the history, the resulting histories, concatenated,
are an equiyalent path to the original history. The procedure PARTITION cannot
fail; at worst it will produce an empty reusable history. Thus a DELAY procedure
provides us with a way to determine potentially reusable portions of a derivation
history. When attempting to reuse portions of a derivation history, one can run the
PARTITION procedure and discard the second (reuseless) result immediately; the
first result consists only of transformations that are not undesirable and are therefore
likely reusable. An obvious optimization is to simply drop the reuseless result.

In general it is difficult to construct a DELAY procedure to find a suitable
Hreplacement that satisfies the required properties; we consequently fall back on a num
ber of heuristics to make this computation easier.

One complication is that even when Hreplacement theoretically exists, it may not
be practical to compute; in the face of conditional transformations, one might need
a full theorem prover to determine path equality. A simple cure is for DELAY to
declare faiiure if the computational energy to compute the correct answer exceeds
some arbitrary bound; we call this heuristic a conservative cutoff Such cutoffs can
at worst prevent the PARTITION procedure from saving as much of the derivation
history as theoretically possible, but, like a conservative data fl.ow analysis [Kil73,
ASU86] it cannot make the result incorrect. We currently have no specific suggestions
as to how to choose the computation bound, although we are inclined to be generous
under the assumption that IMPLEMENT will likely have to generate roughly one
transformation for each one lost by PARTITION, and IMPLEMENT is expected to
be expensive.

7.2. REARRANGING A DERIVATION HISTORY

Procedure PARTITION(State: StartState, DerivationHistory:History,
Boolean Function: undesirable)

Returns DerivationHistory, DerivationHistory
Declare Integer: j, Boolean: SuccessFlag
RevisedHistory:=History
j:=l
While j< length(RevisedHistory) do
If undesirable(j) Then

(SuccessFlag,RevisedHistory, undesirable):=
Delay(Start State,RevisedHistory, undesirablej)

If •SuccessFlag Then
% RevisedHistoryLlJ cannot be delayed any further
Return (RevisedHistory[l. .j-1] ,rest (RevisedHistory,j))

Fi
Fi
j:=j+l % Continue scanning towards end

End While
% This place not normally reached.
Return (RevisedHistory,EmptyHistory)

End PARTITION

Figure 7.5: Procedure to partition derivation history using DELAY

183

184 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

A second complication is the expense involved in validating the DELAY output
requirement:

IT(Hreplaced)(sf) = II(Hreplacement)(sf)

A considerable portion of this cost can be traced to the involvement of the state value,
which, by assumption in the software construction environment, is likely to be bulky.
A simple heuristic to lower this cost is to compare the composed transformations
directly, avoiding use of the state, by validating:

IT(Hreplaced) = IT(Hreplacement)

A failure to prove equality can fall back on a state-based computation, or simply
apply conservative cutoff.

A third complication is the necessity to find candidate arbitrary chains of trans
formations Hreplacement. A related problem is justifying the transformations in a nearly
arbitrary Hreplacement; validating such transformations would be much simpler if the
transforms involved were already justified by the design history for H.

A heuristic for handling both the cost of validations involving state and the
difficulty of locating arbitrary equivalent chains is to specialize DELAY to simply
exchange two sequential transforms, called swapping transformations, which proves
to be relatively easy in practice.

7.2.2 Swapping two sequential Transformations

A DELAY procedure is difficult to implement in practice. However, SWAP, a
specialization of DELAY, can often be implemented relatively easily. This procedure
exchanges the order of two sequential transformations. We define the function

SWAP: S x Xx X-+ Boolean x Xx X

such that

with the constraint that

b = true ~ t~2 (tf1 (s)) = ti~ (t;~ (s)).

What SWAP does is to commute the transformations (b = true), possibly revising
the locaters, or complain that it cannot effect the exchange (b =false).

Given a SWAP procedure, a DELAYBYSWAP procedure can be implemented
for undesirable(j) by swapping transformations H[j] and H[j + 1] after checking that
undesirable(j + 1) =false. We will later discuss a procedure, BANISH, that handles
the case of undesirable (j + 1) = true.

7.2. REARRANGING A DERIVATION HISTORY 185

Implementing SWAP

We do not define precisely how SWAP works. The key problem is generating
the revised locaters and testing whether the resulting transforms meet the desired
results. While we model of SWAP as British Museum algorithm, in Appendix B,
which simply enumerates locaters to try, knowledge of the structure of the program
and transform representation should allow one to build more efficient procedures
that can decide this very quickly for most transformations (as well as computing the
revised locaters), or report "Unknown" for the rest. The "Unknown" answer can be
conservatively treated as "Transformations do not commute". We therefore think
that implementing SWAP with moderate efficiency is not difficult. Since SWAP is a
specialization of DELAY, remarks about heuristics to make the computations more
tractable equally apply.

There is a special case that is common enough so that every implementation
of SWAP is likely to handle it. When the locaters act as geometric constraints and
specify places that are "far apart", SWAP can report success and literally just copy
the locaters, as the "distance" between the binding sites of the transforms is enough
so the transformations have no effect on one another. We expect this case to be very
common because of scale: the size of the state for interesting programs is likely to
be large, and so most randomly chosen places are "far apart" 2 . We believe that
dependency networks [Fik75, Lon78] are a promising way to detect this case.

We consider tree transforms to demonstrate that it is possible to implement for
SWAP for some representations, and to provide some examples. For tree transfor
mations, locaters are geometric constraints. Two tree locaters specify places that are
far apart if the paths they select diverge, i.e., one path is not a prefix of the other.
Figure 7.6 shows two such tree transformations and their swapped equivalents. Note
that the locaters do not even change; truly the transformations swap in this case.
This is the case we expect to be common due to scale. For trees, divergent paths
for locaters ensures that the transformations commute, and so no dynamic test for
equivalence of result is needed.

When one tree transformation locater is the prefix of another, often a rather
messy but straightforward analysis of how subtrees (or leaves) are rearranged by each

2Here is an example of how the constraint aspect of locaters can be used to advantage. If one
interprets a tree path locater as "apply the transform in the only place it is valid in the selected
subtree", then one can actually abbreviate path locaters. This saves space in a derivation history.
Under the assumption of large states, most path locaters select "places" that are far apart. Since
two transformations may be swapped if their locaters are mutually inconsistent, this abbreviation
still allows most SWAPs to go thru as though the abbreviation had not occurred.

186 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

?a* (?b + ?c) ===?

?a* ?b +?a* ?c@(l)

?a+?b==?
?b + ?a@(2)

(1)

~

(2)

?a+ ?b ===?

?b + ?a@(2)

?a* (?b + ?c) ===?

?a* ?b +?a* ?c@(l)

Figure 7.6: Swapping order of two independent sequential transformations

7.2. REARRANGING A DERIVATION HISTORY

?a* (?b + ?c) :::::=}

?a* ?b +?a* ?c@(l)

? a + ? b :::::=}

?b +?a@()

~

? a + ? b :::::=}

?b +?a@()

~ ?a* (?b + ?c) :::::=}

?a* ?b +?a* ?c@(2)

Figure 7. 7: Swapping order of two overlapping sequential transformations

187

tree transform can provide most of the information needed to determine commutabil
ity and revised locaters. Figure 7. 7 shows how the leaves of one transform move the
entire effect of another.

Sometimes the applications of the transformations to be swapped overlap. When
this occurs, one may have to enumerate the places in one transform result as possible
points of application of the other transformation in order to generate candidate lo
caters. The resulting proposed transformations may actually need to be dynamically

composed to verify equality (check that tf1 o t~2 = t;~ o t~~). Figure 7.8 is such a case.

Johnson [JF90] provides another concrete example of an implementation of
SWAP, for a more complex representation for programs, a semantic network. He
determines if two evolution transforms (non-property-preserving transforms) affect
one another by considering which semantic links they affect. If t1 inspects only se
mantic links of type A and affects only links of type A', and t 2 inspects only links of

188 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

?a* (?b + ?c) ==:::}

?a* ?b +?a* ?c@(l) ~

?a+ ?b ==:::}

?b + ?a@(l)

?a+ ?b ==:::}

~ ?b + ?a@(l, 2)

~
?a* (?b + ?c) ==:::}

?a* ?b +?a* ?c@(l)

Figure 7.8: Swapping two transformations with considerable overlap

7.2. REARRANGING A DERIVATION HISTORY 189

type B and affects only links of type B', and An B' = 0 and B n A' = 0, then the
two transforms are independent. This type of shallow analysis is sufficient to decide if
two transformations trivially commute, because the indirect performance values are
determined only by the state, and not by the transforms or their order.

Deferring the application of a transformation

A generalization of SWAP allows the swapped transforms to also be changed.
We define:

DEFER: S x Xx X---+ Boolean x Xx X

such that

with the constraint that

We call x1 the deferred transformation, and x~ the promoted transformation. The
boolean signals whether x1 was successfully deferred. Either or both resulting trans
forms may be different than the originals. This generalization can be used when
delaying the application of a domain-specific transformation past a theory morphism
(see Section 3.1.7 for definitions of these), or vice-versa, as shown in Figure 7.9.3

One would expect that computing SWAP would generally be simpler than com
puting DEFER, because for SWAP the transforms are constant and need not be
recalculated. Since DEFER is more general than SWAP, we would prefer to use
it instead. These facts suggest that an implementation of DEFER would actually
try to perform a SWAP first, and failing that, would fall back on the more general
computation. With this in mind, we will use the term swap to refer to the action
DEFER.

We have implemented both SWAP and DEFER for conditional tree transfor
mations (as well as the examples shown in this thesis) by using subtree-tracing and
a simple theorem prover to validate equivalence of compositions.

3 Deferring an optimization past a refinement should always be relatively easy to do, because
such an optimization will always have a corresponding optimization in the lower domain, effectively
generated by applying the refinement to the optimizing transform itself. Deferring a refinement past
an optimization cannot always be done; the source domain may simply not have the vocabulary.
See the b.. I integration example for such a case.

190 CHAPTER 7. INTEGRATING DELTAS INTO DERH~4.TION HISTORIES

pop(push(?x, ?z))
===> ? z@(2)

Refine by:
push ==? cons
empty ==? nil

top==? car
pop ==? cdr

Refine by:
push ===> cons
empty ===> nil

top===> car
pop==? cdr

cdr(cons(?x, ?y))
===> ?x@(2)

Figure 7.9: Deferring a transformation

7.2. REARRANGING A DERIVATION HISTORY 191

Derivation History permutations

We define permutations of derivation histories to allow us to demonstrate equiv
alences of certain kinds of histories.

Given a derivation history H, we define a transposition of H to be those H' in
which a pair of transformations have been swapped, i.e.,

DEFINITION 7.1: transp(H). A relation 1i x 1i:

{ (H, H') I H' = H[l..j - l] + x1 + X2 + rest(H, j + 2) /\
j < length(H) - 1 /\
DEFER(H[j], H[j + 1]) = (true, x1, x 2)}

0

A permutation of Hbase is any member of the transitive closure of the transpo
sitions of Hbase.

DEFINITION 7. 2: permutation (H). Any member of the set of permutations,

HPERMS(Hbase) = { H' I (H, H') E transp*(Hbase)}

0

It should be obvious that every permutation H' of a derivation history Hbase leads to
exactly the same implementation, given the same initial state, i.e.,

TI(Hbase)(s{{) = IT(H')(s{{)

One typically applies DEFER to a pair of transformations H[j] and H[j + l]
when undesirable(j) =true, exchanging H[j] and H[j + 1] to produce a revised H'.
The marking function undesirableH' corresponding to H' must be changed to reflect
the new position of the exchanged transformations, i.e.,

{
undesirableH(j + 1) if i = j

undesirableH1(i) = undesirableH(j) if i = j + 1
undesirable H(i) if i #- j /\ i #- j + 1

We will assume that the function undesirable is revised in this fashion whenever
DEFER or SWAP is applied.

192 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

7.2.3 Banishing a Transformation

The DEFER procedure is useful only for delaying an undesirable transformation
momentarily. To effectively get rid of it, we push the undesirable transformation as
far towards the end of the the derivation history as possible by repeated application
of the DEFER procedure, and removal of unnecessary stumbling blocks. We call
this banishing. A transformation is unlikely to be banishable to the far end of the
derivation history as intermediate transformations may depend upon it.

We define
BANISH : 1i ---+ 1i

so that it banishes the first transformation H[l] of an argument H, producing a
revised derivation history H'. We assume undesirableH(l) = true, for otherwise we
would have no reason to run BANISH.

We will define BANISH in terms of an auxiliary,

BANISHO : 1i ---+ 'H. x Nat

such that if
BANISHO(H) = (H',j)

then the following are true (see Figure 7.10):

H' E HPERMS(H)
Vi : 1 ::; i < j ~ undesirable H' (i) = false
j ::; length(H') :::> undesirableH1(j) = true
Vi: j < i < length(H') ~ DEFER(H'[i],H'[i + 1]) = (false,x1,x2)

These conditions tells us that H' is truly just a rearrangement of H with the
same resulting state, that some of the undesirable effect of H[l] has been moved to
H'[j], and that all H'[k] E rest(H', j) are dependent on H'[j]. We call the index j the
blocking point of H', because the undesirable transformation H'[j] cannot be deferred
any further in the history in a useful way.

The original point of banishing a transformation was to get rid of it. The
transformations with larger indexes than the blocking point j are all reuseless because
of their dependency on H'[j]. BANISHO thus computes a partition of the original
derivation history. Rather than retain the reuseless portion, we can simply truncate
H' at the blocking point j computed by BANISHO(H). So we define

BANISHO(H) = (H',j) :::> BANISH(H) = H'[l..j - 1]

7.2. REARRANGING A DERIVATION HISTORY

BANISH
result

BANIS HO
result

,-t,
I '

I \
I I
I I
I I
\ I

, -r-"'"

I

,-J-,,
I \

,' I
I I
I I
\ I
' , ___

--, undesireable

--, undesireable

--iundesireable

--, undesireable

Blocking point

undesirable

193

undesirable V ·DEFER

undesirable V ·DEFER

undesirable V ·DEFER

Figure 7.10: Banishing a transformation

194 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

Rather than actually compute the partition by executing BANISHO, we imple
ment BANISH by incrementally dropping transformations which will provably be at
or beyond the partition point. If an undesirable transformation is at the end of a
history, we can simply drop it. If the undesirable transformation can be successfully
deferred, then the promoted transformation is transferred to the reusable portion of
the history. If it cannot be successfully deferred, then the following transform is an
obstacle; we simply BANISH the obstacle, and attempt to defer the original again.
Code for BANISH is shown in Figure 7.11. The implementation lowers costs in two
ways: the derivation history shrinks by a least one transformation per call, so suc
cessive calls are cheaper by at least unit energy, and it prevents a second banished
transform from being unnecessarily pushed into the dependents of the first, which
does not improve the reusability of the second. As long as BANISH is invoked on a
nonempty history, it cannot fail.

On close examination, one can see that BANISH combines the steps rearrange,
truncate, and replay, partly out of necessity; the internal routine DEFER requires a
state, which is most easily obtained by replaying the previously saved transformation.

Note that BANISH does not require that any participating transforms be
property-preserving transforms. This means that BANISH can be applied to 6. f
(evolution transformations) as well as property-preserving transforms selected by the
transformation system during its normal course of operation. This observation is used
by the derivation history replay mechanism in Appendix B.

BANISH deletes the first transformation and its dependents from a derivation
history. To banish a transformation H[i] in the middle of a derivation history we
can use a function BANISHATPOINT to split the history before i, banish from that
point, and combine the pieces. We define:

BANISHATPOINT : 1i x Nat _,. 1i

such that

BANISHATPOINT(H, i) = H[l, i - l] + BANISH(rest(H, i))

We can thus use BANISH to get rid of any undesired transformation anywhere in an
existing derivation history, given its index.

BANISH as dependency-directed backtracking

The BANISH procedure can be useful during transformational implementa
tion as a form of dependency directed backtracking. Conventional (chronological)
backtracking during implementation requires that the last applied transformation be

7.2. REARRANGING A DERIVATION HISTORY

Function BANISH(Program: CurProgram,
DerivationHistory: History)

Returns (Program,History)
3 This function pushes History[l] as deep into the history as possible,
3 chops the history off at that point, and returns the revised history.
3 Because we always chop the history off, banishing cannot fail;
3 at worst it returns an empty history.
3 Complication: History[l] may conflict with History[2], so we can't always
3 immediately get rid of History[l]; we solve this by (recursively)
3 getting rid of History[2] and then proceeding.
3 This procedure costs O(length(History) 2) to run.
Declare Program: Partiallmplementation, Boolean: SuccessFlag
Declare DerivationHistory: RevisedHistory
Declare Transformation: PromotedTransformation, DeferredTransformation
Assert length(History) 2'.: 1 3 Or there's nothing to banish!
If length(History)=l Then Return Empty History
(Success Flag ,Deferred Transformation ,Promoted Transformation):=

DeferTransformation(Cur Program,History[l] ,History[2])
If SuccessFlag Then

3 We can move transformation to banish to History[2].
3 Pretend we did that, and (eagerly) banish it from there.
(Partialimplementation,RevisedHistory) :=

BANISH (A pplyTransformation(Promoted Transformation, Cur Program),
Def erred Transformation +rest(History,3))

Return (Partiallmplementation,Promoted Transformation+ RevisedHistory)
Else

3 Transformation we wish to banish is blocked by rightmost neighbor.
% So banish rightmost neighbor, shortening history, and try again.
% Safe to banish rightmost neighbor for two reasons:
% 1) This procedure can be conservative (because the Revise
% procedure will work even if Banish throws away everything!
3 2) The rightmost neighbor depends on transformation we are trying to banish;
% if we succeed in banishing it, the rightmost neighbor's preconditions
% will not be present, and the rightmost neighbor can't be saved either.
(P artiallm plementation,RevisedHistory): =

BANISH(ApplyTransformation(History[l],CurProgram),rest(History,2))
3 ignore Partiallmplementation

Assert length(RevisedHistory) <length(History)-1
Return BANISH(CurProgram,History[l]+RevisedHistory)

Fi
End BANISH

Figure 7.11: BANISH procedure

195

196 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

undone, whether it was the essential cause of the backtracking step or not. If the
cause of backtracking can be traced to a particular transformation in the derivation
history, then that transformation can be BANISHed, thereby possibly preserving the
work (transformations) accomplished between its point of application and the end of
the derivation history. A mechanism to pinpoint a defective transformation must of
course exist; this is similar to the problem of explaining failure in machine learning.
We have not actually utilized this idea.

We note that if DEFER simply fails whenever the locaters are close, BANISH
acts almost exactly like a dependency network [Lon 78]. It is better than such a
dependency net because DEFER can swap transformations that directly affect one
another, as long as the end result is equivalent. A dependency net can indicate,
at best, that two transformations somehow interact. In fact, dependency nets fail
for remarkably simple cases. Consider an identity transform t 1 : I(? x) -+? x. One

can apply BANISH to a derivation history t9(t9(I(I(z)))) to get rid of the first
application. A dependency net will suggest that the sequential applications of i1
overlap, and are therefore dependent.

Cost to execute BANISH

The cost to banish a transform initially looks quite high. In this section, we
analyze various costs to run BANISH. We show that worst case costs are not terribly
expensive, and argue that the average costs are quite good.

We measure running time of BANISH in terms of the number of swap-attempts
(calls to DEFER). We pidgeon-hole each swap-attempt by its left-hand argument.
Each transformation in a history of length k is swapped only with transformations
to its right, of which there are at most k - 1. Further, a transformation Xi can be
swap-attempted with Xi+i on its immediate right at most once; after such check,
the Xi+l transformation is either swapped to left of Xi (where it will not participate
further in the BANISH process) or x;+1 is banished (deleting it from the remaining
history, so it can't be swap-attempted with any transformation, let alone Xi, again).
So x1 can participate in at most k - 1 swap-attempts; x 2 with at most k - 2, and
Xk-I with at most 1 swap-attempts. The number of swap-attempts is then at most
L,f~-l k - i = (k-:)*k. Since (except for trivial cases) there is one swap-attempt per
call to banish, the cost to banish must be at most 0(k2).

If we have a design space in which every decision depends on every other decision
(i.e, highly constrained) the cost of banishment is O(k - 1): we attempt to swap
each transformation its right-hand neighbor, failing each time, and then the history
is truncated. If we have an extremely commutative design space (close to what
we expect in practice) then the cost of banishment is also 0(k - 1): the offending

7.2. REARRANGING A DERIVATION HISTORY 197

transformation is repeatedly swapped with its right-hand neighbor until it reaches the
end of the derivation history, and is then truncated. We speculate that a dependency
network would lower the average cost in this case to 0(1).

We defined costs in terms of history length and the number of swap-attempts.
Each swap-attempt can be expensive in its own right if the transforms are complex. If
executing DEFER on a particular pair of transformations should exceed a predefined
threshold, one can conservatively assume that they do not commute. If this happens
often, then the cost to banish will drop as more of the history is lost; one pays
the price of losing that potentially preservable history later when the conventional
transformation system will have that much more work to do reconstructing a new tail
for the derivation history.

7.2.4 Banishing batches of transformations

Sometimes we can simultaneously identify a number of transformations in a
derivation history H which we are sure are undesirable. In this case, we can save
effort by banishing in a batch. The idea is simple: mark each H[i] that is undesirable
in H; then scan H from left to right, looking for a marked transformation. For each
marked transformation, apply the BANISH procedure, with one additional proviso:
before attempting a swap, if the tighthand transformation is also marked, first banish
it. Marks must obviously swap when their corresponding transformations swap. We
call this process BATCHBANISH (Figure 7.2.4). The savings occur in that no trans
formation with index i in the batch is bubbled-right into a block of transformations
which are dependent on some later to-be-banished transformation with index j > i.

We define

BATCHBANISH: 1-f x (Nat-+ Boolean)-+ 1-f

in terms of an auxiliary function BATCHBANISHO, paralleling the definition
BANISH. We construct BATCHBANISHO to have the same effect as PARTITION.
By dropping the tail of the derivation history produced by BATCHBANISHO, we
obtain BATCHBANISH:

BATCHBANISHO(H) = (H',j) =:> BATCHBANISH(H) = H'[l..j -1]

198 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

We define

BATCHBANISHO : 1-f.. x (Nat --t Boolean) --t 1-f.. x Nat

such that BATCHBANISHO (H, undesirable) = (H', j) satisfies:

H' E HPERMS(H)
Vi : 1 ::; i < j => undesirableH'(i) =false
j::; length(H') => undesirableH'(j) = true
Vi: j :_:; i < length(H') => DEFER(H'[i], H'[i + 1]) = (false, x1 , x2)V

undesirableH1(i + 1) =true

As with BANIS HO, the index j is the blocking point of some undesired transforma
tion, with the additional provision that all the undesired transformations and their
dependents are at or beyond the blocking point. Truncating at the blocking point
throws away all the unwanted transformations and dependents. The implementation
of BATCHBANISH truncates incrementally, like BANISH.

The cost to perform BATCHBANISH on a derivation history of length k is
identical to the cost to perform BANISH. Remembering that that we counted
swap-attempts for BANISH, if we simply treat a swap-attempt on H[i] as also in
cluding a check for undesirable(i + 1), then the code structure for BANISH and
BATCHBANISH become identical, and thus have identical worst-case running times
of 0(k2). Since we expect more than one undesirable transformation to be present
during a BATCHBANISH, its average costs should be a little higher than BANIS Hing
just a single transformation, but it is clear that one should BATCHBANISH rather
than BANISH when possible. The lower bound on the cost to BATCHBANISH
is obviously 0(k) because the derivation history must be scanned to find marked
transformations. If one has a small list of undesirable transformations and uses a
dependency net, it may be more efficient to individually BANISH.

The relative efficiency of BATCHBANISH over individual BANISH suggests
that banishing transformations should be delayed as long as possible in order for
the batch to grow to maximum size, and then applying BATCHBANISH. This
delaying hueristic accounts for the order in which deltas are processed in Figure 1.13.
Functional deltas are processed last because they must be applied to a clean derivation
history.

When producing a monolithic derivation history free of undesireable transforma
tions, BATCHBANISH seems reasonable. Under circumstances in which the elements
of a derivation history are enumerated in order, and those elements may indirectly
force marking other elements as undesirable (see Section 7 .4 for an example of this), it
may be better to banish lazily. By this we mean deferring application of an undesirable
transformation as little as possible to reveal a potentially reusable transformation, in

7.2. REARRANGING A DERIVATION HISTORY

Function BATCHBANISH(Program: CurProgram,DerivationHistory: History,
Returns (Program,Deri vationHistory)

% This function delays application of marked (undesirable) transformations
% as long as possible, chops the history off at the earliest delayed transformation,
% and returns the revised history.
% Because we always chop the history off, batchbanishing cannot fail;
% at worst it returns an empty history.
% This procedure costs O(length(History) 2) to run.
Declare Program: Partiallmplementation, Boolean: SuccessFlag
Declare DerivationHistory: RevisedHistory
Declare Transformation: PromotedTransformation, DeferredTransformation
If length(History)=O Then Return (CurProgram,EmptyHistory)
If -iundesirable(History[l]) Then

(P artiallmplementa tion,RevisedHistory): =
BATCHBANISH(ApplyTransformation(History[l],Cur Program) ,rest(History,2))

Return (Partiallmplementation,History[l]+ RevisedHistory)
Fi
% History[l] is undesirable, delay its application
If length(History)=l Then Return (CurProgram,EmptyHistory)
If -iundesirable(History[2]) Then

(SuccessFlag ,Def erred Transformation,Promoted Transformation):=
DeferTransformation(Cur Program,History[l],History[2])

If SuccessFlag Then
% We can move undesirable transformation to History[2].
% Pretend we did that, and (eagerly) banish it from there.
undesirable(Deferred Transformation):= true
(P artiallm plementation,RevisedHistory) :=

BATCHBANISH(ApplyTransformation(PromotedTransformation,CurProgram),
Deferred Transformation+ rest (History,3))

Return (Partialim plementation,Promoted Transformation+ RevisedHistory)
Else undesirable(History[2]) :=true
Fi

Fi
% Transformation we wish to banish is blocked by rightmost, undesirable, neighbor.
% So banish rightmost neighbor, shortening history, and try again.
(Partialimplementation,RevisedHistory):=

BATCH BANISH(ApplyTransformation(History[l] ,CurProgram) ,rest(History,2))
% ignore Partialimplementation
Assert length(RevisedHistory)<length(History)-1
Return BATCHBANISH(CurProgram,History[l]+RevisedHistory)

End BATCHBANISH

Figure 7.12: Batch Banish procedure

199

200 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

an effort to allow the supply of undesirable transformations to grow as large as pos
sible in the tail of the derivation history before processing the tail. Procedures to
accomplish this are shown in Figure 7.2.4.

7 .3 Integration of Technology Deltas ~c

We now have enough mechanisms defined to integrate b..cs into a derivation
history. Our original approximation for reusing a derivation history was to assume
that all transformations were reusable unless easily shown otherwise. Technology
deltas directly provide information to the effect that certain transforms, and therefore
their derivative transformations, are no longer valid. Remembering that a 5c =
(b..8 , b..E!l), we see a direct identification of transforms which are no longer legitimate
to use: b..8 . The procedure is straightforward:

1. Mark transformation H[i] =ti as undesirable in the existing derivation history
if (i, t) E b..9.

2. Apply BATCHBANISH to remove the undesirable transformations and any
dependencies thereof, producing a truncated history Hsaved as well as s saved =

II(Hsaved, s{f).

3. Update the set of usable transforms by computing Cfibrary = 5c (C1ibrary)

4. Restart the transformation system at state Ssaved with H'. This provides an
opportunity to use the new transforms represented by b..E!l.

5. Output resulting derivation history H' and jH.

Restarting the transformation system with Hsaved allows it to backtrack (perhaps
using BANISH or BATCHBANISH) and revise other parts of Hsaved if needed. Such
backtracking may be required as our scheme for integrating 8c is conservative; we only
remove transformations which are obviously bad. None of the information provided
by a be can assure us that the program specification is achievable via Hsaved.

7.3. INTEGRATION OF TECHNOLOGY DELTAS 6c

Function ENUMERATEHISTORY()
returns boolean, transformation
% Produces next derivation history element on each call
% Lazily banishes undesirable transformations as they are encountered.
declare global DerivationHistory: H, integer: next, program: NextProgram
next := next + 1 % advance history scan pointer on each call
if next > length(H) then return (false, dummy)
if -iundesirable(H[next]) then

NextProgram:=ApplyTransformation(H[next],NextProgram)
return (true, H [next])

else
H := H[l..next - l] + BANISHLAZY(NextProgram,rest(H, next))

if next > length(H) then return (false, dummy)
N extProgram:=ApplyTransformation(H[next] ,Next Program)
return (true, H [next])

end ENUMERATEHISTORY

Function BANISHLAZY(Program:CurProgram,DerivationHistory:H)
returns DerivationHistory
% Returns H' : length(H') = 0 or undesirable(H'[l]) =false
declare program: Next Program
assert length(H) > 0 and undesirable(H[l]) =true
if length(H) = 1 then return emptyhistory
% Try to defer H[l] until after H[2]
N extProgram=ApplyTransformation(H [1 J ,Cur Program)
if undesirable(H [2]) = false
then H' := rest(H, 2)
else H' := BANISHLAZY(NextProgram,rest(H, 2)) :fi
loop

if length(H') = 0 then return emptyhistory
assert undesirable(H'[l]) =false
(success flag, xi, x~} = DEFER(CurProgram,H[l], H'[l])
undesirable(H'[l]) := true % mark H'[l] as (transitively) undesirable
if successflag then return xi+ x~ + rest(H',2)
H' := BANISHLAZY(NextProgram,H')

endloop
end BANISHLAZY

Figure 7.13: Banish Lazily procedure

201

202 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

The following process is germane:

Procedure Integrate~c(StartState:State, DerivationHistory:History, ~c : 8)
Returns (State,History,State)
Declare RevisedHistory,AdditionalHistory: History, EndState:State
for i := 1 to length (H)

if HT[i] E 8.~e
then undesirable (H[i]) = true

endfor
(RevisedHistory,EndState): =BatchBanish(StartState,DerivationHistory)
Clibrary :=8(Clibrary)

(RevisedHistory,Implernentation) :=lmplementContinue(Endstate,RevisedHistory)
Return (StartState,RevisedHistory,Irnplementation)

End Integrate~c

In practice, we delay restarting the transformation system until we have also
adjusted the derivation history to account for the other deltas present in a composite
delta. This allows use of a single pass of as BATCHBANISH to remove all of the
undesirable transformations.

7.4. INTEGRATION OF FUNCTIONAL DELTAS !::::.F 203

7.4 Integration of Functional Deltas .61

We have so far seen how to revise a derivation history when we have been told,
directly or indirectly, which transformations simply cannot be kept. Functionality
deltas provide us with the opportunity to directly inspect interactions between in
dividual transformations in the derivation history and some desired functionality
change4 . When an existing transformation interferes with the desired change, we
can simply banish the offending transformation. When a transformation does not
interfere, we preserve that transformation, i.e., save it for use in the revised deriva
tion history. We scan the original derivation history from beginning to end, checking
the delta for interference with each transformation. When such a checking process is
complete, the remaining derivation history is compatible with the desired delta; all
we need to do is apply the delta and finish the implementation.

What we will attempt to do is to preserve as much of the derivation history
as possible. The essential idea is to "push" the delta through the derivation history,
from beginning to end, either preserving or banishing as we go.

We start with a functional delta 80 , a functional specification f 0 , and a derivation
history H. We want to produce a

DEFINITION 7.3: Ladder. A triple (Hreu&ab/e,Hrevised,Ho) with the property:

Vi:::; length(Hreusable): Il(Hrevised[l..i])(Hs[l](Jo)) = Hs[i + l](IT(Hreusable[l..i])(Jo))

D

Ho[l] will contain 80 , the given 81. We call this a ladder because of the resemblance
of diagrams of this object to a ladder, with Ho[i] forming the rungs and Hreusable
and Hrevised forming the left and right sides of the ladder, respectively (Figure 7.14).
The ladder component Hreusable must be a prefix of a member of HPERMS(H). The
dashed arrows shown at the end of Hreusable are the transformations banished from
H because of their conflict with the effect of 81; Hreusable plus the dashed arrows
(Hrearranued) is a member of HPERMS(H).

If we can construct a ladder, then Hrevised is a derivation history for for 8 l (so). If
all the members of H'feusable are property-preserving transforms, then all the members
of Hrevised are also, and so the state Send = IT(Hrevised)(81(so))) is a correct partial
implementation of 81 (s0). We can pass this derivation history plus the state Send to
the transformation system for completion. Thus integrating a!::::. l can be accomplished

4 Should a software engineer wish to insert a property-preserving transform in the middle of an
existing derivation history, the tl.1 integration technique can be used without significant change.

204 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

Original History Ladder

preserved

preserved
................................

preserved_ ··

.. ····

.. ··
.•:

···.banished

·,.·

.. ····preserved

·:·"··········.·

0
AOsfo,mH,

\!:_)
H Hreusable H revised

Figure 7.14: Producing a ladder from a/:)..!

7.4. INTEGRATI01Y OF FUNCTIONAL DELTAS !::.p 20.s

by building a ladder. In practice, we don't actually build the ladder as a monolith;
it serves as a conceptual device. Production of Hrevised is sufficient.

We can form the ladder incrementally by an iterative procedure which scans the
original derivation history H. At each step, a bi derived from previous steps causes
either the transformation H[i] to be banished, or to be preserved by forming a new
rung of ladder. Failure to preserve transformation H[i] is the signal that H[i] must
be banished.

Let us consider how a rung is formed.

7.4.1 Preserving single transformations

The starting condition when generating the k+ 1th rung shown in Figure 7.15A.
To be successful, we must actually find two transformations: one to output to Hrevised,

and another to serve as bk+l for the next step. Fig 7.15B shows a plethora of possi
bilities. How can we choose such a pair? We note that bk = tj for some arbitrary
transform ti with locater m.

The first constraint is that the transform H'fevised [k] applied to bk(fk) must gener
ally be a property-preserving transform; after all, it will form part of a new derivation
history and therefore must act as though the transformation system generated it. If
we can find tj',f', m' such that tp' (cf(fk)) = cf(tj(fk) = !k+i (see Fig 7.15C), then
the new functionality desired, fk = bk(fk), is preserved by application of cf, because c;
is, by definition, a property-preserving transform. We can then safely reuse c; in a new
derivation history for bk(fk)· Because a derivation history may contain non-property
preserving transforms, we relax the requirement to H'fev.sable [k] E Ci => H'fevised [k] E Ci,
usually for C; = Cimplicit, chosen by the transformation system invariant.

A second constraint on H'fevised[k] is that it ideally should bet= H'feusable[k];

this constraint comes not from anything in the derivation history, but from a desire
to be able to continue using the justification from the design history for t; we will
discuss this further in Chapter 8. So we need only pick a new locater.

The last constraint comes from the ladder itself. If Hrevised is to truly be anal
ogous to Hrev.sable, then there must be a constructive analogy between each parallel
state generated by the derivation histories. Consequently, we require that:

206 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

A: Before preserve step: we possess 8k and cf

B: Possible Choices for 8k+l and t~

C: Best Choice for 8k+1

Figure 7.15: Preserving a transformation

7.4. INTEGRATION OF FUNCTIONAL DELTAS /J.p 207

We interpret this as "applying an implementing (technology) transform to the
changed state is the same as implementing the state, and then applying a change to
it."

We define a function, PRESERVE, to form a rung and push a delta through it:

PRESERVE: powerset(T) x S x X x X -t Boolean x X x X

such that
PRESERVE(C, s, t1, tj) = (b, tf:, tp')

has the properties:
b =true :J tp'(tf(s)) = tf (tj(s))
ti E C :J ti' E C

Failure to PRESERVE a transformation is signaled by returning b =false. We banish
transformations that cannot be preserved. Since banishing also truncates transforma
tions dependent on the unpreservable one, we will not have to deal with complications.
We do not hunt for substitutions or long chains of other transformations, because we
want to preserve transforms that can be traced back to APPLY steps in methods;
more on this in Chapter 8.

Implementing PRESERVE

Similar to the discussion about implementing SWAP in Section 7.2.2, we do
not provide precise details on how to implement PRESERVE, because they depend
on the transformation system, its representation, and the sets of property-preserving
transforms. Much of the discussion in that section applies. In particular the following
points are still relevant:

• A theorem prover is necessary in general

• Conservative cutoff can conservatively signal failure of PRESERVE

• Having proposed a pair of resulting transformations, it is often sufficient for
validation purposes to compare compositions of the transformations rather than
comparing applications of the proposed transformations to states, i.e., simply
to check that· tr::' o t~ = t~' o t'rfl • J i i J

• Locaters which are "far apart" are common and provide a special case which is
easily implemented, by simply returning the argument transformations as the
results.

208 CHAPTER 7. INTEGRATING DELTAS INTO DERI\i,4.TION HISTORIES

It may be that there is more than one way to produce resulting transforma
tions satisfying PRESERVE. Carrying ti through intact (i.e., ti' = ti) is one way
to eliminate multiple results, motivated by possible reuse of design history justifica
tions. Similarly, one wants to keep tm' as small as possible; gratuitous expansions of
the delta simply make computations of following ladder rungs slower. We conjecture
that implementing PRESERVE as a pushout (if it exists) in the underlying category
of transformations is probably best, since that places the fewest constraints on !k+i ·

If !k+l is a pushout, it implies that Pimplicit(fk+ 1) 'c.implicit PimplicitUk+l) for any fk'+1
which is not the pushout. Fewer constraints on intermediate states mean fewer com
mitments to carry through to an implementation, and therefore probably a shorter
final derivation history.

Statistically, the revised 8 is equal to the original 8. Sometimes tm -/= tm'' i.e., the
delta transform changes. This is no cause for concern; the System Analyst will never
be confused by it because he will never see such intermediate deltas, and the Software
Engineer will see a delta which is relevant to the program fk+ 1 he is inspecting.

We must still validate that each preserved transformation still achieves some
desired effect, but that is a topic for Chapter 8. For this chapter, mere generation is
sufficient.

We provide some examples of the PRESERVE step with tree transforms. We do
not show the common case, where the locaters of the transformation to be preserved
and the delta do not overlap. When the locaters select nearby regions, as with SWAP
implemented for trees, an analysis of how the overlapping transformations rearrange
their subtrees can lead to simple proposals for how to revise the locaters. Figure 7.16
shows a case in which preserving the transformation causes the application point of
the delta to be moved; the delta's locater is revised accordingly. Figure 7.17 shows
the opposite case; the delta moves the point of application of the transformation to
be preserved, causing revision of the locater of the preserved transform.

Building an efficient implementation of a specification is fundamentally accom
plished by spreading information. This effect can be seen in Figure 7.18, in which
the delta is spread out by application of the transformation to be preserved. This
suggests that the deltas forming ladder rungs are likely to grow monotonically in size
as we move down the derivation history, perhaps to the point where the delta can
become significant in size relative to f k. This can be handled, if necessary, by the sim
ple device of forcing PRESERVE to fail whenever the delta becomes inconveniently
large. Considering that the transformations to be preserved are likely to stay small,
we think that manufacturing ladder rungs even with large deltas should be cheaper
than trying to regenerate those transformations.

7.4. INTEGRATION OF FUNCTIONAL DELTAS 6.p

()
8: ?q ==> O@(l, 2)

>

(1,2)

11 (?a+ ?b)+?c ==>
~?a+ (?b + ?c)@()

8': ?q ==> 0@(2, 1)

(2) >

(2, 1)

x

209

+ ()

0

11 (?a+ ?b)+?c ==> V ?a+ (?b + ?c)@()

Figure 7.16: Preserving transformation intact by revising delta locater

210 CHAPTER 7. INTEGRATING DELTAS INTO DERIVl1TION HISTORIES

I
8: a* ?x ===> ?x/6@()

a (2) > (1)

0 b 0

?x + 0 ===> ?x@(2)

* () I
8': a* ?x ===> ?x/6@()

a b > b

Figure 7.17: Preserving a transform by revising its locater

?x+O===>
?x@(l)

6

7.4. INTEGRATION OF FUNCTIONAL DELTAS 6.F

0

8: ?a+ 3 ==::::>
b + (1 - ?a)@(l)

>

11 (?a+ ?b) * ?c ==::::>
~?a* ?c + ?b * ?c@()

+

8' : ? a * ? c + 3 * ? c ==::::>
b * ? c + (1 - ? a) * ? c@()

>

()

/I (?a+?b)*?c===:>
~?a* ?c + ?b * ?c@()

z

Figure 7.18: Growth of delta by information spreading

211

212 CHAPTER 7. INTEGRATING DELTAS INTO DERIVliTION HISTORIES

push o : empty ===}

2 push(s, empty)@(2)

top empty > top

(2)
pop pop

x x

D
push ===} cons

D
push ===} cons

top===} car top ===} car
empty ===} nil empty ===} nil
pop ===} cdr pop===} cdr

cons nil===}
cons(s, nil)@(2)

car nil > car

(2)

x

Figure 7.19: Preserving a refinement translates the delta

PRESERVE is not limited to just tree transformations. In Figure 7.19, we
show an example of preserving a theory morphism. The delta is simply mapped from
the originating domain to the target domain. We remark that formally justifying
such a step requires a theory about rewriting rewrites themselves. Our definition of
PRESERVE sidesteps this requirement.

It may be very difficult to preserve the application of complex transforms such
as LR-parser generators in the face of deltas. In the case of a parser generator, it
is relatively easy to re-run, so it may actually be reasonable to simply give up and
BANISH such transformations. One can also consider handling commonly occurring
special cases (such as token renaming, addition of terminals to existing rules, etc.).

7.4. INTEGRATION OF FUNCTIONAL DELTAS 6.F 213

7.4.2 Procedure for integrating~!

We have seen a conceptual overview of 6. 1 integration as ladder construction.
We have seen how to form ladder rungs by applying the PRESERVE operation. We
have hinted that BANISH can be used on transformations that cannot be preserved
in the face of a delta. Now it is time to assemble the pieces into a 6. 1 integration
procedure: INTEGRATE 1 (Figure 7.20).

This procedure accepts the initial specification fa, a derivation history H lead
ing to a current implementation and a maintenance delta 81 applied to fa; it pro
duces Hrevised, the portion we could save, and an implementation of IT(Hrevised(fa)).
INTEGRATE 1 operates recursively by PRESERVEing the first transformation in
the history and revising the rest of the history according to the resulting delta. If it
cannot preserve a transformation, then that transformation is banished, and it revises
the resulting history according to the current delta. The final history, Hrevised is built
up from the bottom while unwinding the recursion. The ladder is never built as an
entity.

Using INTEGRATE f, it is possible to insert a 6.1 in the middle of a derivation
history. This is accomplished by splitting the history at the point of insertion, revising
the suffix of the history according to the desired delta, and combining the unchanged
history prefix with the revised suffix. Given a functional specification fa with history
H, we can insert 81 between H[j - 1] and H[j] by computing:

(implemented,program,H~est) = INTEGRATE1(IT(H[l..j- l])(fa,8J, rest(H,j))

and replacing the derivation history with H[l..j - 1] + 81 + H~est· We name this
process INTEGRATEMIDDLE1 to remind us that the revision takes place at some
named index point. We will find INTEGRATEMIDDLE1 especially convenient when
attempting to repair a design history in Chapter 8 by inserting property-preserving
transforms.

7 .4.3 ~ f integration: An Example

In this section, we provide a concrete example (Figure 7.21) of reusing a deriva
tion history by integrating a functional delta. This is one of the key examples in this
thesis. The example follows the conceptual ladder-construction process, rather than
the procedural implementation, but the effect is identical.

For the sake of an example, we have chosen a problem domain consisting of
stack-computations. An algebraic specification of the problem domain can be found
in Appendix C, but the key ideas are stacks-as-values, and operations that push and

214 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES

Function INTEGRATE1(Program: CurProgram, Transformation: Delta,
DerivationHistory: History)

Returns (Boolean,Program,Deri vationHistory)
% Constructs a new implementation and history for the
% program defined by ApplyTransformation(Delta,CurProgram) ...
% by revising the DerivationHistory of CurProgram to integrate Delta
Declare Program: Implementation, Partiallmplementation
Declare DerivationHistory: RevisedHistory, Boolean: SuccessFlag
Declare Transformation: PreservedTransformation, RevisedDelta
If length(History)>0

And Not ConventionalTransformationalimplementation
Then

% Try to Reuse history to derive new implementation
(SuccessFlag,Preserved Transformation,RevisedDel ta):=

PreserveTransformation(Cur Program,History[l] ,Delta)
If SuccessFlag Then

% We were able to preserve the original transformation
(SuccessFlag,Implementation ,RevisedHistory): =

INTEGRATE1(ApplyTransformation(History[l],CurProgram),
RevisedDelta,rest(History,2)) % integrate the rest!

If SuccessFlag Then
3 Success at revising history and obtaining an implementation
Return (True,Implementation,

Preserved Transformation+ RevisedHistory)
Else

% Not able to revise history and obtain an implementation.
3 Perhaps we can get an implementation from CurProgram.
3 If not, it is hopeless from here.
Return Implement(ApplyTransformation(Delta,CurProgram))

Fi
Else

% Can't preserve History[l] because of some inability to resolve conflict ...
% with the desired Delta so make History[l] stop bothering us.
(Partialimplementation,RevisedHistory):=

BANISH(CurProgram,History)
3 ignore Partiallmplernentation

Return INTEGRATE1(CurProgram,RevisedHistory,Delta)
% Won't loop: BANISH chops off offending transformation

Fi
Else

% No more revision possible, nothing left to revise.
Return Implement(ApplyTransformation(Delta,CurProgram))

Fi
End INTEGRATE1

Figure 7.20: Procedure to Integrate IJ.1 into derivation history

7.4. INTEGRATION OF FUNCTIONAL DELTAS 6p

Jo

Oo : empty ==>
push(s, empty)@(2, 1, 2)

c1 : pop(push(?x, ?z))
==> ?z@(2)

~
~·

61 : empty ==>
push(s, empty)©(2)

c3 : cons(?z, nil)
==> list(?z)@()

push ==> cons top ==> car
empty ==> nil pop ==> cdr

62 : nil==>
cons(s, nil)@(2)

215

!{

Refine by c2

!~

83 : nil==>
cons(s, nil)@(2)

~~~~~~~--- ..,..-'-~~~~~~--

c4 : car( cdr(? z)) 
==> cadr(?z)@(l) 

! r x 

cons(?z, nil)==> 
list(?z)@(2) 

!~ 

Figure 7.21: 6rintegration (replay) using a derivation history 

!~ 



216 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

pop scalars onto stacks, producing new stacks. The example is a little contrived in 
order to make it both small enough to fit on one page as well as a little bit interesting. 

A particular expression from the stack domain is provided as the base speci
fication, shown in in tree form inside the box labeled Jo in the figure. To keep the 
example uncluttered, we leave the balance of the specification Crest implicit, but we 
assume it includes Planguage (!) t LISP and some unstated computational efficiency 
goal. 

The leftmost column of the diagram shows an implementation process. The 
boxes labeled Jo through f 4 down the left side are a series of design states traversed, 
with f 4 being an implementation of f 0 . The arcs form a derivation history, of mixed 
types of transformations. Transformations c1 , c3 and c4 are tree transformations with 
path locaters; c2 is a theory morphism ("refinement") mapping stack expressions into 
LISP. Both types of transformations are described as examples in Section 3.1.7. 
Transform c1 is a simplification in the stack domain. Transforms c3 and c4 are sim
plifications possible in the LISP domain; they are not possible in the stack domain. 
These simplifying transforms are are obtained from the algebraic specification of the 
domains. The implementation process follows that of the Draco system [Nei84a] in its 
style of repeatedly performing optimize-within-domain then refine-to-new-domain. 

The rightmost column is similarly an implementation process, starting with 
a different specification J~, and carrying through various transformations and re
finements. The horizontal dashed lines show how one derivation history maps into 
another via application of the deltas. The reader may wish to compare this figure 
with Figure 7.3; the only difference is that this figure is more detailed. 

A problem to be solved by transformational maintenance is, given: 

• Jo 
• the leftmost derivation history (which was presumably difficult for the transfor

mation system to generate because of the control problem) 

•the functional delta 80 =empty===} push(s, empty)@(2,1,2) 

how can f~ and the rightmost derivation history be generated, running as little of the 
transformation system control process as possible? Intermediate states Ji, f2, and 
f3 are presumed unavailable because of the expected high cost of storing every state. 
Since this is a maintenance situation, we can assume we also have the implemented 
program f4, but it will turn out to be unnecessary; all we really need is the derivation 
history. Note the contrast of this situation vis-a-vis conventional maintenance, where 
all we have is f 4 and some knowledge that it is wrong! 



7.4. INTEGRATION OF FUNCTIONAL DELTAS 6.F 217 

We start with state Jo, with existing transformation c1@(2) and desired 80 = 
to@(2, 1, 2), to= empty===?- push(s, empty). Set the new derivation history to empty. 
We compute J~ = 8o(J0 ), and save it. 

Step 1. Computing PRESERVE(Jo, c1@(2), 80@(2, 1, 2)) produces the result 
(true,c1@(2),t0 @(2)), thereby producing the revised transformation c1@(2) to 
append to the new derivation history. We have avoided invoking the transfor
mation system. We compute f 1 = c1@(2)(fo). 

Step 2. Computing PRESERVE(f1 ,c2 ,t0@(2)) produces the result (true,c2,t1@(2)) 
with t1 = nil ===?- cons( s, nil), essentially by applying the refinement to both 
parts of t0 . We have again avoided use of the transformation system. Append 
c2 to the new derivation history. We compute h = c2(!1), and discard f 1 . 

Step 3. We attempt to compute PRESERVE(h, c3 @(), t1 @(2) ), which fails (returns 
false) because of the interaction between t 1 and c3 over the simultaneous re
moval and required presence of nil, respectively. There is simply no way to pre
serve transformation c3 @(). We therefore BANISH(h, [c3@(), c4@(1)]), which 
produces the revised history [c4@(1)]. This effectively (BANISHO) demotes c3 

below c4 . This demotion is shown in the sub-derivation history which branches 
from state h and continues down the middle of the page. In practice, BANISH 
also chops off the now-trailing transformation c3 @() because it is already known 
to interfere with the delta. We show the trailing c3 so that the reader can see 
the equivalence of the derivation history pair determined by commuting trans
formations it contains. 

Having BANISH ed c3 , and promoted c4 , we compute 
PRESERVE(f2,c4@(1),t1 @(2)), producing the result (true,c4@(1),t1 @(2)), 
again without resorting to use of the transformation system. Append t 1@(2) to 
the new derivation history. We compute f~' = c4@(1)(!2), and discard f 2 • 

Step 4. Either c3 @() was truncated by BANISH, or we attempt to 
PRESERVE(h, c3@(), t 1@(2)) which fails again. In either case, we find that 
we can make no further progress towards an implementation using the old 
derivation history information; we consequently throw away any remaining old 
derivation history at this point. We compute f~ = 83 (!~'), discard J~', and then 
give f~ to the transformation system to complete the implementation. The 
transformation system generates the new implementation f~ by applying the 
cons-nil simplification at an entirely new place; the additional transformation 
is appended to the new derivation history to form the completed, new derivation 
history. 

The process terminates with the new implementation f~, the new derivation 
history appropriate for f~, and a new starting point, the saved f~. We are immediately 
ready to apply another functional maintenance delta. 



218 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

The example demonstrates successful reuse of 3 of the 4 transformations 
from the original derivation history. All the mechanisms, DEFER, BANISH, and 
PRESERVE are required to carry this out. 

A prototype system that takes a derivation history and a functional delta, using 
conditional tree transformations and theory morphisms, was constructed in Common 
Lisp. The system closely matches the structure of the code in Appendix B. It 
generated this example, as well as a number of similar examples, up to the point of 
generating a new tail (stops at /~) for the revised derivation history. This particular 
example takes 50 mS. of CPU for 3 retained transformations, or about 17 mS. each. 
This is clearly a big win over 250 mS. average per generated transformation typical 
for Draco. While we realize that the small scale of the example prevents any strong 
conclusion from being drawn, it is nonetheless very encouraging. Larger examples 
were not run because of the difficulty in obtaining a valid derivation history; no 
transformation system available to us produces these in a usable form. 

One gains a better appreciation of the utility of this process by comparing how 
this same functional change would occur in a more conventional software engineering 
environment. We assume the maintaining organization has the implementation, f 4 , 

and an informal document ]0 approximating f 0 ; the derivation history has, as usual, 
been lost (assuming it ever existed in any form). The customer, who only understands 
the abstract program }0 , appears with an informal wish to change what the abstract 
program does, i.e., an informal approximation S0 of 80 • The maintainer's job is to 
produce f~ from the source code, h, given just the informal }0 and informal S0 , 

with no derivation history. What is he to do? It is very difficult to see how to 
do anything on a problem even as simple as this, and practical maintenance often 
happens on specifications 10, 000 times as big. It does not come as any great surprise 
that maintenance in conventional software engineering environments is a hard task. 

7.5 Intertwining of Implementation 
with Specification 

Our model of transformational maintenance suggests that the transformational 
implementation process is run as an atomic transaction, and that maintenance deltas 
are generated between such transactions. London [LF82] discovered situations in 
which transformational implementation of a Gist specification unexpectedly required 
change to the environmental portion of the specification; this corresponds to feedback 
from a partial implementation to the specification while running the transformation 
system. Swartout [Swa82] dismisses conversion of specifications to implementation 



7.5. INTERTWINING OF IMPLEMENTATION WITH SPECIFICATION 219 

Propagate 
change 
upward 

0 opportunity 

Desired functionality/ 
performance 

Figure 7.22: Intertwining of Specification and Implementation 

with no change of specification as unrealistic; they argue that the realities of imple
mentation will force changes onto the specification. 

Given this experience, in a practical Design Maintenance System, we expect that 
maintenance deltas can arise during the transformational implementation process, 
that we would like to apply to some state in the middle of the design space. This can 
occur when, part way through an implementation, there is a need to achieve a slightly 
different functional specification than originally intended, in order to accommodate 
or take advantage of newly discovered aspects of the environment or implementation 
technologies. In fact, one might produce a maintenance delta for any aspect of the 
implementation for which it might appear convenient. 



220 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

One way in which such deltas might arise occurs when an extremely desirable Ci 

fails to apply at some step sk; the desirability of the Ci will be due to some performance 
goal which is difficult to satisfy. If a Dopportunity can be found such that 

defined (Ci( Dopportunity ( Sk))) 

then applying that delta will achieve the desired effect. A common example of this 
is the decision to implement some previously unrestricted-range integer value using a 
fixed word size, in order to allow fixed-precision operators (such as machine instruc
tions) to operate on that integer. This obviously changes the meaning of the original 
program; it no longer operates on unbounded precision integers. 

To integrate such a mid-development Dopportunity (Figure 7.22) one must not only 
propagate the change forward through the design history, but also backwards to the 
original specification. This is necessary to allow the system analyst to determine, 
using vocabulary he understands (by virtue of being able to specify with it), the con
sequences of change, as well as ensuring the presence of an J~ so that transformational 
maintenance can be applied later. 

Change to use a technology (..6.1) requires the designer to note the potential 
utility of a transformation Ci in the library. The ability to inspect the Sj for the 
appropriate place in which to apply c; is also necessary; a tool to indicate in which 
s;, and where c; almost matches would appear to be helpful. Having settled on a 
particular s;, the same program editor outlined earlier, applied to Si instead of s0 , 

would be used to capture the specific 81 necessary to apply c;. 

The procedures we have outlined do forward integration of functionality deltas. 
We have not explored mechanisms for accomplishing backward integration, but think 
that most of the necessary ideas are present. 

7.6 Evidence for Significant Commutativity 
in the Design Space 

If we hope to take advantage of commuting transformations in the design space, 
we must be sure it is present often enough for this technique to be useful. It is 
obviously present, as evidenced by our examples, and is noted by Steier [SA89] after 
comparing several algorithm syntheses. If it does not occur often enough, the delta 
integration procedures will still be correct, but so little of the derivation history will 
be preserved (because BANISH chops transformations that fail to DEFER) that we 
might be tempted to simply start fresh each time, contrary to our original purpose. 5 

5It may actually be the case that even saving just a few transformations can provide considerable 
performance gains when re-implementing; [Kam89] shows that reusing even a small plan to solve 



7.6. EVIDENCE FOR SIGNIFICANT COMMUTATIVITY 221 

We draw our hope for significant amounts of commutativity from three sources: 

• Generic: success of conventional software maintenance 

• Instance: Experience with transformational porting of software 

• Empirical: Speedup measured by Lexical Search algorithm 

7.6.1 Commutativity in conventional software construction 

Our first indication is the success with maintenance changes are made to con
ventional (non-transformationally generated) software systems. Virtually all such 
maintenance leaves a significant portion of the original software unchanged. Our own 
personal experience of 20 years of building operating systems also convinces us of the 
stability of existing code. Linton [LQ89] instrumented MAKE and determined that 
typically only 20% of a system is recompiled after it is changed. Some 6 out of 10 
recompilations in a similar environment are caused by poor modularization caused 
by overly-large source units that are widely visible according to [Bor89], suggesting 
that only about 10% of a system must actually change. Even this estimate must be 
too high, as it is measured in terms of compilations of modules, and not the contents 
of modules, which we suspect stay largely unchanged. 

The mostly-unchanged nature of the revised artifacts hints that the original 
design decisions, however they were made, are preserved, even though we cannot see 
them directly. Commutativity requires both preservation of the original operators, 
and the ability to reorder them; preserved design decisions meet part of this condition. 
The fact that the software looks nearly identical suggests that the order in which the 
decision to install the delta, before or after the original product, isn't very significant, 
and lends credence to the idea that reordering should be frequently possible. 

7.6.2 Commutativity in the Draco portage project 

The initial motivator of the work discussed in this thesis was a project to semi
automatically port the Draco tool [ABFP86] from one LISP dialect to another. The 
porting process was accomplished by abstracting the source code idioms (used by 
the Draco source code) in the source dialect, to domain abstractions, stated as func
tional specification fragments, and then transformationally implementing the func
tional specification formed by the configuration of domain abstractions that resulted. 
As we had to manually define the abstractions and the implementations, we naturally 

problems decreases problem solving time drastically, and that the savings grow as the problem size 
grows! 



222 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

guessed them wrong a number of times, necessitating roughly 10 cycles of correct 
(the abstractions and implementation transforms), abstract, implement, to obtain 
a successful port. Each cycle produced an implementation, and we observed that 
large portions of the successive implementations were identical. The observation of 
near-constancy of the bulk of the transformationally-implemented code in the face of 
numerous changes in fact lead to this line of research. We note that the original spec
ification was in fact held constant, but changing the idiom-to-abstraction maps has 
the effect of functionality changes /:if, whereas changing the implementing transforms 
produced technology changes l::ic. Here we have evidence of the small-delta implies 
small-implementation-change in the context of transformational implementation. 

In the case of the Draco tool, in fact, all of the refinements from one domain 
to the next provably commute because they are essentially context-free substitutions. 
Every transform applied during the porting process were of the refinement type, so 
in fact a great deal of commutativity in the design space was present. 

7.6.3 Commutativity implied by 
Speedup in Lexical Searching 

Our strongest evidence is provided ·by the empirically determined performance of 
. an algorithm designed to take advantage of commutativity in a search space. Lexical 
Searching [Bax88] is a problem-space search algorithm (see [Pea84] for a thorough 
discussion of such algorithms). It requires that that all branches through the search 
space be labeled with elements taken from an arbitrary partially ordered set; this 
induces a label string for any path through the search space. When commutative 
operations (note the distinction from operators, which is a special case) in the space 
are found, Lexical Search explores only the path with the lexically smaller label string, 
thus saving search energy. Lexical search skips only paths which a conventional search 
would explore fruitlessly. 

The laboratory rat for search algorithms is known as the N-puzzle problem: 
an N x N grid of sequentially numbered, orthogonally sliding tiles, with a single 
missing tile which provides space into which to slide another tile. The problem is to 
find a sequence of tile slide movements that organizes the tiles so that the numbers 
have a particular configuration; a typical requirement is that the numbers increase 
sequentially from left to right, top to bottom for a solved puzzle, with the blank being 
the lower rightmost corner. Starting states are scrambled configurations of tiles. 

To model the problem space of transformational implementation, a variant of 
the laboratory rat was bred: instead of a single missing tile, one can have two missing 
tiles; a typical starting configuration is shown in Figure 7.23. The purpose of this 



7.6. EVIDENCE FOR SIGNIFICANT COMNIUTATIVITY 

DU 
[]CJ[] 

,----, 
I I 
I I 
I I 
I I 
L ____ _J 

[]CJ 
Goal State 

,----, 
I I 

I 
I 

I I 
L ____ _J 

,----, 
I I 
I I 
I I 
I I 
L ____ _J 

A Start State 

Figure 7.23: 3x3, 2 blank N-puzzle problem 

223 

variant is to arrange for operations that sometimes interfere, and sometimes do not. 
When the blank spaces are far apart, tile moves into one blank space can be performed 
without regard to moves into the other (consider moves by tiles 1 and 5 in the goal 
state as examples); such operations commute. Conversely, when the blanks are close 
together, some moves into one blank disable/ enable moves into the other (consider 
the moves by tiles 5 and 2 in the start state); such operations do not commute. The 
problem space for this puzzle thus has patches where operations commute (blanks 
temporarily far apart) and where they do not (blanks come near one another). We 
argue that this approximates the type of space for software implementation. 

A graph of the ratio of effort by a conventional search to a lexical search, to find 
solutions to some 350 random problems for 3x3 puzzles in this space, versus length 
of solution6 , is shown in Figure 7.24. 

6 The branching factor in this space is about 5, and solutions of length 22 are being generated by 
exhaustive search; this would truly be an immense amount of computation if the search were not 
augmented by a number of algorithmic shortcuts, such as IDA* [Kor85], elimination of inverses, etc. 
which are inappropriate to discuss here. The fact that both searches produced the same solution 
was verified in every instance. 



224 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

Problems 

52 

48 

44 

40 

36 

32 

28 

24 

20 

16 

12 

8 

4 

Speedup 
Average Speedup 

13 

12 

11 

10 

9 

8 

7 

5 

5 

4 

3 

2 

1 

I 
I 
I 
I 
I 

I 

I 

" I ', ~ 
I '-

I ___ .-1 

A 
II 
I I 
I 
I 
I 

I 
I 
I 
I 
1 Problems Solved 
I 

\ 
\ 

\ 
\ 

" ' ' ,.__ ___ ........ _____ ..................................... --............... Depth 

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

Figure 7.24: Speedup using Lexical Search in artificial design space 



7.6. EVIDENCE FOR SIGNIFICANT COMMUTATIVITY 225 

The graph shows that lexical search saves a factor of 2 effort for solutions of 
length 10, and a factor of 10 effort for solutions of length 22, with the savings grow
ing more or less monotonically in between. The interpretation of the savings by 
lexical search is that there are as many commutative paths in the search space as the 
magnitude of the savings. 

Collecting ratios for individual 3x3 problems averaged about 1 hour of CPU on 
a 20Mhz Intel 386 under a compiled version of CommonLisp. Attempts to extrapolate 
this data by scaling up to 4x4 problems were stymied by inordinate execution costs; 
collecting this ratio for a single 4x4 problem cost 1 week of CPU, but showed a savings 
of 100 times for a solution of length 27. 

This evidence suggests that commutativity of paths in the space goes up mono
tonically with solution length, and may in fact grow very quickly with the number of 
steps. The analysis in [Bax88] suggests that the growth is exponential in the solution 
length; this is not surprising when one considers that permutations are being elim
inated, and the number of permutations of a string is n!, essentially an exponential 
function. When we consider that a transformational implementation of a moderate 
size specification has on order of 104 steps (Figure 3.8), the number of different paths 
to the same point in the design space would appear to be truly immense. This give us 
great hope that a derivation history can be rearranged for our convenience, leading to 
the same solution point; this is why we believe the swap procedure in the functional 
delta integration process is likely to be effective. 

Our purpose in defining Lexical Searching was twofold: first, to explore the 
amount of commutativity in the design space, and secondly, as an enhanced mecha
nism usable by a transformation system. We have yet to use Lexical Search in the 
second application. 



226 CHAPTER 7. INTEGRATING DELTAS INTO DERIVATION HISTORIES 

7.7 Summary 

Our purpose was to define and provide procedures for transformational mainte
nance given just a derivation history. 

In this chapter, we have: 

• Shown the utility of "commuting" transformations in the design space for man
aging integration of maintenance deltas into a derivation history 

• Provided a theory behind the notion of "commute": DELAY 

• Identified frequently-occurring special cases and outlined procedures for imple
menting those cases for tree transformations: SWAP and DEFER 

• Defined procedures for removing unwanted transformations and their depen
dents from an existing derivation history: BANISH, BANISHBATCH 

• Noted the utility of BANISH as a mechanism for use in dependency-directed 
backtracking 

• Provided procedures for revising a derivation history and implementation given 
technology 6.c and/ or functional deltas 6. f 

• Shown different classes of evidence for the presence of significant commutativity 
in the design space, justifying the use of mechanisms such as DEFER 

• Given an empirical demonstration of commutativity in certain spaces with prop
erties similar to those of transformation systems. 

These ideas have been tested by a proof-of-concept implementation of the 6. f inte
gration procedures. 

We have demonstrated the theory and practicality of reuse of derivation history 
for certain types of deltas. Additional information, contained in the design history, is 
both needed and needs revision in order to handle other types of maintenance deltas. 
We will consider these in the next chapter. 



Chapter 8 

Integrating Maintenance Deltas 
into Design Histories 

Chapter summary. Most maintenance deltas affect the design justification. 
This chapter describes procedures for integrating those maintenance deltas into 
a design history. Such procedures typically mark places in the design history 
that are inconsistent with the delta, eventually prune away their dependents, 
and then repair the remaining history by an agenda-oriented TCL execution 
scheme. Central to execution is insertion of a transformation into a derivation 
history, and how the resulting complications in updating the design history are 
handled. Procedures for each of the various deltas are described. 

We have seen how, in Chapter 7, to integrate certain kinds of maintenance deltas 
(.6.c, 6.1) into that portion of a design history called the derivation history. Changes 
to the derivation history indirectly affect the design justification, and so we also need 
procedures to adjust the design history when changes are made to the derivation 
history. 

Other maintenance deltas change the means by which the performance speci
fication is achieved (.6.M), change the specification (D..a, .6.v), or the meaning of the 
specification ( .6.g, .6.p, .6.~, .6. v). Such maintenance deltas also require revisions be 
made to the design history, as well as inducing changes on the derivation history. 

In this chapter, we consider procedures for revising a design history to be con
sistent with each type of maintenance delta. We will find the procedures defined 
for revising a derivation history useful. The design history procedures are currently 
less developed than those for derivation history management, so we only sketch the 
mechanisms. 

227 



228 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

8.1 Integration 
Revise, Mark, Prune, and Repair 

It might be possible to construct specialized design history integration methods 
for individual delta types that could directly modify the design history. We have 
chosen a more conservative approach, in which all the design history delta integration 
methods follow the same general sequence: 

1. Revise: adjust structures in delta-specific fashion; 

2. Mark: identify agenda items in the design history inconsistent with the delta; 

3. Prune: prune away inconsistent agenda items, and all the forced choices de
pendent on those already pruned; and 

4. Repair: complete the pruned design history, perhaps by using new information 
supplied by a delta. 

As with modifying a derivation history, these steps are interleaved in practice, for 
both individual deltas, and for the multiple deltas that make up a composite delta. 

A delta may require direct revision of the design history or the support libraries. 
Revisions to support libraries have been defined in Chapter 6. In particular, a delta 
may augment the available support technology, allowing the repair process to take 
advantage of new opportunities. Such revisions must take place before the repair 
process is started. 

The revision process usually inspects the design history relative to a particular 
delta, and, while revising it, marks those parts (agenda items) which conflict with the 
delta as undesirable. How the conflicts are detected depends on the type of the delta. 
For many deltas, the design history revision process is limited to simply marking. 
Direct revision of the design history takes place when handling performance changes, 
!la. 

Undesirable agenda items are then pruned away, leaving an incomplete design 
history (see Section 5.3.1)1 . If the pruned agenda item is a forced (i.e., only) choice 
on which some other agenda item is dependent, then it is only sensible that the 
depending agenda item must also be pruned. Pruning an agenda item leaves its 
parent incomplete. This part of the integration process is independent of the type of 
delta. 

1 Nothing about our approach prevents us from applying a delta in the presence of an already 
incomplete design history. 



8.2. PRUNING THE DESIGN HISTORY 229 

Having finished the pruning process, the incomplete design history must be 
repaired by processing incomplete agenda items. By designing TCL around a plan
ning approach that uses agenda items, rather than a procedural metaprogramming 
approach (like that of PADDLE [Wil83] or Goldberg's system [Gol89]), we can ac
complish this by simply passing the incomplete design history to the TCL execution 
engine. We must of course ensure that pruning a design history always leaves it in 
a "legal" state as far as the TCL execution engine is concerned. In this fashion we 
avoid the need for a special "replay" mechanism; completion for delta integration and 
completion for initial implementation are identical. 

We consider these activities in the order Prune, Repair, and Mark, because of 
the commonality of the Prune and Repair processes over all the delta integration 
procedures, and the diversity of the Mark processes. We will not discuss revision 
procedures for support technologies. Any other revision procedures will be discussed 
with the corresponding Mark procedures. 

8.2 Pruning the Design History 

The purpose of pruning a design history is to remove those parts which are 
either simply invalid or no longer serve any purpose relevant to the final performance 
specification. 

We assume that we have a design history in which some agenda items have been 
marked undesirable. We must prune away: 

• all portions of the design history which are directly marked 

• every agenda item that depends uniquely on some pruned agenda item 

• agenda items generated as descendents of those marked 

• agenda items which are indirectly dependent on pruned agenda items 

Leaf agenda items are transformations, and pruning them requires that we eventually 
revise the derivation history portion of the design history. 

Our approach is to remove agenda items from the design history known to be 
bad, or known to depend on some agenda item which will be pruned for which there 
is no alternative. Those agenda items which are indirectly dependent may not be 
discovered immediately; we mark the design history in such a way that they will 
eventually be discovered and pruned. What remains after pruning is a design history 
containing incomplete agenda items having alternative completions. 



230 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

To prune an undesirable agenda item, the design history is traversed from that 
item upwards until some parent agenda item that provides an alternative is found, 
then that item is marked as incomplete, and all agenda items below that point are 
removed from the design history. Agenda items which provide alternatives are OR, 
ELSE, and ACHIEVE2 (APPLY allows alternatives, but cannot be a parent). The 
intervening agenda items by definition provide no alternatives, and will have to be 
removed. A clever pruning process would leave a to-be pruned agenda item directly 
under a not-to-be pruned parent, annotated as "don't try this particular alternative 
again." The removal is easily accomplished with a recursive procedure that removes 
all the descendents of a son, and then deletes the son from the design history. Because 
the root of every design history is an ACHIEVE node, this traversal process can not 
climb past the root of the entire design history. When pruning a leaf agenda item 
that APPLY s a transformation H[j], we additionally mark H[j] in the derivation 
history as undesirable; during the plan repair process, an eventual banish will remove 
the marked transformation. Revision of the derivation history by banishment can 
invalidate downstream transformations; the agenda items which produced such invalid 
downstream transformations are indirect dependents and must also be pruned as 
encountered. Notice that we eagerly prune obviously invalid agenda items, but only 
lazily mark transformations in the derivation history. Each agenda item marked as 
undesireable must be pruned in this fashion before any attempt to repair the design 
history is made. 

In Figure 8.1, we show the pruning process. A sequence of activities is numbered: 

1. mark agenda item undesirable 

2. prune the undesirable agenda item and its dependents 

3. mark dependent transformations as undesirable 

4. BANISH an indirectly dependent transformation 

5. mark, as undesirable, the agenda item generating the transformation 

Some delta-specific marking process first marks G7 as undesirable. At the pruning 
step, traversal moves up the design history from undesirable G7 to the first parent 
having an alternative, G9 • That item is marked as incomplete, and all of its de
scendents (the outlined region containing G10 , G8 , G7 , and the unshown nodes that 
APPLY transformations c~4 , c~5 and c~6 ) are removed from the design history. All the 
transformations under the pruned region are also marked as undesirable. Eventually, 
but not as part of the pruning process for G7 , some derivation history banishing 
activity triggered by the need to remove c~4 , c~5 , c~6 , will encounter c~7 ; should this 
transformation itself also need banishing, then its immediate parent (APPLY under 
G6 ) will be marked undesirable and the pruning process repeated. We will see how 
this takes place in Section 8.3.3. 

2The variant ACHIEVEBY is treated in the obvious way, nearly identically to ACHIEVE so we 
do not discuss it further. 



8.2. PRUNING THE DESIGN HISTORY 

I , 
I 

I 
I 

2. prune 

3. mark undesirable transformations 

_____ ..., Original implementation path 

Alternative subgoal 
· · · · · · · · · · · .... Transformations marked by pruning 

' ' ' ' ' ' 

231 

achieve subgoals 
left to right 

achieve subgoals 
in any order 

Figure 8.1: Pruning a Design History back to an alternative 



232 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

Pruning the "subtree" below an agenda item am in a design history is slightly 
complicated by the possibility that a descendent agenda item is actually shared by 
another. In such a case, the shared agenda item as may actually need to be removed, 
or be simply disconnected from this subtree. We must remove as (shown as G9 in 
Figure 8.2) if it only serves am (G6 ); we can retain as (G9 in Figure 8.3) if it serves 
some other relative of am (G3 ). 

Certain agenda items (APPLY, LOCALE, ACHIEVE, etc.) may use locale 
values (variables) generated by other agenda items. Should a locale-value generating 
agenda item be pruned, all of its locale-value using dependents must be adjusted. We 
mark each locale-using dependent as incomplete, and its sons must be removed; this 
ensures that the plan repair process will later re-execute the locale-using dependents. 
Since all agenda items in the subtree below the alternative are removed by the pruning 
process anyway, we need only process locale-using dependents of the alternative's 
immediate sons in this fashion. Finding the set of locale-using dependents is easily 
accomplished by taking the transitive closure of the dependency slots stored in the 
symboltable of the pruned agenda item. 

8.3 Repairing the Design History 

Repairing the pruned plan consists of executing incomplete agenda items ac
cording to their actions, perhaps generating additional agenda items in the process. 
Since each agenda item represents the execution of a TCL program fragment, and 
such incomplete items can be produced by the pruning process in the middle (accord
ing to the sequencing constraints in the design history) of the logical transformational 
implementation process, to repair a design history we must have: 

• Out-of-order execution of TCL methods and fragments 

• The ability to insert transformations in the middle of the derivation history 

We purposely glossed over the details of TCL execution in Chapter 4 to avoid 
any preconceptions about order of execution. The execution order for a metapro
gramming language like PADDLE [Wil83] or the tactics language of Goldberg is 
totally determined, and very difficult to restart at arbitrary points, which is why 
such metaprograms are replayed in their entirety from the beginning. Rather than 
be saddled with a purely linear execution model for the metaprogram, we designed 
TCL execution in such a way that an agenda-oriented execution process is possible. 
Agenda items are produced by TCL language constructs when encountered, and pro
cessed in the order determined only by the sequencing constraints defined by PLANs. 
Since some agenda items invoke methods or PLANs, processing them produces sub
agendas. The design history is a static snapshot of the processed agenda nodes and 
the sequencing constraints. 



8.3. REPAIRING THE DESIGN HISTORY 

-------
Original implementation path 

Alternative subgoal 

I 

· ·· ·· · ·· · ·· .... Transformations marked by pruning 

I 
I 

I 
I 

Figure 8.2: Pruning a shared agenda item 

233 

pruned 

undesirable 

achieve subgoals 
left to right 

achieve subgoals 
in any order 



234 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

_____ _., 
Original implementation path 

Alternative subgoal 

I 

· · · · · · · · · · · ~ Transformations marked by pruning 

I 
I 

I 
I 

pruned 

undesirable 

achieve subgoals 
left to right 

achieve subgoals 
in any order 

Figure 8.3: A shared agenda item that need not be pruned 



8.3. REPAIRING THE DESIGN HISTORY 235 

8.3.1 Agenda-oriented execution process 

Given an incomplete design history, there may be a number of agenda items 
which are individually incomplete. An agenda-oriented execution method chooses 
any one of them and executes it, marking that agenda item complete, and possibly 
adding more agenda items. 

Agenda items must be processed in some order. We choose to process the 
earliest incomplete agenda item, as determined by the ordering constraints in the 
design history. This performs those actions with the most potential "ripple" effect 
on the remainder of the design history (those agenda items and states which must 
follow the selected agenda item in the design history) as early as possible. Such ripple 
affects will cause later parts of the design history to be pruned and/or revised. While 
we cannot in general avoid handling such ripple, our heuristic minimizes the amount of 
revision required by doing early actions while the design history is as small as possible. 
We will see later, when we discuss execution of APPLY actions, how an agenda item 
can affect following design states. Processing the earliest incomplete agenda item first 
also conveniently honors sequencing dependencies required by locale-use. 

Each agenda item specifies a TCL action taken from some TCL method 
(Section 5.3.2) which determines what occurs when the agenda item is executed. 
Most typical is the execution of a PLAN action, and the most potentially compli
cated is the execution of an APPLY action; we will discuss these shortly. Alternative 
generators interact with the pruning process as discussed below. Since other actions 
are executed in similar ways we will not discuss them. 

Agenda items with alternative completions 

An incomplete agenda item must be executed according to its action and pro
duce a satisfactory subagenda. Some of the agenda item types allow only a single 
way to obtain satisfactory completion (PLAN, CALL, REQUIRE), and some,allow 
many alternatives (ACHIEVE, APPLY [via multiple possible locaters in a locale], 
OR). 

Agenda items which allow alternative completions contain an alternative gener
ator as internal state. Creation of the agenda item initializes the generator. Execution 
of the agenda item causes the next alternative to be produced, unless there are no 
more, in which case this agenda item is unsatisfiable. Pruning the design history back 
to an agenda item advances its alternative generator. An obvious pruning optimiza
tion is to continue pruning upwards if advancing an alternative generator exhausts 
it. 



234 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

------. 
Original implementation path 

Alternative subgoal 

I 

· ·· · ·· · · · ·· ... Transformations marked by pruning 

I 
I 

I 
I 

pruned 

undesirable 
r-"----. 

achieve subgoals 
left to right 

achieve subgoals 
in any order 

Figure 8.3: A shared agenda item that need not be pruned 



8.3. REPAIRING THE DESIGN HISTORY 237 

to the ordering information in the design history, the point of application turns out 
to be the end of the derivation history, and so this scheme conveniently subsumes 
the simple linear execution model (see Figure 8.4, in which we are applying a trans
formation under Gs, and note the absence of ordering under the root). To be able 
to apply a transformation at any point along a derivation history, we must have the 
entire state available to us at every point. This can be accomplished accomplished 
by computing (IIH[l..i])(J0) where i is the insertion point; one can cache every nth 
state to minimize this computation. We eventually hope to be able to use partial 
states in a fashion similar to the way they are handled in nonlinear planners to avoid 
this cost. 

A more interesting case is shown in Figure 8.5, in which c~3 has been marked 
as undesirable, and the design history has then been pruned back to Gs, which offers 
the alternative c~8 , shown by the dashed arrow. This alternative transformation must 
be applied just prior to the earliest son of G7 , i.e., it should replace H[3], and should 
therefore be applied to f 2 = (IIH[l..2])(!0 ). This is accomplished by treating the new 
transformation to be applied as a functional delta 81 and using an extension of the 
INTEGRATEMIDDLE1 procedure (see Section 7.4.2) to construct a new derivation 
history, shown in dotted outlines, growing horizontally in the figure, with the new 
transformation inserted in the middle. 

Inserting a Transformation in a Design History 

Inserting a transformation into the derivation history fundamentally requires 
us to build a new ladder (Section 7.4) to obtain the revised derivation history. The 
ladder construction process repeatedly attempts to PRESERVE a transformation in 
the face of the delta, or failing to preserve it, BANISH es the offending transformation. 
Doing this in the context of a design history requires that we extend the procedure 
INTEGRATEMIDDLE1 to respect constraints from, and adjust the design history 
in parallel with ladder construction: 

• for determination of revised locaters for PRESERVE 

• to re-validate proposed replacements for preservable transformations 

• to adjust the design history to record the replacement 

• to handle unpreservable transformations 

We will discuss these topics in the following sections. 

Using Locale information to Compute Revised Locators: In attempting to 
PRESERVE a transformation, what guidance do we have for choosing a locater? 



238 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

\ 

' \ 
\ 

' 

Original implementation path 
- - - - _. Alternative subgoal 

Crest 

' ' ' ' 
' 

achieve subgoals 
left to right 

achieve subgoals 
in any order 

Figure 8.4: APPLYing a transformation as late as possible 



8.3. REPAIRING THE DESIGN HISTORY 

\ 
\ 

' \ 

Grest 

\\---, 
I I 
I Gg I 
I I 
L ___ _J 

I , I 
I 

I 
I 

' ' ' 

239 

" 

Original implementation path 
- - - - _. Alternative subgoal 

~ achieve subgoals left to right 

~ achieve subgoals in any order 

Figure 8.5: Repair by Inserting a Replacement Transformation 



240 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

Our theory from Sections 7.2.2 and 7.4.l says that any locater that satisfies the 
commutative square will do; but there may be more than one. The locale constraint 
from the APPLY agenda item in the design history provides an additional constraint. 
Even this may not be enough to uniquely determine a choice. Our current solution 
is to take the first locater satisfying both the commutative square requirements and 
the locale requirements. Should this turn out to be wrong, eventually some method 
postcondition will fail during re-validation (see below) and backtracking will occur. In 
general, it is not possible to prevent this from happening, so we do not feel justified 
in investing a great deal more energy in improving this solution. What might be 
helpful would be mechanisms for allowing tighter control of locale constraints, in an 
attempt to eliminate as many false locaters as possible. Should there be no solution 
satisfying the commutative square and the locale constraint, then the transformation 
is unpreservable and is marked undesirable. 

Re-validating Replacement Transformations: The proposed replacement must 
be checked to ensure it still satisfies its purpose in the plan which generated it. 
This can be accomplished by walking up the design history via parent links, and re
executing any dynamic postcondition agenda items (necessarily last sons of a PLAN 
whose action is REQUIRE) until a parent is found with other sons that necessarily fol
low the APPLY agenda node, or a parent is found with some incomplete descendents. 
In Figure 8.6, we see that c;~ has been partially banished in the original history, and 

that c!~ and c~~ have been preserved, and the ladder constructing process is attempting 

to preserve c~6 • The preserved transformation c~~ requires checking the postconditions 
of G7 ; we need not check the postcondition of G6 because it has an incomplete son 
G10 • Should any postcondition check fail, the purportedly PRESERVEed transforma
tion is not achieving its purpose, the replacee is marked undesirable in the derivation 
history, and typically BANISH ed immediately. Validation of a transformation via a 
path containing a shared agenda item requires that the validation process be carried 
through to all the parents; failure to validate along one path requires that the shared 
agenda item cease being shared along that path. 

Our approach to preservation of transformations ensures that any transforma
tion (both the transform and the locater) interactively chosen by the software engineer 
(Section 4.2.3) to satisfy a particular goal is retained by the repair process if it is still 
valid. In the complete replay of purely generative design information, such applica
tions are lost. 

Adjusting the design history for the replacement: Are-validated replacement 
transformation must replace its source in the originating APPLY agenda item. In 
addition, the revised locater must be propagated to locale-value dependents found 



8.3. REPAIRING THE DESIGN HISTORY 

Gs 

\ 
\ 

' 

Grest 

\\----, 
I I 
I Gg I 
I I 
L ___ _J 

I 

JI 
I 

I 
I 

I 

241 

'-------' ', 
incomplete -..... 

Original implementation path 

- - --- New implementation path 
~ achieve subgoals left to right 

- - - - -- Alternative subgoal 
.... · .... · ~ Ladder rungs 

~ achieve subgoals in any order 

Figure 8.6: Validating a PRESERVEd transformation 



242 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

by following the dependency links in the symboltable and recomputing the locale ex
pressions found. The propagation can stop when a recomputed locale value matches 
the original value. The common case is when the locater does not change; no prop
agation is needed. Locale-dependent APPLY s for which the locater changes must 
be marked as incomplete to force re-application. Since locale-value dependents must 
necessarily follow the replacement transformations, APPLY s that must be marked in 
this manner are later in the derivation history. 

Handling Unpreservable Transformations: When a transformation is 
BANISH ed or marked as undesirable, the agenda item that generated it is marked as 
undesirable. It is sensible to prune the undesirable agenda item immediately, to ensure 
that dependent transformations in the derivation history are also marked undesirable. 
Use of BANISHLAZY delays rearranging the tail of the derivation history as long 
as possible in an effort amortize the cost of banishing over the largest number of 
undesirable transformations. 

A difficulty one can have when marking a transformation as undesirable is that 
it may serve as part of a larger plan; this is why the pruning process climbs the de
sign history until an agenda item providing an alternative is found, and then removes 
everything down to the leaves of the subplan under the alternative. This ensures that 
related transforms involved in the plan are also eventually removed. Related steps 
can be arbitrarily far apart in the design history. In particular, an undesirable trans
formation late in a derivation history may be supported by another transformation 
arbitrarily early in the derivation history. 

Now consider Figure 8. 7. A problem can occur while building the ladder. The 
delta may propagate past a particular transformation c;reserved, and then conflict with 

some c;~eserved+k further down the history (in the diagram, Cpreserved is C4 and Cpreserved+k 

is y,, and our current delta is 8s). While c;2reserved+k may be banished, if some plan 

( G6) in the design history insists that c;reserved together with c;~eserved +k work together 
atomically, then Cpreserved must also be removed from the derivation history. This 
invalidates the part of the ladder built by preserving Cpreserved ( c~8 , c~9 , 84, 8s). 

It is easy to remove Cpmerved from the original derivation history; we simply 
banish it. The problem is that our delta is already beyond Cpreserved; what is the effect 
on the propagated delta? 

We know of no general way to decide that Cpreserved must be banished because of 
an eventual conflict with a supporting transformation Cpreserved+k, without pushing the 
delta through the intermediate transformations, because the nature of delta is (pos
sibly) changed by the intermediate transformations. There seems to no alternative to 



8.4. INTEGRATION OF FUNCTIONAL DELTAS 6.F 243 

backing up, marking Cpreserved as undesirable, and restarting the ladder constructing 
process from the point where Cpreserved was applied. 

This suggests that, when used in conjunction with a design history, the ladder 
constructing process must actually construct and retain the entire ladder, including 
the deltas forming the rungs, because arbitrary backup may be required to handle an 
unpreservable transformation. This raises the space requirements a factor of three. A 
more difficult problem is need to retain all the presumed-large states (this was handled 
incrementally by the derivation history version of INTEGRATE 1 ); this is already a 
requirement in order to be able to insert transformations at arbitrary points in the 
design history (Section 8.3.3) and the same solutions apply. 

Having discussed design history pruning and repair, we now consider how to 
mark and adjust the design history according to various types of deltas. 

8.4 Integration of Functional Deltas ~ f 

Integration of functionality deltas into a design history is easy because plan 
repair already does most of the work. There is no need to mark any part of the 
design history at all. It is only necessary to APPLY the functional delta 81 to f 0 • 

The ladder-revising mechanism described in Section 8.3.3 will propagate the changes 
into the design history appropriately. The extended design history must be adjusted 
as shown in Figure 8.8; the new functionality delta is added underneath Ginvariant to 
record its purpose. 

8.5 Integration of Technology Deltas ~c 

Integrating technology deltas ( 6.c) requires removal of newly-illegitimate trans
forms from the design history, and possible use of newly-added transforms. Removal 
of newly-illegitimate transformations requires marking: 

• those illegitimate transformations in the derivation history 

• the APPLY agenda items which generated them 

Pruning and repair can follow immediately. The use of truly new transforms from 
8c.6.Ell is left to the repair process where they will be discovered indirectly via invo
cation of modified methods APPLYing the new transforms. 



244 CHAPTER 8. INTEGRATING DELTAS Il\TTO DESIGN HISTORIES 

-------
···········~ 

Original implementation path 

New implementation path 

Alternative subgoal 

Delta 

' ' ' I 
I 

I 

' 

achieve subgoals left to right 

achieve subgoals in any order 

Figure 8. 7: Preserved transformation c~4 supporting unpreservable c~6 



8.5. INTEGRATION OF TECHNOLOGY DELTAS .6.c 245 

entire 

Grest 

Original implementation path 
- ---- New implementation path 

~ achieve subgoals left to right 

- - - - -- Functional delta ~ achieve subgoals in any order 

Figure 8.8: Integrating a Functionality Delta .6.1 



246 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

The transformations H[i] in the derivation history for which H 7 [i] are members 
of the set(s) of deleted transforms Oc.i3.e are marked as undesirable, exactly as out
lined in Section 7.3. This will force eventual removal of these unwanted transforma
tions when some later derivation history scanning process (transformation insertion 
or BATCHBANISH) encounters the marked transformations. 

The agenda items which APPLY'd the now-illegal transformations could be 
marked as undesirnble. Instead, we simply mark them as incomplete. The reason for 
this is the consistency requirements on deltas. No transform can be applied unless 
explicitly mentioned by an APPLY action in some TCL method. If a transform 
c in Dc.6.e is being permanently deleted from the transform library C1ibrary, then all 
methods referencing that transform must be deleted or modified to no longer reference 
the transform; if the transform is simply being replaced (due to an error in domain 
engineering), then the applying methods will be untouched. If the applying method 
remains untouched, we merely desire that the replacing transform be applied instead 
of the replacement; our policy of marking the agenda item as incomplete will ensure 
that the replacing transform is eventually installed. In the case of a deleted transform, 
there will be a corresponding OM in the composite delta, that when processed, will 
prune the offending APPLY agenda item (see Section 8.8). The fact that pruning 
occurs before repair ensures that for any updated transform, the old version is removed 
before the new version is applied. 

8.6 Integration of Performance Deltas l.:ic 

Performance deltas 6.c change the specification of the desired artifact. We have 
seen that typical specifications are often given as mixed specifications (!0 , Grest). 
Performance deltas are can then limited to changes of G,.est· We have seen that 
changing Grest requires that a different path through the design space be chosen to an 
alternative implementation in Figure 7.1. The choice of path through the design space 
is controlled by decomposition of the performance goals allowed by TCL methods in 
M1ibrary. The decomposition of the performance goal for the current artifact is stored 
in the structure of the design history. Integration of 6.c requires that we revise this 
decomposition. 

Our approach is to revise the design history by propagating the specific De 
in a top-down fashion, paralleling the design history construction method by goal 
decomposition. 



8.6. INTEGRATION OF PERFORMANCE DELTAS 6.c 247 

Given be= (Ge, G&): 

Ge= O(n2 ) /\sloe< 10 
GEfJ = O(nlogn) /\sloe< 8 

ACHIEVE(G, e) 

CALL(i, a) Gk = O(?x) /\LISP 
a =:?x ==>- n2 

a' =i:? x ==>- n log n 

G = 0( n 2) /\ sloe < 10 /\ LISP 

G' =: O(nlogn) /\sloe< 8 /\LISP 

ACHIEVE( Gx, e') 

Gx =sloe< 10 

G~ =sloe< 8 
60 = (sloe< 10, sloe< 8) 

Gj = O(?x) 
Oj = (O(n2 ), O(nlogn)) 

Figure 8.9: Propagating De from root to leaves of design history 



248 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

As we walk down the design history, at each ACHIEVE(G, e) agenda item (see 
Figure 8.9), we must do the following: 

1. Revise the ACHIEVE(G,e) agenda item to be ACHIEVE(8G(G),e) 

2. Decide if CAL Ling method i is still useful as a means of decomposing the revised 
goal 

3. If not, prune the nonprocedurally generated subplan 

4. If still useful, determine the changes induced by 8G and propagate those into 
both subplans. Propagation should be into earlier subplans first to minimize 
propagation into subplans that become useless. 

Determination of the continued utility of the method mk = (i, ak, Gk) re
quires that we re-validate the goal decomposition process. If we cannot re
validate the goal decomposition, then the nonprocedurally generated plan to im
plement ACHIEVE(G, e) is not valid for the new ACHIEVE(5G(G), e). We force 
the eventual pruning of the generated plan by marking both the CALL and the 
ACHIEVE(Gx, e') nodes as undesirable, and terminate the propagation of 5G into 
this subagenda. An eventual pruning process will prune the plan back up to the 
revised ACHIEVE( 5G(G), e) node, and the repair process will attempt to find a new 
replacement. 

A successful re-validation of the decomposition requires verification that 
3cr', G~: Gkcr', G~ f- 5G(G). Given such a re-validation, we: 

• revise CALL(i, er) to CALL(i, 0-1) 

• propagate er' into the subagenda ak under the CALL. 

• recursively propagate a new 80 Gx ==? G~ into the subagenda 
ACHIEVE(Gx, e'), using this same procedure 

Propagation of 50 can stop if 50 can be determined to be an identity. Propagation 
of er' can terminate when er' = er. 

Propagating 0-1 into the subagenda ak requires 

• propagating a' into subagendas for all actions aj such that aj E ak and 
action(aj) = ACHIEVE(Gj, ej): 

1. computing a new performance delta 5j : Gja1 = 5j(Gja) 

2. recursively propagating 5j into the design history at aj 

• adjusting other agenda items derived from ak that are affected by a', such as 
REQUIRE(Gj, ej), etc. This may require re-validating performance predicates. 

Such agenda items are easily found because the structure of the design history is a 
direct reflection of the structure of method body ak. 



8. 7. INTEGRATION OF PERFORMANCE BOUND DELTAS 6.v 249 

In general, verifying the existence of a new a', G~ and derivative 8(; and various 
8js is very hard; it depends on the semantic relations between the various types 
of performance goals. vVe would need a description of this semantic relation and 
a theorem prover to do this computation. However, our assumption that Crest is 
conjunctive in nature, and a further assumption that the performance predicates are 
totally unrelated means that much of this can be treated as a problem in manipulating 
sets of independent predicates. Much of the computation then consists of shunting 
subsets of the components Ge, Gffi of the performance delta 80 = (Ge, Gm) to the 
right place. Figure 8.9 shows how this occurs for a specific case. 

8. 7 Integration of Performance Bound Deltas ~v 

Performance bound deltas Dv are simply a special case of 6.o, and so essentially 
the same integration procedures can be used. When revalidating performance goals, 
additional information about the relation (t) of the old and new performance bounds 
can make this process easier, by taking ad vantage of: 

Tighter performance bounds make it less likely that a performance goal will 
continue to be successful, while looser bounds tend leave its success unchanged. 

In Figure 8.9, if Gffi was O(nlogn) /\sloe< 12, then we can use the fact that 
lOsloc tsloc 12stoc to determine that the original Gx is satisfactory even for the changed 
performance specification, and so we need not propagate any 8(; into the subagenda 
under Gx. 

8.8 Integration of Method Deltas ~M 

Integrating a method delta OM reqmres handling each of its aspects 
(Section 6.4.4): 

• 6.Me: removal of agenda items produced directly or indirectly by deleted 
methods 

• Mm: revising the method library to make new methods available to the repair 
process 

• 6.Mpostcondition: checking that invoked method postconditions are still valid 

• 6.M action: revising bodies of invoked methods 



250 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

Handling 6.M8 : We mark as undesirable all invocations in the design history 
of the deleted methods; these are agenda i terns whose action field says CALL( i, 1J) 
for all i E 6.Me. An eventual pruning process will remove the CALL, all the agenda 
items introduced by such called methods, and will also prune upwards until some 
alternative is found to the invoking plan. 

Handling 6.M action: For each method i with an action revision 5 f ( ( i, 5 f) E 

6_M action), we do the following: 

• immediately prune the sons of agenda nodes whose action is CALL( i, IJ). If we 
were to simply mark the sons undesirable, a later pruning process would prune 
away too much: the CALL nodes that invoked the body. 

• mark such CALL nodes as incomplete (safe and appropriate because its sons 
have been removed) 

• revise the method library element for i 

This ensures that the old plan for method i is removed from the design history; the 
plan repair process will install the revised method body when it eventually repairs 
the inc'omplete CALL nodes. 

An idea we have not pursued is the possibility of using the transformation 
component of 6.Maction that revises the method body to guide the direct revision of 
the design history at every point where the method was invoked. The similarity of 
the structure of method bodies in terms of actions, and the corresponding structure 
of agenda items which act as instances of the method execution are what gives this 
idea promise; the payoff would occur in the avoidance of re-doing work generated by 
agenda items representing the leaves of the method. 



8.8. INTEGRATION OF METHOD DELTAS 6,M 251 

ACHIEVE(G,e) 

CALL(i,u) ACHIEVE(Gx, e') 

Figure 8.10: Nonprocedural invocation in design history 



252 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

Handling '6.Mpostcondition: For each method i with a postcondition change 8a 
( (i, De) E ~Mpostcondition), we check that nonprocedurally invoked instances of method 
(i, ak, Gk) are still valid and adjust the subagenda according to changes induced by 
8a; those which are no longer valid have the corresponding CALL(i, O') agenda item 
marked as undesirable. In particular, the design history is searched for agenda i tern 
complexes of the form shown in Figure 8.10. For each such complex, the goal decom
position process used by ACHIEVE( G, e) is retried to verify that the revised method 
postcondition 8a( Gk) is still effective. If :Jo-1, G~ : 8c( Gk)O'', G~ f-- G can be satisfied, 
then a revised 80 : G~ = 80(Gx) can be propagated into the ACHIEVE(Gx, e) sub
agenda, and 0'1 can be propagated into the CALL( i, O') subagenda using the procedures 
outlined for propagation of 8a into subagendas in Section 8.6. Failing to find a de
composition for the revised postcondition 8a( Gk) tells us that the method is no longer 
applicable; we simply mark as undesirable the CALL(i,O') and the ACHIEVE(Gx,e') 
nodes. An eventual pruning process will prune back to the parent ACHIEVE, and 
plan repair will find a new replacement. 

To minimize wasted effort caused by propagating performance specifica
tion changes into changed method bodies, ~M action should be processed before 
flMpostcondition · 

8.9 Integration of Library Deltas ~g and ~P 

The support deltas: 

• '6.p: Change of performance measurement functions 

• '6.g: Change of performance predicate library 

change definitional aspects of the performance predicates usable m performance 
goals. 

Changes which delete performance measurement functions or performance pred
icates will affect the design history indirectly, through the consistency requirements 
on composite deltas. If a performance predicate is no longer available, then the consis
tency requirements demand that methods which reference that predicate be modified 
or deleted; the design history will be purged of references to that predicate by some 
'6.M that modifies or deletes methods that referenced the deleted predicate. Similarly, 
added performance measurement functions or performance predicates can only affect 
the design history via method deltas. 

Changes which replace performance measurement functions or performance 
predicates necessitate the re-validation of dynamic postcondition checks that use 



8.10. INTEGRATION OF RANGE DELTAS Llv AND ORDER DELTAS Ll~ 253 

the replaced functions/predicates. Such re-validation occurs automatically when a 
functional delta is applied, or a dummy BATCHBANISH is applied in place of a 
functional delta, so no additional action is needed to handle such a delta. 

8.10 Integration of Range Deltas .6.v 
and Order Deltas .6.>-

The support deltas: 

• Llv: Change of range of performance values 

• Ll>-: Change of orderings b 

change only the outcome of evaluations of performance goals. Re-validation of dy
namic postconditions is sufficient to handle these. As with Llg and Llp, such re
validation occurs automatically. 

8.11 Processing order of Deltas 

A composite delta given to a Design Maintenance System consists of a set of at 
most one delta of each type, as described in Chapter 6. The individual deltas that 
make up a composite delta should be processed according to the following partial 
order to ensure that consistent changes are made: 

Llv > Llp 
Llv > Ll>
Llp > Llg 
..6.g > LlM 
Llc > LlM 
LlM> Llc 
LlM> Llv 
LlM> Llj 

Change range before measures 
Change range before ordering 
Change measures before goals 
Change goals before methods 
Change transforms before methods 
Change methods before performance 
Change methods before performance 
Change methods before functionality 

The general rule is, if concept a is used as a building block for concept b, then 
changes to a must be processed before changes to b: Lla > Llb. A topological sort of 
this ordering, usable as an order to process the deltas, is: 



252 CHAPTER 8. INTEGRATING DELTAS INTO DESIGN HISTORIES 

Handling ~Mpostcondition: For each method i with a postcondition change 8a 
( (i, 8c) E 6.Mpostcondition), we check that nonprocedurally invoked instances of method 
(i, ak, Gk) are still valid and adjust the subagenda according to changes induced by 
8a; those which are no longer valid have the corresponding CALL(i, O') agenda item 
marked as undesirable. In particular, the design history is searched for agenda item 
complexes of the form shown in Figure 8.10. For each such complex, the goal decom
position process used by ACHIEVE(G, e) is retried to verify that the revised method 
postcondition 8a(Gk) is still effective. If ::Jo-', G~ : 8a(Gk)O'', G~ f- G can be satisfied, 
then a revised 80 : G~ = 80(Gx) can be propagated into the ACHIEVE(Gx, e) sub
agenda, and 0'1 can be propagated into the CALL( i, O') sub agenda using the procedures 
outlined for propagation of 8a into subagendas in Section 8.6. Failing to find a de
composition for the revised postcondition 8a( Gk) tells us that the method is no longer 
applicable; we simply mark as undesirable the CALL(i, O') and the ACHIEVE(Gx, e') 
nodes. An eventual pruning process will prune back to the parent ACHIEVE, and 
plan repair will find a new replacement. 

To minimize wasted effort caused by propagating performance specifica
tion changes into changed method bodies, 6.M action should be processed before 
6,Mpostcondition · 

8.9 Integration of Library Deltas ~g and ~P 

The support deltas: 

• ~F: Change of performance measurement functions 

• ~9: Change of performance predicate library 

change definitional aspects of the performance predicates usable m performance 
goals. 

Changes which delete performance measurement functions or performance pred
icates will affect the design history indirectly, through the consistency requirements 
on composite deltas. If a performance predicate is no longer available, then the consis
tency requirements demand that methods which reference that predicate be modified 
or deleted; the design history will be purged of references to that predicate by some 
~M that modifies or deletes methods that referenced the deleted predicate. Similarly, 
added performance measurement functions or performance predicates can only affect 
the design history via method deltas. 

Changes which replace performance measurement functions or performance 
predicates necessitate the re-validation of dynamic postcondition checks that use 



Chapter 9 

Related Work 
on Maintenance Systems 

Chapter summary. We compare our work to a number of other systems that 
revise results. 

The major focus of this thesis is on design maintenance systems (DMS) for 
software artifacts. It is built on foundations consisting of a transformation system 
model and a control language for guiding transformational implementation. We have 
discussed related work on those topics in their corresponding chapters. In this chap
ter, we consider work related to systems that repair or maintain various structures, 
especially software. 

Such maintenance systems can roughly be classified as follows: 

• Informal software maintenance systems 

• Specification recovery 

• Reuse of control knowledge for transformation system 

• Derivation replay based on transformation system 

• Plan reuse and repair 

• Truth Maintenance Systems 

Informal maintenance systems are those for which no formal software construc
tion model exists, including the widespread ad hoc conventional practice. The rest of 
the maintenance systems we discuss can be cast as transformation systems according 
to the model presented in Chapter 3. Maintenance by specification recovery essen
tially abstracts a concrete program to allow changes to the abstraction rather than 
the code. Maintenance by reuse of control knowledge simply re-runs the transforma
tion system on the modified specification; the control knowledge used in the previous 
implementation is available for the new implementation. Derivation replay attempts 
to avoid direct use of the control knowledge by re-applying decisions resulting from 

255 



256 CHAPTER 9. RELATED vVORK ON MAINTENANCE SYSTEMS 

application of control knowledge in the previous implementation. Plan reuse tries to 
reuse the construction plan of the previous implementation. Truth maintenance sys
tems update derived inferences computed from a set of premises when some premise 
changes. 

We will consider systems of each type in the order given above. We summarize 
each work, and compare it to ours along the following dimensions: 

• Representation of Artifact Goal and Design States 

• Capture of control knowledge 

• Content and Representation of captured design history 

• Notion of change: informal or formal 

• Maintenance method 

9.1 Informal Software Maintenance Systems 

In this section, we examine ad hoc maintenance, the widely used tool Make, some 
design recording and design recovery systems. The lesson from informal maintenance 
is just what we expect; the design is needed. Work on design recovery is a natural 
follow-on. Not losing the design in the first place was our starting assumption. 

9 .1.1 Ad Hoc Maintenance 

Maintenance as practiced by the masses is indeed a sorry state of affairs (per
haps, partly, because the development process is also such a sorry affair). Most main
tenance is done by simple editing of source files followed by recompilation and ad hoc 
testing. In this arena, there is no formal notion of a specification, functional, per
formance, technological or otherwise. At best, an informal description of the desired 
artifact exists, usually out of date and too abstract to cover many low level details. 
Consequently, no explicit design is present,· tying specification to implementation. 
If anything resembling a design remains, it is perhaps some diagrams representing 
the high-level data-fl.ow architecture of the program. The implementation itself is 
full of consequences of particular implementation methods for the various program 
purposes, so that intent is swamped under technological detail. To aggravate the 
problem, many applied implementation technologies are suboptimal, wrong, or coded 
clumsily; dead code from previous maintenance exercises swells the volume. The only 
object in the design history, if it could be said to exist, is the final design state, i.e., 
the source code. 



9.1. INFORMAL SOFTWARE MAINTENANCE SYSTEMS 257 

The representation of a desired changed is usually informal and sometimes only 
a verbal sketch. Faced with a desired change, maintainers must induce an informal 
specification for the program by looking through a sea of code (or remembering the 
informal specification used during development!). A significant part of a maintainer's 
time is spent trying to understand what the code does, how it is related to the problem 
at hand, and the impact of a possible change. Since the process is manual and the 
understanding fuzzy, it is consequently error-prone and the "maintained" program 
often requires debugging. Knowledge acquired by one maintainer is useless to the 
next, as all of the knowledge required ends up in each individual maintainer's head. 

One can draw a motto from this: 

To lose the design} give your programmer a text editor. 

All of these defects were fundamental motivations for transformational mam
tenance. Formal specifications provide unambiguous intent. Validated formal trans
forms ensure that correct implementations result from the specification. Libraries of 
methods allow designers to implement by choosing from tested implementation tech
nologies whose performance level is known. A design history capturing the relation 
between performance goals and methods for achieving them capture the relation of the 
specification to the code. Explicit specification deltas guide the revision of the design 
history, producing a revised design history for the next maintenance step. Impact 
analyses could be performed given the desired delta; semi-automatic installation of 
the change is managed by a DMS. New implementation technologies can be added to 
the library by maintainers, and are available for use by the next maintainer. 

9.1.2 UNIX Make 

The UNIX tool, Make, is used to automate the construction of complex software 
systems from source files, that require compilations, link-edits, and other sundry 
result assembly operations. It is especially designed to optimize the construction 
process after a change has been made to one of the original source components. It 
is thus an "efficiency hack" in the same sense that a DMS is an efficiency hack: 
neither is technically necessary. But Make has shown its practicality in everyday 
software development (read "maintenance") environments, because most changes only 
affect a small portion of the code [LS80]; consequently, only 20% of a system is 
typically recompiled by Make after a change [LQ89], which provides considerable 
savings in computation energy and on-line waiting time. This is precisely the same 
argument we make for the utility of a DMS: changes will affect only a small part of 
the implementation, and consequently will require only a small amount of energy to 
implement. 



258 CHAPTER 9. RELATED VvDRI\ OS .\!AI.\fTE.\fA.\f CE SYSTEMS 

Make assumes components (and intermediate results. such as relocatable files 
produced by compiling) of a software system reside in accessible disk files. It requires 
a system implementer to explicitly state which files depend on which others, and 
how to regenerate the content of a file when one of those on which it depends has 
changed. This collection of dependencies and regenerators is in effect a dependency 
net with very large grain operators. Once a maintainer has modified some set of files, 
he invokes Make on the dependency net description; :Vfake determines which files 
need to be rebuilt by examining file date stamps (if DATE(Jilea) < DATE(fileb), 
and DEPENDSON(Jilea, J ileb ), then J ilea needs to be rebuilt). The dependency 
net avoids both the "accidental" ordering that using a linear history would induce, 
as well as avoiding unnecessary work. 

For Make, the functional specification of the desired artifact is captured in the 
collection of source files known to the dependency net. Such functional specifications 
are typically low-level program source code as opposed to abstract specifications, so 
much of the design, i.e., those decisions that went into producing the source code, is 
already lost. A weak kind of performance specification is defined procedurally by the 
sequence and parameters of the large-grain operators (i.e., is the compiler invoked 
with optimization enabled?) in the dependency description. The control knowledge 
to implement the artifact is also encoded in the dependencies. Design states are 
approximated by up-to-date sets of intermediate files forming a consistent frontier of 
the dependency net; the final design state represents the constructed artifact. This 
is very similar to notions of state used in nonlinear planners. The intermediate files 
coupled with the dependencies description could be treated as a sort of design history; 
they capture consequences of design selections. The only notion of change that Make 
understands is implicit: an out-of-date or missing file. These changes are caused by a 
programmer using an editing, moving, or deletion tool on a file. When such a change 
is detected, the dependency net is consulted to determine what operator to apply. 

A DMS uses an explicit formal delta to determine what changes initially, and 
the design history to determine what is indirectly affected, so it does not need date 
stamps. 

Unlike Make, a DMS can repair a failed regeneration step by virtue of having 
access to the goal structure which generates the individual transformations, and al
ternative methods for achieving such goals. A DMS can preserve a transformation 
step that follows a failed step by commuting them; Make simply aborts the regener
ation process. Make also only considers data flows, not actual transformations; as a 
consequence, only objects statically identified by the programmer are traced. A DMS 
generates design decisions by executing TCL methods, and records the resulting his
tory automatically. Errors in a Make dependency net lead to incorrect re-generation 
of the product. Errors in TCL methods lead to the same problem, but are presum
ably less likely because such methods may be used by many projects and are probably 



9.1. LVFORMAL SOFTW4.RE .\IAISTENA.SCE SYSTEMS 259 

better tested; further, once detected. Design :'viaintenance System can help correct 
the resulting artifact. 

9.1.3 Code understanding as a maintenance prerequisite 

Soloway [SJ85] suggests that a significant problem in conventional maintenance 
is that of understanding how existing programs work. A particular problem is that 
of delocalized plans [LS86]: sections of program text that are widely separated in 
the linear textual version of the program, that must work together to accomplish a 
particular effect. Trivial examples of this include "accumulator initialization" before 
a loop body, and "accumulator summing" buried deep in the loop; together, these two 
fragments constitute a "sum-values" plan. Human maintainers have trouble when one 
part of a plan needs modification, and the existence of the other part is not obvious, 
has been forgotten (due to the complexity of the plan), or is not easily found (due 
to textual gap between the parts). Soloway suggests that informal text pointers be 
embedded in comments at each plan fragment that point to the other fragments to 
make the other parts findable. 

Soloway does not address how the maintainer knows what a program is supposed 
to do (no artifact goal) or how it achieves those purposes (no design). There is 
no design history; only the final code produced as a consequence. Since Soloway's 
emphasis is on understanding as a prerequisite to change, there is no discussion of 
change, change representation, or installation of change. 

Our DMS requires use of a formal specifications to encode program intent. The 
design history captured during the implementation process provides traceability from 
the specification to the implementation, providing a connection from what to how 
with intervening plan structures. While we do not specifically use this information 
for this purpose, it is available for the maintainer to help him understand how the 
existing program achieves its purposes. 

9.1.4 Informal Design Capture 

Since understanding is so important for conventional maintenance, Wild 
[WML +sg] suggests that a hypertext [Con87] network be used to capture the de
cisions leading to source code from the requirements, in a GIBIS-like network [CB88]. 
Nodes in the network represent decisions. Each decision has considered alternatives 
recorded, to document dead-ends and to provide hints about later possible improve
ments. The content of hypertext nodes is text, and relations between nodes are 



260 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

established by the software designers. It would appear to be very difficult to en
sure that this design document captures the necessary dependencies, captures the 
necessary information, and stays synchronized with the actual code. 

With a DMS, we capture such decisions in the design history. Alternatives 
are stored explicitly as agenda items representing OR or ELSE alternatives, and 
implicitly as untried methods. Our DMS does not store relative merits of alternatives. 

9.1.5 DESIRE: Design Recovery 

Design recovery is intended to recapture design information used to generate 
the source code to be maintained. It does not help with installation of changes; 
rather, the recovered design information is intended primarily to help the maintainer 
understand the existing code. 

MCC's DESIRE system [Big88, Big89a, Big89b] is intended to help maintainers 
understand code by hueristically matching it against a database of "design struc
tures", and pointing out which parts of the code match individual structures. The 
database is organized around conceptual abstractions of software engineering con
struction technologies, such as "window management", "process dispatching", etc. 
Each abstraction has associated with it a set of expectations; for window managers, 
the notion of window, window-update, etc., are expected. DESIRE uses the tex
tual names referenced by the program as an index into a database, either directly to 
the abstract concepts, or indirectly to an abstract concept via a related expectation. 
Access to an abstract concept leads to a set of expectations which can be checked 
against the code. Presence of such expectations simultaneously confirms the concept 
and clarifies which parts of the code perform related functions; this is similar to the 
effect Soloway tries to achieve by manual means. Absence of confirming expecta
tion is an indication that term used is either ambiguous or the technology to which 
it corresponds is not in the database (which provides opportunities to augment the 
database). It is not clear how much of the DESIRE matching process is automated, 
although [Big89b] describes a neural-net recognition mechanism. The final result of 
the DESIRE mechanisms are a Prolog-style database capturing relationships between 
objects in the design and code, and hypertext-style graphic aids using that database 
to inspect existing code. 

DESIRE is intended to help understanding, and indirectly populate reuse data
bases, but does not address the problems of installing changes as does a DMS. 



9.2. SPECIFICATION RECOVERY 261 

9.2 Specification Recovery 

The simplest model of maintenance in a transformational context is to mod
ify the specification and re-implement [Bal85a]. Of course, to do this, one must 
actually have a specification. One can treat the implementation source code as an 
extremely low-level specification, but then no leverage is gained over conventional 
maintenance. The DESIRE system abstracts the source code somewhat. Carrying 
this abstraction process to the extreme can allow one to recover a specification at a 
truly abstract level, where it is easier to make changes, or at least understand the 
intent of code implementing the abstraction. We call this specification recovery. With 
a full transformational maintenance model, one simply never loses the specification, 
and so specification recovery is unnecessary. 

By simply recording the sequence of abstracting steps, a reverse-chronological 
derivation history could be trivially obtained and reused by a tool like our DMS, but 
often specification recovery tools do not do this. 

Our DMS differs from these tools in that rather than re-discovering a specifi
cation and/or a derivation history, we simply don't lose them in the first place. As 
much of the original design is preserved as possible as opposed to reimplementing the 
abstract program from scratch. None of these plan recovery systems recapture any 
performance goal information, or aid in the installation of changes. 

9.2.1 'Iransformational Model of Maintenance 

Recovery of abstract functional specifications from source code is described by 
a Transformational Model of Maintenance, or TMM [ABFP86]. A domain-oriented, 
transformational software construction model is assumed, even for programs not con
structed transformationally. 

The result of the process is a more abstract specification of the existing code 
and the set of transformations used to implement that abstract specification. The 
process consists of an analyst manually guessing the abstractions and their imple
menting transformations, and applying a tool that converts matched implementation 
fragments in the code back to their abstractions. This work also discussed forward 
engineering from the abstract specification to accomplish change in support technol
ogy, functionality, or performance, providing the overviews given in Chapter 7, and 
leading to this thesis. The work describes a successful program porting project based 
on these ideas; this amounts to a change of support technology by revising the set of 
available transforms. 



262 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

The TMM work characterizes maintenance in terms of a design space, and 
discusses choosing different paths through that space, but does not take the logical 
step of actually recovering the derivation history of an implemented artifact and 
then revising it to obtain another. Neither explicit performance goals or change 
representations are provided. There are early hints of the ladder-construction process 
for integrating functional deltas that was presented in Chapter 7, but in this thesis 
we have produced theories and procedures for actually accomplishing it. 

9.2.2 Program Recognition 

There are a number of similar systems which try to recognize program struc
tures; this is effectively the extraction of a more abstract functional (usually even 
procedural) specification. Such systems match code against libraries of program frag
ments in an attempt to recognize abstraction function specifications. These systems 
differ from DESIRE by being more formal in their approach. 

PROUST [SJ85], [Joh86] matches small Pascal programs against their intentions 
coded procedurally; close matches are tolerated and the difference is diagnosed as a 
program bug. PAT (Program Analysis Tool) [Nin89] uses a forward-chaining inference 
engine to heuristically combine recognition of program fragments into recognition of 
more abstract specifications, such as determining that a loop containing an exchange 
of two data elements based on the results of their comparison is a BUBBLESORT. 

Dudu [All90] re-validates canned proofs to prove that several program fragments 
work together to accomplish an abstract effect. Our definition of TCL assumes that 
proofs are associated implicitly with methods; DuDu shows the value of associating 
an explicit proof with a method. 

The Programmer's Apprentice (PA) [RW88] is representative of these systems. 
PA is a system of tools to help a programmer construct and modify programs in 
conventional programming languages such as Ada or Lisp. PA maintains a database 
of cliches, which are transformations mapping abstract programming tasks (functional 
specifications) into more concrete code. Most such cliches are related to programming 
domain knowledge, as opposed to problem domain knowledge. The implementation 
part of such cliches are matched against programmer-selected portions of existing code 
to partition it into understandable chunks represented by the functional specifications; 
Wills [Wil87] describes a graph-matching mechanism to actually perform this. It is 
not clear what happens when cliche implementations conflict or share parts. It is also 
not clear if PA records the reverse derivation history of code to abstract code. Tools 
are provided to allow abstract specifications· to be inserted in a program, and then 
transformed into actual code. Changes are made not to program implementations, 
but rather to abstracted programs themselves. The change to be made is not stated 



9.3. CONTROL KNOWLEDGE REUSE FOR REIMPLEMENTATION 263 

explicitly, but an installed abstract change can be semiautomatically implemented by 
transformation. 

9.3 Control Knowledge Reuse 
for Reimplementation 

The utility of reusing transformational control knowledge to reimplement a mod
ified specification is a simple consequence of the value of control knowledge in driving 
the transformation system in the first place. The need for capturing control knowledge 
was the initial motivation for TCL. We can divide control knowledge into two types: 
that which is generally applicable, and that specific to implementing the specification 
at hand. It is clear that generic control knowledge should always (be available to) be 
reused in reimplementing any specification; this is why our model of a transformation 
system has a method library. Control knowledge useful for the specification at hand 
appears valuable for reimplementing a slightly changed version of the specification on 
the grounds that we don't expect the implementation to change much, and therefore 
the generation process must be similar. 

Several problem stem from using just the control knowledge without a design 
history for maintenance purposes: 

• the assured cost of complete replay 

• unnecessary expense of resolving choices left by metaprogram 

• inability to use a maintenance delta to revise implementation 

The first problem is the requirement for complete re-execution of the metapro
gram every time a change is made. We described the high cost of transformational 
implementation in Section 3.3. In the face of the small-change/small-effect assump
tion, this seems an unneeded expense. In the face of scale, even practical software 
development processes give up this assumption, partitioning systems into modules 
partly to keep the compilation costs reasonable, providing dependency-net manage
ment tools such as Make for assembling modules. 

Retention and repair of the design history has the potential of allowing most 
of the metaprogram re-execution to be avoided. This would be fruitless if the entire 
design history must also necessarily be scanned (as in fact our design history proce
dures pretty much do during BANISH and/or ladder building), but with the aid of 
a nonlinear dependency net on transformations there is some hope of avoiding this. 

The second problem has to with the availability of certain types of choices in the 
design space: how are subproblems decomposed, and where should transformations 



264 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

be applied? With a goal-oriented metaprogramming language such as TCL, a perfor
mance goal may be decomposed in many possible ways, of which only a few at best 
are actually useful for the specification at hand. Similarly, applying a transformation 
must choose an appropriate locater from within the allowable locale. The control 
knowledge does not necessarily contain this information, especially if it generic. The 
actual choices made are precisely what is captured by the design history. When re
playing just control knowledge, such choices must be resolved again. Our methods for 
integrating a delta into a derivation history in the common case go through effectively 
zero effort to "pick" a locater; it is already recorded. 

One can specialize the control knowledge to the particular specification being 
implemented, to constrain decompositions and locales until this control knowledge 
approximates a design history; as an extreme, one can consider the design history we 
have defined as a fully specialized metaprogram. If we assume that human agents 
generate such control knowledge ( metaprograms), it very expensive to generate such 
specific knowledge; further, we run the risk of specializing the control knowledge so 
much that it no longer applies when we change the specification. 

Lastly, given just a changed specification and control knowledge, what can we 
do to take advantage of any knowledge of the change? Our DMS procedures for 
delta integration into a design history provide us with concrete methods for taking 
advantage of such knowledge. We consequently think that one should have both the 
design history and its generator: the design history to cache low level details about 
what precisely was done, and the generator to use when repairing the design history 
after parts inconsistent with the delta are stripped away. 

9.3.1 PADDLE: A Metaprogramming System 

The TI system for constructing software transformationally [Bal85a] represented 
design states as functional specifications written in the GIST specification language 
[BGW82]; no performance specifications exist. PADDLE [Wil83] is a procedural 
metaprogramrning language to guide the transformational implementation process. 
The operation of the PADDLE was described in Section 4.3.3. It was suggested 
PADDLE be used for replay purposes after specification was changed, as well as for 
initial development. In practice, the PADDLE program would be changed in parallel 
with the specification, and then replayed [Bal85a]. No explicit notion of change is 
used. 



9.3. CONTROL KNOWLEDGE REUSE FOR REIMPLEMENTATION 265 

The model of replay assumed by the PADDLE design is complete re-execution 
of the metaprogram. There are several problems specific to PADDLE: 

• Early abort prevents maximal replay 

• Mis-applied transformations during replay 

• Unnecessarily limited ability to repair failed plans 

Early abort prevents maximal replay 

The purely sequential execution model used by PADDLE aborts execution of 
the metaprogram at the first sign of trouble, usually on encountering a transform 
which cannot be applied. It may consequently stop replaying when there remains a 
significant number of still-reusable design steps. The plan repair performed by DMS 
retains all steps not obviously invalidated by the specification delta, by BANISHing 
transformations that no longer apply and rearranging the design history accordingly. 
This is only possible because TCL explicitly allows nonlinear sequencing of plans, 
and because the DMS understands how to reorder transformations (DELAY). 

Misapplied transformations during replay 

A PADDLE metaprogram that successfully implements an initial specification 
need only choose correct locaters for applied transforms for the specific implemen
tation being attempted. Each locale constraint need only choose a unique locater 
for that particular specification. In a changed specification, the same locale con
straint may be ambiguous, and so replayed transforms may be applied in inappropri
ate places. Wile [Wil83] notes this shortcoming, and suggests that a richer language 
is needed in which the locales can be more accurately expressed. TCL does not 
directly provide a richer constraint language (although we have identified useful op
erators for such in Section 4.2.1), but does compute replacement locaters from deltas 
and the design history that cause at least equivalent local effect. Further, since our 
delta integration mechanisms re-validate replayed transforms, if one should get mis
applied, it will be detected and BANISH ed. Such re-validation is only possible when 
performance goals are available to be checked. 

Limited ability to repair broken plans 

PADDLE metaprograms do not have performance goals attached to plan steps. 
Consequently a failing metaprogram plan cannot be replaced by another plan that 



266 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

achieves the same effect, precisely because no other plans are labeled with information 
describing their effect. TCL metaprograms, in contrast, have explicit post-conditions 
describing performance goals, and failure by one method to achieve an effect can 
be alleviated by backtracking to another method with a post-condition achieving a 
similar or stronger effect. Thus TCL contributes to the repairability of a failed plan. 

9.3.2 Glitter: A Goal directed Metaprogramming System 

For the TI system, the difficulties caused by the absence of goals in PADDLE 
were recognized: 

"... a major impediment is the operational rather than specificational nature 
of PADDLE ... " 

[Bal85a] 

The Glitter system [Fic80, Fic82, Fic85] is also a metaprogramming system op
erating on GIST specifications. Its operation is described in Section 4.3.3. Glitter 
provided "transformational" goals, which can be considered process and/ or perfor
mance goals, and has a TCL-like style. This is an improvement over PADDLE, but 
it does not appear that Glitter was ever considered for use in a maintenance context. 
If it had, it would have suffered the problems of replay of a pure metaprogramming 
system as outlined earlier. 

9.3.3 Hueristic Plan Repair 

LP [Sil86] is system for learning control knowledge for solving algebraic equa
tions. It assumes an underlying algebra solving system, PRESS, implemented as a 
transformation system with control mechanisms as described in Section 4.3.3. PRESS 
control knowledge consists of TCL-like methods containing plans with postconditions 
(performance goals such as "number of occurrences of variable X"). LP is presented 
with a problem-solution consisting of a sequence of algebraic formulas. From this 
sequence of formula-states a derivation history can be trivially extracted by compar
ing successive pairs of states. LP explains the derivation history by partitioning it 
into sections that achieve interesting effects such as leaving an equation factor able (a 
performance goal). Essentially a sectioned sequential plan with goals for each section 
is learned. This corresponds roughly to the recursive TCL structure 

ACHIEVEBY(Gso1ved, e, SEQ(ACHIEVEBY(Gsectiongoa1, .. . ), ... )) 



9.4. MAINTENANCE VIA DERIVATION HISTORY REPLAY 267 

LP is doing more just design recovery, because it augments the support technology. 

One can treat LP as a maintenance system by presenting it first with an algebra 
problem and its solution, and then presenting it with a slightly changed algebra 
problem (an implicit functional delta). While learning new methods is certainly an 
interesting way to improve a system's problem solving ability on slightly different 
problems, it is not our concern here. Rather, we are interested in how LP handles 
failures in a learned plan when applying it to the modified problem. 

A learned plan is executed sequentially. At each plan step, the goal for the 
section is tested, and the balance of the section is skipped if successful. This allows 
serendipitously accomplished steps to be ignored. If the section goal is still false, the 
plan step itself is executed, and if successful, the next step is tried. If the plan step 
fails, other methods with identical postconditions of the failing plan step are tried 
until one is successful, at which point the next step is tried, or all fail. Should all 
methods fail, then LP attempts to find a method whose postcondition satisfies the 
preconditions of the failing plan step, and whose preconditions match the current 
state; this has the effect of dynamically inserting repair steps. Should this fail, LP 
gives up. All of this logic is wired into LP's control mechanism. 

Our DMS operates differently. Steps carried out by favorite plans with fallback 
plans are captured neatly by the TCL ACHIEVEBY action, and only a small amount 
of hardwired control mechanism is associated explicitly with it. Unlike LP, TCL will 
not leave out a plan step, because we assumed that TCL methods capture precisely 
what is needed to accomplish its postcondition in a provable way; optional steps 
can be easily described by ACHIEVE goals that are sometimes achieved serendipi
tously. Similarly, TCL execution does not dynamically insert steps; need for this is 
an indication of a missing ACHIEVE goal. 

9.4 Maintenance via Derivation History Replay 

The idea of reuse of design decisions is not new. To do so with automated help 
requires some sort of formalization of the software process, which is invariably chosen 
to be transformation systems. Considering the utility of the state space model, and 
the broadness of the transformational model we formalized in Chapter 3, this is also 
not a surprise. A number of systems using these ideas have already been built, and 
we cover them in this section. 



268 CHAPTER 9. RELATED '1VORK ON MAINTENANCE SYSTEMS 

What distinguishes our work from that presented in this section is: 

• A transformation system model including explicit performance specifications 

• A nonprocedural transformation control language in which all the control knowl-
edge is explicitly stated 

• A design history that captures relations between plans and performance goals 

• A formal notion of delta 

• Procedures for revising the design history controlled directly by an explicit delta 

• Methods for revising derivation histories based on commutativity 

• Re-ordering of history, and modification of replaced transformations (cf. 
DEFER and PRESERVE) dependent on the actual delta. 

We make these remarks here to avoid repeating them in each subsection. 

In particular, we want to emphasize that naive replay (simply re-applying still
legal decisions, skipping now-illegal decisions from a history) is relatively easy but 
suspect without revalidating that those replayed decisions serve a useful purpose 
according to the (possibly-revised) performance specification. 

9.4.1 Replay in SINAPSE 

The SINAPSE transformation system [DKMW89] replays critical design selec
tions. A "specification" for SIN APSE consists of a functional specification for solving 
differential equations, and a set of named design choice, named design selection pairs 
which are used to guide the refinement of the functional specification; such pairs act 
as a kind of partial performance specification. A built-in control mechanism makes 
most of the design selections either by default or by selection of a domination selec
tion according to hardwired criteria which effectively act as a procedural encoding of 
the rest of the performance specification. When a design choice is proposed whose 
name matches that of some member of the "specification", then SIN APSE chooses 
the corresponding named selection from the "specification". By changing the de
cision choice/selection pairs in the "specification", different implementations of the 
functional specification are produced. Design choices stated in the "specification" 
which are not encountered during the implementation process are simply ignored. In 
practice, the SINAPSE system takes only a few minutes to go through the entire 
refinement process, and so it is practical to change the functional specification and 
rerun the transformation process; this appears to be caused by limited design selec
tions. This aspect of SIN APSE treats the specified performance specifications as a 
kind of constrained metaprogram. 



9.4. MAINTENANCE VIA DERH~4.TION HISTORY REPLAY 269 

There is discussion of actually storing a tree of choice/ selection pairs, with states 
containing functional specifications attached to each instantiated branch. Change of 
performance is accomplished by pointing to a choice in the tree, forcing another 
selection, and restarting the transformation system on the design state corresponding 
to the branch leading to the selected choice, dynamically generating new choices 
and selections to reimplement the balance of the specification. The history replay 
mechanism has been used to effectively produce a decision tree on a small number of 
design decisions, leading to alternative implementations. SINAPSE has successfully 
synthesized different practical finite differencing codes for a real application using 
such histories to guide the process. 

9.4.2 Cheatham's Program Development System 

The Program Development System (PDS) [CHT81, Che84] was used to trans
formationally implement and maintain sizable programs, including targeting a net
work communications system for 4 different machine architectures and porting the 
ELl compiler. PDS maintained a derivation history of the modules of system as 
described in Section 5.4.4, similar to that maintained by Make. Maintenance con
sisted of changing an abstract module (corresponding to computing some 8a(fo)), 
changing a transformation set (corresponding to applying some 8c), or changing the 
transformation sequencing rules (corresponding to applying some 8M), and then re
generating modules affected by these changes as determined by the dependency net. 
This solution has the same disadvantage as that of Make: large grain dependencies. 

9.4.3 The Zap transformation system 

While the focus of Feather's Zap system [Fea79] was to transform moderate 
size programs, it is one of the earliest for which the notion of maintenance is promi
nently discussed. The fundamental problem for Zap was to build interesting control 
procedures to enable practical transformation of moderate size programs. The fun
damental control concept is that of a CONTEXT, which provides pattern-directed 
transformation. The operation of CONTEXTs were described in Section 4.3.3, and 
can be summarized as nonprocedurally determining a sequence of transformations 
to achieve a state in which selected portions have a form specified by the current 
CONTEXT. The individual CONTEXTs used seem to be very specific to the pro
gram being transformed. Sequences of CONTEXTs form a metaprogram for gen
erating an entire implementation. Such sequences are established by constructing a 
script file containing a series of CONTEXT descriptions. An individual CONTEXT 



270 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

can be considered analogous to a TCL method with postcondition requiring a par
ticular functional specification fragment; the script file can be considered a high-level 
derivation history. · 

Maintenance in the Zap environment consists of modifying the original func
tional specification, and naively replaying the script file. It is not clear what happens 
when a CONTEXT fails to achieve its goal; we would expect the script is aborted as 
successive CONTEXTs appear to build on structures introduced by preceding ones, 
but one could simply abort the particular CONTEXT and go on to the next. Zap 
successfully reapplied such a script to a changed telegram word-counting program. 
Most of the CONTEXTs successfully completed due to their nonprocedural nature. 
This suggests that the nonprocedural nature of TCL method invocation will be useful 
during dynamic replay. 

9.4.4 Bogart: Replay of a tree-structured 
derivation history 

The BOGART system [MB87] stores a tree-structured derivation history repre
senting the recursive refinement of components of the original functional specification. 
We described the history structure in Section 5.4.3. Control knowledge is represented 
as transforms which refine components into connected sets of subcomponents. The 
original functional specification can be changed directly, and BOGART will attempt 
to replay the derivation history to reimplement the specification. Deleting a com
ponent obviously deletes the refinement history of that component. Adding a new 
component effectively adds an empty refinement history for that- new component. 
Changing a component constraint does not directly affect the history, but may affect 
whether a component is still refinable by its history. The replay process is top-down 
for the refinement history of each individual component. Each derivation history 
entry which refined a component is retried; if successful, the subhistory is replayed. 
Failure of a component to refine according to the history aborts replay of that subtree 
of the history; however, other subtrees can still be replayed. The BOGART system 
required one minute per replayed step, due to an expensive constraint propagation 
system; only small designs were tried. 

If our estimate of 10, 000 transformations per average implementation is correct, 
the BOGART system cannot produce a timely result. Ignoring performance goals, 
our experimental DMS replayed unconditional transformations at the rate of tens 
of milliseconds each; admittedly, conditional transformations can take significantly 
longer but often even conditional transformations trivially commute because of the 
the non-overlap of locaters. 



9.4. MAINTENANCE VIA DERIVATION HISTORY REPLAY 271 

Our DMS has two other significant advantages. First, failure of a design history 
element simply causes DMS to remove that element, and following, but not seman
tically dependent elements are exposed for continued replay. Secondly, BOGART's 
refinement replay, while always producing a functionally correct result, may no longer 
achieve the unstatable performance goals that were achieved by the original deriva
tion history on the original specification. Our DMS re-validates transformations when 
they appear reusable to ensure that performance goals continue to be met. 

9.4.5 Replay by use of heuristic correspondence 

Goldberg [Gol89] discusses a preliminary derivation replay system for the KIDS 
(Kestrel Interactive Development System) enhancement to the REFINE transforma
tion system. We go into considerable detail because it is one of the few working 
history replay systems for software construction. 

We have already examined, in Section 4.3.3, his tactics (procedural metapro
gramming) language in which primitive tactics actually change the program and "ab
stract" tactics provide control; tactics are parameterized (see the example tactic in 
that section). Goldberg records a derivation history as a time-ordered trace of the 
calls (Section 5.4.2) to each tactic (abstract or primitive) along with the parameter 
values used at each call, especially the values of program-parts (equivalent to our 
locales). 

The need for history replay is triggered by performing arbitrary edits on the 
original program. Changes to "specifications" are limited effectively to functional 
deltas. This is due to REFINE's lack of performance measures or performance goals. 

Replay consists of attempting to re-execute each tactic, in order, from the deriva
tion history with suitably revised parameter values. The revised values are generated 
roughly by looking up original parameter values, and substituting their equivalents, 
from a hueristic correspondence relation between program-parts of the original pro
gram, and program-parts of a revised program. Consequently the emphasis is on 
computing such a correspondence relation. 



272 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

According to Goldberg [Gol89, page 7]: 

This is called the correspondence problem. Our method for establishing a 
correspondence is heuristic. It relies on three mechanisms: 

• Name Correspondence: The definition of the same identifier name in the 
program establishes a correspondence1 . 

• Structure Correspondence: Code appearing in the same (relative) position 
within the abstract syntax tree corresponds. 

• Parameter Correspondence: The execution of a tactic may cause a tactic 
variable to be bound to some code. Code bound to the same variable 
corresponds. 

An initial correspondence relation based solely on name correspondence be
tween the original and revised programs is constructed before starting replay. The 
correspondence relation is updated as the original tactics are replayed by identifying 
program-parts bound to the same tactic variable. If a tactic about to be replayed 
introduces a gensym'd variable name into the original program, then replay of that 
tactic will introduce yet another gensym'd variable name into the revised program; a 
correspondence between the two gensyms is added to the correspondence relation. 

When replay of a tactic is attempted, its parameter variables must be bound. 
Certain values (constants like resource bounds, etc.) are copied intact from the orig
inal history. Otherwise, values for tactic parameters which are program-parts are 
obtained by lookup of the original value in the correspondence relation, and replace
ment by the corresponding value. 

If the original program-part cannot be found in the correspondence relation, 
an abstract~syntax-tree tracing heuristic is used to locate the corresponding part. 
This part is found by climbing up the abstract syntax tree of the original program 
(both the original program and the modified program must apparently be generated 
in parallel, somewhat like the states in our abstract ladder) starting from the place 
identified by the original program-part, until some point n in the tree is found that 
is present in the correspondence relation. This defines a relative tree-path p from 
n back down to place defined by the original parameter. The place corresponding 
to the original parameter is then found by starting at corresponding point in the 
revised abstract syntax tree, and following the path p. This implements the notion of 
structure correspondence. If p does not apply in the revised state, then the replay 
step is broken and manual intervention is required. There is no discussion of what 
can be manually done to alleviate failure of that tactic, nor whether intervention 

1 We assume Goldberg means a variable declaration or assignment in the program, and not in the 
metaprogram. 



9.4. MAINTENANCE VIA DERIVATION HISTORY REPLAY 273 

is required immediately on tactic replay failure, or is delayed while attempting to 
replay other tactics. It does appear, since replay is done in the context of KIDS, that 
the software engineer could simply take the partially implemented specification and 
continue a conventional transformational implementation. 

Since his high-level tactics mechanism is not implemented, he cannot play (let 
alone attempt replay) those tactics steps, and so he has not tried the parameter cor
respondence ideas. However, Goldberg has replayed derivations of up to 40 primitive
tactic steps in length for a high-performance topological sorting program. Even lim
ited to replaying primitive tactics, he sees these results as "rather impressive." 

Comparison to DMS The correspondence problem [MF89b] is the identification 
of objects in the new problem which corresponds to objects in the problem for which 
the design history was generated. If one can solve it, then replaying the design history 
is straightforward. Goldberg goes to considerable lengths to solve it, with only partial 
success as we will see below. This problem comes about when one has an old problem 
and design history, and is presented with an entirely new problem. With DMS, we 
finesse this problem by insisting that a formal delta to the old problem be given to 
define the new problem; inherent in the delta is the correspondence. It is interesting 
that systems using correspondences do not compute a delta simply to define the 
correspondence. 

Our notion of locater as a constraint on bindings subsumes that of ·program
parts as tactics parameters. Our DMS unsurprisingly records a derivation history 
in almost an identical fashion to Goldberg, but additionally has a design history 
containing goal information and indexes back into the metaprogram, connected to 
the transformations in the derivation history. This allows the DMS to re-validate 
a replayable transformation, and to find substitute transformations or methods for 
those that cannot be replayed. 

Goldberg's system only handles the effect of functional deltas, but never sees 
an actual delta. For DMS, we found the functional deltas to be extremely helpful 
in guiding the rearrangement of the derivation history and computation of revised 
locaters, by providing both a focus for the region of change, and also providing means 
for generating potential new locaters (by taking advantage of the structure of the 
deltas, implemented as subtree-tracing). As a consequence of not having the delta to 
guide the manufacture of replacement locaters, Goldberg must have the tree-walking 
scheme to find correspondences. 

Goldberg's hueristic correspondence scheme appears to fails under some fairly 
simple circumstances. The name correspondence hueristic fails if the applied delta 
simply renames a variable. The structure correspondence hueristic must fail when 



274 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

subtrees of a design state are rearranged, either when changing the specification or 
by insertion of a transformation like a commutative law into the derivation history. 
Neither of these changes will confuse our DMS. We do see value in using the hueristic 
correspondence for generating potentially useful locaters; however, the DMS also 
validates their legitimacy (cf. discussion on DELAY in Section 7.2.1). If one has 
little knowledge of what the transforms actually do, i.e., they are opaque, Goldberg's 
hueristic correspondence is probably a reasonable approach, so we see our techniques 
as those of first choice, with Goldberg's being backup. 

Failure of the correspondence heuristic can cause a tactic to be indetectably mis
applied; our DMS would verify its correct role in the plan generating it. Furthermore, 
there appears to be no way to undo a misapplied transformation; the DMS can use 
BANISH to effect dependency-directed backtracking. 

Goldberg provides no theory as to why his method should work at all other than 
implicitly leaning on the requirement that all primitive tactics should be correctness
preserving. Failure to apply a tactic leaves further useful execution of Goldberg's 
replay process in doubt, as the correspondence structure on which he depends is not 
updated. Assuming that Goldberg continues the next tactic in the face of failure of 
the current one, the maintained correspondence structure must diverge further from 
the true correspondence as failed tactics accumulate, either leading to more failures, 
or worse, misapplied but undetected tactics. In contrast, the DMS derivation history 
rearrangements have been shown to be legal. The DMS drops undesirable transforms 
and their dependencies. Retained transformations are validated against their place, 
and therefore purpose in the design plan. A failed DMS transformation has an index 
back into the metaprogram to provide the opportunity to manufacture alternatives 
explicitly allowed by the metaprogramming language. 

A contrast: PADDLE [Wil83] represents a derivation history generator, and 
is re-executed in entirety in replay. Goldberg's tactics language is also just such 
a generator; however, having one replayed a tactic trace, it is difficult to relate the 
reused tactics back to their generator. We try to walk a middle ground with TCL and 
our replay scheme, in which reused transformations retain their place in the design 
history and thus continue to justify their purpose, as well as their index back into the 
generating metaprogram via agenda item action slots; this provides a way to locate 
TCL methods when plan repair is needed. 

9.4.6 XANA: Replay for DIOGENES 

XAN A [MF89b] is the mechanism used to replay transformational derivations 
of search algorithms in DIOGENES, specifically for the purpose of re-implementing 



9.4. MAINTENANCE VIA DERIVATION HISTORY REPLAY 275 

a changed functional specification. Unlike BOGART, DIOGENES applies arbitrary 
tree-transforms rather than just component refinements. 

We have simplified the explanation of XANA somewhat, causing a considerable 
change of terminology in an attempt to be as consistent as possible with that of this 
thesis. 

For DIOGENES, a specification is simply functional; no other performance spec
ification is used. Each state s is a tree representing a functional specification. Each 
tree node has an identity, consisting of the label i for the transformation H [ i] = ( t j, £~), 
that generated it, and the relative path for that node from the point where the root 
of the tree transform tj was applied. States can share tree nodes from earlier states. 

An XANA derivation history is a digraph forming essentially a dependency net 
of tree nodes on applied transformations. The history consists of set Hof transforma
tions, each H[i] consisting of an pair i : (tj, fi) implicitly labeled by the transformation 
index, where£; = (k,path), with k being a label on some other transformation in the 
history, and path being a relative tree locater, a path (as described in Section 3.1.7) 
from a root to some subtree. The effective locater used when applying the transform 
tj is found by concatenating all the relative paths found in the chain of transforma
tions selected by following the backward pointing indices k. This computation can be 
avoided by naming the tree nodes as described below, and interpreting each transfor
mation as meaning "apply ij at to the tree node labeled (k, path)". Our explanation 
requires each history H to have a distinguished transformation 1 : (n1 , (1, 0) ); this 
introduces the functional specification by rewriting the empty specification to the 
desired specification, n1 = c ===?- f 0 , obviously being a non-property-preserving trans
form. This requirement allows us to generalize both the global and relative paths 
used in [MF89b] into the single notion of relative path. 

The transformations are recorded in the order applied by DIOGENES during 
the original implementation. Replay is in the recorded order. This order is one of the 
many legal equivalent-effect topological sorts of the history according to the depen
dencies; technically, any such sort for application order would be legitimate, but only 
the recorded order is used. The reason is because transforms are actually conditional, 
and can inspect tree nodes above or below the the point of transform application; the 
inspected tree nodes ("weak dependencies") appear not to be recorded in the history. 
The very fact of their inspection adds additional implicit sequencing constraints on 
the history that the recorded order honors, but other equivalent topological sorts 
may not. In contrast, our DMS will actually rearrange the order, substituting differ
ent transforms and/ or locaters as required by the delta; the necessary sequencing is 
maintained by the requirement that reordered transformations provably commute. 



276 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEi\IS 

For XANA replay, a new specification c ==? f~ is created, defining H'[l]; this 
is an implicit delta. A correspondence between the tree nodes in the design states of 
the old and new histories is computed by inspecting the relative paths stored with 
each transformation. Transformations from H are sequentially copied to H' if their 
effective locater (computed using the new history) is still valid and the transform 
still applies. Should the transformation fail to be reusable, there is no recovery, 
because unlike DMS, there are no performance goals or alternatives recorded in the 
history; that transformation is simply skipped. Before replay, certain transformations 
in H can be manually marked as unreusable; the purpose of this is presumably to 
allow different performance goals to be achieved. There is no discussion of control 
knowledge or how it might be used in the replay process. 

The relative path idea is similar to the technique actually used in our experimen
tal system to trace subtrees during rewriting. The subtree tracing process produced 
the revised locaters without going through a British Museum algorithm. 

Mostow tested the replay mechanism by perturbing a specification and running 
the replay process. For specification changes which were merely parameter substitu
tions, the derivation history was completely replayed. Specification changes substi
tuting dissimilar constraints allow all steps but those involving the constraint to be 
replayed. Deleted constraints caused the replay process to terminate early because 
some subsequent steps depended syntactically on their presence. Marking such super
fluous steps as useless allowed all the remaining steps to be replayed; Mostow suggests 
a goal structure would allow such steps to be automatically detected and deleted. For 
DMS, simple parameter substitution will always replay completely because such sub
stitution will never prevent transformations from being swapped. Spurious syntactic 
dependencies are also handled by the DEFER mechanism. Finally, DMS does retain 
the performance goal history, although we have made no effort to remove transfor
mations that achieve superfluous effects. 

Like our DMS, XANA replays old transformations as long as they continue to 
apply (modulo lack of validation), so a manually applied transformation is retained 
over multiple changes unless invalidated. However, XAN A should fail to replay parts 
of the history that apply to a part of the functional specification which is moved en 
masse by the functional delta, because the correspondence between the moved part 
of the specification and the original is lost when the delta is applied. The DMS use 
of a functional delta prevents loss of this correspondence. 

A more serious objection is that XANA's replay scheme depends on the repre
sentation of the transformations; in particular, on the notion of tree path with respect 
to a root. XAN A would not work if graph transformations were used, mostly because 
the notion of relative graph locater is not well understood. Our methods for design 
history integration are not sensitive to the representation of states or transformations. 



9.4. MAINTENANCE VIA DERJ1/ATION HISTORY REPLAY 277 

9.4. 7 ARIES: Specification Evolution 

The ARIES project [JF90] is intended to provide assistance in the construction 
of functional specifications, prior to transformational implementation. It does not 
provide for the construction of performance specifications. In one sense, this work 
is complementary to ours, because it is focused on construction of the specification, 
rather than maintenance of the implementation. However, it is founded on the no
tion of using and modifying derivation histories, and so it is related to our work in 
Chapter 7. 

We have discussed how the functional specification Jo transformed by a trans
formation system is constructed by applying non-property-preserving transforms to 
the empty specification E (Section 5.2). Work by Feather [Fea89a], leading up 
to the ARIES project, defined an "elaboration" effectively as a history Hn com
posed largely of non-property-preserving transforms ni applied to an approximate 
functional specification f-lenuth(Hn) to produce the exact functional specification 
fo = (IIHn)U-length(Hn))· Such non-property-preserving transforms were termed "evo
lution transforms". The purpose of an elaboration is to allow the approximate spec
ification f-lenuth(Hn) to serve as a "white lie", or abstraction of the real specification 
Jo [Bal85a], for expository purposes. An unstated assumption is that the essential 
meaning of the white-lie version of the specification is retained in the real specifica
tion. 

For this idea to be useful, one must manufacture such elaborations. Feather 
suggested that new transformations can be added to the tail of an elaboration, or 
that transformations on the tail can be undone in reverse order of addition. Our DMS 
derivation revising mechanisms can be used to extend this to modifying elaborations. 
One might wish to apply a functional delta 81 to f-length(Hn) if the "white lie" is 
inconvenient, producing H~ = 8J1 + Hn as a revised elaboration producing the same 
fo. Using (Section 7.4.2) INTEGRATEMIDDLE 1U-1enuth(Hn)' 8fij, Hn) to insert a 
delta in the middle of Hn, or (Section 7.2.3) BANISHATPOINT(Hn,j) to delete a 
now-unwanted delta would be useful for adjusting the exact specification. 

Feather goes on to describe a scheme to merge "parallel" elaborations (derivation 
histories Hn1 and Hn2 divergent from f-k) into a single elaboration H merged. The 
purpose of this is to allow separate aspects of desired functionality to be independently 
developed from a common approximate functional specification, and then to combine 
these aspects to generate an exact specification containing both. This process operates 
roughly by merging transformations that do not interfere into the resulting history, 
much like our PRESERVE step (Section 7.4.1). A related idea for merging software 
enhancements by combining program "slices" [HPR87, HPR88] works by merging 
non-interfering portions of design states: fo is obtained by merging the slices of 
Hn1U-k) and Hn2U-k)· 



278 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

DMS classifies its deltas according to what input of the transformation system 
is affected. All ARIES evolution transforms are functional deltas b1 by DMS stan
dards. ARIES transforms are classified further, according to their effect on a GIST 
specification, as follows [JF90, p. 241]: 

• Behavior changing 

• Structure-adding (adds Type declarations, etc.) 

• Replacement (Rename Concept, etc.) 

• Terminology elaboration ("adding or changing an existing declaration") 

• Abstracting (makes spec more abstract by discarding detail) 

• Approximate unfolding (replaces use of construct with nearly equivalent con
struct) 

• Unfolding (definition substitution or refinement) such as interposing a buffer 
between agents; also implementation decision) 

• Reorganizing (restructuring without changing meaning) 

• Data :flow modifying (change :flow without affecting meaning) 

The Reorganizing, Data-flow modifying, Unfolding, and Approximate-unfolding 
transforms appear to serve as architectural implementation decisions rather than 
specification constructing operations (compare to our discussion on architecture in 
Chapter 10). The types of evolution transforms seem to derive from the particular 
structure of GIST as a specification language; we speculate that each functional spec
ification formalism will induce a set of evolution transforms unique to that formalism, 
although the set may be similar in style to those listed here. 

The ARIES evolution transforms affect a semantic net possibly containing vir
tual semantic links that represent the specification. This is an unusual specification 
representation, but fits within our model of states; virtual relations can be modeled as 
cached inferences. Some semantic relationships used in ARIES evolution transforms 
are: 

• component: relations between modules and their components 

• entity-relationship: specialization-of, parameter-of, type-of, instance-of 

• data flow relations: between producers and consumers of values 

• control flow links: control-substep and control-successor 

• fact flow links: accesses-fact, modifies-fact between processes and declarations 
of facts used/modified 

• state description links: associating statements and events with their pre- and 
post- conditions 

Fact :flows exist because the specification formalism explicitly allows statement of 
information :flows; they are eventually turned into low-level data:flows. Operations 



9.5. TRUTH MAINTENANCE SYSTEMS 279 

on the semantic network are used to define the evolution transforms. The authors 
observe that since the set of semantic links is incomplete, an evolution transform 
library based on existing links is likely to be incomplete. 

Merging elaborations requires detecting when two evolution transforms do not 
interfere. vVe have discussed in Section 7.2.2 how this is done for the ARIES semantic 
net representation. 

Effort is spent to make evolution transforms retrievable by effect, described in 
terms of such network operations. Queries are made to an evolution transform library 
in terms of semantic network manipulation operations desired. This has the effect 
of defining methods with performance predicates for choosing evolution transforms. 
The authors expect that preconditions on evolution transforms will allow ARIES to 
plan more complex evolution transforms than directly requested by the specifier. 

We assume that all transformations generated in a transformational implemen
tation from the functional specification participate in plans that achieve a statable 
purpose. What is remarkable about the ARIES work is the idea that constructing 
specifications by aspects also has such purposes. We do not know how to encode such 
purposes with performance predicates because of the non-property-preserving nature 
of the transformations involved; this is clearly an area for further research. 

9.5 Truth Maintenance Systems 

A DMS bears many similarities to Truth Maintenance Systems (TMS) [Doy78, 
CRM79, Doy79, MD80, Doy83, McD82, McD83, Pet87]. In this section we outline 
the analogy, and then consider how effective one would be for design maintenance. 
We consider TMSs because they initially attracted our attention as having the right 
kind of revision properties for maintenance. 

9.5.1 TMS Essentials 

TMSs can be thought of primarily as rule based inference systems, with a re
pair mechanism used to fix inference chains whose facts/ conclusions are found to be 
incorrect when tested against an external model. TMSs are generally used as a com
ponent of a larger, domain-specific problem-solving system (PSS), and are used to 
reason about a problem, and to identify potential points of interest in the problem 
description. 



280 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

A TMS is initialized, by the PSS, with a set of inference rules, and a set of 
atomic facts. Facts each have a truth status of true or false, some acquired by direct 
assertions from the PSS. The inference rules are used by the TMS in two ways: 
actively, to produce new facts with truth status, and passively, as a set of relations 
between the facts. 

In the active mode the rules are used to infer new facts and their corresponding 
truth status; the actual control regime (forward, backward or mixed) tends to vary 
according the ambitions of the TMS designer [Pet87]. Thus the extant facts in the 
system at any instant are the assertions and/ or consequences of the set of inference 
rules that have run up to that instant. It is important to note that there are potential 
facts (and statuses) that could be inferred by rules, but have not, up to the instant 
in question. The TMS does not concern itself with potential facts. Unlike a pure 
production system, however, the fired rules and their consequences are retained along 
with their relationships to the extant facts. A TMS can provide explanations of its 
conclusions by tracing the fired rules. 

A set of facts and fired rules are consistent if the fact statuses match the con
clusions that the fired rules would draw if individually re-run on a database of facts 
whose truth status was that of their assertions. Such a state can be achieved by 
a batch-executed consistent labeling procedure [Rus85]. A set of rules connected by 
particular facts may not have a consistent labeling. Because the batch procedure 
can be slow, it rarely done; usually a consistent state is incrementally constructed by 
addition of single, consistent new facts [Rus85]. 

A newly asserted or inferred fact (status), however, may be inconsistent with the 
extant facts. This causes the TMS to attempt to resolve the inconsistency, by chang
ing the statuses of the extant facts in such a way that that inconsistency evaporates, 
while treating the fired rules as constraints to be honored among the extant facts 2• 

No new rules are fired. If a new consistent labeling can be found, then the result of 
the resolution process is a list of facts whose status has changed in order to make the 
extant fact base consistent with the fired rules. The PSS then processes this resulting 
list to either validate it against the world, or to choose some new sub-problem to 
consider. 

Many possible sets of status changes may achieve consistency; since some facts 
are "more believable" than others in most problem domains, special resolution rules 
are sometimes specified (possibly by the PSS) to control which facts the TMS will 
consider for revisions first [Pet87]. 

2 A trivial strategy for achieving this effect is to change the status of the newly asserted/inferred 
fact; since the new assertion/fact status is presumed to be more recently validated by external means 
than other facts from the PSS viewpoint, this trivial method is not used. 



9.5. TRUTH MAINTENANCE SYSTEMS 281 

Justification-based TMSs ( JTMS) [MS86] are willing to propose changes to the 
status of any extant fact, either asserted or derived by rule application. Assumption
based TMSs (ATMS) [dDR+78, dDSS77, deK84, deK86a, deK86b] treat PSS asser
tions as the key facts to consider for truth status alteration; other facts produced as 
consequences of inference rules will get revised as a consequence of consistency adjust
ment, but the presumption is that the assumptions are the ones in which the PSS has 
the most interest. ATMSs are consequently quite useful for diagnosis; assumptions 
about the correctness of the artifact are postulated by the PSS, the consequences 
drawn by the ATMS inferences, and those consequences validated by the PSS against 
the actual artifact. Contradictions of consequences found by the PSS are asserted, 
causing the ATMS to propose certain correctness assumptions need revision, and thus 
potential fault sources are exposed for the PSS to test. 

The distinction between extant and potential facts leads to a peculiar effect: 
the consistency algorithm operates on a closed-world assumption with respect to the 
extant facts; no account of conflict with potential facts is attempted. This is obviously 
a concession to the cost of inference. 

As a general rule, the process of adding new facts and revising consistency of 
the fact base are interleaved. 

9.5.2 Relation to a DMS 

In our context, there is an analogy to a Software Development System (SDS) 
[Fre87] with an DMS to a Problem Solving System with a TMS. The Software 
Development System consists of an organization, with goals to develop software, and 
the D MS corresponds to a software constructor/ maintainer3 . 

Like a TMS, the DMS provides the low level construction/maintenance/focusing 
mechanism for the SDS. The SDS defines the initial assumptions (software func
tionality and performance requirements), and the inference rules (domains, domain 
semantics (rules of transformational exchange), refinements, and control resolution 
heuristics). The DMS draws "conclusions" (implementations by applying transfor
mations) from the "assumptions" (specs) given by the SDS. The controls and trans
formations fired are stored for later reuse. Like a JTMS, the DMS can explain parts 
of an implementation by tracing the fired transformations and control heuristics, and 
like an ATMS, can explain what parts of the specification control what part of the 
implementation. 

3 Unlike the PSS, the SDS is for the near future most likely to be an informal system. 



282 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

In spite of the similarity, however, a TMS cannot serve as an DMS, for a number 
of reasons: 

l. A TMS manipulates atomic facts. The DMS manipulates structural relations 
between design entities. 

2. Atomic facts have truth statuses which are independent of other facts. 
Structural relations between entities are not "true" or "false" (although one 
could treat the existence of that relation as a boolean) but may exist in a num
ber of different design states. This related to the frame problem [Pyl87]; each 
structural element in an DMS has positive support from the transforms which 
generated it, and negative support from transforms which delete it. 

3. Denying a fact simply changes the status of the fact in a TMS; in an DMS, 
denying a. structure is tantamount to say "that spec/implementation simply 
won't do." 

4. A proposed fact's inconsistency is easily detected in a TMS (the fact is present 
among the extant facts with the opposite truth status); in an DMS, denial of a 
structure's existence does not appear to contradict anything. 

5. TMSs seem to be natural in problems in which the set of facts is relatively 
fixed, so recording them all explicitly is reasonable. DMS operates in the do
main of software construction, where the set of currently non-existing structural 
relationships is unbounded, and storing them simply isn't practical. 

6. Repairing the inconsistency of a TMS fact-base requires running a repair pro
cedure which depends only on the structure of the TMS; no new rules are fired, 
and no rules are "unfired". Finding a new implementation requires the DMS to 
run a repair procedure which depends on the control heuristics, requires previ
ously applied transformations to be dropped (as they are no longer relevant), 
and new rules are likely to be fired to produce new structures. 

7. With a TMS the validity of an inference is never denied4 , but the validity of 
transformations may be denied to the DMS and it must find a new implemen
tation. 

8. A TMS can have cyclic dependencies. An DMS cannot; no valid implementation 
can simply assume portions of itself are correct. 

9.6 Nonlinear Plan Repair and Reuse 

Nonlinear planners are often used by robots to produce possible plans of actions 
given some desired goal state [CM85]. The notion of nonlinear plan is often used 

4 While Proteus [Pet87] rules do have a truth status, that status is not used; i.e., it is never 
denied. 



9.6. NONLINEAR PLAN REPAIR AND REUSE 283 

as a representation for sets of possibly unordered actions that achieve some overall 
result [Sac77, Geo87]. In this section, we compare our work to the SIPE [Wil88], 
IPEM [AI87, AIS88], and PRIAR [Kam89] nonlinear planners, each of which does 
some form of plan repair and reuse. 

We can compare our work to that of nonlinear planners in general by drawing 
parallels between: 

• design states and planner world states 

• transforms and operators 

• functional specifications and initial planner world states 

• performance goals and goal world states 

• histories and nonlinear plans (see Section 5.4.4) 

Planner world states are often conceptually represented by set of predicates describing 
primitive relations between world objects, along with derived relations. Such predi
cate sets correspond to our notion of a design states containing cached consequences. 

Operators change the set of predicates which form planner states, while trans
forms map design states to design states. A fundamental difference in representation 
exists in that nonlinear planners almost never realize complete representations of state 
as we have for transformation systems. Instead partial states are dynamically com
puted relative to some set of nodes in the nonlinear plan; determining if some relation 
is true in such a partial state is called the modal truth criterion [ Cha87]. While com
puting such truth values is expensive, the absence of nonessential sequencing makes 
it well worth the trouble. We used complete states for DMS to avoid the problem of 
computing performance predicates over partial program schemes, because we did not 
know how to characterize how program schemes could be partitioned; this problem is 
related to that of defining appropriate notions of locale. Such notions of partial state 
are needed to make constructing ladders in the context of a design history practical 
(Section 8.3.3). 

A planner is given an initial world state and must find a sequence of operators 
to apply to change to a goal world state; a transformation system is given a functional 
specification fo and must apply property-preserving transforms to locate a state in 
which the remaining performance predicate Grest is true. The parallel between per
formance goals and goal world states is uneven, because performance goals are often 
stated in terms of complex derived properties of states, whereas planning goals are 
usually stated in the exact same terminology as used for initial world states. 



284 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

Similarities between transformational implementation and planning suggest that 
similar problems in the planning domain have solutions of interest for transformational 
maintenance. Several problems exist for such robot planners: 

e Plans must be constructed 

• Planning is expensive 

• The robot's knowledge of the world may be faulty 

e An action may fail to execute perfectly 

• The robot's goals may suddenly change 

Plan construction is essentially a search problem. We discussed control mecha
nisms for nonlinear planning in Section 4.3.4. 

Because of the expense of planning, it is interesting to find and reuse plans in 
new environments. We can turn this into a maintenance problem by computing what 
amounts to a functional delta 61 between the present world state and the world state 
of the recycled plan; Kambhampati's PRIAR system [Kam89] effectively does this. 
Errors discovered in knowledge about the current state during execution of a plan 
can similarly be treated as a sudden requirement to insert a functional delta into a 
derivation history; SIPE [Wil88] does this with "Mother-Nature" actions. 

While executing a plan, an applied operator may fail to act properly; the state 
predicted by its action may not be achieved by its action. In this case, an unexpected 
world state is suddenly encountered. This case directly matches the transformational 
maintenance situation in which the functional specification (the expected state after 
operator application) is changed by a 61 into the unexpected world state, and the plan 
must be repaired accordingly. Both the SIPE [Wil88] and the IPEM [AI87, AIS88] 
systems handles such plan repair. In a transformation system, transformations do 
not fail, but methods can; however, failed methods cause backtracking rather than 
6. 1 integration because the functional specification does not change. 

During execution of an existing nonlinear plan, the robot may decide that the 
original goals which motivated the plan are no longer appropriate. Such a change of 
goals requires that the existing plan be modified in some fashion to take into account 
the new goals, and drop plan components related to now obsolete goals. The IPEM 
planner [AI87, AIS88] does this. Such a change corresponds to a performance goal 
change be in our framework. 

Our notion of shared agenda item is a useful addition to the notion of phantom 
goal used by typical nonlinear planners. Phantom goals are recorded when a plan 
step s is to achieve a desired effect g, and g is found serendipitously to be true in 
the partial world present when g is to be accomplished. This is certainly valuable 



9.6. NONLINEAR PLAN REPAIR AND REUSE 285 

when s must definitely follow other steps S = { s1, s2, . .. Sn} that made g true, but 
places an inappropriate asymmetry in the plan when s can be executed in parallel 
with S. The asymmetry shows when an explanation of the plan is requested; the 
explanation for a phantom goal node s is "Nodes S necessarily before s have already 
accomplished this.", whereas the explanation for a shared agenda item would be 
"Doing S accomplishes this, and also serves parents( S) - s." The asymmetry of a 
phantom goal node also shows when some step Sj E Sis suddenly no longer needed 
to accomplish the purpose of S; one must expend effort to determine of Sj serves a 
phantom, and if so, replace the phantom by Sj. No plan repair system with which we 
are familiar does this; rather, they delete Sj and attempt to re-achieve g at a later 
time, wasting the knowledge that Sj already has the desired effect, and the already 
generated subplan under Sj that actually achieves it. By using a shared agenda item, 
we achieve this effect easily. 

Nonlinear planners need not "reorder" most independent operators at all; this 
is the entire point of the nonlinear plan representation. For DMS, this corresponds to 
SWAP with unchanged locaters. However, for DMS, we have seen the value of SWAP 
in which the locaters do change, and the corresponding value of DEFER. Nonlinear 
plan repair mechanisms have nothing remotely similar. 

9.6.1 SIPE and replanning 

SIPE [Wil88] is one of the few domain-independent, nonlinear hierarchical plan
ner that allows for replanning in the face of unexpected events. 

Control for SIPE was described in Section 4.3.4. SIPE plan critics diagnose 
and fix plan bugs produced during the planning process. The design selections made 
by such critics can be captured in nonlinear histories but the design choice causing 
them is not. The absence of such explicit records we think makes design repair harder 
because certain alternatives are left implicit. 

Planning, plan execution, and execution monitoring for surprises in SIPE are 
interleaved to allow recovery from unexpected events; replanning only occurs when 
the environment changes, corresponding to DMS recovering after application of a 
functional delta 81 part way through the implementation process. 



286 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

The following replanning actions can occur [Wil88, page 153]: 

• Insert: inserts a new subplan after an existing subplan. This is not used directly 
by plan repair, but rather acts as a "subroutine" for most of the following repair 
actions. 

• Insert-Conditional: inserts a test for value of unknown state variable 

• Retry: converts a phantom goal node into an incomplete goal node 

• Redo: Adds a new goal to be achieved to the plan 

• Insert-parallel: Adds a parallel set of goals to the plan 

• Reinstantiate: Change binding of a variable to an object to reachieve a predicate 

• Pop-redo: Removing a subplan and replace by an incomplete goal node 

• Pop-remove: Removing a subplan whose effect is already achieved. 

TCL plan repair and the delta integration procedures collectively provide very similar 
actions: 

• Insert: Executing an agenda item, and in particular, inserting a transformation 
into the derivation history 

• Insert-Conditional: unnecessary in a transformation system; there is never any 
doubt about the accuracy of state information. 

• Retry: accomplished by pruning back to an ACHIEVE node. 

• Redo: Adjustment of ACHIEVE conditions in the face of !:lG (Section 8.6) 

• Insert-parallel: Like Redo. Implicit in a single ACHIEVE, so it isn't really 
necessary. 

• Reinstantiate: Changing a locater to achieve the same effect 

• Pop-redo: Pruning a subplan back to an alternative (Section 8.2) 

• Pop-remove: Pruning a subplan back to an ACHIEVE; when tried, the agenda 
execution mechanism will discover that the ACHIEVE condition is true. 

The SIPE notion of deleting a "wedge", the subplan below an agenda item, is equiv
alent to TCL subplan removal. This kind of mechanism must be present in any kind 
of hierarchical planner precisely because of the notion of hierarchical plan; deletion 
of the parent of such a plan must naturally delete all of its components. However, 
we see little value in limiting the mechanism to mere wedge removal; invariably after 
removing a wedge, one must prune back to a choice point. There appears to be no 
need for the Design Maintenance System notion of agenda-item marking, because 
SIPE does not handle changes to methods or transform libraries. 



9.6. NONLINEAR PLAN REPAIR AND REUSE 287 

For SIPE, replanning occurs when the current world state is suddenly changed; 
SIPE is told precisely which facts changed by inserting a "Mother Nature" op
erator (in effect, the explicit of) into the plan network that expresses the sta
tus of the revised facts. By computing the necessarily following nodes of the 
"Mother Nature" node, those parts of the plan that use the changed facts 
can be found and re-tested. The changed facts can cause any of the follow
mg problems, which are cured by the corresponding actions [Wil88, page 153]: 

PROBLEM 
purpose not achieved 
previous phantom untrue 
unknown variable 
future phantom untrue 
precondition untrue 
parallel postcondition untrue 

REPLANNER RESPONSE 
Redo 
Reinstantiate, then Retry 
Insert-Conditional 
Retry 
Reinstantiate, then Pop-redo 
Insert-parallel 

Most of the problems detected by SIPE are accomplished by Design Maintenance 
System via replacement transformation revalidation (Section 8.3.3). 

Design Maintenance System obviously handles many more kinds of changes than 
SIPE. 

9.6.2 IPEM: Plan repair 

The Integrated Planning and Execution Monitoring (IPEM) nonlinear planning 
system [AI87, AIS88] takes a kind of production-system approach to both planning 
and plan repair in the face of unexpected events. In particular, planning and plan 
repair are indistinguishable, simplifying the overall architecture of the system. We 
followed this philosophy for the TCL execution engine. An aspect of IPEM which 
we do not consider is its ability to interleave both planning and execution, as such 
ability is not really meaningful for transformational implementation. 

IPEM uses a notion of range to tie effects produced by one action to precon
ditions of following actions; this is a special case of the validations used by FRIAR 
Section 5.4.6. Ranges have the effect of providing sequencing constraints between 
nodes, as the action producing a range must necessarily be executed before an action 
that consumes it. 

The IPEM system elaborates plans by execution of "metaplanning" operators. 
Each metaplanning operator has a precondition under which it fires and an procedure 
which modifies the existing partial plan. Plan flaws are defects in the plan; incomplete 



288 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

agenda items, improper ordering among actions, etc. For each flaw~ there are a set 
of plan fixes methods for resolving the flaws. A set of flaw /fix pairs constitutes the 
metaplanning operators. Such a framework is similar in spirit to the DMS notion of 
delta-specific integration procedures. 

The most interesting aspect of the fix/flaw framework is that plan repair is 
completely incremental; flaws can be fixed in any order (dependencies will of course 
necessitate backtracking). Fixing a flaw can, of course, introduce yet another flaw. 
Since IPEM is implemented in PROLOG, backtracking occurs automatically if an 
applied fix eventually leads to a dead end, and alternative fixes are then tried. 

We list each IPEM-defined flaw, and the corresponding fixes: 

• Unsupported Action Precondition: 

- Attach Range to action known to be earlier 

- Attach Range to parallel action, ensuring it is earlier 

- Attach Range to newly-created action 

• Unresolved Parallel Conflict: Order conflicting actions 

• Execution Flaws: 

- Incomplete Action: Expand Action 

- Unexecuted Action: Execute Action 

- Timed Out Action: Remove Action and Dependent Ranges 

- Unextended Range: Attach Range to Plan Head 

• Replanning Flaws: 

- Redundant Action: Remove Action 

- Unsupported Range (false fact): Remove Range 

An unsupported action precondition flaw is roughly equivalent to a TCL 
A CHEIVE agenda item. The corresponding multiple fixes are essentially different 
ways of satisfying the goal. The fixes that attach ranges to existing actions consti
tutes making a phantom of the goal; creating a new action constitutes decomposing 
into subgoals. IPEM apparantly has no way of constructing a shared action. 

Expanding an incomplete action roughly corresponds to the TCL agenda
oriented execution model, with TCL placing priority on agenda items which are 
"early" in the plan to maximize downstream damage early while the plan is still 
small. 



9.6. NONLINEAR PLAN REPAIR AND REUSE 289 

The execution flaw "Timed Out Action" handles a problem which occurs in 
robots: actions may not work or complete. Under such a circumstance, replanning 
to achieve the originally desired effect is necessary. This is reminiscent of a "tempo
rary" technology change, i.e., designation that a particular transformation in a DMS 
derivation history is invalid without changing the transform library. 

The replanning :flaw of Redundant Action corresponds to handling l:::.a.G8 , i.e., 
removing additional performance goals, thereby removing the need for actions to 
achieve them. Adding new goals causes unsupported action preconditions. The un
supported range flaw detects changes in the current world state and its fix removes 
actions which depend on newly deleted facts; this is similar to handling l:::.1. 

9.6.3 PRIAR: Nonlinear Plan Reuse 

The PRIAR nonlinear plan reuse system [Kam89] modified a supplied plan for 
use in a new problem situation. 

Reusable nonlinear plans are augmented by validations and annotations, pro
viding fine detail about which actions generate and which actions consume which 
generated facts, as described in Section 5.4.6. These fine-grain dependencies are the 
key to efficient modification of the plan. In particular, the validations provide for fact 
dependencies in a way which is not dependent on the applied operator sequence, as 
is XANA. 

A mapping a specifies a partial map from the objects in the supplied plan to 
the objects in the new problem situation. From the mapping, deltas similar to those 
of our DMS could be generated and processed. Changes to sets of facts in the initial 
world correspond to 8 f. Changes to sets of facts in the goal world correspond to DG. 
Since PRIAR handles both sets of changes at once, it acts as though it processes a 
composite delta (oh DG)· PRIAR uses methods similar to those for DMS for adjusting 
the design plan. 

Applying the map a to the entire recycled plan produces a plan for the new 
problem, which must usually be repaired. Facts that are no longer true, new facts 
in the new starting situation, extra goals and unnecessary goals are marked in the 
recycled plan. Next, each validation dependent on a marked fact is checked. For each 
failing validation, a repair task is proposed. 

Each new goal causes a new ACHIEVE(goal) node to be added to the plan, to 
be later solved by the planner under the implicit assumption that separate goals are 
usually independently achievable (in contrast, DMS walks down the design history 
tree with a DG changing ACHIEVE nodes as it goes; this difference seems caused by 



290 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

the nonlinear planner representation of facts and therefore goals as separate entities, 
in contrast to the DMS treatment of states and therefore performance predicates 
as monoliths.) Deleted facts that formerly satisfied phantom goals cause the phan
toms to be "de-phantomized", also to be solved later by the planner. Deleted 
facts that formerly satisfied action "filter" preconditions (i.e., analogous to enabling 
a REQUIRE in a method) cause the subplan containing that action to be pruned in 
a fashion virtually identical to that of TCL pruning. However, the action at the root 
of the pruned plan is replaced by a goal to ACHIEVE all the E-conditions of the 
subplan, recording all the necessary effects of the now missing subplan; this prevents 
an immediate cascade of failed validations for portions of the plan depending on the 
pruned section. New facts serendipitously satisfying preconditions cause subplans 
to be pruned and replaced by phantoms. A special case leaves changes a validation 
without changing the plan structure: if originally E I- C, and E is replaced by E' 
by a, then E' I- C is checked, and if provable, only the validation is adjusted; this 
is similar to a performance bound delta subsuming an existing performance bound 
when DMS is installing a performance delta. 

After the plan has been repaired, the partial plan is shipped to the planner for 
completion; unlike DMS, the planner in repair mode (as opposed to fresh-problem 
solving mode) attempts to instantiate pr_uned subplans first before newly added goals 
in an attempt to satisfy validations already present in the partial plan. This is proba
bly one of the best ideas in PRIAR, as it tends to prevent the spread of damage to the 
plan. Because a pruned subplan is converted into a goal to achieve the pruned sub
plan E-conditions as subgoals, it appears that a repaired plan may be unexplainable 
in terms of the problem solving primitives available to the planner; problem decom
position is not likely to produce such idiosyncratic sets of of subgoals. It is not clear 
whether the planner keeps the annotations up to date, or why the planner doesn't 
actually use them during planning; if the annotations existed during planning, the 
planner repair mode would simply be a clever backtracking method. 

The PRIAR work shows that plan reuse cuts the search space exponentially, 
and shows an empirical validation of plan reuse saving 95%+ over fresh planning in 
selected blocks world examples. It is suggested that PRIAR ideas could be used in 
design replay; we agree that they should be investigated. 

The difficult problem of handling an unpreservable transformation supporting a 
larger plan ( Section 8.3.3) is not handled directly by PRIAR; it is somehow hidden 
in the planning mechanism backtracking logic. It becomes an explicit problem in 
our DMS framework because of our retention of a delta during the ladder building 
process. 

Our shared agenda item deletion (Section 8.2) process is reminiscent of 
Kambhampati's task node deletion when the task no longer has any "external" effects. 



9.7. SUMMARY 291 

9.7 Summary 

We have compared our notion of a DMS with a number of related works. The 
DMS concepts and methods subsume most of the work not related to planning. 
Nonlinear planners have the advantage of nonlinear primitive operations over our 
DMS, making the notion of SWAP for trivial exchanges trivial to compute. We 
summarize this relation in Figure 9.1. 

We see that DMS is the only system that supports: 

• Performance specifications 

• Explicit Deltas of a variety of types 

Our analysis in this chapter demonstrates that our design history representation and 
delta integration procedures are more broadly based in terms of the range of deltas 
handled, and more robust than those of the other systems examined, by virtue of 
being theoretically motivated. 

In brief, for each of the following schemes, DMS has the listed advantage: 

• Dynamic Metaprogram Replay: No need to rediscover actual history elements 

• Correspondence Discovery (Goldberg): Functional delta unerringly guides 

• Node dependencies (XANA): Not confused by movement of specification parts 

• Derivation Histories only: Revalidates reused transformations, 
finds new methods to replace failed transformations 

• Syntactic Dependencies: DMS can reorder if not semantically dependent 



292 CHAPTER 9. RELATED WORK ON MAINTENANCE SYSTEMS 

System Explicit Maintenance Explicit Explicit Replay Explicit 
Name Perf. of Derivation Delta Ability Justification 

Spec. Specification History 
Ad Hoc n n n n n n 

Make n n y n y n 

DESIRE n n y n n n 
TMM n y n n n n 
Paddle y y n n y n 
Glitter n y n n y y 
LP n y y n y y 
PDS n y y n y n 
ZAP n y y n y y 
SIN APSE n y y n y n 
Goldberg y y y n y n 
Bogart n y y n y n 
XANA n y y n y n 
ARIES n y y y y n 
TMS - - y y y y 

IPEM n y y n n y 

SIPE n y y y n y 

PRIAR n y y y y y 

DMS y y y y y y 

Key: 

n definitely not 

- irrelevant. 

y possible to argue that it supports, usually not by design. 

Y obvious support 

Figure 9.1: Comparison of systems supporting maintenance 



Chapter 10 

Conclusions and Future work 

Chapter summary. We summarize the thesis results. We consider some 
insights derived from the work. Future research directions are discussed. The 
impact of this work is considered. 

10.1 The main result 

Our fundamental interest is in making the notion of Incremental Evolution 
of software possible: integrating a stream of deltas generated by comparing imple
mentations to expectations, to obtain successively better implementations. Having 
determined that design information is necessary in order to accomplish practical mod
ifications to existing implementations, we chose a formal model of software implemen
tation, transformational implementation, in order to force such design information to 
be formally representable and therefore capturable. We determined that much of the 
necessary design information could be captured by recording design history of the 
decisions made by the transformation system, and that maintaining this design was 
the key to revising implementations. With this background, we limited our purpose 
to demonstrating that: 

We can efficiently maintain software generated transformationally by 
integrating formal deltas into design histories. 

Our approach was to produce theory and procedures necessary for a Design 
Maintenance System, which would then realize an efficient kind of support for 
Incremental Evolution. 

293 



294 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

To achieve the goal of constructing such theories and mechanisms, we have: 

• Provided an architecture for a Design Maintenance System based on a trans
formational implementation model; 

• Defined a transformation control language, TCL, as a means for generating 
implementations and producing design histories as byproducts; 

• Formalized a complete set of maintenance deltas based on our model of a trans
formation system; 

• Provided procedures for integrating various types of deltas into an existing 
design history by taking advantage of commutativity in the design space; 

• Provided an empirical validation of the existence of significant commutativity 
in a model of a design space; 

• Demonstrated the utility of the derivation history revision procedures by means 
of examples; 

• Validated those procedures for revising the derivation history component of a 
design history by an experimental implementation 

10.2 Analysis and Insights 

In this section, we consider some global aspects of a Design Maintenance System. 
We discuss controlling change management costs, types of of modularity and their 
utility, and a new perspective on what constitutes an architecture. 

10.2.1 Completeness of a Design Maintenance System 

We have tried to ensure that our model of a Design Maintenance System is 
complete by modeling the entire software construction process formally, and provid
ing delta integration procedures for changes to each type of input. If a transforma
tion system can develop software fully automatically from its description, then our 
approach is complete. We see two possible failings. The first is that our model of a 
transformation system is wrong or missing some input. This kind of problem should 
be relatively easy to repair in our framework; simply postulate a different/new input 
and produce integration procedures for it. The second failing, which is more likely, is 
that the transformation system does not have enough design knowledge of its own to 
carry off an implementation by itself, and so certain transformations are chosen by a 
software engineer for which the motivations are not recorded. We feel this is really a 
problem in knowledge acquisition and not a problem with our framework. 



10.2. ANALYSIS AND INSIGHTS 295 

10.2.2 Change Integration Costs 

The purpose of Incremental Evolution is to make implementation and mainte
nance more effective. We have provided procedures for integrating deltas into design 
histories. Can such procedures be accomplished efficiently? We have shown that 
certain operations on a derivation history are O(n 2 ), and that n = 40000 is not 
unreasonable. It is clear that if the cost of such procedures exceeds the cost of re
implementing a specification from scratch, it would be better to re-implement. In the 
worst case, we can bound the delta integration costs by running an implementation 
process in paralell, but we expect to much better on average. Our integration pro
cedures depend on commutativity in the design space. We determined empirically 
that for small spaces with properties like that of design spaces, there was a consid
erable amount of commutativity, even for n = 28; analytical analyses from [Bax88] 
suggested the commutativity grew exponentially with the size of the space, so there 
is considerable hope. This hope is complemented by the fact that real maintainers 
perform the maintenance task successfully every day, without changing much of the 
maintained artifact. 

10.2.3 Artificial Modularity vs. Essential Modularity 

One of the fundamental methods for conquering complexity is problem parti
tioning. Such partitioning has become an important part of software engineering in 
the form of the slogan "information hiding" [Par72]. An organization divides a soft
ware system into "modules", defines fixed interfaces for the modules, and can then 
parcel out work to smaller organizations. We call this scheme artificial modularity, 
as the structure of the modules is imposed by the organization on the designer. Many 
software methodologies attempt to make such boundaries fit natural boundaries of the 
problem itself (OOP, JSD) in an attempt to minimize future maintenance troubles. 

We contrast artificial modularity with the idea of essential modularity: the real 
separability of concerns in a software system. Essential modularity is partitioning 
that respects only the true semantic dependencies derived from the nature of the 
problem and its solution, rather than simply being imposed. Artificial modularity is 
the often imperfect, very conservative abstraction of essential module boundaries. 

The purported value of artificial modularity in freezing module boundaries is 
to limit communication between using and implementing teams to agreement on the 
module interface. The difficulty with this idea is that such artificial partitions often 
do not match the problem. When difficulties unresolvable by a module team arise, no 
solution is possible precisely because the module interface is frozen; this is a failure 
of artificial modularity to separate the concerns. Changing the module interface is 



296 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

an admission that artificial modularity has failed to achieve its goal of minimizing 
communication. The real difficulty is usually that a semantic dependency crosses the 
module boundary. It is often the case that the problem is easily resolved when both 
teams are willing to make changes; this tells us that the essential module crosses the 
artificial module boundary. 

Consider a module A that manipulates a data structure logically via access pro
cedures in module D. Optimization requires spreading information across module 
boundaries; for A to be "high" performance, we can expect that some representa
tional properties of the data structure have been encoded into A. Changes to the 
data structure itself are likely to affect module D, and therefore to affect module A. 
Artificial modularity would insist that A and D are implemented separately, prevent
ing the optimization we desired. Essential modularity would keep track of how A 
used the procedures of D, allowing aspects, and therefore changes, to D to be traced 
to their effect on A. 

Others have noticed similar problems with artificial modularity. In an analysis 
of typical modifications made to real software systems, [Bor89] discusses problems 
caused by non-essential change propagated across artificial module boundaries: 

... Not all effects of modularity are beneficial. (Our work) suggests that most of 
the recompilations performed after a change to an interface are redundant and 
that this redundancy is a direct consequence of how we modularize software 
systems .... 

... we would expect between 6 and 9 out of every 10 compilations to be unnec-
essary (as a consequence of this fact) .. . 

... (Evidence) validates the approach ... to use an underlying fiat (i.e. non-
modular) representation of program objects, and to the extent that recompila
tion costs reflect general program complexity, leads us to question some basic 
assumptions about modularization. 

The ability to detect real impact, rather than artificial impact, can help alleviate 
this. 

Essential modularity will allow teams to divide problems along natural bound
aries. Interactions between teams are necessarily required when problem affecting 
other teams work arises. In the conventional SE environment, where communication 
is manual, slow, unreliable, and the problem is not well understood, essential modu
larity is perhaps a liability. In an environment where consequences of effects can be 
traced quickly, we argue that essential modularity is not a disadvantage; besides, it 
is not possible to get rid of such interactions anyway (as the existence of changes to 
module interfaces suggest). 



10.2. ANALYSIS AND INSIGHTS 297 

To make using essential modularity possible, we must have tools that can trace 
the effects of decisions across module boundaries. The design history supplies key 
information needed to trace the effects of decisions. We see a Design Maintenance 
System as type of tool necessary for managing such essential modularity. 

We do recognize the utility of artificial modularity for the purposes of control
ling reasoning costs, both computational and conceptual. We simply want to point 
out that artificial modularity for controlling communication, as required by software 
engineering methods of past and present, may be of hindrance in methodologies of 
the future in which communication is not such a large problem. 

10.2.4 On what constitutes an "Architecture" 

Transformational maintenance gives us a new perspective on the meaning of an 
architecture. [Gov71, p. 113] defines architecture as 

a method or style of building characterized by certain peculiar style of structure 
or ornamentation. 

In engineering, the term usually refers to fundamental organizational properties of 
an artifact. For software systems, an architecture is usually some high level choice 
of problem solution coupled with a partition of the solution into major components 
which cooperate to achieve the solution. A widely available software engineering 
text [Fai85, p. 40] doesn't really define architecture; it simply states "Architectural 
design involves identifying the software components, decoupling and decomposing 
them into processing modules and conceptual data structures, and specifying the 
interconnections among components." It seems clear that the architecture of such 
artifacts is the consequence of some decision-making process. What is it that makes 
the notion of architecture useful? 

Our answer deemphasizes the actual structures, and instead emphasizes the cost 
of acquiring, understanding, and/ or undoing the decisions that lead to the particular 
artifact at hand. The architecture comes about by careful consideration of the prob
lem solution, and is usually tampered with at the peril of the tamperers. From the 
transformational perspective} we suggest that architecture is precisely those structures 
induced by the design selections which support a large portion of a design history1 • 

Such architecture is recognizable because it repeatedly appears in similar artifacts, 

1 Remember that certain costs may be caused by factors external to the implementation: software 
engineer understanding and user education. User re-education costs explain why apparently trivial 
design decisions tend to get preserved. 



298 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

and attempts to change it are usually expensive, typically in learning how to live with 
the new structure. 

The repeated appearance of a structure is a consequence of its reuse, either 
because it is a fundamental technique for solving a problem in the domain, or because 
discovery of the technique was difficult, the problem is common, and consequently 
the solution was deemed valuable enough to save and reuse. In the case of a design 
history, some portion of the history will survive repeated installation of changes. We 
define the long-term surviving portion to be the architecture of the artifact. This 
makes architecture a consequence rather than a cause. 

10.2.5 On Commutativity in the Design Space 

If one had to choose a single lesson to be gained from this thesis, it would be 
Commutativity in the design space aids design activities. 

The commutative nature of the design space provides us with considerable op
portunity for design repair. It was this insight that lead to this entire approach to 
transformational maintenance by rearranging a derivation history. Dependency nets 
are based on a weaker form of this idea; commutativity induced by the large diameter 
of the design state versus the relatively small scope of effect of individual transfor
mations. Dependency-directed backtracking also necessarily involves commutativity. 

A related lesson appears in Lexical Searching [Bax88]: the notion that that a 
problem space can be nearly decomposable; while we cannot expect to have problems 
neatly decompose into entirely separate problems, we can hope that subproblems are 
not so hopelessly entangled in their brethren that subproblem solutions are useless. 
Thus we see commutativity as actually being an aid to the problem of design. In 
particular, commutativity is a major source of essential modularity. 

We find it rather remarkable that there is often independence between design 
decisions, and are pleased that it exists, allowing us to revise our designs without 
necessarily throwing all of our other decisions away. Otherwise design might truly be 
an impossible task. 

10.3 Impact 

We consider the utility of this work in a broader context than simple transfor
mational maintenance. 



10.3. IMPACT 299 

10.3.1 Incremental Engineering 

We set out initially to realize the dream of truly incremental engineering: the 
ability to dynamically change our mind about desirable properties of an artifact and 
acquire one quickly. Our Design Maintenance System seems to provide a start in 
this direction. What effect would this have on conventional software engineering 
practices? 

We see the following effects: 

• Continuous feedback model of design and implementation 

• True melding of rapid prototyping with design and implementation 

• Different costing schemes will be required 

• Possibility of better cost predictions 

• Better documentation for would-be maintainers 

• Focus of debugging on requirements rather than implementation 

• Lessening of costs of errors or changes in requirements 

From the point of view of the customer, software lifecycles based on the wa
terfall model usually require an intense interaction with the developers during the 
requirements analysis process, 2L long quiet period during implementation, and then 
a major surprise when the implementation finally appears, and consequences of early 
requirements decisions are finally seen. An Incremental Evolution model suggests 
that construction consists of continuous comparision of a partly completed artifact 
with customer desires. The customer is involved with the process continuously. This 
is similar to an extreme version of Boehm's Spiral model; rapid prototyping and 
implementation are no longer distinguishable. 

The waterfall lifecycle model in its purist form is a one way street. Management 
likes it because it appears to provide definite milestones in a software construction 
process, and such milestones aid planning. The difficulty is that the pure model 
does not reflect reality; there is continuous feedback between all the various stages, 
and none is every really quite complete until the project is declared done. The very 
milestones on which management is basing schedules simply don't exist; it is not 
surprising that many projects arrive at a "Test" stage and stay there long after the 
original estimated completion date. 

Prediction of costs must be made on a basis other than major milestones. With 
an Incremental Evolution model, construction consists of integrating large numbers 
of small deltas. It is possible that these deltas have useful statistical properties; one 
property might be the average number of deltas for a typical problem domain imple
mentation. Such statistical properties would provide management with alternative 



300 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

prediction schemes. The possibility of using dependency nets to gauge the difficulty 
of proposed changes would also help cost estimation. 

Understanding what a system does and how the effect is achieved is a prereq
uisite to changing it. A Design Maintenance System provides, via the design history, 
useful implementation information for the would-be maintainer. Unlike conventional 
maintenance, this information is completely current and accurate. Tools to navi
gate the design history can allow more focused browsing than conventional designs 
in which no justification is recorded. These effects should lower the cost of under
standing artifacts, decreasing costs of generating change proposals, as well actually 
enhancing change management. 

Use of a Design Maintenance System base on transformation systems would 
change the emphasis of debugging from implementation repair to requirements repair. 
Use of formal specifications and a base of tested methods and transformations ensures 
that the implementation generated truly meets the specification; the problem then 
becomes one of acquiring the right specification rather than finding errors in the 
implementation process. 

Since a Design Maintenance System is intended to automate much of the process 
of installing changes according to specification changes, the cost of installing such 
changes should be significantly less than corresponding costs in conventional software 
engmeermg processes. 

Overall, Incremental Evolution implemented via a Design Maintenance System 
should have positive beneficial effects on software lifecycle activities and costs. 

10.3.2 What do we do about "Dusty decks"? 

If a transformation system is required to do maintenance, what can one do 
about existing programs that are not derived transformationally? 

The rather obvious answer is to construct a design history for the existing 
program along with its specification, and then apply the methods outlined in this 
thesis. This can be a painful exercise when we realize just how much information is 
m1ssmg. 



10.3. IMPACT 301 

We need a formal specification and a complete design history. Simply acquiring 
a formal specification is likely to be hard for many reasons: 

• We may not have a clear idea of the problem domain in which the program 
operates. This requires that we do a domain analysis [Nei80, Nei84a, Ara88] 
before we even start, just to identify the proper vocabulary. Even if we have a 
library of existing domain analyses, we will need to validate the choice of any 
particular domain as the problem representation basis. 

• There is no accurate, written, let alone formal, specification of any of the per
formance aspects of the problem to be solved. Absence of even informal written 
specifications is a long-standing tradition with most code, let alone informal 
specifications which accurately reflect the intent. 

• Assuming it is even expressible, a formal specification is likely to have a 
large number of ugly warts due to useless, buggy, arbitrary, idiosyncratic, or 
environment-specific code that is present in the existing code. Such warts will 
be difficult to understand or validate. We strongly believe that commitment of 
intentional abstraction error [ABFP86] will be necessary to minimize the diffi
culty caused by such warts; this is sort of the converse of revising the specifica
tion due to the implementation [Swa82]; instead, we revise the implementation 
as dictated to simplify construction of the specification. 

Constructing a legitimate design history has its own pitfalls: 

• The set of transformation rules and methods are similarly likely to be unclear, 
necessitating a domain engineering step [Ara88] or at least domain engineering 
validation. 

• A valid design history must be generated that converts the proposed specifi
cation to the implementation. If human agents propose the specification, it is 
highly likely to be wrong, and no correct implementation of a wrong specifica
tion can lead to the existing program. Specification repair will be necessary, but 
knowing when to repair the specification and precisely how to do so are likely 
to be difficult. 

The idea of reconstructing an idealized explanation of programs is propounded 
by [PC86], who suggest faking a rational design process during program construc
tion. Such a characterization is at best informal, and one needs considerably more 
detail, but an informal design characterization is probably a necessary intermediate 
step. [ROL90] gives some methods for identifying informally various design decisions 
present in existing code. 

Systems like GIBIS [CB89, WML +sg] use hypertext to annotate documents 
such as source code with decision points, possible choices, and arguments pro- and 
con- for those choices, and might be useful tools during the design recovery process. 



302 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

Design recovery systems ([Big89a, Big89b, BCC89, CC90, CS89, HN90, Nin89, 
Our89, PGLS88, RD88, Wil87, RW90) are first steps towards automating the recovery 
process in that they attempt to recover some of the design of existing code by matching 
code fragments to various program plans that accomplish known computational goals; 
the result is parameterized plans for the code, but not true performance specifications. 
More ambitious systems actually attempt to recover a formal specification from code 
instances into semi-formal ( JSD) notations [SJ88) and formal (denotational semantics) 
specification styles [WCM89). 

A characterization of transformational maintenance from a partial recovery 
point of view is given in [ABFP86), and was the initial impetus for this work. 

We conclude that there is possibility of use of our paradigm on conventional 
software, but many obstacles are present. Considering the amount of presently ex
isting software, the effort to solve these problems might be justified. It is certainly 
much easier to justify applying these techniques to new software systems, where one 
can start transformationally from scratch. 

10.3.3 Reuse of Components by Design Modification 

Software component reuse is often touted as a possible source of major efficiency 
gains in the software construction process. The popular approach to implementing 
a component reuse scheme is to provide a library of components, let a potential 
reuser locate candidate cpmponents using some browsing mechanism, and then have 
the reuser modify the best candidate to fit his application somehow [Dia85). Few 
concrete proposals have been made for how this modification process is to take place. 

A Design Maintenance System could be of great value for this purpose. Having 
located a component that has a formal specification and design history, a delta be
tween the desired specification and that of the component could be formed and applied 
to produce a component with the desired properties. Candidate components could 
be ranked by the size of the delta, or by an initial estimate of the impact of the delta 
by carrying through with part of the marking and pruning processes. Kambhampati 
[Kam89) makes a related observation for reuse of plans. James Neighbors2 has re
marked on the possibility of building large, general components, such as databases 
and graphics subsystems, and reusing them by stripping away unnecessary generality; 
a Design Maintenance System would be effective for this purpose. Since removal of 
generality is usually easier than addition of missing capability, this might be a very 
effective way to store components. 

2Personal communication. 



10.4. FUTURE WORK 303 

Such a reuse scheme could be a valuable addition to a synthesis system, which 
recursively decomposes a specification into a code fragment with slots containing yet 
more detailed specifications; each specification would be checked against the reusable 
component library for an easily modified solution before trying further decomposi
tions. 

10.3.4 Relevance to Digital Hardware Design 

We are rather dismayed by the apparent separation of software and hardware 
design systems. It seems rather obvious to us that the distinction between the de
sign of digital hardware and and the design of software is merely that of low-level 
geometric constraints3 . The problems of specification, representation and application 
of implementation choices seem virtually identical. The fact that hardware systems 
have considerable fine-grain implementation-level parallelism, and most software sys
tems design systems currently handle that poorly, merely reflects on the state of 
software design and implementation technology; eventually, this problem will need 
to be solved also for software. There is little in this thesis which is specific just to 
software. Consequently we believe that the ideas presented in this thesis will serve 
equally well in the digital design domain. 

Remarks about maintaining· dusty decks apply equally well to "dusty circuits". 
Million-transistor VLSI designs (such as the Intel 486 and Motorola 68040 CPUs) 
have enough longevity, and certainly enough financial effect if modified incorrectly to 
make a Design Maintenance System-like tool attractive. 

10.4 Future Work 

This thesis has presented some solutions to the problems of implementing a 
Design Maintenance System. Quite a number of future directions for research sug
gested themselves during the course of our work. 

10.4.1 Implementation and Empirical Validation 

By far the most obvious need is to implement the ideas and validate them on 
a transformation system used for practical work. Existing transformation systems 

3 Physical placement of components, wiring layout, sizes of drivers dependent on line length and 
number of loads, etc. 



304 CHAPTER 10. CONCLUSIONS A.ND FUTURE WORK 

by and large do not have performance specifications at all, and do not conveniently 
produce design histories, so one must either build a fresh transformation system or 
find some way to augment existing systems. Because of the absence of suitable bases 
for our work, all of our demonstrations have been performed on extremely rough 
engineering prototypes with no concessions for scale of programs or library sizes, 
longevity of libraries (i.e., database storage), or operator amenities of any kind. It is 
difficult to judge even the ability to use such a system, let alone its real utility, in such 
an environment. A valuable byproduct of testing on real examples is a measurement 
of the payoff of design maintenance as the problem sizes scale up. 

10.4.2 Specification 

Considering that we have so many data types (programs, performance measures, 
transforms, locators, maintenance deltas) and operations ( transformationally imple
ment, delta-type-specific revision procedures, etc.) it would probably be worthwhile 
to construct an algebraic specification of a transformation system with maintenance 
deltas to provide a secure formal basis for these ideas. Such a specification can serve 
as a basis for a new implementation of a Design Maintenance System. This exercise is 
practical, as demonstrated by the algebraic specification of a transformation system 
done by the CIP-S project [BEH+s7]. 

10.4.3 Self Application 

Having a specification, a larger scale validation could be attempted by applying 
a Design Maintenance System to its own construction. This would have the added 
benefit of obtaining synergy during the tool construction process4 . The bootstrap 
construction of CIP-S from CIP-L shows the value of this approach [BEH+87]. 

10.4.4 Application to Dusty Decks 

The amount of existing software that needs maintaining is simply too enormous 
to ignore. Given the partial successes of reverse engineering transformationally, aug
menting a Design Maintenance System with tools to aid in such a process could be 
a useful way to extend the utility of a Design Maintenance System while simultane
ously testing its limits. Existing plan recognition tools are needed, as well new tools 

4 We refer to leveraged self-application of a tool as an avalanche technology, on the grounds that 
little effects can by self-magnified by the tool. 



10.4. FUTURE WORK 305 

to recognize the performance goals acheived by plans. We expect that the design 
recovery process will be significantly aided by the ability to store and revise design 
histories. 

10.4.5 Improvements to Transformational Model 

We find our transformational model weak in several respects. First, we have 
no notion of construction-process oriented metrics or goals, and yet these are part of 
all practical software construction methods. Addition of process goals also leads to 
process goal deltas and integration methods. 

Considering the value of the notion of locale as a program part to TCL for 
navigation, we would like a better definition, perhaps derived from a topological 
description of the program representation. Such a definition should allow us to reason 
directly about whether locales overlap, and therefore determine common cases of 
noninterference of transformations. Work is also needed on determining useful types 
of locale-combining operations. 

There is the unsatisfying problem of fitting synthesis systems into our model. 
The CYPRESS synthesis system [Smi85] recursively decomposes a pure performance 
specification into a functional specification and a set of more detailed performance 
specifications. While this decomposition step could be treated as a transformation on 
a state containing a specification, it does not match our model because there appears 
to be no performance specification for the transformation system to maintain as an 
invariant. 

10.4.6 Performance algebras 

We believe that explicitly defining what we would call performance algebras as 
systems of computations for performance measures, using algebraic specification tech
niques, will eventually be needed to allow deep reasoning about the effect of changes 
on measures, and therefore on goal achievement. The subsumption relation would be 
a natural part of the algebra, as would any definable performance predicate. Such 
performance algebras would probably fit very nicely into transformation systems de
signed around algebraic frameworks such as that of CIP [BEH+s7] or PRO SPECTRA 
[KB88]. 



306 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

10.4. 7 Dependency networks for transformations 

One of the severest problems with our current approach is the assumption of a 
monolithic state, and the requirement by the ladder building routines of Section 8.3.3 
to keep all the intermediate states. Some initial investigation on our part suggests that 
one could use dependency networks for the derivation history rather than a simple 
linear chain; XAN A [MF89b J in effect does this. One would no longer depend on the 
idea of a monolithic state; rather, each transformation produces a partial state, like 
those used in nonlinear planning systems. Partial states could be represented by sets 
of predicates describing relations between state components. The problem of non-local 
constraints (results of multiple transformations) interacting to violate preconditions 
of dependent transformations must be solved [Cha87], [Kam89, page 150]; this is the 
primary reason we chose not to pursue this approach. As we pointed out earlier, 
Kambhampati's work on plan reuse [Kam89] looks like a very good starting point. 

Such a nonlinear transformation dependency network would make many trivial 
SWAPs actually unnecessary; the large size of a practical derivation history indicates 
that this should be a very effective optimization. Naturally, the notion of DEFER 
must be retained because dependency nets are conservative; "a depends on b" may 
only be syntactic and not semantic. The formal characterization of DEFER must 
change because of the change in state representation. 

We do not believe that a Design Maintenance System will make new software 
production virtually instantaneous; rearranging a design history can be expensive in 
its own right, and design history repair by transformational implementation can also 
be expensive, perhaps measured in days or months depending on the scale of the 
change. Dependency networks might make change-cost impact analyses possible, by 
assuming that the number of transformations dependent, according to the dependency 
network, on a particular transformation is an estimate of the required work. Such 
a count can obviously be made without actually changing the network. "What-if" 
estimates could then be made from proposed deltas. 

An additional benefit of dependency networks might be the ability to maintain 
multiple implementation versions, each sharing much their individual design histo
ries. Different versions would be represented by different consistent frontiers of the 
dependency network. 

10.4.8 Finding commutable transformations 

Our methods for functional delta integration depend fundamentally on finding 
a composably equivalent pair of transformations to replace an existing pair, often 



10.4. FUTURE WORK 307 

by revising just the locaters. Although this thesis theoretically characterizes the 
generation of such revised locaters as a British Museum Algorithm, one cannot afford 
to do this in practice. Efficient methods for determining such pairs depends on a 
deeper understanding of the relation between rewriting, the structure of the objects 
being rewritten, and the notion of locaters; our prototype system uses knowledge 
about tree-rewrites with pattern matching by unification, over trees, using paths as 
locaters, to achieve this kind of efficiency. We intuitively trust, but do not know 
how to formalize, the DEFERral of an optimization through a refinement, as shown 
in Figures 7.9 and 7.19. A categorical exploration of rewriting motivated initially 
by this need has been started [Sri91]. With such understanding, one might be able 
to generate the portion of procedures such as DEFER that handle geometrically 
overlapping but non-interfering transformations, automatically from descriptions of 
the topology of the states. 

10.4.9 Increasing the Grain Size of commutable elements 

While our model of transformations does not include them explicitly, TCL meth
ods are technically transforms; they are definitely partial maps from states to states. 
We did not consider the idea of applying DEFER or PRESERVE at the level of 
method application during functional delta integration. Successful deferral at the 
method level can avoid investing much larger amounts of energy attempting to de
fer transformations at lower levels. Considering that methods have postconditions 
describing the desired effect of the method, we are overlooking a rich source of infor
mation that can tell us about possible impacts. 

10.4.10 Representation of Program Schemes 
and Functional Deltas 

For our experimental system, we chose a tree representation for programs and 
conditional tree rewrites as the standard form of transform. Choosing simple tree 
rewrites implicitly defined our functional deltas to also be tree rewrites. Two inde
pendent changes separated by great distance in a tree program unfortunately require a 
very big tree delta. We briefly considered representing deltas as bags of tree rewrites. 
But the additional fact that tree representations do not easily lend themselves to 
commonly-occurring transformations that use information from "far away", such as 
variable declarations, suggested instead choosing a graph representation for programs 
and using graph transforms as deltas. Specific techniques to handle commuting graph 
transformations would be needed. Research outlined in the Section 10.4.8 would be 
helpful here. 



308 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

10.4.11 Delta Acquisition 

We have assumed that deltas simply appear. It would be convenient if such 
deltas could be produced by a regular process given a partial implementation and 
feedback from a customer. Techniques such as Shapiro's critical experiments for au
tomatic debugging [Sha83] could perhaps be used to focus attention on erroneous parts 
of the specification or incorrect transformations. We have already remarked on the 
possibility of producing functional deltas given an almost applicable transformation in 
Section 7.5. The KATE system is intended to acquire and check specifications[Fic87]; 
specification errors could be cast as deltas. 

10.4.12 Asynchronous Evolution 

Regardless of the power of our tools for constructing software, there will always 
be ambitious projects requiring more than a single software engineer. Our character
ization of a Design Maintenance System assumes a fully synchronous cycle of 

rep eat CollectDelta; ProcessDelta end 

With a large number of engineers, this is probably not practical. Methods for co
ordinating the entry, integration of deltas, and plan repair (TCL execution) all in 
parallel are likely to be needed. We think there is promise in the database notions 
of serializable transactions, and in particular in nested transactions [Mos85a], be
cause of the similarity between the notion of atomic transaction and the all-or-useless 
transaction-like nature of TCL methods. 



10.5. SUMMARY 309 

10.5 Summary 

This thesis has explored the problem of maintenance from a transformational 
perspective. Results of this exploration include: 

• Improved transformation system models and mechanisms: 

- A formal model of a transformation system, including performance speci
fications. Few such models or systems exist. 

- TCL, a metaprograrnrning language, in which performance goals are 
stated explicitly and drive the transformational derivation. Other existing 
metaprograrnrning languages do not encode performance goals, effectively 
having procedural semantics for performance specifications. 

Design history capture for potential explanation of implementation 

Dependency-directed backtracking (BANISH) 

Partial design repair by agenda item execution 

• An architecture for a Design Maintenance System based on: 

- A formal model of transformational maintenance. This is a significant 
improvement over the ad hoc characterization of maintenance presented 
by standard software engineering texts. 

- A new classification of maintenance types based on transformation system 
inputs; this classification tells one precisely what methods are needed to 
install change. Conventional classification of maintenance types provide 
no clues as to how to handle the change installation. 

Theoretical procedures, based on commutativity in the design space, for 
preserving a significant portion of the design history in the face of a change, 
and the understanding that what part can be preserved can be determined 
by explicit use of the change. 

An empirical demonstration that search spaces, and therefore design 
spaces, are likely to be highly commutative. 

• Insights: 

- That initial implementation and maintenance, which appear to be com
pletely separate lifecycle phases in conventional SE models, are in fact not 
truly distinguishable. 

The notions of essential versus artificial modularity. 

Architecture as decisions which are expensive to remove 

This investigation leads us to the conclusion that a Design Maintenance System 
based on these ideas might well be practical, and has the potential for revolutionizing 



310 CHAPTER 10. CONCLUSIONS AND FUTURE WORK 

the way in which software is built and maintained. Coupled with the notion of 
Design Recovery this work might ultimately lead to practical systems for maintaining 
software not constructed transformationally. 



Appendix A 

Notation 

We summarize here the notation used throughout the thesis. 

Generally, calligraphic letters represent universes, capital letters represent spe
cific sets, and lower case letters represent set elements. 

:) means logical implication. 

C means "subset of" . 

:F = set of all possible program schemes. 

fi E :F is a particular program scheme. 

? z refers to scheme variable z. 

fa is a program satisfying predicate G. 

£ E :Fis the "empty" program, skip. 

Q are possible facts inferred about programs. 

q is a fact. 

qi,j are consequences, or deductions, drawn about a particular fi 

Q = { q} is a set of facts. 

S = set of states in the design space. 

Si E S is a state, consisting of a pair (!, Q), where f is a program and Q is a 
set of cached inferences about f. 
f-* facts(!) is the theory off, the transitive closure of the deducibility relation 
f-. 

vi is the set of performance values computable by performance value function 

Pi· 

P = set of performance measuring functions Pi : S -+ Vi. 
9 = set of performance goals. 

Gi : S-+ boolean is a performance goal. 

9i E 9 : S-+ boolean is a performance predicate. 

311 



312 APPENDIX A. NOTATION 

(Notation, continued) 

I is an arbitrary set of possible identifiers 

B = set of bindings, or indicators of specific places in the state where it 1s 
legitimate to apply a transform. 

b; E B are particular bindings. 

£ = set of locaters or locales: binding constraints. 

f E £ is a particular locater 

X is the set T x £ of transformations. 

x E X is a transformation. 

lv is the name of a method variable capable of holding a locale value. 

l is a particular locale. 

T = set of transforms possible, with members denoted t;. 

t; E T is transform i, a function t; : S x B -+ S (partial functions). For simple 
transformational models in which the state consists solely of a program (as in 
most extant transformation systems) then t; : :F x B --+ :F. 

match( t, s, R) is the subset of arrows leaving s selected by f. 

apply( t, s, R) follows one arrow from S to some S'. 

tf is a transformation, i.e., a transform i with locater f, a function tf : S-+ S 

defined(tf(s)) is a predicate which is true if tf(s) is well defined, and false oth
erwise. 

f; ===} fj means that program f; is transformed to program fj 

C; ~ T is the set of G;-preserving, or p;-preserving transforms. Individual 
members are denoted Cj E C;. 

M = T - Ci is the set of non-property-preserving transforms with respect to 
goal Gi. Individual members are denoted nj E Ni. 

M is the set of all possible hueristic methods used to guide the design process. 

M ~ M is a specific set of methods. A specific set of methods used to implement 
a particular specification is called a metaprogram. 

mi = (i, a, G) E M is a specific method consisting of a identifier i, action a and 
a postcondition G. 



(Notation, continued) 

[ti · · ·] represents a sequence of transformations, i.e., a derivation history. 

1i is the set of possible derivation histories. 

313 

H is a derivation history. This is a triple (k, H7 : l..k -+ T,Hc, : 1..k -+ £), 

representing a sequence of transformations [x1, x2, · · · xk], where Xi = tZ~~:~. 
length(H) = k is the length of a derivation history H = (k,H7 ,Hc,) 

H[i] is the transformation tZ~~:~ 

H[ . "] . b [tHL( i) tHL(j)] 
Z .. J IS a SU sequence HT(i)' ... ' HT(j) 

rest(H, i) _ H[i .. length(H)] is the tail of H. 

H1 c H2 3i,j I H1 = H2[i .. j] 

H1 + H2 = [H1[l], ... , H1 [length(H1)], H2 [1], ... , H2 [length(H2)]] 

II(H)(fo) = fiength(H) is the program achieved by computing f; = tZ~~:~Ui-1) 
for i = 1 · · · length(H). 

J) is a design history, = H plus unfolded goal plan. 

R s;;; 1i is the set of refinement histories, consisting of those transformations 
which add detail, i.e., enlarge the theory of the specification. 

RER 



314 APPENDIX A. NOTATION 

(Notation, continued) 

6.type represents the set of values forming 8type associated with a function 
RE VISE type. 

REVISE type : objecttype X 6.type --r objecttype is a function which revises an 
instance of objecttype according to a delta of that type. 

8 E 6.type is a particular change. We write 8(d) to mean REVISEtype(S)(d,8). 

6.c is the type (set) of changes to a performance specification 

6.v is the type (set) of changes to performance bounds 

6. f is the type (set) of changes to a functional specification 

6.9 is the type (set) of changes to performance goal library 

6.c is the type (set) of changes to property-preserving sets of transformations 

6.p is the type (set) of changes to the performance measure library 

6.v is the type (set) of changes to the sets of performance values 

6.~ is the type (set) of changes to the subsumption relations between perfor
mance values 

6.M is the type (set) of changes to the method library 

A is the set of possible actions of a method. 

a E A is a specific action. 

(i1 : e1, i2 : e2, ... , ik: ek) defines a tuple with slots named i1, i 2, ... 

e.i refers to the value of the tuple slot named i of the tuple e. 



Appendix B 

Procedure for Integrating ~ f 
into a Derivation History 

The code in this section gives an abstract procedural description of view of 6.1 
integration into derivation histories. It models the generation of deltas by a customer, 
and the integration of those deltas into (revised) derivation histories, preserving as 
many of the transformations as possible. It is not intended to be efficient; its purpose 
is to convey the intent. Performance goals are not handled. 

The program design language is intended to be a relatively conventional block
structured procedural language, that can manipulate records and sequences as en
tities. Most of the constructs should be self-explanatory, but, here are a few notes 
about the more esoteric aspects: 

• Keywords are boldface: Declare If Then Else Fi 
Procedure Function Returns Return Guard 

• Comments begin with % and their italicized content continues to the end of the 
line: 
% Comment 

• One dimensional arrays/sequences are I-origin indexable. A subsequence 
can be selected by writing sequence[m .. n] with sequence[m] being shorthand 
for sequence [ m, m]. The function length returns the length of a sequence. 
rest( sequence, n) is the same as sequence [n .. length( sequence)]. Sequences can 
be concatenated via the "+" operator. 

• Records are formed by the expression 

(slotl : slotlexp, slot2 : slot2exp, ... , slotn: slotnexp) 

where fields are separated by commas, the name of record field appears to the 
left of a colon, and the value to fill that field is to the right of a comma. The 
slot names act as record access functions in the notation exp.slotname. A record 
can act as a sequence of length 1. 

315 



316 APPENDIX B. CODE FOR INTEGRATING FUNCTIONAL DELTAS 

• (name, name, ... ) :=exp means multiple assignment from a multiple- or record
valued expression. Think of this as record disassembly. 

• A Guard block consists of a sequence of predicate: action clauses; it nondeter
ministically executes just one of the actions for which the predicate in the clause 
is true (Dijkstra's guarded conditional). The Guard block in SoftwareLifecycle 
below is intended to model nondeterminism on the part of the system analyst. 

A derivation history is represented as a sequence of transformations. 

A quick summary of the procedures: 

SoftwareLifeCycle captures the process of building and maintaining a particular 
program. It is shown only to provide a sense of the kinds of actions a software 
engineer might request of a Design Maintenance System. 

ImplementProgram takes a program and returns either an implementation and 
its generating derivation history or a failure signal. 

Integrate integrates a delta into a history, returning a new implementation and 
history, or a failure signal. 

BANISH gets rid of the transformation at the head of a history by rearranging 
the history so that the offending transformation is delayed as long as possible; 
then the offending transformation and all transformations which depend on it 
are chopped off. Banishment always shortens the derivation history by at least 
1 transformation. 

DeferTransformation attempts to delay an applied transformation until after 
its present successor in a derivation history has been applied. It returns revised 
bindings, and a possibly-revised delayed transform. 

Swap Transformations attempts to exchange two transformations that are ad
jacent in a derivation history. It returns revised bindings for the exchanged 
transformations. 

Preserve Transformation attempts to push a delta past a transformation already 
present in a derivation history. It returns revised bindings for the already
present transformation, and a possibly revised delta with possibly-revised bind
mgs. 

Ship releases a program for use by the customer. 



Procedure SoftwareLifeCycle() 
Declare DerivationHistory: History, RevisedHistory, EmptyHistory 
Declare Transformation: FunctionalDelta 
Declare Integer: View, Boolean: SuccessFlag 
Declare Program: ProgramAt View, EmptyProgram 
Declare Program: Implementation, Partiallmplementation 
Empty Program: =nil; History: =EmptyHistory: =nil 
View:=O % Selects where along history functional deltas will get applied 
ProgramAtView:=EmptyProgram % Make program consistent with program at view 
Ship(ProgramAt View) % Ship the 1st prototype to customer, just to be systematic 
Repeat 

Guard % Let software engineer choose what he wants to do next 
View<length(History): % Move SE's view later in history 

Begin 
View:= View+1 
ProgramAtView:=ApplyTransformation(History[View},ProgramAtView) 

End 
View>O: % Move SE's view earlier in history 

Begin 
View:= View-1 
ProgramAt View:=ApplyTransformation(IT (History fl .. View}), 

Empty Program) 
% Recompute program as seen at this view point 

End 
True: % Apply functional delta anywhere in history 

Begin 
FunctionalDelta: = 

ChooseRandomTransformation(ProgramAtView) % new requirement 
( SuccessFlag, Implementation, RevisedHistory): = 

Integrate(ProgramAt View,FunctionalDelta, rest(History, View+ 1)) 
If SuccessFlag Then 

History:=History{l .. View}+ FunctionalDelta+ RevisedHistory 
View:= View+l % Default additional changes to "additive" 
ProgramA t View: =Apply Transformation (FunctionalDelta, ProgromA t View) 
Ship(Implementation) % where most organizations stop 

Else 
Print "Can't implement that." 
?? % Perhaps the new delta violates an existing delta, 
% perhaps we should complain, and require that the 
% existing delta be explicitly deleted before proceeding. 

Fi 
End 

317 



318 APPENDIX B. CODE FOR INTEGRATING FUNCTIONAL DELTAS 

3 SoftwareLifeCycle, continued ... 
View<length(History): 3 Delete a user requirement 
Begin 

( Partiallmplementation,RevisedHistory): = 
BANISH (ProgmmAtView,rest(History, View+l)) 

(Success Flag, Implementation, N ewHistory): = 
Implement(Partialimplementation) 

If SuccessFlag Then 
History:=History[l .. View-l}+RevisedHistory+NewHistory 
Ship (Implementation) 

Else 
3 Can't implement program derived from history 
3 with deleted transformation 
3 Attempt to use as much of history as possible 
(Success Flag, Implementation, N ewHistory): = 

Fi 
End 

Reimplement(ProgramA t View, RevisedHistory) 
If SuccessFlag 
Then 

History: =History [1 .. View-1) + N ewHistory 
Ship{Implementation) 

Else 
Print "Not implementable that way." 

Fi 

View> 1: 3 Change priority of user requirements 
Begin 

3 Move existing delta to left of a correctness-preserving transform 
3 This can swap program deltas, too! 
(Success Flag, Def erred Transformation, PromotedTmnsformation): = 

DeferTransf ormation ( ProgramA t View, History [View-1 }, History [View}) 
If SuccessFlag Then 

% We have rearranged order of transformations. 
History[View-1):=PromotedTransformation 
History [View): =Def erred Transformation 

Else Print 11Can't exchange." 
End 

End Guard 
End Repeat 

End SoftwareLifeCycle 



Function Implement(Program: S) 
Returns (Boolean! Program! DerivationHistory) 
% Determines an implementation, returns a success flag 
% and the history of transformation steps to obtain the implemented program 
% This is the conventional scheme for transformational implementation. 
Declare Boolean: SuccessFlag 
Declare Program: Implementation 
Declare DerivationHistory: RestOJHistory 
If Implemented(S) Then Return ( True!S!EmptyHistory) 
Enumerate Transformation:T suchthat Applicable(T!S) 

( SuccessFlag, Implementation! Rest Of History):= 
Implement( ApplyTransformation(T!S)) 

If Success Then Return ( True,Implementation! T+RestOJHistory) 
End Enumerate T 
Return (Falsejunk!junk) 

End Implement 

Function Reimplement(Program: S! DerivationHistory: History) 
Returns (Boolean) Program, DerivationHistory) 
% Determines an implementation, returns a success flag 
% and the history of transformation steps to obtain the implemented program 
% Attempts to reuse the derivation history. 
% This is the "naive" version of derivation replay with backtracking. 
Declare Boolean: SuccessFlag 
Declare Program: Implementation 
Declare DerivationHistory: RestOJHistory 
If Implemented(S) Then Return ( True!S!EmptyHistory) 
If length(History)=O Then Return Implement(S) 
If not Applicable(History[l},S) Then Return Implement(S) 

% If History was once valid for S, then Applicable is always true. 
% This test simply makes Reimplement robust in face of old histories. 

% First element of history applies. Try to use it. 
(Success Flag! Implementation, Rest Of History) : = 

Reimplement( ApplyTransformation(Historyf 1 },SJ, rest(History, 2)) 
If SuccessFlag Then Return (TrueJmplementation,History[l}+RestOJHistory) 
Else 

% First element of history leads to program which is unimplementable 
Return Implement(S) 

Fi 
End Reimplement 

319 



320 APPENDIX B. CODE FOR INTEGRATING FUNCTIONAL DELTAS 

Function lntegrate(Program: CurProgram, Transformation: Delta, 
DerivationHistory: History) 

Returns (Boolean, Program, DerivationHistory) 
% Constructs a new implementation and history for the 
% program defined by ApplyTransformation(Delta,CurProgram) ... 
% by revising the DerivationHistory of CurProgram to integrate Delta 
Declare Program: Implementation, Partiallmplementation 
Declare DerivationHistory: RevisedHistory, Boolean: SuccessFlag 
Declare Transformation: PreservedTransformation, RevisedDelta 

. If length(History)> 0 
And Not ConventionalTransformationallmplementation 

Then 
% Try to Reuse history to derive new implementation 
( SuccessFlag, Preserved Transformation, RevisedDelta): = 

PreserveTransformation(CurProgram,History{1},Delta) 
If SuccessFlag Then 

% We were able to preserve the original transformation 
(Success Flag, Implementation, RevisedHistory): = 

Integrate( ApplyTransformation(History{1}, Cur Program), 
RevisedDelta,rest(History,2)) % revise the rest! 

If SuccessFlag Then 
% Success at revising history and obtaining an implementation 
Return (True, Implementation, 

Preserved Transformation+ RevisedHistory) 
Else 

% Not able to revise history and obtain an implementation. 
% Perhaps we can get an implementation from CurProgram. 
% If not, it is hopeless from here. 
Return Implement (Apply Transformation(Delta, Cur Program)) 

Fi 
Else 

% Can't preserve History[l] because of some inability to resolve conflict ... 
% with the desired Delta so make History[l] stop bothering us. 
( Partiallmplementation, RevisedHistory): = 

BANISH (Cur Program, History) 
% ignore Partiallmplementation 

Return lntegrate(CurProgram,RevisedHistory,Delta) 
% Won't loop: BANISH chops off offending transformation 

Fi 
Else 

% No more revision possible, nothing left to revise. 
Return Implement (Apply Transformation (Delta, Cur Program)) 

Fi 
End Integrate 



Function BANISH (Program: Cur Program, 
DerivationHistory: History) 

Returns (Program, History) 
3 This function pushes History[l] as deep into the history as possible, 
3 chops the history off at that point, and returns the revised history. 
3 Because we always chop the history off, banishing cannot fail; 
3 at worst it returns an empty history. 
3 Complication: History[l] may conflict with History[2], so we can't always 
3 immediately get rid of History[l]; we solve this by (recursively) 
3 getting rid of History[2] and then proceeding. 
3 This procedure costs O(length(History)2 ) to run. 
Declare Program: Partialimplementation, Boolean: SuccessFlag 
Declare DerivationHistory: RevisedHistory 
Declare Transformation: PromotedTransformation, DeferredTransformation 
Assert length(History) ~ 1 3 Or there's nothing to banish! 
If length(History)=l Then Return EmptyHistory 
( SuccessFlag, Def erred Transformation, Promoted Transformation):= 

DeferTransformation(CurProgram,History[l},History[2}) 
If SuccessFlag Then 

3 We can move transformation to banish to History[2]. 
3 Pretend we did that, and banish it from there. 
( Partialimplementation, RevisedHistory): = 

BANISH (Apply Transformation(Promoted Transformation, Cur Program), 
DeferredTransformation+rest{History, 3)) 

Return ( Partialimplementation, 
Promoted Transformation+ RevisedHistory) 

Else 
3 Transformation we wish to banish is blocked by rightmost neighbor. 
3 So banish rightmost neighbor, shortening history, and try again. 
3 Safe to banish rightmost neighbor for two reasons: 
3 1) This procedure can be conservative (because the Revise 
3 procedure will work even if Banish throws away everything! 
3 2) The rightmost neighbor depends on transformation we are trying to banish; 
3 if we succeed in banishing it, the rightmost neighbor's preconditions 
3 will not be present, and the rightmost neighbor can't be saved either. 
( Partiallmplementation, RevisedHistory): = 

BANISH ( ApplyTransformation(History[l }, Cur Program), rest{History, 2)) 
% ignore Partiallmplementation 

Assert length{RevisedHistory)<length{History)-1 
Return BANISH (CurProgram,History[l}+RevisedHistory) 

Fi 
End BANISH 

321 



322 APPENDIX B. CODE FOR INTEGRATING FUNCTIONAL DELTAS 

Function DeferTransformation(Program: Before, 
Transformation: ti1 , Transformation: t~2 ) 

Returns (Boolean, Transformation, Transformation) 
e e l' e' % Find t3, £i and .e; such that t 22 (t 11 (Before)) = t31 (t 22 (Before)) 

% Here we have a British Museum Algorithm, to simplify understanding. 
% This can be done much more efficiently for any particular transform type, 
% e.g., tree transforms. 
% Note that result may not be unique. 
( SuccessFlag, DeferredTmnsformation, PromotedTmnsformation): = 

SwapTransformations(Before,ti1 ,t~2 ) % try the easy case 
If SuccessFlag Then Return ( true,DeferredTransformation,PromotedTransformation) 
Else 

% Can't simply swap the transformations. 
Enumerate t3 

Enumerate £i 
Enumerate .e; 
If Apply Transformation (t~2 , Apply Trans/ ormation (t 1 li , Before)) 

£' e' 
= ApplyTransformation(t31 ,ApplyTransformation(t22 ,Before)) 

£' e' 
Then Return (true,t31 ,t22 ) 

End Enumerate .e; 
End Enumerate fi 

End Enumerate t 3 

Return (jalse,junk,junk) 
Fi 

End DeferTransformation 

Function SwapTransformations(Program: Before, 
Transformation: ti1 , Transformation: t~2 ) 

Returns (Boolean, Transformation, Transformation) 
f.' l' % Find £i and .e; such that t~2 (ti1 (Before)) = t 11 (t22 (Before)) 

% Here we have a British Museum Algorithm, to simplify understanding. 
% This can be done much more efficiently for any particular transform type, 
% e.g., tree transforms. 
Enumerate fi 

Enumerate £~ 
If ApplyTransformation(t~2 ,ApplyTransformation(t1l 1 ,Before)) 

£' l' = ApplyTransformation(t11 ,Apply Transformation(t 22 ,Before)) 
f.' f.' 

Then Return (true,t 11 ,t22 ) 

End Enumerate £~ 
End Eumerate £i 
Return (false ,junk,junk) 

End Swap Transformations 



Function PreserveTransformation(Program: CurProgram, 
Transformation: cf 1, Transformation: t.f.2) 

Returns (Boolean, Transformation, Transformation) 
% Attempts to preserve a transformation in the face of a functional delta. 
% This function computes new binding fi for property-preserving transform c;, 
% a possibly new tnew and new binding £~ such that: 

~ ~ % c/(t.e.2(CurProgram)) = trtew(cf1 (CurProgram), or returns failure. 
% Here we have a British Museum Algorithm, to simplify understanding. 
% This can be done much more efficiently for any particular transform type, 
% e.g., tree transforms. 
Enumerate tnew % try replacements for t 

Enumerate fi % try new binding sites for Ci 

Enumerate £~ % try binding sites for tnew 

If Apply Transformation(c1~ ,Apply Transformation(tf.2, Cur Program)) 

= ApplyTransformation(t;~ew 1 ApplyTransformation(c11 , Cur Program)) 
R.' .e.' 

Then Return ( true,c/, tn2ew) 
End Enumerate £~ 

End Enumerate fi 
End Enumerate tnew 
Return (false,junk,junk) 

End PreserveTransformation 

323 



Appendix C 

Algebras used in linear replay 
example 

The following algebras provide the domain axioms, and therefore the transfor
mations used in Figure 7 .21. 

324 



stack= LAMBDA trivial IS 
trivial WITH data RENAMED element 
UNION 
ALGEBRA 
SORTS: stack, element 
OPS: empty -+ stack 

push( stack,element) -+ stack 
pop(stack) -+ stack 
top(stack) -+element 
2nd( stack) -+ element 

EQNS: pop(push(stack,element ))=stack 
top(push( stack,element) )=element 
2nd(push(push( stack,element2),element1) )=element2 

Figure C.l: The stack algebra 

tinylisp = ALGEBRA 
SORTS: atom, seq 
0 PS: listify( atom) -+ seq 

atomize( seq) -+ atom 
nil -+seq 
cons( seq,seq) -+ seq 
car( seq) -+ seq 
cdr( seq) -+ seq 
cadr( seq) -+ seq 
list (seq) -+ seq 

EQNS: atomize(listify( atom) )=atom 
listify( atomize( seq) )=seq 
car( cons( seql,seq2) )=seql 
cdr( cons( seql,seq2) )=seq2 
cadr( seq) =car( cdr( seq)) 
cons( seq,nil) =list( seq) 

Figure C.2: Algebra for Lisp fragment 

325 



Bibliography 

[ABFP86] Guillermo Arango, Ira Baxter, Peter Freeman, and Christopher Pidgeon. 
TMM: Software Maintenance by Transformation. IEEE Software, 3(3):27-39, 
May 1986. 

[Agr86] William W. Agresti. What are the New Paradigms? In William W. Agresti, 
editor, New Paradigms for Software Development. IEEE Press, 1986. ISBN 
0-8186-0707-6. 

[AHT90] James Allen, James Hendler, and Austin Tate, editors. Readings in Planning. 
Morgan Kaufmann, San Mateo, California, 1990. ISBN 1-55860-130-9. 

[AHU74] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. The Design and 
Analysis of Computer Algorithms. Addison-Wesley Publishing Company, 
Reading, Massachusetts, 1974. ISBN 0-201-00029-6. 

[AI87] Jose A. Ambros-Ingerson. Integrating Planning, Execution and Monitoring. 
Master's thesis, Department of Computer Science, University of Essex, 1987. 

[AIS88] Jose A. Ambros-Ingerson and Sam Steel. Integrating Planning, Execution and 
Monitoring. In Proceedings of AAAI-88, Minneapolis, August 1988. 

[All86] Lloyd Allison. A Practical Introduction to Denotational Semantics. Cambridge 
University Press, Cambridge, England, 1986. 

[All90] Dean T. Allemang. Understandings Programs as Devices. PhD thesis, Ohio 
State University, Columbus, Ohio, 1990. 

[AM75] Michael A. Arbib and Ernest G. Manes. Arrows, Structures, and Functors: 
The Categorical Imperative. Academic Press, New York, 1975. 

[Ara88] Guillermo Arango. Domain Engineering for Software Reuse. PhD thesis, 
Department of Information and Computer Science, University of California 
at Irvine, July 1988. Available as Advanced Software Engineering Project 
RTP086. 

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, 
Techniques and Tools. Addison-Wesley, Reading, Massachusetts, 1986. ISBN 
0-201-10088-6. 

[Bal85a] Robert Balzer. A 15 Year Perspective on Automatic Programming. IEEE 
Transactions on Software Engineering, SE-11(11):1257-1268, November 1985. 

326 



BIBLIOGRAPHY 327 

[Bal85b] Robert Balzer. Automated Enhancement of Knowledge Representations. In 
Proceedings of Ninth International Joint Conference of Artificial Intelligence, 
pages 203-207, Los Angeles, August 1985. ISBN 0-934613-02-8. 

[Bar88] David Barstow. Automatic Programming for Streams II: Transformational 
Implementation. In Proceedings of 10th International Conference on Software 
Engineering, pages 439-447, Singapore, April 1988. IEEE. ISBN 0-8186-0849-
8. 

[Bar89] David Barstow. Automatic Programming for Device Control Software. 
Technical Report (unnumbered), Schlumberger Laboratory for Computer 
Science, PO Box 200015, Austin, Texas 78720-0015, 1989. 

[Bau77] F. L. Bauer. Notes on the project CIP: Outline of a transformation sys
tem. Technical Report TUM-INF0-7729, Institut fur Informatik, Technische 
University Munchen, Munich, West Germany, 1977. 

[Bax86] Ira Baxter. Domain Connection Discovery. Technical Report STP-108-87. Also 
available as RTP067, Advanced Software Engineering Project, Information 
and Computer Sciences Department, University of California at Irvine, MCC 
Corporation, Software Technology Program, October 1986. 

[Bax87a] Ira D. Baxter. PCL: A Production Control Language (A Proposal). Technical 
Report STP-375-87, Microelectronics and Computer Technology Corporation, 
Software Technology Program, September 1987. PCL is an early version 
of TCL. Also available as RTP080, Advanced Software Engineering project, 
Department of Information and Computer Science, University of California at 
Irvine, Irvine, California. 

[Bax87b] Ira D. Baxter. Propagation of Change In Transformational Systems. Technical 
Report RTP076, University of California at Irvine, Information and Computer 
Sciences Department, Advanced Software Engineering, February 1987. 

[Bax88] Ira D. Baxter. Lexical Searching: Reducing Search in Nearly Decomposable 
Spaces. Technical Report RTP096, Advanced Software Engineering Project, 
Department of Information and Computer Science, University of California at 
Irvine, December 1988. 

[BBG+78] F. L. Bauer, M. Broy, R. Gnatz, H. Partsch, P. Pepper, and H. Wossner. 
Towards a wide spectrum language to support program specification and pro
gram development. SIGPLAN Notices, 13(12):15-23, 1978. 

[BCC89] P. Benedusi, A. Cirnitile, and U. De Carlini. A Reverse Engineering 
Methodology to Reconstruct Hierarchical Data Flow Diagrams for Software 
Maintenance. In Proceedings of Conference on Software Maintenance 1989, 
pages 180-189, Miami, Florida, October 1989. IEEE Computer Society Press. 
ISBN 0-8186-1965-1, IEEE Catalog Number 89CH2744-l. 



328 BIBLIOGRAPHY 

[BD77] R. M. Burstall and John Darlington. A Transformational System for 
Developing Recursive Programs. Journal of ACM, 24(1):44-67, January 1977. 

[BEH+87] F. L. Bauer, H. Ehler, A. Horsch, B. Moller, H. Partsch, 0. Paukner, and 
P. Pepper. The Munich Project GIP. Springer-Verlag, 1987. Lecture Notes in 
Computer Science 292. 

[BF81] Avron Barr and Edward A. Feigenbaum. The Handbook of Artificial 
Intelligence, Volume I. William Kaufmann, Inc., Los Altos, California, 1981. 
ISBN 0-86576-005-5. 

[BFKM85] Lee Brownston, Robert Farrell, Elaine Kant, and Nancy Martin. Programming 
Expert Systems in OPS5: An Introduction to Rule-based Programming. 
Addison-Wesley, 1985. ISBN 0-201-10647-7. 

[BGW82] R. Balzer, N. Goldman, and D. Wile. Operational Specification as the Basis 
for Rapid Prototyping. ACM Sigsoft Software Engineering Notes, 7(5):3-16, 
December 1982. 

[Big88] Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse. Technical 
Report STP-378-88, Software Technology Program, Microelectronics and 
Computer Corporation, November 1988. Also published in IEEE Computer, 
July 1989. 

[Big89a] Ted J. Biggerstaff. Design Recovery for Maintenance and Reuse. IEEE 
Computer, 22(7):36-49, July 1989. Also available as MCC Technical Report 
STP-378-88. 

[Big89b] Ted J. Biggerstaff. DESIRE: A System for Design Recovery. Technical Report 
STP-081-89, Microelectronics and Computer Corporation, 1989. 

[BM84] J.M. Boyle and M. N. Muralidharan. Program Reuseability through Program 
Transformation. IEEE Transactions on Software Engineering, SE-10(5):575-
588, 1984. 

[BMPP89] Fredrich Ludwig Bauer, Bernhard Moller, Helmut Partsch, and Peter 
Pepper. Formal Program Construction by Transformations- Computer-Aided, 
Intuition-Guided Programming. IEEE Transactions on Software Engineering, 
15(2):165-180, February 1989. 

[Boe81] Barry Boehm. Software Engineering Economics. Prentice-Hall, New Jersey, 
1981. ISBN 0-13-822122-7. 

[Bor89] Ellen Ariel Borison. Program Changes and the Cost of Selective Recompilation. 
PhD thesis, Carnegie Mellon University, 1989. 

[Boy84] James. M. Boyle. Lisp to FORTRAN - Program Transformation 
Applied. In Peter Pepper, editor, Program Transformation and Programming 
Environments, pages 291-298. Springer-Verlag, New York, 1984. 



BIBLIOGRAPHY 329 

[BPPW80] M. Broy, H. Partsch, P. Pepper, and M. Wirsing. Semantic Relations in 
Programming Lanaguages. In S. H. Lavington, editor, Information Processing 
80, pages 101-106, New York, 1980. North-Holland Publishing Company. 

[BPW80] Manfred Broy, Peter Pepper, and Martin Wirsing. On Relations Between 
Programs. In Proceedings of the 4th International Symposium on 
Programming, pages 59-78. North-Holland, April 1980. Lecture Notes in 
Computer Science #83. 

[Bro75] Fred P. Brooks, Jr. The Mythical Man-Month. Addison-Wesley Publishing 
Co., Reading, Massachusetts, 1975. 

[BS84] Bruce G. Buchanan and Edward H. Shortliffe. Rule-Based Expert Systems. 
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1984. 
ISBN 0-201-10172-6. 

[BU86] Boumediene Belkhouche and Joseph E. Urban. Direct Implementation of 
Abstract Data Types from Abstract Specifications. IEEE Transactions on 
Software Engineering, SE-10(5):649-661, May 1986. 

[Car85] J. Carbonell. Derivational Analogy: A Theory of Reconstructive Problem 
Solving and Expertise Acquisition. Technical Report CMU-CS-85-115, 
Carnegie-Mellon University, 1985. Also available in Machine Learning: An 
Artificial Intelligence Approach, R. Michalski, J. Carbonell and T. Mitchell, 
eds., pages 371-392, Morgan Kaufmann, Los Altos, CA 1986. 

[CB88] J. Conklin and M. Begeman. gIBIS: A Tool for Exploratory Policy Discussion. 
ACM Transactions on Office Management Systems, October 1988. 

[CB89] J. Conklin and M. Begeman. gIBIS: A Tool for all Reasons. American Society 
for Information Science, pages 200-213, May 1989. MCC Technical Report 
Number STP-252-88. 

[CC90] Elliot J. Chikofsky and James H. Cross. Reverse Engineering and Design 
Recovery: A Taxonomy. IEEE Software, 7(1), January 1990. 

[Cha87] David Chapman. Planning for Conjunctive Goals. Artificial Intelligence, 
32(3):333-377, July 87. 

[Che84] Thomas E. Cheatham, Jr. Reusability Through Program Transformation. 

[CHT81] 

IEEE Transactions on Software Engineering, SE-10(5):589-594, September 
1984. 

T. E. Cheatham, Jr., G. H. Holloway, and J. A. Townley. Program refine
ment by transformation. In Proceedings of the Fifth International Conference 
on Software Engineering, pages 430-437, San Diego, California, March 1981. 
Reprinted in New Paradigms for Software Development, William W. 
Agresti, ed., IEEE, 1986, ISBN 0-8186-0707-6. 



330 BIBLIOGRAPHY 

[Cle88] J. Cleaveland. Building Application Generators. IEEE Software, 5(6):25-33, 
July 1988. 

[CM85] Eugene Charniak and Drew McDermott. Introduction to Artificial Intelligence. 
Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 1985. 
ISBN 0-201-11945-5. 

[Con87] Jeff Conklin. A Survey of Hypertext. Technical Report STP-356-86 (Rev. 2), 
MCC Software Technology Program, December 1987. 

[CRM79] E. Charniak, C. Riesbeck, and D. McDermott. Data Dependencies. In 
Artificial Intelligence Programming, chapter 16. L. E. Erlbaum, Baltimore, 
1979. 

[CS89] A. Colbrook and C. Smythe. The Retrospective Introduction of Abstraction 
into Software. In Proceedings of Conference on Software Maintenance 1989, 
pages 166-173, Miami, Florida, October 1989. IEEE Computer Society Press. 
ISBN 0-8186-1965-1, IEEE Catalog Number 89CH2744-l. 

[CSM+79] B. Curtis, S. B. Sheppard, P. Milliman, M.A. Borst, and T. Love. Measuring 
the Psychological Complexity of Software Maintenance Tasks with the Halstad 
and McCabe Metrics. IEEE Transactions Software Enginering, SE-5(2), March 
1979. 

[CT85] Ken Currie and Austin Tate. 0-plan: Control in the open planning architec
ture. Expert Systems, 85:225-240, 1985. Reprinted in Readings in Planning, J. 
Allen, J. Hendler and Austin Tate, eds., 1990, Morgan Kaufmann, San Mateo, 
California, ISBN 1-55860-130-9, pages 361-368. 

[CTH79] T. E. Cheatham, Jr., J. A. Townley, and G. H. Holloway. A System for Program 
Refinement. In Proceedings of the 4th International Conference on Software 
Engineering, pages 53-63, September 1979. 

[dDR+78] Johan deKleer, Jon Doyle, Charles Rich, Guy L. Steele Jr., and Gerald Jay 
Sussman. AMORD, a Deductive Procedure System. Technical Report MIT 
AI Memo 435, Massachusetts Institute of Technology, January 1978. 

[dDSS77] Johan deKleer, Jon Doyle, Guy L. Steele, and Gerald Jay Sussmann. AMORD: 
Explicit Control of Reasoning. In Proceedings of the Symposium on Artificial 
Intelligence and Programming Languages, pages 116-125. ACM, August 1977. 
SIGPLAN Notices 12(8) and SIGART Newsletter, No. 64; reprinted in 
Readings in Knowledge Representation, Morgan Kaufmann Publishers, 
Inc., 1985, pp. 345-356. 

[deK84] Johan deKleer. Choices without Backtracking. In Proceedings of AAAI-84, 
pages 79-85, University of Texas at Austin, Austin, Texas, August 1984. AAAI. 

[deK86a] Johan deKleer. An Assumption-Based Truth Maintenance System. Artificial 
Intelligence, 28(2):127-162, March 1986. 



BIBLIOGRAPHY 331 

[deK86b] Johan deKleer. Problem Solving with the ATMS. Artificial Intelligence, 
28(2):197-224, March 1986. 

[DFM90] Thomas Dean, R. James Firby, and David Miller. Hierarchical planning in
volving deadlines, travel time and resources. In James Allen, James Hendler, 
and Austin Tate, editors, Readings in Planning, pages 369-386. Morgan 
Kaufmann, San Mateo, California, 1990. ISBN 1-55860-130-9 (reprinted from 
Computational Intelligence, Volume 4 Number 4, pp. 381-398). 

[Dia85] Ruben Prieto Diaz. A Software Classification Scheme. PhD thesis, University 
of California at Irvine, 1985. 

[DKMW89] F. Daube, E. Kant, W. MacGregor, and J. Wald. Automatic Synthesis of 
Finite Difference Programs. Technical Report (unnumbered), Schlumberger 
Laboratory for Computer Science, PO Box 200015, Austin, Texas 78720-0015, 
1989. 

[Doy78] Jon Doyle. Truth Maintenance Systems for Problem Solving. Technical 
Report TR-419, Artificial Intelligence Laboratory, Massachusetts Institute of 
Technology, January 1978. 

[Doy79] Jon Doyle. A Truth Maintenance System, Artificial Intelligence, 12(3):231-
272, June 1979. 

[Doy83] Jon Doyle. The Ins and Outs of Reason Maintenance. In Proceedings IJCAI-
83, pages 349-351. AAAI, 1983. 

[Ehr78] Hartmut Ehrig. Introduction the the Algebraic Theory of Graph Grammars. 
In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph Grammars and Their 
Application to Computer Science and Biology, volume 73 of Lecture Notes in 
Computer Science, pages 1-69. Springer-Verlag, New York, 1978. Proceedings 
of an International Workshop. 

[EM85] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations 
and Initial Semantics. Springer-Verlag, New York, 1985. EATCS Monographs 
on Theoretical Computer Science. 

[Fai85] 

[Fea79] 

[Fea82] 

[Fea84] 

Richard E. Fairley. Software Engineering Concepts. McGraw-Hill Book 
Company, New York, 1985. ISBN 0-07-19902-7. 

Martin S. Feather. A System for Developing Programs by Transformation. 
PhD thesis, University of Edinburgh, 1979. 

Martin S. Feather. A system for assisting program transformation. ACM 
Transactions on Programming Language and Systems, 4(1):1-20, 1982. 

Martin S. Feather. Specification and Transformation: Automated 
Implementation. In P. Pepper, editor, Program Transformation and 
Programming Environments: Report on a Workshop directed by F. L. Bauer 
and H. Remus, pages 223-230. Springer-Verlag, New York, 1984. 



332 

[Fea86] 

[Fea89a] 

[Fea89b] 

[Fic80] 

[Fic82] 

[Fic85] 

[Fic87] 

[Fik75] 

[For82] 

[Fre80] 

[Fre87] 

[GB78] 

[Geo87] 

BIBLIOGRAPHY 

Martin S. Feather. A Survey and Classification of some Program 
Transformation Approaches and Techniques. Technical report, Information 
Sciences Institute, University of Southern California, April 1986. Presented 
at IFIP WG2.l Working Conference on Program Specification and 
Transformation, Bad Toelz, Germany, April 1986. 

Martin S. Feather. Constructing specifications by combining parallel elabora
tions. IEEE Transactions on Software Engineering, 15(2):198-208, February 
1989. 

Martin S. Feather. Detecting Interference when Merging Specification 
Evolutions. In Proceedings, Fifth International Workshop on Software 
Specification and Design, pages 169-176, Pittsburgh, Pennsylvania, May 1989. 
Published as ACM SIGSOFT Engineering Notes, Volume 14, Number 3, May 
1989. 

Stephen Fickas. Automatic Goal-directed Program Transformation. In AAAI-
80 Proceedings, pages 68-70, Palo Alto, California, 1980. AAA!. 

Stephen Fickas. Automating the Transformational Development of Software. 
PhD thesis, University of California at Irvine, 1982. 

Stephen Fickas. Automating the transformational development of software. 
IEEE Transactions on Software Engineering, SE-11(11):1268-1277, November 
1985. 

Stephen Fickas. Automating the software specification process. Technical 
Report 87-05, University of Oregon, Eugene, Oregon, 1987. 

Richard E. Fikes. Deductive Retrieval Mechanism for State Description 
Models. In Proceedings IJCAI-4, Tblisi, USSR, September 1975. AAA!. 

Charles L. Forgy. Rete: A Fast Algorithm for the Many Pattern/Many Object 
Pattern Match Problem. Artificial Intelligence, 19:17-37, 1982. 

Peter Freeman. Reusable Software Engineering: A Statement of Long-Range 
Research Objectives. Technical Report UCI-ICS-TR159, Information and 
Computer Science Department, University of California at Irvine, November 
1980. 

Peter Freeman. Software Perspectives: The System is the Message. Addison
Wesley Publishing Company, Reading, Massachusetts, 1987. ISBN 0-201-
11969-2. 

Cordell Green and David Barstow. On Program Synthesis Knowledge. 
Artificial Intelligence, 10:241-279, 1978. 

Michael P. George:ff. Planning. Annual Review Computer Science, 2:359-400, 
1987. Reprinted in Readings in Planning, J. Allen, J. Hendler and Austin Tate, 
eds., 1990, Morgan Kaufmann, San Mateo, California, ISBN 1-55860-130-9. 



BIBLIOGRAPHY 333 

[GKS86] David Garlan, Charles W. Krueger, and Barbara J. Staudt. A Structural 
Approach to the Maintenance of Structure-Oriented Environments. In 
Proceedings ACM SIGSOFT/SIGPLAN Software Engineering Symposium on 
Practical Software Development Environments, pages 160-170, Palo Alto, 
California, December 1986. ACM. 

[GMM+78] M. J.C. Gordon, A. J. R. G. Milner, L. Morris, M. Newey, and C. Wadsworth. 
A metalanguage for interactive proof in LCF. In Proceedings, 5th ACM POPL 
Symposium, pages 119-130, Tucson, Arizona, 1978. ACM. 

[GMW79] Michael J. Gordon, Arthur J. Milner, and Christopher P. Wadsworth. 
Edinburgh LCF: A Mechanised Logic of Computation. Springer-Verlag, New 
York, 1979. Lecture Notes in Computer Science Volume 78. 

[Gol84] R. Goldblatt. Topoi: The Categorial Analysis of Logic. North-Holland, New 
York, 1984. 

[Gol89] 

[Gov71] 

[Gui83] 

[HA87] 

[Har86] 

[Hec88] 

[HH88] 

[HKP87] 

Allen Goldberg. Reusing Software Developments. Technical Report (none), 
Kestrel Institute, August 1989. 3260 Hillview A venue, Palo Alto, CA 94304. 

Philip Babcock Gove, editor. Webster's Third New International Dictionary. 
G. C. Merriam and Company, Springfield, Massachusetts, USA, 1971. 

T. Guimaraes. Managing application program maintenance expenditures. 
Communications of the ACM, 26(10):739-746, October 1983. 

Michael N. Huhns and Ramon D. Acosta. Argo: An Analogical 
Reasoning System for Solving Design Problems. Technical Report Technical 
Report Number AI/CAD-092-87, Microelectronics and Computer Technology 
Corporation, Austin, Texas, 1987. 

R. Harper. Introduction to standard ML. Technical Report Report ECS
LFCS-86-14, Laboratory for Foundations of Computer Science, University of 
Edinburgh, 1986. 

R. Heckmann. A Functional Language for the Specification of Complex Tree 
Transforms. In Proceedings of European Symposium On Programming '88, 
pages-, January 1988. to appear, ref'd by Krieg-Bruckner87a, month is wrong. 

D. P. Hale and D. A. Haworth. Software Maintenance: A Profile of Past 
Empirical Research. In Proceedings of Conference on Software Maintenance 
1988, pages 236-240, Phoenix, Arizona, October 1988. IEEE Computer Society 
Press. ISBN 0-8186-0879X, IEEE Catalog Number 88CH2615-3. 

Annegret Habel, Hans-Jorg Kreowski, and Detlef Plump. Jungle Evaluation. 
In Recent Trends in Data Type Specification: 5th Workshop on Specification of 
Abstract Data Types, pages 92-112, Gullane Scotland, 1987. Springer-Verlag, 
New York. Lecture Notes in Computer Science, Volume 332. 



334 BIBLIOGRAPHY 

[HL 78] G. Huet and B. Lang. Proving and applying program transformations ex
pressed with second-order patterns. Acta Informatica, 11:31-55, 1978. 

[HMM86] R. Harper, D. B. MacQueen, and R. Milner. Standard ML. Technical Report 
Report ECS-LFCS-86-2, Laboratory for Foundations of Computer Science, 
University of Edinburgh, 1986. 

[HN90] Mehdi T. Harandi and Jim Q. Ning. Knowledge-Based Program Analysis. 
IEEE Software, 7(1), January 1990. 

[HPR87] Susan Horwitz, Jan Prinz, and Tom Reps. Integrating non-interfering ver
sions of programs. Technical Report Technical Report #690, University of 
Wisconsin, March 1987. 

[HPR88] Susan Horwitz, J. Prins, and T. Reps. Integrating non-interfering versions 
of programs. In Conference Record of the Fifteenth A CM Symposium on 
Principles of Programming Languages, pages 133-145, San Diego, California, 
January 1988. ACM, New York, 1988. 

[HR88] Susan Horwitz and Thomas Reps. ??sufficient slices are sufficient to distinguish 
different computations. In 1988 SIGPLAN POPL, 1988. 

[Imp86] Imperial Software. A Development Environment for Functional Languages. 
Technical Report IST Project No. 7003, Technical Report Tr.6, Imperial 
Software Technology, England, November 1986. 

[JF90] W. Lewis Johnson and Martin Feather. Building An Evolution Transformation 
Library. In Proceedings of the 12th International Conference on Software 
Engineering. IEEE Computer Society Press, March 1990. 

[Joh80] S. C. Johnson. Language Development Tools on the Unix System. IEEE 
Computer, 13(8), August 1980. 

[Joh86] W. Lewis Johnson. Intention-based Diagnosis of Novice Programming Errors. 
Morgan Kaufmann, Palo Alto, California, 1986. 

[Kam89] Subbarao Kambhampati. Flexible Reuse and Modification in Hierarchical 
Planning: A Validation Structure Based Approach. PhD thesis, University 
of Maryland, October 1989. Tech report numbers CAR-TR-469, CS-TR-2334, 
Computer Vision Laboratory, Center for Automation Research, College Park 
Maryland, 20742-3411. 

[Kan79] Elaine Kant. Efficiency considerations in program synthesis: A knowledge-
based approach. PhD thesis, Computer Science Department, Stanford 
University, 1979. 

[Kan81] Elaine Kant. Efficiency in Program Synthesis. UMI Research Press, Ann 
Arbor, Michigan, 1981. 



BIBLIOGRAPHY 335 

[KB81] Elaine Kant and David R. Barstow. The Refinement Paradigm: The 
Interaction of Coding and Efficiency Knowledge in Program Synthesis. IEEE 
Transactions on Software Engineering, September 1981. Reprinted in: New 
Paradigms for Software Development, W. Agresti, editor, IEEE Press, 1986, 
ISBN 0-8186-0707-6, pp. 257-270. 

[KB88] Bernd Krieg-Bruckner. The PROSPECTRA Methodology of Program 
Development. In IFIP/IFAC Working Conference on Hardware and Software 
for Real Time Process Control, pages 1-15, Warsaw, Poland, 1988. North
Holland, New York. 

[KB89a] B. Krieg-Bruckner. ESPRIT Project Report #390: Algebraic Specification 
with Functionals in Program Development by Transformation. In Esprit 89: 
Proceedings of the 6th Annual Esprit Conference. Luwer Academic Publishers, 
Dordrecht, The Netherlands, November 1989. Edited by Commission 
of the European Communities, Directorate-General Telecommunications, 
Information Industries and Innovation. 

[KB89b] Bernd Krieg-Bruckner. Algebraic Specification and Functionals for 
Transformational Program and Meta. Program Development. In TAPSOFT 
'89: Proceedings of the International Joint Conference on Theory and Practice 
of Software Development, pages 36-59, Barcelona, Spain, March 1989. 
Springer-Verlag. LNCS volume 352. 

[Kib78] Dennis F. Kibler. Power, Efficiency, and Correctness of Transformation 
Systems. PhD thesis, University of California at Irvine, Irvine California, 1978. 

[Kil73] Gary Kildall. A Unified Approach to Global Program Optimization. 
In Conference Record of ACM Symposium on Principles of Programming 
Languages, pages 194-206, Boston, Massachusetts, October 1973. ACM. 

[Kor85] Richard E. Korf. Iterative Deepening A*: An Optimal Admissible Tree 
Search. In Proceedings of the Ninth International Joint Conference on Artificial 
Intelligence, Vol. 2, pages 1033-1036, Los Angeles, August 1985. 

[Kor87] Richard E. Korf. Planning as Search: A Quantitative Approach. Artificial 
Intelligence, 33:65-88, 1987. Reprinted in Readings in Planning, pages 566-
577 Allen, Hendler, Tate eds., 1990, Morgan Kaufmann, Inc. 

[LD89] Michael Lowry and Raul Duran. Chapter XX: Knowledge-based Software 
Engineering. In The Handbook of Artificial Intelligence, Volume 4, pages 242-
322. Addison-Wesley, Reading, Massachusetts, 1989. 

[Lei87] J. C. S. P. Leite. Requirements techniques and languages. Technical Report 
RTP-090, Information and Computer Sciences Department, University of 
California. at Irvine, 1987. 

[Lei88] J. C. S. P. Leite. Viewpoint Resolution in Requirements Elicitation. PhD 
thesis, University of California at Irvine, 1988. 



336 

[LF82] 

[Lif86] 

[Lon78] 

[LQ89] 

[LS80] 

[LS86] 

[Lub89] 

BIBLIOGRAPHY 

Philip E. London and Martin S. Feather. Implementing Specification 
Freedoms. Science of Computer Programming, 2:91-131, 1982. 

Vladimir Lifschitz. On the semantics of STRIPS. In Michael P. Georgeff 
and Amy L. Lansky, editors, Reasoning about Actions and Plans, pages 1-10. 
Morgan Kaufmann Publishers, Inc, Los Altos, California, 1986. Reprinted in 
Readings in Planning, pages 523-530, Allen, Hendler, Tate eds., 1990, Morgan 
Kaufmann, Inc. 

P. London. A dependency-based modelling mechanism for problem solving. In 
AFIPS Conference Proceedings, pages 263-274. AFIPS, 1978. Volume 47. 

Mark A. Linton and Russel W. Quang. A Macroscopic Profile of Program 
Compilation and Linking. IEEE Transactions on Software Engineering, 
15(4):427-436, 1989. 

B. P. Lientz and E. B. Swanson. Software Maintenance Management: A Study 
of the Maintenance of Computer Application Software in 487 Data Processing 
Organizations. Addison-Wesley, Menlo Park, 1980. 

Stanley Letovsky and Elliot Soloway. Delocalized Plans and Program 
Comprehension. IEEE Software, 3(3):41-49, May 1986. 

Mitchell D. Lubars. Representing Design Dependencies in the Issue-Based 
Information System Style. Technical Report STP-426-89, Microelectronics and 
Computer Technology Corporation, Austin, Texas, November 1989. 

[LvHKB87] D. C. Luckham, F. W. van Henke, and B. Krieg-Bruckner. Anna, a Language 
for annotating Ada Programs, Reference Manual. Springer-Verlag, 1987. 
Lecture Notes in Computer Science 260. 

[Mar86] 

[MB87] 

[McC87] 

[McC88] 

[McD82] 

Peter Marks. What is Leonardo? Technical Report MCC Technical Report 
STP-141-86, Microelectronics and Computer Technology Corporation, Austin, 
Texas, May 1986. 

Jack Mostow and Mike Barley. Automated Reuse of Design Plans. Technical 
Report Working Paper Number 53, Rutgers AI/Design Project, February 1987. 
submitted to International Conference on Engineering Design, Boston, MA, 
August 1987. 

Robert D. McCartney. Synthesizing Algorithms with Performance Constraints. 
In Proceedings 6th National Conference on Artificial Intelligence, pages 149-
154, Seattle, Washington, July 1987. AAAI. 

Robert McCartney. Synthesizing algorithms with performance constraints. 
PhD thesis, Brown University, 1988. Brown University Department of 
Computer Science Technical Report No. CS-87-28, December, 1987. 

Drew McDermott. DUCK: A Lisp-based Deductive System. Technical report, 
Department of Computer Science, Yale University, 1982. 



BIBLIOGRAPHY 337 

[McD83] 

[MD80] 

D. McDermott. Contexts and Data Dependencies: A Synthesis. IEEE Pattern 
Analysis and Machine Intelligence, 5(3):239-246, 1983. Earlier version avail-
able from Yale University. 

Drew McDermott and Jon Doyle. Non-Monotonic Logic I. Artificial 
Intelligence, 13(2):41-72, April 1980. 

[MDG86] Ali Milli, Jules Desharnais, and Jean Raymond Gagne. Formal models of step
wise refinement. ACM Computing Surveys, 18(3):231-276, September 1986. 

[MF89a] Jack Mostow and Greg Fisher. Replaying Transformational Derivations 
of Hueristic Search Algorithms in DIOGENES. Technical Report Rutgers 
AI/Design Project Working Paper Number 113-1, Rutgers University, 
Department of Computer Science, AI/VLSI Project, 1989. Available in 
Proceedings of the AAAI 1989 Spring Symposium on AI and Software 
Engineering, Palo Alto, CA March 1989. 

[MF89b] Jack Mostow and Greg Fisher. Replaying Transformational Derivations of 
Hueristic Search Algorithms in DIOGENES. In Proceedings of the DARPA 
Workshop on Case-Based Reasoning, pages 94-99, Holiday Inn, Pensacola 
Beach, Florida, May 1989. 

[MM88] David A. Marca and Clement L. McGowan. SADT: Structured Analysis and 
Design Technique. McGraw-Hill, New York, 1988. 

[Mos85a] J. Eliot B. Moss. Nested Transactions: An Approach to Reliable Distributed 
Computing. MIT Press, Cambridge, Massachusetts, 1985. ISBN 0-262-13200-
lQ. 

[Mos85b] J. Mostow. Towards better models of the design process. AI Magazine, 
6(1):44-56, 1985. 

[Mos85c] Jack Mostow. Some Requirements for Effective Replay of Derivations. In 
Proceedings of 3rd International Machine Learning Workshop, pages 129-132, 
Skytop, Pennsylvania, June 1985. 

[Mos86] Jack Mostow. Why are design derivations hard to replay? In T. Mitchell, 
J. Carbonell, and R. Michalski, editors, Machine Learning: A Guide to Current 
Research, Hingham, Massachusetts, 1986. Kluwer. Revised and condensed ver
sion of paper in Proceedings of the 3rd International Machine Learning 
Workshop. 

[MS86] Joao P. Martins and Stuart C. Shapiro. Theoretical Foundations for Belief 
Revision. In Joseph Y. Halpern, editor, Proceedings of the 1986 Conference on 
Theoretical Aspects of Reasoning About Knowledge, pages 383-398. Morgan
Kaufmann, March 1986. ISBN 0-934613-04-4. 

[MSNT88] A. Maggiolo-Schettini, M. Napoli, and G. Tortora. Web structures: A tool 
for representing and manipulating programs. IEEE Transactions on Software 
Engineering, 14(11), November 1988. 



336 BIBLIOGRAPHY 

[LF82] Philip E. London and Martin S. Feather. Implementing Specification 
Freedoms. Science of Computer Programming, 2:91-131, 1982. 

[Lif86] Vladimir Lifschitz. On the semantics of STRIPS. In Michael P. Georgeff 
and Amy L. Lansky, editors, Reasoning about Actions and Plans, pages 1-10. 
Morgan Kaufmann Publishers, Inc, Los Altos, California, 1986. Reprinted in 
Readings in Planning, pages 523-530, Allen, Hendler, Tate eds., 1990, Morgan 
Kaufmann, Inc. 

[Lon78] P. London. A dependency-based modelling mechanism for problem solving. In 
AFIPS Conference Proceedings, pages 263-274. AFIPS, 1978. Volume 47. 

[LQ89] Mark A. Linton and Russel W. Quang. A Macroscopic Profile of Program 
Compilation and Linking. IEEE Transactions on Software Engineering, 
15( 4):427-436, 1989. 

[LS80] B. P. Lientz and E. B. Swanson. Software Maintenance Management: A Study 
of the Maintenance of Computer Application Software in 487 Data Processing 
Organizations. Addison-Wesley, Menlo Park, 1980. 

[LS86] Stanley Letovsky and Elliot Soloway. Delocalized Plans and Program 
Comprehension. IEEE Software, 3(3):41-49, May 1986. 

[Lub89] Mitchell D. Lubars. Representing Design Dependencies in the Issue-Based 
Information System Style. Technical Report STP-426-89, Microelectronics and 
Computer Technology Corporation, Austin, Texas, November 1989. 

[LvHKB87] D. C. Luckham, F. W. von Henke, and B. Krieg-Bruckner. Anna, a Language 
for annotating Ada Programs, Reference Manual. Springer-Verlag, 1987. 
Lecture Notes in Computer Science 260. 

[Mar86] Peter Marks. What is Leonardo? Technical Report MCC Technical Report 
STP-141-86, Microelectronics and Computer Technology Corporation, Austin, 
Texas, May 1986. 

[MB87] Jack Mostow and Mike Barley. Automated Reuse of Design Plans. Technical 
Report Working Paper Number 53, Rutgers AI/Design Project, February 1987. 
submitted to International Conference on Engineering Design, Boston, MA, 
August 1987. 

[McC87] Robert D. McCartney. Synthesizing Algorithms with Performance Constraints. 
In Proceedings 6th National Conference on Artificial Intelligence, pages 149-
154, Seattle, Washington, July 1987. AAAI. 

[McC88] Robert McCartney. Synthesizing algorithms with performance constraints. 
PhD thesis, Brown University, 1988. Brown University Department of 
Computer Science Technical Report No. CS-87-28, December, 1987. 

[McD82] Drew McDermott. DUCK: A Lisp-based Deductive System. Technical report, 
Department of Computer Science, Yale University, 1982. 



BIBLIOGRAPHY 339 

[Pau87] 

[PC86] 

[Pea84] 

[Pet87] 

Lawrence C. Paulson. Logic and computation: Interactive proof with Cambridge 
LCF. Cambridge University Press, Cambridge, England, 1987. ISBN 0-521-
34632-0. 

David Lorge Parnas and Paul C. Clements. A Rational Design Process: 
How and Why to Fake It. IEEE Transactions on Software Engineering, SE-
12(2):251-257, February 1986. 

Judea Pearl. Heuristics: Intelligent Search Strategies for Computer Problem 
Solving. Addison-Wesley Publishing Company, Inc., Reading, Massachusetts, 
1984. ISBN 0-201-05594-5. 

Charles J. Petrie, Jr. Revised Dependency-Directed Backtracking for Default 
Reasoning. In Proceedings, AAA! 87 Sixth National Conference on Artificial 
Intelligence, pages 167-172, Los Altos, Calif, July 1987. Morgan-Kaufmann 
Publishers. 

[PGLS88] N. Prywes, X. Ge, I. Lee, and M. Song. Reverse Software Engineering. 

[Pid90] 

[Pos43] 

[PP89] 

[Pre87] 

[PS83] 

[Pyl87] 

[RD88] 

[Rea86] 

Technical Report MS-CIS-88-99, Computer and Information Science 
Department, University of Pennsylvania, 1988. 

Christopher W. Pidgeon. Analyzing Decision Making in Software Design. PhD 
thesis, University of California at Irvine, February 1990. UCI Tech Report 90-
16. 

Emil L. Post. Formal reductions of the general combinatorial problem. 
American Journal of Mathematics, 65:197-268, 1943. 

Francesco Parisi-Presicce. Modular System Design Applying Graph Grammars 
Techniques. In Automata, Languages and Programming, pages 621-636, Stresa, 
Italy, 1989. Springer-Verlag, New York. Lecture Notes in Computer Science 
Volume 372. 

Roger Pressman. Software Engineering, A Practicioners Approach. McGraw
Hill, New York, 1987. 

H. Partsch and R. Steinbruggen. Program Transformation Systems. 
Computing Surveys, 15(3):199-236, March 1983. Reprinted in New 
Paradigms for Software Development, William W. Agresti, ed., IEEE, 
1986, ISBN 0-8186-0707-6. 

Z. Pylyshyn, editor. The Robot's Dilemma. Ablex Publishing, Norwood, New 
Jersey, 1987. ISBN 0-89391-371-5. 

A. Ricketts and J. C. Delmonaco. Software Re-engineering with Retrofit. In 
Computer Programming Management. Auerbach Publishers, 1988. 

Reasoning Systems Incorporated. REFINE User's Guide. Reasoning Systems, 
Inc., Palo Alto, 1986. 



340 BIBLIOGRAPHY 

[Rep84] Thomas W. Reps. Generating Language-Based Environments. PhD thesis, 
Cornell University, 1984. Available from MIT Press, 1984. ISBN 0-262-18115-
0. 

[ROL90] Spencer Rugaber, Stephen B. Ornburn, and Richard J. LeBlanc, Jr. 
Recognizing Design Decisions in Programs. IEEE Software, 7(1), January 1990. 

[Ros77] Douglas Ross. Structured Analysis (SA): A Language for Communicating 
Ideas. Transactions on Software Engineering, SE-3(1), January 1977. 

[RPTU84] C. V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda. Software 
Engineering: Problems and Perspectives. IEEE Computer, October 1984. 

[Rus85] David M. Russino:ff. An Algorithm for Truth Maintenance. Technical Report 
AI-062-85, Microelectronics and Computer Technology Corporation, April 
1985. 

[RW88] Charles Rich and Richard C. Waters. The programmer's apprentice project: 
A research overview. IEEE Computer, 21(11), November 1988. Also available 
from MIT AI Laboratory, Massachusetts Institute of Technology. 

[RW90] Charles Rich and Linda M. Wills. Recognizing a Program's Design: A Graph
Parsing Approach. IEEE Software, 7(1), January 1990. 

[SA89] D. M. Steier and A. P. Anderson. Algorithm Synthesis: A Comparative Study. 
Springer-Verlag, New York, 1989. ISBN 0-387-96960-8. 

[Sac74] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial 
Intelligence, 5(2):115-135, 1974. Reprinted in Readings in Planning, J. Allen, 
J. Hendler and Austin Tate, eds., 1990, Morgan Kaufmann, San Mateo, 
California, ISBN 1-55860-130-9. 

[Sac77] E. Sacerdoti. A Structure for Plans and Behavior. Elsevier North-Holland, 
New York, 1977. ISBN 0-444-00209-X. 

[Sca86] Walt Scacchi. Gist: An Operational Knowledge Specification Language. 
Technical Report Draft Technical Report, University of Southern California, 
Information Sciences Institute Institute, April 1986. 

[Sch87] N. F. Schneidewind. The State of Software Maintenance. IEEE Transactions 
on Software Engineering, SE-13(3):303-310, 1987. 

[Sch89] James G. Schmolze. Guaranteeing serializable results in synchronous parallel 
production systems. Technical Report Technical Report 89-5, Department of 
Computer Science, Tufts University, October 1989. 

[Sha83] Ehud Y. Shapiro. Algorithmic Debugging. MIT Press, Boston, Massachusetts, 
1983. 



BIBLIOGRAPHY 341 

[SHFN76] T. A. Standish, D. C. Harriman, D. F.Kibler, and J.M. Neighbors. The Irvine 
Program Transformation Catalogue. Technical Report Technical Report, 
Department of Information and Computer Science, University of California 
at Irvine, January 1976. 

[Sil86] Bernard Silver. Meta-level Inference. Elsevier Science Publishers, New York, 
N.Y., 1986. ISBN 0-444-87900-5. 

[Sin83] M. Sintzoff. Understanding and Expressing Software Construction. In 
P. Pepper, editor, Program Transformation and Programming Environments, 
pages-. Springer-Verlag, 1983. ISBN 3-540-12932-4. 

[SJ85] E. Soloway and W. L. Johnson. PROUST: Knowledge-Based Program 
Understanding. IEEE Transactions on Software Engineering, SE-11(3):267-
275, March 1985. 

[SJ88] Harry M. Sneed and Gabor Jandrasics. Inverse Transformation of Software 
from Code to Specification. In Proceedings- Conference on Software 
Maintenance 1988, pages 102-109, Phoenix, Arizona, October 1988. ISBN 
0-8186-0879X, IEEE Catalog Number 88CH2615-3. 

[SKW85] D. R. Smith, G. B. Kotik, and S. J. Westfold. Research on Knowledge-Based 
Software Environments at Kestrel Institute. IEEE Transactions on Software 
Engineering, SE-11(11):1278-1295, November 1985. 

[SM84] Louis I. Steinberg and Tom M. Mitchell. A Knowledge Based Approach to 
VLSI CAD: The Redesign System. In Proceedings 21st Design Automation 
Conference, pages 412-418. IEEE, 1984. 

[SM85] L. I. Steinberg and T. M. Mitchell. The Redesign System: a knowledge-based 
approach to VLSI CAD. IEEE Design and Test, vol???:45-54, February 1985. 

[Smi85] Douglas R. Smith. Top-Down Synthesis of Divide-and-Conquer Algorithms. 
Artificial Intelligence, 27:43-96, 1985. 

[Smi89] Douglas R. Smith. KIDS: A Semi-Automatic Program Development System. 
Technical report, Kestrel Institute, Palo Alto, California 94304, October 1989. 
To appear, Special Issue on Formal Methods, IEEE Transactions on Software 
Engineering. 

[Sne89] Harry M. Sneed. The Myth of Top-Down Software Development and its 
Consequences for Software Maintenance. In Proceedings of Conference on 
Software Maintenance 1989, pages 22-29, Miami, Florida, October 1989. 
IEEE Computer Society Press. ISBN 0-8186-1965-1, IEEE Catalog Number 
89CH2744-1. 

[Sol87] Elliot Soloway. I Can't Tell What in the Code Implements What in the Specs, 
1987. Talk. 



342 

[Sow84] 

[Sri91] 

[ST88] 

[Sto77] 

[Swa82] 

[Tat77] 

[TM87] 

BIBLIOGRAPHY 

John F. Sowa. Conceptual Structures: Information Processing in Mind and 
Machine. Addison-Wesley, 1984. ISBN 0-201-14472-7. 

Yellamraju V. Srinivas. Pattern Matching: A Sheaf-Theoretic Approach. PhD 
thesis, University of California at Irvine, 1991. Forthcoming. 

Donald Sanella and Andrzej Tarlecki. Toward Formal Development of 
Programs from Algebraic Specifications: Implementations Revisited. Acta 
Informatica, 23:233-281, 1988. 

Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to 
Programming Language Theory. MIT Press, 1977. 

W. Swartout. On the Inevitable Intertwining of specification and implementa
tion. Communications of the ACM, 25(7):438-440, July 1982. 

A. Tate. Generating Project Networks. In Proceedings IJCAI-77, pages 
888-893, Cambridge, Massachusetts, 1977. AAAI. Reprinted in Readings in 
Planning, J. Allen, J. Hendler and Austin Tate, eds., 1990, Morgan Kaufmann, 
San Mateo, California, ISBN 1-55860-130-9. 

Wladyslaw M. Turski and Thomas S. E. Maibaum. The Specification of 
Computer Programs. Addison-Wesley, New York, 1987. 

[vdB81] Peter van den Bosch. The Translation of Programming Languages through 
the use of a Graph Transformation Language. PhD thesis, Department of 
Computer Science, University of British Columbia, Vancouver B. C., Canada, 
1981. 

[Wal77] R. Waldinger. Achieving Several Goals Simultaneously. In E. Elcock and 
D. Michie, editors, Machine Intelligence 8, pages 94-136. Ellis Horwood, 
Chichester, Great Britain, 1977. 

[Wat88] R. C. Waters. Program Translation via Abstraction and Reimplementation. 
IEEE Transactions on Software Engineering, 14(8):1207-1228, August 1988. 

[WCM89] M. Ward, F. W. Calliss, and M. Munro. The Maintainer's Assistant. In 
Proceedings of Conference on Software Maintenance 1989, pages 307-315, 
Miami, Florida, October 1989. IEEE Computer Society Press. ISBN 0-8186-
1965-1, IEEE Catalog Number 89CH27441-l. 

[Wed85] John D. Wedo. Structured Program Analysis Applied to Software 
Maintenance. In Proceedings of Conference on Software Maintenance-1985, 
pages 28-34, Washington DC, 1985. IEEE. ISBN 0-8186-0648-7. 

[WHR78] D. A. Waterman and F. Hayes-Roth. An Overview of Pattern-Directed 
Inference Systems. In D. A. Waterman and F. Hayes-Roth, editors, Pattern
Directed Inference Systems, pages 3-22. Academic Press, New York, 1978. 



BIBLIOGRAPHY 343 

[Wil83] 

[Wil86] 

[Wil87] 

D. Wile. Program Developments: Formal Explanations of Implementations. 
Communications of the ACM, 26(11):902-911, November 1983. Also avail
able from University of Southern California, Information Sciences Institutes as 
report ISI/RR-81-99, which includes the appendices mentioned by, but frus
tratingly missing from, the ACM version. 

David S. Wile. Local Formalisms: Widening the Spectrum of Wide Spectrum 
Languages. In L. G. L. T. Meertens, editor, Proceedings of IFIP WG2.1 
Working Conference on Programme Specifications and Transformations, 
pages -, Bad-Tolz, West Germany, April 1986. 

Linda M. Wills. Automated Program Recognition. Master's thesis, 
Massachusetts Institute of Technology, 1987. 

[Wil88] David E. Wilkins. Practical Planning: Extending the Classical AI Planning 
Paradigm. Morgan Kaufmann Publishers, Inc., Los Altos, California, 1988. 
ISBN 0-934613-94-X. 

[WML +89] Chris Wild, Kurt Maly, Lianfang Liu, Jann-Shinn Chen, and Ting Xu. 
Decision-Based Software Development: Design and Maintenance. In 
Proceedings of Conference on Software Maintenance 1989, pages 297-306, 
Miami, Florida, October 1989. IEEE Computer Society Press. ISBN 0-8186-
1965-1, IEEE Catalog Number 89CH2744-l. 

[YNT86] Stephen S. Yau, Robin A. Nicholl, and Jeffrey J-P Tsai. An Evolution Model 
for Software Maintenance. In Proceedings, COMPSAC-86, pages 440-446. 
IEEE, October 1986. 

[YNTL88] S. S. Yau, R. A. Nicholl, J. J .-P. Tsai, and S.-S. Liu. An Integrated Life-Cycle 
Model for Software Maintenance. IEEE Transactions on Software Engineering, 
14(14):1128-1144, August 1988. 






