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PERSPECTIVE

-

Perspective: Estrogen and the Risk of Cognitive
Decline: A Missing Choline(rgic) Link?

Jonathan Bortz,' Kevin C Klatt,? and Taylor C Wallace3#

"Balchem Corporation, New Hampton, NY, USA;?2 Baylor College of Medicine, Houston, TX, USA; 3Think Healthy Group, Washington, DC, USA; and*Department
of Nutrition and Food Studies, George Mason University, Fairfax, VA, USA

Factors that influence the risk of neurocognitive decline and Alzheimer’s disease (AD) may provide insight into therapies for both disease treatment
and prevention. Although age is the most striking risk factor for AD, it is notable that the prevalence of AD is higher in women, representing two-
thirds of cases. To explore potential underlying biological underpinnings of this observation, the intent of this article is to explore the interplay
between cognitive aging and sex hormones, the cholinergic system, and novel hypotheses related to the essential nutrient choline. Mechanistic
evidence points toward estrogen’s neuroprotective effects being strongly dependent on its interactions with the cholinergic system, a modulator of
attentional functioning, learning, and memory. Estrogen has been shown to attenuate anticholinergic-induced impairments in verbal memory and
normalize patterns of frontal and occipital cortex activation, resulting in a more “young adult” phenotype. However, similar to estrogen replacement’s
effect in cardiovascular diseases, its putative protective effects may be restricted to early postmenopausal women only, a finding supportive of the
“critical window hypothesis.” Estrogen’s impact on the cholinergic system may act both locally in the brain but also through peripheral tissues.
Estrogen is critical for inducing endogenous choline synthesis via the phosphatidylethanolamine N-methyltransferase (PEMT) gene-mediated
pathway of phosphatidylcholine (PC) synthesis. PEMT is dramatically induced in response to estrogen, producing not only a PC molecule and source
of choline for the brain but also a key source of the long-chain -3 fatty acid, DHA. Herein, we highlight novel hypotheses related to hormone
replacement therapy and nutrient metabolism aimed at directing future preclinical and clinical investigation. Adv Nutr 2022;13:376-387.

Statement of Significance: This perspective identifies numerous areas for future preclinical and clinical research, highlighting the need
for randomized controlled trials in postmenopausal women to assess the impact of choline supplementation on cognitive decline, with
appropriate consideration of the estrogen availability, critical windows, dose, and PEMT genotype.

Keywords: choline, estrogen, cognitive disorders, Alzheimer’s disease, brain

disorder in 1906 by Alois Alzheimer in the case of a 51-y-old
woman; however, modern surveillance data demonstrate that

Introduction
As the global population ages, a dramatic increase in age-

related neurocognitive decline has been observed. Increasing
age is associated with impairments in both brain activity
patterns and functional tests of cognition relative to younger
adults. Neuroanatomical correlates of this functional decline
include increases in brain atrophy (1), particularly in regions
of the prefrontal cortex and hippocampus, and diminished
localization and coordination of brain activity patterns (2).
These age-related declines manifest in susceptible individuals
as dementias, the most common being Alzheimer’s disease
(AD), a progressive neurodegenerative condition that results
in initial mild cognitive impairment before progressing to
more serious impairment. AD was first described as a rare
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AD accounts for 60-70% of the 50 million cases of dementia
worldwide (3). AD is characterized by memory loss, impaired
spatial recognition, and difficulty completing the tasks of
daily living, impacting the quality of life of not only patients
but also their caregivers and placing a significant financial
burden on the healthcare system. Thus, it is imperative to
identify better interventions to both prevent and treat this
disease of aging.

It is well accepted that AD is a complex and multifactorial
disease with no single cause; rather, a myriad of genetic
and environmental exposures interact to determine risk.
Advancing age imparts the greatest risk for developing
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AD, along with other genetic and lifestyle factors, such
as APOEe4 genotype, hypertension, and type 2 diabetes
(4). The prevalence of AD is greater in women than men,
with current estimates showing that nearly two-thirds of
individuals with AD are women (5, 6). While this observation
was initially thought to be due to the increased longevity of
women, it alone does not appear to explain the discrepancy in
susceptibility between men and women; thus, biological vari-
ables, such as estrogen, have been the subject of controversy
and increased investigation (7).

Maintaining a healthy lifestyle, including adequate nutri-
tion, is a critical component for reducing the risk of cognitive
decline during aging and dementia (8). Healthy dietary
patterns, such as the Mediterranean dietary pattern, are
currently recommended to reduce the risk of cognitive de-
cline for adults with normal or mild cognitive impairments;
however, guidance related to optimal intakes of specific
dietary components is still an active area of research, with
observational studies of nutrient biomarkers demonstrating
strong relations to measures of functional brain network
efficiency and cognition (9). Unlike pharmacological ap-
proaches, nutrition has the potential to exert its effects prior
to dementia manifesting or early on in the disease. The
essential nutrient choline is one such dietary component that
may influence the risk of cognitive decline, as it is the direct
precursor to the neurotransmitter acetylcholine, which has
been shown to decrease in AD. Less than 3% of women aged
>71 y in the United States meet the current adequate intake
for choline (425 mg/d), a value that is based on prevention of
liver dysfunction in young men (10).

In this perspective article, assembled and expanded by
the authors after conversations during and after roundtable
discussion on February 11, 2020, we explore factors that
may contribute to the significantly higher prevalence of
AD in women, with an emphasis on the neurocognitive
effects of estrogen replacement. Here we also summarize
our thoughts on the body of observational and clinical
evidence relating estrogen availability to cognitive function
and risk of dementia, the role of the cholinergic system in
mediating the relation between estrogen availability and cog-
nitive outcomes, and novel considerations for incorporating
nutritional neuroscience approaches into this literature base,
with a focus on dietary choline intake.
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Estrogen and cognitive function

Interest in the potential neurocognitive effects of estrogen
stem from early clinical reports noting changes in cognition,
particularly memory, that coincide with female menopause
(11, 12). The menopausal transition is associated with
increases in follicle-stimulating hormone and a sharp decline
in estradiol (13), the latter being strongly associated with hot
flashes, the characteristic symptom of this period. The natu-
ral menopausal transition occurs in stages of variable lengths,
associated with early prolonged cycles followed by intervals
ofamenorrhea of >60d (14, 15). Conversely, menopause may
occur abruptly, following the surgical removal of the ovaries.
Early randomized controlled trial evidence supporting the
hypothesis that the endocrine milieu influences cognitive
function resulted from examination of the impact of hor-
monal replacement in surgical menopause and observations
of lower cognitive functioning scores (i.e., short- and long-
term memory, logical reasoning) in women receiving placebo
relative to both women receiving hormonal replacement
and patients undergoing hysterectomy but retention of the
ovaries (16). Similar results of estrogen are observed when
used in “add-back” regimens with gonadotropin-releasing
hormone agonists (17). Results of large, modern cohort
studies are consistent with those of trials of shorter-term
estrogen replacement in surgical menopause and illustrate
an increased risk of dementia with oophorectomy (18-20).
While such cohort studies are at risk of confounding, causal
effects have been argued, owing to key observations (19).
First, with regard to dose response, earlier age of surgery is
consistently associated with increased risk. Second, surgical
indication does not appear to predict disease risk. Finally,
subgroups of women undergoing surgery prior to age 49 y
and receiving estrogen replacement therapy through the age
of 50 show no increased risk of cognitive impairment or
dementia (19).

The consistent observational and randomized controlled
trial literature of estrogen’s impact on cognition following
surgical menopause stands in contrast to the more conflicting
literature in studies of estrogen and natural menopause.
Differences in estrogen’s neurocognitive effects may be due
to physiological factors, including changes in the endocrine
milieu in rapid-onset compared with prolonged menopause,
but such inferences are complicated by heterogeneity in study
designs. Indeed, studies of natural menopause and estrogen’s
relation to cognition differ dramatically with respect to study
participant chronological age, menopausal status, degree of
menopausal symptoms (i.e., hot flashes, impaired sleep),
types of hormone replacement therapy utilized, and cognitive
domains assessed, challenging interpretation of this literature
base.

Observational studies of endogenous estrogen around the
time of menopause have revealed conflicting relations with
cognitive function. Around the age of the menopausal tran-
sition, lower circulating estrogen concentrations have been
shown to be directly associated with poorer performance on
memory tasks and hippocampal activity and connectivity, as
determined by verbal encoding tasks during functional MRI
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scanning (21). Estrogen’s relation to hippocampal activity is
consistent with both this brain region’s critical involvement
in memory and its high expression of estrogen receptors
(22). However, other population cohorts, also stratified by
menopausal status, have failed to show relations between
circulating estrogen and cognitive performance (23, 24).
Observational investigations comparing habitual estrogen
replacement users relative to nonrecent users have revealed
improvements in memory task performance and increased
cerebral blood flow, including to the hippocampus (25).
Investigations stratifying the effects of estrogen therapy
by never-users, perimenopausal users, and postmenopausal
users (mean age of 60 y) have shown positive impacts of
estrogen replacement on verbal memory and hippocampal
activation, exclusive to perimenopausal users (26). The
observation that benefits of estrogen replacement may be
limited to the perimenopausal window, preventing estrogen
decline and its associated cognitive impairments, is referred
to as the “critical window hypothesis.” Previous studies in
ovariectomized, aged rats demonstrated this effect, showing
that the benefits of hormonal therapy on cognitive function
and hippocampal function are restricted to a critical window
following the loss of ovarian function (27, 28).

Whether these observational studies of estrogen replace-
ment therapy users represent causal effects has been the
subject of considerable debate that has spurred numerous
short- and long-term randomized controlled trials assessing
cognition, risk of dementia, and mortality. While early small
trials have found protective effects of estrogen replacement
on verbal memory (29-32), recent larger randomized con-
trolled trials have largely found no evidence for protective
neurocognitive effects of different estrogen formulations
(33-35), including no support for interventions early in
the menopausal transition. Notably, formulations including
medroxyprogesterone acetate (MPA) in addition to estrogen
therapy appear to have a negative impact on verbal memory
(36). Null results of estrogen, and detrimental effects of
estrogen combined with MPA, have been similarly observed
for all-cause dementia (37, 38). In contrast, a significant
protective finding of conjugated equine estrogen therapy was
observed in the follow-up cohort of the Women’s Health
Initiative (WHI) randomized trial, demonstrating a 26%
reduction in risk of death from AD and other dementia (39).
Contrary to the critical window hypothesis, this effect was
driven by the subgroup aged 70—79 y. A strength of this
WHI cumulative 18-y follow-up study is the relatively large
number of subjects and AD cases, long-term follow-up, and
ability to assess mortality, whereas other studies with null
findings examined dementia incidence in smaller samples
over a relatively shorter period (4-5 y), with a substantial
percentage of cases being adjudicated (37) (Table 1).

Although the literature base to inform the therapeutic
use of estrogen replacement to decrease cognitive decline is
mixed, there may be future avenues for research given the
general trend toward a benefit of estrogen, particularly from
animal models, studies of surgical menopause, and in those
investigations with long-term follow-up. There is a need for
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more targeted trials to identify individuals most likely to
benefit from estrogen therapy, with such added precision
informed by a better mechanistic understanding of estrogen’s
effects.

Effect mediators and modifiers of the
estrogen-cognition link

To date, much of the existing scientific literature has excluded
women reporting symptoms of hot flashes. Objectively
measured hot flashes are associated with temporarily im-
paired verbal memory, independent of menopausal status
(40). Cortisol spikes associated with hot flashes (41) likely
mediate the detrimental relation between hot flashes and
acute cognitive impairments. Importantly, estrogen appears
to mitigate the detrimental effects of cortisol on cognitive
function (42), suggesting that the cognitive vulnerability
associated with hot flashes may indeed open a therapeutic
role for estrogen. Thus, intervention trials excluding individ-
uals experiencing hot flashes also excluded individuals with
substantial potential to benefit from these intervention trials.

Estrogen-neuronal cholinergic system interactions
Heterogeneity in the literature base surrounding estrogen’s
impact on cognitive function indicates that a better un-
derstanding of relevant mechanisms at play may provide
clarity on both the direct effect of estrogen and the possible
biological underpinnings of suggested moderating factors
(e.g., the critical window hypothesis and its correlates).
The cholinergic system is well recognized as being critical
for cognitive function, including attention, working mem-
ory, information filtering, and performing effortful tasks.
Numerous age-associated defects in the cholinergic system
have been characterized and this information has led to the
development of the cholinergic hypothesis of cognitive aging
and AD (43). The hypothesis originated from observations
that, in AD, acetylcholine synthesis and cholinergic receptor
signaling is disturbed in numerous brain regions, including
the cortex. Indeed, acetylcholinesterase inhibitors remain a
mainstay for treatment of mild cognitive impairment and
early AD (43).

This critical role of the cholinergic system in cognition
throughout the lifespan has led researchers to hypothesize
that estrogen’s impact on cognition is dependent on intact
cholinergic signaling. Early evidence to support this hypoth-
esis is derived from the observation that ovariectomized rats
exhibit decreased choline uptake, as well as decreased choline
acetyltransferase mRNA and activity in the hippocampus,
while exhibiting impaired performance of learning and
memory tasks (44-46). Notably, replacement of estrogen in
this context is able to recover choline acetyltransferase activ-
ity levels and improve cognition following ovariectomy (47).
However, cognitive improvements are not observed when
estrogen is given following cholinergic system lesioning by
the selective cholinergic immunotoxin 192 IgG-saporin (48)
or scopolamine (49), an antagonist to the muscarinic receptor
family of the cholinergic system. Hippocampal M2 mus-
carinic receptors appear particularly critical for mediating
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estrogen-induced improvements in working memory (50).
Findings of estrogen-induced improvements in cognitive
function that require intact cholinergic signaling are appar-
ent not only in rodents but also in primate models of surgical
menopause (51), suggesting an evolutionary conserved axis
involving sex steroids and hippocampal cholinergic signaling
to modify cognitive processes.

Translating these preclinical findings to humans has
relied on pharmacological approaches to block cholinergic
signaling through nicotinic (i.e., with mecamylamine) and
muscarinic (i.e., with scopolamine) receptors. Early clinical
investigations demonstrated that 1 mg/d of oral estradiol for
3 mo was able to largely blunt the impairments in attention
and speed from either receptor antagonist in 15 post-
menopausal women, although effects were less pronounced
for verbal episodic memory (52). Future investigations by
this laboratory group furthered these findings by providing
1 mg/d oral estradiol for 1 mo, followed by 2 mg/d oral
estradiol for 2 mo across 2 groups of healthy younger
(aged 50-60 y) and older (70-81 y) postmenopausal women
(53). The effects of estradiol treatment on measures of
episodic verbal memory (i.e., total recall, recall consistency,
and recall failure) following scopolamine challenge were
dependent on age, with estrogen significantly attenuating
the effects of muscarinic antagonism in younger post-
menopausal women but not in the older group. Notably,
older postmenopausal women receiving estradiol performed
nominally worse than those who received a placebo. These
results collectively suggest that the apparently conflicting
literature base on estrogen replacement in menopause and
cognition outcomes may result from interactions between
both menopausal state and the degree of cholinergic im-
pairment present. This observation provides a rationale for
additional pharmacological functional neuroimaging stud-
ies, including the need to consider estrogen replacement’s
interactions with not only antagonists but also enhancing
compounds (e.g., acetylcholineesterase inhibitors), and to
identify readily measurable correlates of intact or disrupted
cholinergic signaling that can be readily measured and used
in the inclusion/exclusion criteria of estrogen replacement
trials.

Estrogen, choline, and brain aging

Estrogens link to the cholinergic system is not exclusive
to its impact in neurons; indeed, it has been appreciated
for decades that female sex hormones play a protective
role against dietary choline deficiency in mammals (54),
including humans (55). Choline, similar to vitamin D,
can be endogenously synthesized, thus influencing the
requirement from diet. The liver is capable of produc-
ing a choline moiety de novo from the triple methyla-
tion of phosphatidylethanolamine to phosphatidylcholine
(PC) via the action of the phosphatidylethanolamine N-
methyltransferase (PEMT) gene (55, 56). The promoter
region of PEMT contains an estrogen response element
(ERE) and its mRNA and activity are dramatically up-
regulated in response to estrogen exposure (57), buffering

premenopausal women and postmenopausal women taking
estrogen replacement therapy from the organ dysfunction
associated with consuming a choline-deficient diet (55, 58).
The PC produced by the PEMT pathway can be hydrolyzed
by either phospholipase D to yield a free choline moiety or by
phospholipases to produce a lysophosphatidylcholine, both
readily crossing the blood-brain barrier (59, 60). Notably,
PEMT not only provides a source of choline but also produces
a PC species enriched with the w-3 fatty acid DHA (61,
62), well recognized for its role in maintaining cognitive
function. PC and DHA are critical for maintaining mem-
brane integrity that may independently influence cognition;
indeed, higher blood concentrations of PC (63) and DHA
(64, 65) are beneficially associated with diverse measures of
cognitive function. Both PC and DHA also serve to support
and enhance cholinergic signaling, with PC serving as a
repository of choline for acetylcholine synthesis (66) and
DHA facilitating cholinergic transmission (67). Thus, PEMT
serves as an estrogen-inducible regulator of the supply of
choline to the brain, the rate-limiting step in acetylcholine
synthesis (66, 68), and further provides DHA to facilitate
cholinergic signaling.

To date, studies of estrogen replacement, cognition,
and dementia risk have not considered choline supply,
from endogenous synthesis or exogenously from diet, as a
key moderating factor. Measuring choline flux throughout
body compartments, including the brain, is challenging due
to both practical and safety concerns. However, natural
experiments may provide the unique opportunity to test
the impact of estrogen on cognition and the dependence of
choline supply. Common single nucleotide polymorphisms
(SNPs) exist in linkage disequilibrium in the PEMT gene,
including the functionally characterized SNP, rs12325817
G—C; this SNP exists within the promoter region of
PEMT, proximal to the ERE, and abrogates estrogen-induced
increases in PEMT gene expression (69). When women,
both premenopausal and postmenopausal, are given choline-
deficient diets for consumption, individuals harboring this
variant exhibit increased risk of organ dysfunction (58,
70), presumably by influencing the capacity to upregulate
endogenous choline production. Notably, 24% of European
American women are homozygous for the PEM T rs12325817
effect allele and thus require additional dietary choline to
meet tissue choline needs (71). Similar to assessments of
the interactions of estrogen with pharmacological inhibitors
of cholinergic signaling, studies assessing estrogen’s impact
on cognition in individuals harboring common variants in
the PEMT gene that abrogate estrogen-induced binding can
be performed. Such physiological studies may be combined
with post hoc analyses of large existing estrogen replacement
trials to assess estrogen’s -interaction with PEMT genotype to
inform future prospective studies.

The degree to which PEMT genotype compromises
choline supply depends, in part, on dietary choline intakes.
At present, there is substantial uncertainty regarding dietary
choline needs throughout the life course. Current dietary
recommendations for adults are derived from a single
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study in men that monitored markers of liver and muscle
dysfunction (72, 73). Only scarce data in humans inform
the dose-response relation between choline intake and
indicators of function of other organs, such as the brain.
This scarcity of information contrasts with animal models
with which decades of investigations have demonstrated
that perinatal and lifelong dietary choline intakes that are
higher than those required to meet basal requirements for
preventing hepatic dysfunction influence cognition across
numerous animal models (74). Typically, choline intakes 4 to
5 times those of usual chow intakes are utilized, suggesting
that significantly higher intakes of choline than are required
to meet basal needs result in improved cognition. Although
the findings are difficult to translate to humans, observations
of rodent models have revealed beneficial effects of choline
supplementation in reducing AD-like histological and cog-
nitive abnormalities when provided across the lifespan (75),
during adulthood (76), and at the time of gestation (77),
with the latter demonstrating intergenerational reductions in
plaque numbers in offspring born to choline-supplemented
dams despite normal choline intakes in the offspring.
Unfortunately, no investigations in rodent models have
carefully analyzed the cognitive impacts of high-choline
diets following ovariectomy. Although choline has broad
pleiotropic effects, including serving as a major dietary
methyl donor, few studies have specifically examined choline
supplementation’s interactions with genetic or pharmacolog-
ical disruptions to highlight a specific mechanism of action.
Enhanced cholinergic action, epigenetic modifications, and
reduced homocysteine have all been put forth to explain
the observed cognitive benefits of choline supplementation
(74). Although some evidence demonstrates loss of betaine
hydroxymethyl transferase, responsible for the irreversible
oxidation of choline to betaine and its role as a 1-carbon
donor, results in reduced total brain volume and impaired
reference memory (78), these results are challenging to
disentangle from the concomitant rise in homocysteine.
Dietary choline’s interaction with cholinergic signaling is
likely to be a primary mediator of its neuroprotective effects,
given the potent anti-inflammatory roles of the &7 nicotinic
receptor in dampening down the microglia- and astrocyte-
mediated neuroinflammation commonly observed in neu-
rocognitive disease (79, 80). Despite an elusive mechanism,
such studies underlie the enthusiasm for enhancing choline
supply through exogenous provision of choline in the diet to
beneficially impact cognition.

Choline is already included as an ingredient in a medical
food intended for the treatment of AD (81). Several human
studies support the hypothesis that higher choline intakes
may be associated with a lower risk of incident dementia.
A recent prospective analysis of the Kuopio Ischemic Heart
Disease Risk Factor Study showed dietary choline intake
to be inversely associated with risk of incident demen-
tia and cognitive performance in middle-aged to older
men (82). Clinical studies supporting a relation between
choline intakes and cognitive function include reports of
choline-responsive verbal and visual memory impairments
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in individuals receiving total parenteral nutrition (83) as
well as higher self-reported choline intakes being modestly
associated with cognitive function and little to no white
matter volume in mid- to late life (84). A multicenter
randomized intervention of patients affected by mild to
moderate AD showed improvements in all assessed cognitive
parameters in those treated with 400 mg choline alfoscerate,
a semisynthetic derivative of phosphatidylcholine, 3 times/d
for 180 d (n = 132; 105 females) compared with placebo (n
= 129; 94 women) (85). Additionally, a small body of highly
heterogeneous intervention trials exist that report mixed and
inconsistent effects of choline supplementation on select tests
of cognitive domains in adults (86). More promising data
exist for the impact of maternal choline supplementation on
fetal development and infant cognition (87, 88). While these
findings suggest that dietary choline intakes can influence
cognition, this body of evidence is limited by a lack of
consideration for sex and menopausal status interactions
as well as poorly characterized dose-response relations.
Thus, controlled feeding and supplementation trials of
choline across a range of doses, carefully accounting for
sex, menopausal status and timing, and PEMT genotype, in
addition to well-known risk factors (e.g., ApoE genotype),
are needed to assess choline’s potential role in promoting
neurocognition, particularly for enhancing the effects of
estrogen replacement.

Conclusions

The role of estrogen replacement therapy in reducing the risk
of cognitive decline as well as dementia-related morbidity
and mortality remains an active area of research. Although
the literature is highly heterogeneous and presents mixed
results, signals for benefit exist and future research is needed
to identify factors that may influence the response to re-
placement. Indeed, the importance of effect modification has
been key to advancing this field of investigation forward, with
early emphasis on menopausal timing as a key factor. This
perspective presents a testable working model of estrogen’s
relation to cognition with novel effect modifiers, including
the degree of cholinergic dysfunction and the availability
of choline from endogenous and exogenous sources. This
perspective also shows novel routes of investigation related to
estrogen replacement and its interactions with menopausal
timing, cholinergic signaling, and the influence of the
endogenous (i.e., common PEMT variants) and exogenous
(i.e., dietary) choline supply on cognitive function and risk
of age-related cognitive decline and dementia.
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