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Search for low-mass dijet resonances using
trigger-level jets with the ATLAS detector in pp

collisions at
√
s = 13 TeV

The ATLAS Collaboration

Searches for dijet resonances with sub-TeV masses using the ATLAS detector at the Large
Hadron Collider can be statistically limited by the bandwidth available to inclusive single-
jet triggers, whose data-collection rates at low transverse momentum are much lower than
the rate from Standard Model multijet production. This Letter describes a new search for
dijet resonances where this limitation is overcome by recording only the event information
calculated by the jet trigger algorithms, thereby allowingmuch higher event rates with reduced
storage needs. The search targets low-mass dijet resonances in the range 450–1800 GeV. The
analyzed dataset has an integrated luminosity of up to 29.3 fb−1 and was recorded at a
center-of-mass energy of 13 TeV. No excesses are found; limits are set on Gaussian-shaped
contributions to the dijet mass distribution from new particles and on a model of dark-matter
particles with axial-vector couplings to quarks.

© 2018 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.
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1 Introduction

If new particles beyond those of the Standard Model (SM) are directly produced in proton–proton (pp)
collisions at the Large Hadron Collider (LHC), they must interact with the constituent partons of the
proton, and can therefore also decay into the same partons, resulting in two-jet final states. Quantum
chromodynamics (QCD) predicts that dijet events have an invariant mass distribution (mj j) that falls
smoothly, whereas a new state decaying to two partons would emerge as a localized excess in the
distribution.

Traditional dijet searches at the LHC focus on the production of heavy particles with masses above
900 GeV [1–3].

LHC searches for lighter resonances with small production cross-sections have been hampered by re-
strictions in the data-taking rate of the ATLAS and CMS detectors. Single-jet triggers with a jet pT
threshold below roughly 380 GeV are prescaled, a procedure whereby only a fraction of the events passing
the trigger are recorded, hence dijet events with an invariant mass below 1 TeV are largely discarded
by the trigger system, as indicated in Figure 1. Therefore, despite the large number of pp collisions
produced by the LHC, traditional ATLAS and CMS searches are less sensitive to dijet resonances below
900 GeV than searches at the SPS and Tevatron colliders [4–9]. Alternative trigger strategies to search
for low-mass resonances include selecting events with jets recoiling against either an energetic photon or
an additional energetic jet [10–12], or selecting events with decays to heavy-flavor jets [13, 14]. In these
cases, additional features in the events reduce the data-taking rates, reducing the sensitivity to low-mass
resonances.

This Letter describes an innovative data-taking approach to access the invariant mass region below 1 TeV;
only a reduced set of information from the trigger system is recorded and subsequently analyzed. The
trigger-object-level analysis (TLA) approach allows jet events to be recorded at a peak rate of up to
twice the total rate of events using the standard approach, while using less than 1% of the total trigger
bandwidth [15]. This strategy was developed within the LHCb Collaboration [16] and used in searches
for dijet resonances by the CMS Collaboration with 12.3 fb−1 of

√
s = 13 TeV data [17]. The analysis

presented here uses 29.3 fb−1 of
√

s = 13TeV pp collision data recorded in 2016 by the ATLAS detector.
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Figure 1: Comparison between the number of dijet events in the data used by this analysis (black points), the number
of events selected by any single-jet trigger (thicker, blue line), and the events selected by single-jet triggers but
corrected for the trigger prescale factors (thinner, red line) as a function of the dijet invariant mass (mj j). The
definition of y∗ is (y1 − y2)/2, where y1 and y2 are the rapidities of the highest- and second-highest-pT jets.
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2 ATLAS detector and data sample

The ATLAS detector [18] is a multipurpose detector with a forward-backward symmetric cylindrical
geometry and nearly 4π coverage in solid angle,1 consisting of tracking detectors, calorimeters and a
muon spectrometer. In the pseudorapidity region |η | < 3.2, high-granularity lead and liquid-argon
(LAr) electromagnetic sampling calorimeters are used. A steel and scintillator hadronic tile calorimeter
provides coverage in the range |η | < 1.7. Hadronic calorimetry in the endcap region, 1.5 < |η | < 3.2,
and electromagnetic and hadronic calorimetry in the forward region, 3.1 < |η | < 4.9, are provided by
LAr sampling calorimeters. A two-level trigger system is used to select events for offline storage [15]. A
first-level (L1) trigger based on dedicated hardware identifies jets from ∆η × ∆φ = 0.2 × 0.2 calorimeter
segments with a sliding-window algorithm. Events passing the L1 trigger are processed by a software-
based high-level trigger (HLT). The HLT system reconstructs jets using the anti-kt algorithm [19, 20]
with radius parameter R = 0.4. The inputs to this algorithm are groups of contiguous calorimeter cells
(topological clusters), in which each cell’s inclusion is based on the significance of its energy deposit
over calorimeter noise [21]. Jet four-momenta are computed by summing over the four-momenta of the
topological clusters that compose the jet, with each cluster pointing to the center of the ATLAS detector
and being treated as massless. The HLT jet reconstruction uses the same techniques that the ATLAS
offline jet reconstruction applies to similar inputs from recorded data events that include the full detector
information [15].

After execution of the HLT jet algorithm, only trigger-level jets with pT > 20 GeV are stored. The stored
information includes the four-momentum of each jet and a set of calorimeter variables characterizing the
jet [22], such as information about the jet quality and structure. The size of these events is less than 0.5%
of the size of full events. For this analysis, all events containing at least one L1 jet with ET > 100 GeV
are selected and recorded, corresponding to a total luminosity of 29.3 fb−1. In a subset of this data,
corresponding to 3.6 fb−1, events containing a L1 jet with ET > 75 GeV are also selected. Events with at
least one L1 jet with ET > 100 GeV are therefore included in both datasets.

3 Calibration procedure

After the events are recorded, the trigger-level jet energy and direction are corrected to those of simulated
particle-level jets built from stable particles with a lifetime longer than 10 ps, excluding muons and
neutrinos. Before any calibration, the jet pT response, defined as the pT ratio of a trigger-level jet to
the same jet2 reconstructed offline (offline jet), is between 0.95 and 1.05. Since the energy scale for
trigger-level and offline jet are very similar, the trigger-level jet calibration employs the same procedure
and constants as derived for offline jets [23], with some modifications to account for the unavailability of
tracking information for trigger-level jets.

1 ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the center of the detector
and the z-axis along the beam pipe. The x-axis points from the IP to the center of the LHC ring, and the y-axis points
upwards. Cylindrical coordinates (r, φ) are used in the transverse plane, φ being the azimuthal angle around the z-axis. The
pseudorapidity is defined in terms of the polar angle θ as η = − ln tan(θ/2). The rapidity, y, is defined as 1

2 ln[(E+pz )/(E−pz )],
where E denotes the energy of the jet and pz the momentum component of the jet along the beam direction. Angular distance
is measured in units of ∆R ≡

√
(∆η)2 + (∆φ)2.

2 The trigger-level and offline jets are matched within a radius of ∆R = 0.4.
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Jet-area based
pileup correction

Absolute MC-based
calibration

Residual in-situ
calibration

Applied as a function of
event pileup pT density
and jet area only

Corrects the jet 4-momentum
to the particle-level energy
scale. Both the energy and
direction are calibrated

Trigger-to-offline
data-derived correction

Global sequential
calibration

EM-scale jets

Jet finding applied to
topological clusters

at the electromagnetic scale

Reduces flavor
dependence and

energy leakage using
calorimeter variables only

A smooth residual
calibration is derived by

fitting in-situ measurements
and applied only to data

Corrects trigger-level jets
to the scale of offline jets,
applied only to data

Eta intercalibration

Corrects the scale of forward
jets in data to that of central
jets, using the pT balance ratio
between data and simulation,

applied only to data

Derived specifically
for trigger jets

Derived for
offline jets

Figure 2: Calibration stages for EM-scale trigger-level jets, each applied to the four-momentum of the jet. MC refers
to the simulation.

In the calibration procedure, summarized in Figure 2, an event-by-event jet-area-based calibration [24]
is used to correct for contributions from additional proton–proton interactions (pileup) in the same and
neighboring crossings of proton bunches. Then, the simulation-based calibration derived for offline jets
is applied to trigger-level jets to correct both jet energy and direction. Next, calorimeter-based variables
are used to reduce the dependence on the trigger-level jet flavor and to minimize the impact of energy
leakage. Only variables related to the trigger-level jet energy fractions in the electromagnetic and hadronic
calorimeters and the minimum number of calorimeter cells containing 90% of the trigger-level jet energy
are used here since track-based variables, which are normally used in the offline calibration, are not
available. With this correction, the trigger-level jet energy resolution is improved by 8% at jet pT values
of 85 GeV and up to 40% for jet pT values of 1 TeV relative to the previous calibration step. Next, the
calibration corrections that restore the relative calibration between central and forward jets in data and
simulation are derived for offline jets and applied to trigger-level jets. After these calibration steps, any
residual difference between trigger-level jets and offline jets is accounted for in a dedicated correction,
based on the pT response and derived from data in bins of jet η and pT. The size of this correction is on
average 1%, with values reaching up to 4% in the endcap regions of the calorimeter.

Finally, an in situ calibration is obtained from the data-to-simulation ratio of the pT balance between offline
jets andwell-calibrated objects againstwhich the jets recoil. Three different types ofwell-calibrated objects
are used to span the full pT range of the jets: Z bosons decaying to electrons or muons, photons, and
multijets. A polynomial in log(pT) is simultaneously fit to the three input measurements to combine them.
The resulting curve is taken as the calibration correction to be applied to trigger-level jets. In deriving the
final calibration curve the fit is chosen over the simple spline-based combination procedure used for offline
jets in Ref. [23]; this procedure is more robust against localized fluctuations in the jet pT distribution
that result in deviations from the expected smoothly falling invariant mass spectrum. Any dependence
on the final mass spectrum due to the choice of smoothing procedure is tested by comparing different
smoothing methods on the data as well as simulations. The fitted in situ calibration curve is compared
to the spline-based smoothing procedure in Figure 3. After the full calibration procedure, the energy of
trigger-level jets is equivalent to that of offline jets to better than 0.05% for invariant masses of 400 GeV
and their difference is negligible for invariant masses of 1 TeV.

Energy scale and resolution uncertainties derived for offline jets [23] are applied to trigger-level jets in
the signal simulation, with additional uncertainties equivalent to the size of the final trigger-to-offline
correction (1–3%). The uncertainty due to the modeling of pileup effects and due to the jet parton flavor
are derived specifically for trigger-level jets and are comparable to those of offline jets. The jet energy
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Figure 3: The in situ calibration in the range 85 GeV< jet pT < 2 TeV, for both the spline (dashed line) and fitted
(solid line) combination methods, as described in the text. Data points from the three input measurements are
overlaid. The lower panel shows the ratio of the two calibration curves.

scale uncertainty for trigger-level jets at 200 GeV ranges from 1% at |η | < 0.8 to 2% in the region between
the central and endcap regions (1.0 < |η | < 1.5).

4 Event selection

The dijet event selection for this analysis is similar to the one used in Ref. [3]. Events must contain at least
two trigger-level jets, each one with pT > 85 GeV and |η | < 2.8. The leading trigger-level jet must have
either pT > 185 GeV or pT > 220 GeV for the ET > 75 GeV and ET > 100 GeV L1 trigger selections,
respectively; this ensures that the L1 triggers are fully efficient. Events that contain jets induced by
calorimeter noise bursts, beam-induced background or cosmic rays are rejected using the same criteria as
in Ref. [22], but omitting the track-based charged fraction selection, which has a negligible effect for this
analysis. The efficiency and purity of jets passing the selection are measured with a tag-and-probe method
using data events with the full detector information. The trigger-level jet reconstruction efficiency is 100%
for jets with pT > 85 GeV. The fraction of trigger-level jets that are not reconstructed and selected offline
is below 0.1%.

This analysis searches for a dijet resonance with a mass between 450 GeV and 1800 GeV. Two different
selection criteria are used for different but overlapping ranges of themj j spectrum. To search for resonances
with 700 GeV < mj j < 1800 GeV, events are required to have |y∗ | < 0.6, where y∗ = (y1 − y2)/2 and y1
and y2 are the rapidities of the highest- and second-highest-pT trigger-level jets. To search for lower-mass
resonances, with mj j > 450 GeV, events with |y∗ | < 0.3 are selected from the smaller data sample
requiring a L1 jet with ET > 75 GeV. The more stringent choice of |y∗ | < 0.3 selects higher-pT jets at
a given invariant mass and thus provides a mass distribution that is unbiased by the leading-jet selection
from mj j = 450 GeV.
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5 Background estimation

The invariant mass spectrum expected from SM dijet production is predicted to be smooth and falling.
Prior dijet searches at various collision energies [7, 25–29] have found a variety of simple functional forms
to describe this shape; however, given the statistical precision of the data and the wide invariant mass
range covered by this search, none of the single, simple functional forms can provide a good description
of the data.

The SM background distribution is determined using a sliding-window fit [3], where a fitted functional
form is evaluated at the center of a window, which then slides in one-bin steps along the mj j distribution.
The evaluated background estimates evaluated in each bin are then collated to form the final background
estimate. The signal selection with |y∗ | < 0.6 uses a window size of 19 bins in the mj j spectrum from
531 GeV to 2080 GeV, which spans 34 bins in total. The signal selection with |y∗ | < 0.3 uses a window
size of 27 bins over a total of 40 bins, in the range 400 < mj j < 2080 GeV. The bin sizes have been
chosen according to the simulated invariant mass resolution: σpT/pT = 10.6/pT ⊕ 0.27/√pT ⊕ 0.039.
The sliding window, however, can not be extended beyond the lower edge of the mj j range used in each
signal selection. Therefore, for the first 9 (13) bins in the |y∗ | < 0.6 (|y∗ | < 0.3) signal selection, which
corresponds to one half of the window size, the window is fixed to the lower edge of the spectrum and
instead the fitted functional form is evaluated for each bin in turn. For invariant masses higher than the
mj j range used for the search, the window is allowed to extend beyond the range, to 2970 (3490) GeV for
the |y∗ | < 0.6 (0.3) signal selection, and the fit is evaluated at the center of the window.

In each sliding window, three functional forms are fit to the data: a five-parameter function of the form

f (x) = p1(1 − x)p2 xp3+p4 ln x+p5 ln x2
, (1)

where pi are free parameters and x ≡ mj j/
√

s; a four-parameter function, which is the same as Eq. (1) but
with p5 = 0; and a four-parameter function used by the UA2 Collaboration [25], defined as

f (x) = p1

xp2
e−p3x−p4x

2
. (2)

The function used for each signal selection is the one that yields the best χ2 over the full fitted mj j

range. An alternative function is chosen to evaluate a systematic uncertainty. For the signal selection
with |y∗ | < 0.6, Eq. (1) is used and the alternative function is the four-parameter function. For the signal
selection with |y∗ | < 0.3, the four-parameter version of Eq. (1) yields the best χ2 value and the alternative
function is Eq. (2).

The size of the sliding window is optimized to yield the best χ2 value for the full mj j range while still being
larger than the width of the expected signals and therefore insensitive to potential signal contributions.
This latter requirement is checked by including signal models in pseudo-data samples and studying the
dependence of the signal sensitivity on different window sizes.

Systematic uncertainties in the estimate of the background used in setting limits include the uncertainty
due to the choice of functional form and uncertainties in the fit parameter values. The effect of the choice
of functional form is evaluated by comparing the nominal function to the alternative. The uncertainties in
the fit parameter values are evaluated using pseudo-experiments, where the pseudo-data are drawn from
Poisson fluctuations around the nominal background model.
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Figure 4: The reconstructed dijet mass distribution (filled points) for events in the |y∗ | < 0.3 and |y∗ | < 0.6 signal
regions. The solid lines depict the background estimate obtained by a sliding-window fit. Overall agreement
between the background estimate and the data is quantified by the χ2 p-value. The most discrepant localized excess
in either signal region identified by the BumpHunter algorithm is indicated by the vertical lines. The open points
show two possible signal models. The lower panels show the bin-by-bin significances of differences between the
data and the background estimate, considering only statistical uncertainties.

6 Results and limits

Figure 4 shows the invariant mass distributions for dijet events in each signal region including the results
from the sliding-window background estimates. The global χ2 p-value is 0.13 in the |y∗ | < 0.6 signal
selection and 0.42 in the |y∗ | < 0.3 signal selection, indicating the data agrees well with the background
estimate. The most discrepant interval identified by the BumpHunter algorithm [30, 31] is 889–1007 GeV
for events with |y∗ | < 0.6. Accounting for statistical uncertainties only, the probability of observing
a deviation at least as significant as that observed in data, anywhere in the distribution, is 0.44 and
corresponds to significance of 0.16 σ. Thus, there is no evidence of any localized excess.

Limits are set on both a leptophobic Z ′ simplified dark-matter model [32] and a generic Gaussian model.
The Z ′ simplified model assumes axial-vector couplings to SM quarks and to a Dirac fermion dark-matter
candidate. No interference with the SM is simulated. Signal samples were generated so that the decay rate
of the Z ′ into dark-matter particles is negligible and the dijet production rate and resonance width depend
only on the coupling of the Z ′ to quarks, gq, and the mass of the resonance, mZ′ [9]. The model’s matrix
elements were calculated in MadGraph 5 [33] and parton showering was performed in Pythia 8 [34].
The width of a Z ′ resonance with gq = 0.10, including parton shower and detector resolution effects, is
approximately 7%. Limits are set on the cross-section, σ, times acceptance, A, times branching ratio, B,
of the model, and then displayed in the (gq,mZ′) plane.3 The acceptance for a mass of 550 GeV is 20%
for a Z ′ simplified model with gq = 0.10 for the |y∗ | < 0.3 signal selection, and 41% for a signal of mass
equal to 750 GeV for the |y∗ | < 0.6 signal selection.

Limits are also set on a generic model where the signal is modeled as a Gaussian contribution to the
observed mj j distribution. For a given mean mass, mG , four different Gaussian widths are considered: a
width equal to the simulated mass resolution (which ranges between 4% and 6%), and the fixed fractions
5%, 7% and 10% of mG . As the width increases, the expected signal contribution is distributed across

3 Limits on the coupling are obtained accounting for the scaling of the signal cross-section with g2
q .
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more bins. Wider signals are therefore less affected by statistical fluctuations from the data in a single
bin. The results can be used to set limits on models of new phenomena besides that of the Z ′ simplified
model and are applicable when the resonance is sufficiently narrow and the parton distribution function
and non-perturbative effects can be safely truncated or neglected, as described in Ref. [28]. These criteria
are often met if the mj j distribution for a signal approaches a Gaussian distribution after applying the
kinematic selection criteria of the resonance analysis, so that 95% of the signal lies within 20% of the
Gaussian mean mass. Models of new resonances with an intrinsic width much smaller than 5% of its
mass should be compared to the results with a width equal to the experimental resolution. For models
with a larger width, the limit that best matches their width should be used. More-detailed instructions can
be found in Appendix A of Ref. [28].

A Bayesian method is applied to the data and simulation of the signal models at a series of discrete masses
to set 95% credibility-level upper limits on the cross-section times acceptance [27] for the signals described
above. The method uses a constant prior for the signal cross-section and Gaussian priors for nuisance
parameters corresponding to systematic uncertainties. The background is re-estimated for each value of
the mass parameter by including the signal shape with a floating normalization in the sliding-window
fit. The expected limits are calculated using pseudo-experiments generated from the fit parameters of
the background-only model and including systematic uncertainties from both the signal and background
models. The uncertainties on the Z ′ signal model include the jet energy scale and the luminosity. The
impact of the jet energy resolution uncertainty is negligible. For the Gaussian model, a constant jet energy
scale uncertainty of 3% is applied in accordance with the measured impact of this uncertainty on the Z ′

samples. The uncertainty in the integrated luminosity is ±2.2%, derived following a methodology similar
to that detailed in Ref. [35]. The systematic uncertainties in the background estimate include the choice
of the fit function and the uncertainty in the fit parameter values, as described above.
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Figure 5 shows limits on the coupling to quarks, gq, as a function of the mass mZ′ for the Z ′ model.
Figure 6 shows limits on a possible Gaussian contribution with a width equal to the detector resolution
as a function of the mean mass, mG . In both the Z ′ and Gaussian models, upper limits for masses from
450 GeV to 700 GeV are derived using the distribution with |y∗ | < 0.3, which is sensitive to the lower
masses. Limits for masses above 700 GeV are derived from the mj j distribution with |y∗ | < 0.6, except
for Gaussian signals with a width of 10% where only the |y∗ | < 0.3 distribution is used.
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The limit results show an upward fluctuation at masses of approximately 1 TeV in the |y∗ | < 0.6 signal
region. This is not seen in Figure 4 and stems from differences between the background estimation
methods used in the two cases. When searching for excesses in the data, the background estimate does
not include any signal component in the functional form. For the observed limits, the signal shape
corresponding to the model point being tested is incorporated into the background parameterization. A
signal-plus-background fit has more degrees of freedom than a background-only fit, and is therefore more
sensitive to fitting local data fluctuations that mimic the signal shape. The expected limit bands, which
are estimated from the background-only component of the signal-plus-background fit, do not account for
this. The |y∗ | < 0.6 signal region, which uses a smaller sliding-window size, is especially sensitive to this
effect. Therefore, limits were not set on signals with a width of 10% for the |y∗ | < 0.6 signal region as
the signal is too wide for the sliding-window size.

7 Conclusions

In conclusion, this analysis searches for resonances with masses between 450 GeV and 1800 GeV in
dijet events using trigger-level jets in 29.3 fb−1 of

√
s = 13 TeV proton–proton collision data recorded by

the ATLAS detector at the LHC. The invariant mass distribution presents no significant local excesses
compared to the estimated SM background. This analysis provides 95% credibility-level limits on Z ′

signals and cross-sections for new processes that would produce a Gaussian contribution to the dijet mass
distribution. Over much of the mass range, the sensitivity to the coupling to quarks, gq, is improved by a
factor of two or more compared to pre-LHC and

√
s = 8 and 13 TeV ATLAS results, and is comparable
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to CMS searches at
√

s = 8 and 13 TeV using this technique. Gaussian contributions with effective
cross-sections times acceptance ranging from approximately 6.5 pb at 450 GeV, to 0.4 pb at 700 GeV, to
0.05 pb at 1800 GeV are excluded.
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