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ABSTRACT 

Fluid flow through a single rock fracture depends on the shape of the space 

between the upper and lower pieces of rock which define the fracture. In this thesis, 

the normalized flow through a fracture, i.e. the equivalent permeability of a fracture, 

is predicted in terms of spatial statistics computed from the arrangement of voids, i.e. 

open spaces, and contact areas within the fracture. Patterns of voids and contact 

areas, with complexity typical of experimental data, are simulated by clipping a corre­

lated Gaussian process defined on a N by N pixel square region. The voids have con­

stant aperture; the distance between the upper and lower surfaces which define the 

fracture is either zero or a constant. Local flow is assumed to be proportional to local 

aperture cubed times local pressure gradient. The flow through a pattern of voids and 

contact areas is solved using a finite-difference method. 

After solving for the flow through simulated 10 by 10 and 30 by 30 pixel pat­

terns of voids and contact areas, a model to predict equivalent permeability is 

developed. The first model is for patterns with 80% voids where all voids have the 

same aperture. The equivalent permeability of a pattern is predicted in terms of spa­

tial statistics computed from the arrangement of voids and contact areas within the 

pattern. Four spatial statistics are examined. The change point statistic measures how 

often adjacent pixels alternate from void to contact area (or vice versa) in the rows of 

the patterns which are parallel to the overall flow direction. The dispersion statistics 

describe how widely dispersed the voids are within the rows and columns of the pat­

tern. For instance, the row dispersion statistic takes its minimum value if each row in 

the pattern has the same number of voids. The final statistic is based on erosion 

(Serra, 1982) transformations of the pattern and measures a controlling flow path 

width in between contact area features. 

The 0.80 void fraction model is extended to patterns with other void fractions. 

The extended model accurately predicted the equivalent permeability of simulated 
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patterns ranging in scale from 30 by 30 pixels to 128 by 128 pixels. It is expected 

that the prediction model will work for even larger simulated patterns from the same 

simulation model. How well the model works for larger patterns simulated using 

other models is an open question. However, in general, the extended model accu­

rately predicted the equivalent permeability of some patterns simulated differently 

including some simulated using fractal ideas (Mandelbrot, 1983). Limitations of the 

model are noted. 

Using the prediction model, which is good for patterns where voids have con­

stant aperture, a lower bound for the equivalent permeability of a variable aperture 

pattern is given. 

In addition to predicting the flow through a particular simulated pattern, a lower 

bound for the variability of equivalent permeability for an ensemble of simulated pat­

terns is given. To get the lower bound, both the Power Average Model (Joumel et 

al., 1986) and Percolation Theory (Broadbent and Hammersley, 1957) are used to 

relate the void fraction of a pattern to its expected equivalent permeability. 

•• 
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1. INTRODUCTION 

Basic Problem 

Because wastes from nuclear reactors remain dangerously radioactive for over 

10,000 years, decision makers hope to find a safe and permanent disposal scheme. 

One scheme under consideration is to bury the waste in an underground repository. 

If the rock surrounding the repository were solid, underground disposal would 

pose no risks. However, the rock is not solid; there are open spaces or voids in the 

rock. Thus, nuclear wastes dissolved in groundwater might migrate away from the 

repository through the voids. If the wastes migrate far enough, they could contam­

inate underground aquifers, rivers or lakes. 

The degree of the risk partly depends on how fluids, under pressure, flow 

through cracks in the rock. Just like cars travel though a city by means of a network 

of inter-connected roads, fluids can flow through a network of inter-connected frac­

tures. Fractures exist at many length scales and have complex shapes. This thesis 

focuses on flow through individual cracks, i.e. single rock fractures, from a statistical 

perspective. Fluid flow through a complex fracture is predicted in terms of statistics 

computed from the shape of the fracture. 

Fracture Geometry 

To make clear what kind of fractures are studied in this work, imagine a solid 

piece of rock. Now, suppose that the rock fractures into an upper and lower piece of 

rock. The void space geometry of this single fracture is the space between the upper 

and lower pieces of rock. 

The simplest kind of fracture is the parallel plate fracture. In the parallel plate 

fracture, the upper and lower surfaces which define the fracture are parallel to one 

another. Thus, the distance between the rock surfaces is constant. 



2 

However, realistic fractures are not so simple. In a complex fracture, the dis-

tance (aperture) between the upper and lower surfaces varies. In this work, we study 

fractures defined by upper and lower surfaces which either touch or are separated by a 

constant distance. To define these fractures, a square region of a reference plane is 

discretized into square pixels. Each pixel is void or contact area. Hence, fractures 

consist of two-dimensional patterns of void and contact area pixels. To uniquely 

define the surfaces in terms of aperture, the upper and lower surfaces are assumed to 

be mirror reflections of each other about the reference plane. 

Even with these simplifications, the patterns are complex because there are many 

ways to arrange voids and contact areas within a fracture. For instance, Figure 1.1 

shows a simulated pattern of voids and contact areas. Chapter 3 .·describes how pat­

terns are simulated by clipping a correlated Gaussian process defined on a N by N 

pixel square region. How the arrangement of the voids and contact areas within a 

pattern determines how a fluid, under pressure, flows across a pattern such .as the one 

shown in Figure 1.1, is the main theme of this thesis. 

We wish to determine how the geometry of a fracture controls the flow through . 

the fracture. The way to calculate flow in the fracture is to solve the Navier-Stokes 

· equations (which are Newton's Law for fluids) for the pressure and fluid velocity 

fields within the fracture. Since the equations are nonlinear, solving them for a com­

plex fracture pattern is impractical even on a computer. Because of this difficulty, 

flow is modeled using a linear empirical model; local flow is assumed proportional to 

local pressure gradient times local apenure cubed. Although simpler than the Navier­

Stokes, this flow model still has to be solved on a computer. Chapter 4 describes the 

flow model and how the method of finite-differences is used to solve for flow numeri-

cally. The computed flow through a pattern of voids and contact area pixels is nor­

malized by dividing it by the flow that would had occurred if each pixel had been 

void. This normalized flow ranges from 0 to 1 and is called the equivalent 

' ... 
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Figure 1.1 A simulated pattern of voids(black) and contact areas(white). 
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permeability of the pattern. The point of this thesis is to relate the spatial arrange­

ment of the voids and contact areas within a pattern to the equivalent permeability of 

the pattern. 

The equivalent permeability of a pattern depends on how well the contact areas 

block flow. Intuitively, contact area features which are stretched out parallel to the 

overall flow direction block flow less efficiently than features which are stretched out 

in the direction perpendicular to the overall flow direction. For instance, in Figure 

1.2, for flow in the direction of the arrows, the contact area feature in pattern A 

blocks flow more efficiently than the contact area feature in pattern B. However, the 

shapes of the individual contact area features in a pattern do not completely determine 

flow. For instance, consider patterns C and D shown in Figure 1.3. Although both 

patterns have the exactly the same two contact area features, pattern C will block flow 

more efficiently than pattern D if a pressure drop is applied in the direction of the 

arrows. Hence, for these two patterns, the relative location of the contact area 

features is important for predicting flow. 

In this work, the flow through a specific pattern of voids and contact areas is 

predicted in terms of spatial statistics computed from the arrangement of voids and 

contact areas pixels within the pattern. Each spatial statistic measures, in a different 

way, how well contact area features block flow. The spatial statistics are sensitive to 

contact area feature shapes and the location of the contact area features relative to the 

applied pressure drop and each other. 

Our philosophy towards the prediction of flow through a pattern of voids and 

contact areas is empirical. No prior knowledge of how the voids and contact areas 

are arranged is used to compute the spatial statistics. In contrast, other approaches 

such as Effective Medium Theory (Kirkpatrick, 1973) or Percolation Theory (Broad­

bent and Hammersley, 1957) predict flow through large patterns in terms of prior 

knowledge about the way a pattern is simulated. These theories predict flow through 



Figure 1.2 
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Pattern A 

... 

Pattern B 
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For flow in the .:c direction, the contact area feature (white) in Pattern A 
blocks flow more efficiently than the contact area feature in Pattern B. 
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Pattern C 

.. 

Pattern D 
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Even though both Patterns C and D have contact area features with the 
same shape, a pressure drop in the x direction leads to less flow 
through Pattern C than through Pattern D. 

~I 
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homogeneous patterns where flow is determined by the collective behavior of many 

distinct barriers but none in particular. The summary statistics of the pattern needed 

for prediction may be very simple, e.g. the void fraction, because information about 

how patterns are simulated is built into the prediction formula. That is, the prediction 

formulas are designed for patterns simulated in very specific ways. Prediction tech­

niques presented here are based on explicit measures of the spatial arrangement 

Since the main focus of the thesis is on how the arrangement of voids and con­

tact areas determines flow, patterns with a fixed fraction of voids (0.80) are studied 

first. This high fraction was chosen because an observed pattern had a similarly high 

void fraction. Chapter 5 examines the statistical relationship between each spatial 

statistic and flow through 10 ·by 10 pixel and 30 by 30 pixel patterns. Flow is 

predicted in terms of each spatial statistic alone and then in terms of a linear combi­

nation of the spatial statistics. 

Since fractures of interest have void fractions different than 0.80 in general, the 

model is extended to patterns with other void fractions in Chapter 6. As a test, the 

extended model is applied to patterns simulated in different ways. Some of the 

different patterns were simulated by changing the range of correlation in the Chapter 

3 simulation model. Others were simulated using fractal (Mandelbrot, 1983) ideas. 

Fractal patterns are interesting because they are quite inhomogeneous. In general, the 

extended model accurately predicted the flow through the patterns. Exceptions are 

noted. 

How well the model works for more complex patterns is an open research ques­

tion. Even if the model fails to predict overall flow through patterns more complex 

than considered in this thesis, it may serve as a tool to model flow. For instance, sup­

pose that a large N by N pixel pattern is so complex that it is impractical to solve the 

equations of flow on the computer. The pattern might be partitioned into 30 by 30 

pixel blocks. Using our prediction model, a local equivalent permeability could be 
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predicted for each block for pressure drops in the x and y direction. Thus, a block 

with 30Z bits of information of information (each pixel is void or contact) could be 

reduced to a block with 2 bits of information. It may then be possible to model the 

flow through the complex pattern in terms of the predicted equivalent permeabilities 

of the 30 by 30 pixel blocks. Alternatively, the prediction model may serve as a tool 

to study the influence of selected contact area features on flow. For instance, all con­

tact area features smaller than a certain size might be treated .as voids so as to isolate 

the effect of the largest features on flow. These applications are not pursued in this 

work. 

Ensemble Variability 

As an extension of the main thrust of the thesis, which is to predict the 

equivalent permeability of a specific pattern of contact areas and voids, Chapter 7 

predicts a lower bound for the standard deviation of the equivalent permeability of an 

ensemble of simulated patterns from the Chapter 3 model. To define the ensemble, 

consider an infinite pattern. Now imagine that the infinitely large pattern is broken up 

into N by N pixel blocks. The ensemble of N by N pixel patterns consists of these 

infinitely many N by N pixel blocks. For each pattern in the ensemble, equivalent 

permeability is, in general, different. Hence, the standard deviation of the equivalent 

permeabilities of the N by N pixel patterns in the ensemble is positive. However, as 

N approaches infinity, each pattern in the ensemble becomes very homogeneous and 

the standard deviation of equivalent permeability tends to zero. The standard devia­

tion is interesting because it tells us how large a simulated pattern must be before 

equivalent permeability becomes very predictable. 

We call the scale at which the coefficient of variation (standard deviation divided 

by expected value) of equivalent permeability falls below a very small level e the 

representative volume (REV) scale. From the lower bound for the coefficient of vari­

ation, a lower bound for the REV scale is derived. 
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To get the lower bound, the expected equivalent permeability of a N by N pixel 

pattern in the ensemble is related to its void fraction. To make this relation, an 

empirical model for flow called the Power Average Model (Joumel et al., 1986) is 

assumed. In terms of the correlogram of the simulated patterns, an expression for the 

standard deviation of void fraction (crp) for the ensemble is derived. After expanding 

the Power Average model expression for equivalent permeability as a Taylor series 

expansion in void fraction, a lower bound for the standard deviation of equivalent per-

meability (crK ) is given . . , 
For patterns with sufficiently low void fractions, the Power Average Model is not 

appropriate for relating expected equivalent permeability to void fraction. For such 

patterns, the more relevant Percolation Theory (Broadbent and Hammersley, 1957) is 

used to relate the void fraction to the expected equivalent permeability of a pattern 

from the ensemble. Percolation Theory treats flow through systems where flow is 

almost completely blocked. A lower bound for the ensemble variability of equivalent 

permeability is then calculated. 

Lower Bound for Flow through Patterns with Variable Apertures 

After developing a model to predict the flow through a pattern of contact areas 

and voids with constant aperture, the natural question to ask is how can the model be 

applied to patterns with variable apertures. In Chapter 8, a lower bound for the 

equivalent permeability of a variable aperture pattern is obtained by first transforming 

all apertures. In the transformation, all apertures below an adjustable cutoff are set to 

zero and all apertures above the cutoff are set to the cutoff. Since each transformed 

aperture is less than or equal to each of original aperture, the flow through the original 

pattern is greater than or equal to the flow through the transformed pattern. This is 

because local hydraulic conductivity is proportional to aperture cubed in our flow 

model. Hence, the model prediction for the equivalent permeability of the 

transformed pattern provides a lower bound for the equivalent permeability of the 
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original pattern. A second lower bound is obtained by setting all the apertures above 

the cutoff to a intermediate value between the cutoff and the maximum aperture in the 

pattern. The intermediate value chosen is the cube root of the harmonic average of 

the cube of apertures above the cutoff. A heuristic argument based on circuit theory 

rules for finding the maximum resistance of a network of variable resistors motivated 

this second bound. 
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2. LITERATURE REVIEW 

This Chapter reviews literature relevant to the problem of relating the spatial 

arrangement of voids and contact areas within a fracture to the flow through the frac­

ture. Because of the similarity between Ohm's Law for electric current flow and the 

fluid flow model assumed in this work, some solid state physics literature is relevant. 

The review begins with studies of general upper and lower bound for effective per­

meability. Models which use specific information about the the spatial arrangement of 

conducting and non-conducting regions in a pattern are then discussed. 

Electrical Current and Fluid Flow Similarity 

The equations assumed to govern fluid flow through fractures have the same 

form as the equations which govern electric current flow through a medium consisting 

of conductors and insulators. Fluid flow per unit area q corresponds to electric 

current density j, permeability K con:esponds to electrical conductivity a and pressure 

P corresponds to voltage v. For electrical systems, Ohm's Law is 

1=~VV. 

For fluid flow, the model assumed in this work is is 

K q=--VP. 
J.1 

(2.1) 

(2.2) 

where K is local permeability. Because flow is proportional to pressure gradient, this 

model is called a Darcy's Law model. Both models have continuity equations. For 

the electrical model, v.j = 0. For the fluid flow model, V·lf = 0. This analogy has 

been pursued by Tsang (1984) who modeled fluid flow through a single rock fracture 

using an equivalent network model where local hydraulic resistance was proportional 

to the inverse of aperture cubed. 
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Beran (1968) 

Using a variational approach, Beran bounded the effective permeability of a 

porous medium which obeys Eq. 2.2 as follows 

(2.3) 

The lower bound is the harmonic average of local permeabilities and the upper bound 

is the arithmetic average of local permeabilities. The bounds have a circuit theory 

analogy; the conductance of a network of resistors is maximized when the resistors 

are in parallel and minimized when the resistors are in series. According to Eq. 2.3, 

if a fraction p of the local permeabilities equals KIU and a fraction 1-p equals o, 

effective permeability falls somewhere between 0 and pKIU. These bounds are broad 

because they do not use specific information about the spatial arrangement of the 

voids and contact areas within a pattern. However, there are models which relate 

flow to contact area for specific kinds arrange~ent of voids and contact area. Below, 

we describe such models. 

Walsh (1981) 

Walsh related the shape of contact area features in a rock fracture to flow for a 

special case. Walsh considered flow between two parallel plates with barriers 

between them. The barriers extended from the upper to lower plate, were uniformly 

spaced and had approximately the same cylindrical shape. To model the flow through 

the fracture, Walsh made an analogy between the physics of fluid flow around the 

cylindrical barriers and the physics of heat flow around circular shaped insulators in a 

conducting sheet. Within the fracture, the pressure field was modeled using the 

Laplace equation (V2P = 0) and fluid flow was assumed proportional to pressure gra­

dient times conductivity. Using an effective medium approximation, where each bar­

rier is viewed as being immersed in a uniform background conductivity due to all the 

other barriers, he got 

.. 
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(2.4) 

where c is the fraction of contact area and Q (c) is the flow through a fracture with a 

contact area fraction of c. Chen et al. (1989) verified the above formula for contact 

area fractions ranging from 0 to 0.25. 

Although the above expression may be a good approximation for flow when con­

tact areas are uniformly spaced and have nearly circular cross sectional shapes, the 

formula is not applicable to more complicated arrangements of voids and contact 

areas. 

Chen et al. (1989) 

Chen et al. (1989) extended Walsh's result to the case where instead of circular 

cross section shapes, barriers had elliptical cross section shapes. Each barrier had the 

same elliptical shape but was randomly oriented with respect to the overall flow direc­

tion. Further, the elliptical barriers were uniformly spaced throughout the fracture. In 

terms of the aspect ratio a which is the ratio of the minor to major ellipse of each 

barrier, they got 

where 

Q(c) = 1- f3 c 
1+f3c 

f3 = (1+ a )
2 

4a 

(2.5) 

(2.6) 

They verified Eq. 2.5 for patterns with contact area fractions between 0 and 0.05. 

Next, an empirical model for more irregular patterns is reviewed. 

Journel et al. (1986) 

For complicated patterns of high and low permeability regions, Journel et al. 

(1986) predicted effective permeability using the Power Average Model. Although 

intended for sandstone and shale systems, the model is applicable to rock fractures 
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because the flow models assumed are the same. Random patterns of high and low 

permeability regions were simulated using a geostatistical method. In two dimen­

sions. square regions were discretized into square pixels and each pixel got a low or 

high permeability. In three dimensions. a cubic volume was discretized into cubic 

pixels and each pixel got a low or high permeability. The expected correlegram 

(Joumel and Huijbregts, 1978) of each simulated patterns was known. 

The correlogram, p(r'), is a normalized spatial correlation function which com­

municates how likely it is that two pixels are both in high permeability regions. The 

correlogram is 

(2.7) 

where Sz(r') is the two-point correlation function (Beran, 1968). The two-point corre­

lation function gives the probability that two pixels separated by a vector r are both 

are highly permeable. The fraction of highly permeable regions in the pattern is p. 

The correlogram ranges from + 1 to -1. For instance, if local permeabilities are 

independent, i.e. there is no correlation, the correlogram is unity at lag zero but equal 

to zero at all other lags. 

They solved for the flow through each simulated pattern using Darcy's Law. 

Pressure was specified at the inflow and outflow boundaries. The Power Average 

model for effective permeability is 

(2.8) 

where 1-p is the fraction of pixels with low permeability K10 , p is the fraction of pix­

els with high permeability Klti and w is an empirical parameter which depends on the 

way the high and low permeability regions are simulated. 

For three dimensional patterns with theoretical correlogram 

(-~) 
p(h)=e " (2.9) 

• 
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(2.10) 

Deutsch (1988) found a correlation between w and a weighted average of the them-eti­

cal correlogram for flow due to a pressure gradient in the z direction. The best fit 

value of w was 

{ 
6.0 p. - 1 p. ~.17 

w = 0.9 p* -0.13 p* ~.17 (2.11) 

where the weighted average of the theoretical correlogram is 

2<1 
p* = 1:A.II1P(h,) (2.12) 

111=0 

where h1 is a lag in the z direction and a is a correlation range parameter. The sum is 

over pixels; h1 is incremented by the length of the pixels. The weights have the form 

-{bt-bzh1 for h1~ 
A,., - 0 for h1 2:2a (2.13) 

The terms b 1 and b 2 were chosen so that the sum of the weights is unity. Since this 

relation is for three dimensional flow rather than two dimensional flow, it is not 

directly applicable to single fractures. However, a similar statistical relationship 

between the weighted average of the correlogram and w may exist for two dimen-

sional patterns. 

Deutsch related the empirical parameter w to the theoretical, i.e. the expected, 

correlogram of a simulated pattern rather than to statistics computed from the specific 

arrangement of high and low permeability regions within the pattern. Hence, Eq. 2.8 

predicts the same equivalent permeability for simulated patterns with the same frac­

tion of high permeability regions but different spatial arrangements of high and low 

permeability regions. In contrast, our model predicts different equivalent permeabili-

ties for patterns with different arrangements of voids and contact areas. Further, our 
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prediction model works for a variety of patterns, not just patterns where the theoreti­

cal correlogram is known. 

A limitation of the Power Average Model is the cue for the next model dis­

cussed. If the fraction of non-conducting pixels in a simulated pattern increases 

beyond a critical fraction, there will be no flow across the pattern. For patterns with 

void fractions close to this threshold, the Power Average Model does not predict flow 

accurately. However, Percolation Theory (Broadbent and Hammersley, 1957) does 

predict flow when the fraction of non-conducting pixels is near this threshold. 

Percolation Theory 

To start, consider the independent site percolation formulation of Percolation 

Theory in two dimensions. In independent site percolation, the plane is discretized 

into pixels which either conduct flow or block flow. Flow can pass from one con­

ducting pixel to another conducting pixel if they share a common side. All conduct­

ing pixels have the same conductance. Pixels are independently assigned as conduct­

ing with probability p. Percolation Theory predicts that if the fraction of conducting 

pixels falls below a critical threshold Pc• flow is completely blocked. As P~Pc from 

above, the effective conductivity of the system (one if all pixels conduct flow) is con­

jectured to take the leading order form 

(2.14) 

where CJ0 is some constant. Kesten (1982) remarks that the value the constant CJ0 

takes and the rate at which cr., converges to to the term on the right and what value t 

takes are open mathematical issues. 

According to conjecture, t is independent of the shape of the pixels, but Pc 

depends on pixel shape. For square pixels, simulation studies show that Pc :::: 0.593 and 

t :::: 1.3 (Orbach, 1986). For the case where pixel conductances are correlated, conjec­

ture has it that Pc shifts but t stays the same (Levinshtein et al., 1984). For some 

. .,! 
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correlation models, the conjecture has been confirmed by numerical studies. For 

instance, for the Ising Model, Stoll and Domb (1979) showed that Pc decreased when 

neighboring sites were positively correlated and that Pc increased when neighboring 

sites were negatively correlated. This is because as the correlation becomes more 

negative, the probability that two neighboring pixels are both conducting diminishes. 

Hence, the more negative the correlation is, the less connected neighboring conducting 

pixels are. Thus, the critical fraction of conducting pixels necessary to form a con­

nected cluster of conducting pixels which spans the entire pattern increases and Pc 

increases. 

Besides site percolation, there is also a bond percolation formulation of Percola­

tion Theory where a regular network of nodes and bonds covers the plane. The bonds 

either pass flow from node to node or block flow from node to node. The percolation 

threshold depends on the coordination number of the network, i.e. the number of con­

necting bonds per node in the network. There is also a continuum percolation formu­

lation where conductors of given shapes, such as a circles, are randomly located in the 

plane. For instance, Pike and Seager (1974) studied randomly located conducting 

sticks of varying length and randomly located conducting circles in a plane. 

As a caveat, Percolation Theory is not intended for patterns too far from the per­

colation threshold. For instance, Kirkpatrick (1973) remarks that for bond percolation 

in two dimensions, Percolation Theory is good for systems where the fractions of con­

ducting bonds is within 20% of the percolation threshold. Next we review an 

approach intended to model flow for patterns which are far above the percolation 

threshold. 

Kirkpatrick (1973) 

Kirkpatrick (1973) applied Effective Medium Theory to predict the effective con­

ductivity of a regular network of conducting and non-conducting bonds. The 

approach worked for networks with conducting bonds about 10% or more above the 
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percolation threshold. In the Effective Medium approximation, each bond is viewed 

as being immersed in the effective conductivity due to all the other bonds. For the 

case where each bond is independently assigned as conducing with probability p and 

non-conducting with probability 1-p, Kirkpatrick expressed effective conductivity as 

{ 

z 2 
1 -(1-p)- for p::2:-

z-2 z 
<1cq = 0 2 

for p<­
z 

(2.15) 

The coordination number, i.e. the number of bonds that meet at each node of the net-

work, is z. Eq. 2.15 does not apply to the case where conducting bonds are spatially 

correlated. 

Summary 

The models reviewed used prior knowledge about how patterns of conducting 

and non-conducting regions were simulated to relate the effective conductivity of a 

pattern to simple summary statistics of the pattern. For instance, Walsh's prediction 

for the normalized flow through a pattern is a function of contact area fraction only 

because the prediction is for patterns with circular contact areas that are regularly 

spaced through the pattern. The Power Average Model prediction of effective per­

meability is relatively simple because it has an empirical parameter which depends on 

how the patterns are simulated. Kirkpatrick's Effective Medium theory assumes 

knowledge of the coordination number of the network and that each bond is indepen­

dently assigned as conducting or non-conducting. Similarly, Percolation Theory 

predicts equivalent permeability using prior statistical knowledge of how conducting 

regions are arranged in a pattern. Furthermore, these theories are intended for sys-

terns which are very homogeneous. For inhomogeneous patterns these approaches are 

not appropriate. In contrast, we predict flow through a pattern in terms of spatial 

statistics computed from the arrangement of voids and contact areas within the 
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specific pattern. Further, we will show that our model predicts flow through a variety 

of patterns. The patterns the model is tested on have varying degrees of homogeneity 

and are simulated in different ways. Some are simulated by changing the range of 

correlation in the simulation model described in the next chapter. Other patterns are 

simulated using fractal ideas (Mandelbrot, 1983). Although our model predicts the 

equivalent permeability of a variety of patterns, we do not claim that our model will 

predict flow for all possible kinds of patterns; for arbitrarily complex patterns, no one 

model can be expected to predict flow accurately . 
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3. SIMULATION MODEL 

Introduction and Summary 

Patterns of voids and contact areas are simulated so as to have complexity simi­

lar to an observed pattern of voids and contact areas. This Chapter describes the 

experiment which revealed the observed pattern and how patterns are simulated. 

Based on the analysis of these simulated patterns, a model to predict flow across a 

pattern in terms of spatial statistics computed from the arrangement of voids and con­

tact areas within the pattern is later developed in Chapter 5 and 6. 

Experiment and Observed Pattern 

The observed pattern of voids and contact areas came from a metal injection 

experiment (technique developed by Pyrak-Nolte, 1987) performed on a cylindrical 

core sample of quartz monzonite from the Stripa mine in Sweden. The core measured 

11.6 em in diameter and 18.4 em in height. The sample contained a single natural 

fracture orthogonal to the long axis of the core. Hot molten Wood's metal was 

injected into the voids of the fracture which was under a 10 MPa stress. This 

corresponds to the insitu stress at 300 meters below the surface. After the metal 

solidified, the fracture was taken apart and both the upper and lower fracture surfaces 

were photographed. Because the metal stuck to either the upper or lower fracture sur­

face, two images were superimposed to get a composite image of the voids and con­

tact areas. To get the images, a Zeiss Image Analysis System digitized television 

camera images of bright metal on darker rock. 

The image consists of a pattern of pixels with side lengths of 0.21 mm. Pixels 

were classified as void space or contact area depending on whether the pixel's grey 

level intensity was above or below a chosen threshold. We chose a threshold which 

gave a digital image with roughly the same shapes and contact area percentage as the 

visual images of metal on rock. However, we have not studied how to select the best 

.. 
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threshold in this work. Additional sources of error include non-uniform illumination 

of the fracture; rotation, tilt and translation of the two fracture surfaces relative to 

each other before superimposition and classification errors due to void regions having 

shapes different than square pixels. These errors are difficult to quantify and are not 

studied in this work. The inner 128 by 128 pixel section of the fracture is shown in 

Figure 3.1. The pattern has a void fraction of 81.7%. 

Simulation 

Simulated Patterns are obtained by clipping a correlated Gaussian process. This 

simulation procedure is similar to other geostatistical simulation techniques (Joumel 

and Isaaks, 1984). To illustrate the simulation model, the steps taken to simulate a 

128 by 128 pixel pattern are detailed below. 

First, independent Gaussian random variables are assigned to each pixel in a 128·· 

by 128 pixel pattern. Second, a moving average filter is convolved with the indepen­

dent Gaussians to get a correlated Gaussian process. The filter weights are radially 

symmetric and decay exponentially. Thus, the moving average filter assigns the (i ,j)'" 

pixel a new Gaussian random variable which is the weighted average of the original 

independent Gaussians assigned to pixels within a circular neighborhood of the (i ,j)111 

pixel. Hence, filtering introduces correlation. Third, pixels with Gaussians above a 

chosen cutoff are void and the remaining are contact. In other words, the correlated 

Gaussians are clipped. 

In summary, 

1. Assign each pixel (i,j) an independent Gaussian Xii. Each Gaussian has 

.. mean zero and variance one. 

2. Convolve X with a filter H to get a correlated Gaussian process Y. 

where 

D D 
rii = L L xi-k i-1 H u 

l,....[) /,.....[) 

(3.1) 
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XBL 893-1052 

Pattern 128a is an observed 128 by 128 pixel pattern of voids 
and contact areas within a single fracture. The data is from a 
metal injection experiment. Voids are black and contact areas are 
white. Each pixel length is 0.21 mm. 18.3% contact area. 
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_ {C exp(-~) for~ s; D 
H ld - 0 otherwise (3.2) 

The normalization factor, C, is chosen so that each of the correlated Gaussians, 

Yii has mean zero and variance one. 

3. Clip 

(3.3) 

To simulate a pattern, the following must be specified: D which determines the 

size of the filter, 1C which determines how fast the weights in the filter fall off to zero; 

the clipping level Yo and the seed for generating the random Gaussians. Rather than 

quantifying a strategy so as to find optimum values of 1C and D, ·lC and D were found 

by the less formal technique of trail ·and error. The values were adjusted until the 

simulated and observed patterns had similar correlograms (Joumel and Huijbregts, 

1978), similar range of contact area feature sizes and similar visual appearances. The 

values 1C = 0.75 (inverse pixel length) and D=7 gave good results. In the trail and 

error comparison, the value of 0.75 for 1C gave better results than did values of 1.0 or 

0.5. Further, for 1C = 0.75, a larger filter D = 10 gave results similar to the D = 7 

choice. However, for D = 3 results were worse. 

Figure 3.2 shows simulated patterns 128b, I28c and 128d. These should be com­

pared with the observed pattern shown in Figure 3.1. The random number generator 

was initialized differently for each pattern. For each pattern, the clipping level was 

adjusted so that the simulated pattern had the same void fraction as the observed pat-

tern. 

Correlograms 

The observed and simulated patterns had similar correlograms. The correlogram 

(Joumel and Huijbregts, 1978) is a normalized spatial autocorrelation function. Let 
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X XBL 893-1053 

Figure 3.2 Simulated patterns 128b, 128c, 128d. All have 18.3% contact area. 
Scale is the same as in Figure 3.1. 
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I (x) be the indicator function for the pixel centered at x . I (x) equals one or zero, 

depending on whether the pixel centered at ? lies in a void or contact area. Thus, the 

average value of I is the average void fraction of the pattern (p ). The indicator 

semi-variogram (Journel and Huijbregts, 1978) at lag r is 

(3.4) 

the two point correlation function (Beran, 1968) at lag r is 

S iJ") = Ey( I (xt') I (x+r') ) (3.5) 

and the correlogram at lag r is 

(3.6) 

To compute an empirical coirelogram for the observed and simulated patterns, 

pixels in the rows and columns of a pattern are examined. Not all possible pairs are 

examined; only pixels in the same row or same column are examined. Instead of com­

puting a correlogram which depends on the direction of the lag r, we compute a 

correlogram which depends only on the magnitude of r which is denoted as r. s 2(r) 

is the fraction of examined pairs of pixels in the rows and columns, separated by dis­

tance r, which have two voids. The fraction of pixels in the pairs of pixels examined, 

r pixels lengths apart, which are void is p(r). For finite patterns, p{r) is different than 

the void fraction of the pattern because of sampling error. The empirical correlogram 

at lag r is 

S2(r)- p(r)2 

~(r) = p(r)( 1-p(r)) 
(3.7) 

Figure 3.3 shows that the empirical correlograms of the observed and simulated 

patterns are close. For lags less than 5 pixel lengths, the match is almost perfect. For 

lags between 5 and 15 pixel lengths, the correlogram of the observed pattern decays 

to zero less slowly than do the correlograms of the simulated patterns. There are two 
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Figure 3.3 Correlograms of the observed pattern (128a) and the simulated patterns 
(128b, 128c, 128d). 
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reasons for this discrepancy. First, the observed pattern surely is not exactly like the 

simulated patterns. For instance, the simulated patterns appear slightly more homo­

geneous than does the observed pattern; in the observed pattern, the contact area 

features are not distributed as uniformly as the contact areas in the simulated patterns 

are. Since the observed pattern is less homogeneous, its expected correlogram should 

decay to zero less rapidly than the theoretical correlogram of the simulated patterns. 

Also, the simulated patterns have isotropic correlograms whereas the observed pattern 

may not. Second, estimated correlograms never exactly equal "true" correlograms 

·because of sampling error. For instance, for lags greater than 15 pixels, the theoreti­

cal correlogram of the simulated patterns is exactly zero because the radius of the 

moving average filter which is used to filter the independent Gaussians is only 7 pixel 

lengths. However, for lags greater than 15 pixel lengths, the simulated patterns oscil­

late about zero. The amplitude of the oscillation about zero is a measure of how well 

determined the correlogram is at these lags. 

A model to predict flow is based on smaller, and hence more inhomogeneous, 10 

by 10 pixel and 30 by 30 pixel simulated patterns from the model. At these scales, 

the empirical spatial arrangement of voids and contact of the simulated patterns is nei­

ther isotropic nor homogeneous. Further, using a model based on the analysis of flow 

through these simulated patterns, the flow through the observed pattern will be 

predicted to within a few percent in Chapter 6. Therefore, the simulated patterns are 

complex enough so as to build a model which does a good job of predicting the 

equivalent permeability of the observed pattern. Thus, fine tuning the simulation 

model to give patterns which have correlograms that more closely follow the observed 

would be a lot of effort that may not lead to a better prediction model. 

A exponential function was fit to the empirical correlogram by minimizing 

4 

L (log p(r) - /..r )2 (3.8) 
r=l 



28 

The best fit value was ~ = 0.505 Figure 3.4 shows that e- 0·505' approximates the 

correlograms of the 128 by 128 pixel simulated patterns well. Later, this exponential 

approximation is used for some calculations. 

Contact Area Histograms 

Another way to compare simulated and observed patterns, is to compare the his­

tograms of contact area feature sizes. A contact area feature is a distinct cluster of 

contact area pixels. The size of a feature is the number of contact area pixels that 

belong to it. Two contact area pixels which share a common side belong to the same 

feature. But two contact area pixels which are diagonal across from one another do 

not necessarily belong to the same feature. This definition is the same as the one 

given by Stauffer (1985) for counting the sizes of clusters~ To illustrate these rules, 

Figure 3.5 shows three patterns of contact areas and voids.· Contact areas are white 

and voids are black. · According to the rules, the pattern on the far left has just one 

contact area feature whereas the other two patterns each have two contact area 

features. Figure 3.6 shows the contact area feature size histograms and cumulative 

histograms for the observed and simulated patterns are similar. 

To be consistent with the notion that metal can not invade a void which is com­

pletely surrounded by contact areas, isolated void space pixels were removed from the 

128 by 128 simulated patterns. An isolated void is bordered on all four sides by con­

tact area pixels. The 128 by 128 pixel simulated patterns had a very small percentage 

of isolated voids-- approximately 0.1 %. For all other simulated patterns, isolated 

voids are left in. 

Other simulated patterns 

A model to predict flow in terms of statistics of the spatial arrangement of void 

and contact areas within a pattern is based on the analysis of smaller 10 by 10 pixel 

and 30 by 30 pixel patterns simulated by the same model which gave the 128 by 128 

pixel patterns. All of the simulated patterns had 0.80 void fractions. Void fraction 
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Figure 3.4 Exponential fit e-'Ar to correlogram. A.= 0.505. r is lag in pixel lengths. 
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Two contact area pixels which share a side are part of the same contact 
area feature. As an illustration, the pattern on the far left has one con­
tact area feature. Each of the other two patterns have two features. 
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Histogram and cumulative histogram for contact area feature sizes of 
observed pattern (128a) and simulated patterns (128b, 128c, 128d). 
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was fixed so that the relationship between flow and the spatial arrangements of voids 

and contact areas could be studied. Later, the prediction model is extended to pat­

terns with other void fractions. 

To get the 10 by 10 pixel and 30 by 30 pixel patterns, six 200 by 200 pixel pat­

terns were first simulated. The clipping level Yo was -0.85 for each pattern but the 

seed used to initialize the computer program which gave the pseudo-random Gaus­

sians was different. The clipping level was chosen to give, on average, patterns with 

20% contact area. From these 200 by 200 pixel patterns, ten non-overlapping 10 by 

10 pixel and thirteen non-overlapping 30 by 30 regions which had 20% contact area 

were selected. Fjgure 3.7 shows the 10 by 10 pixel patterns and Figure 3.8 shows the 

30 by 30 pixel patterns. 

In Chapter 4, it will be shown that the flow through each of the 10 by 10 pixel 

and 30 by 30 pixel patterns is highly dependent on the arrangement of voids and con­

tact areas within the fracture pattern. Our goal is to build a model to predict the flow 

through a pattern in terms of spatial statistics computed from the arrangement of voids 

and contact areas within a pattern that works for the simulated patterns considered 

here as well as for more general patterns. The more general patterns could be simu­

lated from other models or be experimental. 

Summary 

Patterns of voids and contact areas with complexity similar to an observed pat­

tern of voids and contact areas were simulated. The correlograms and contact area 

feature sizes histograms of the simulated and observed 128 by 128 pixel patterns were 

in reasonable agreement. A empirical model to predict the flow through a pattern of 

voids and contact area pixels is based on the analysis of 10 by 10 and 30 by 30 pixel 

simulated patterns with 80% voids. The next chapter describes how flow is computed 

across each pattern. 
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XBL 893-1058 

Simulated 10 by 10 pixel patterns with 80% voids. Patterns result from 
clipping a correlated Gaussian process. Top row has patterns lOa, lOb 
and lOc. Second row has 1 Od, 1 Oe and 1 Of. Third row has lOg, lOh 
and lOi. Bottom row has lOj. 
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Figure 3.8 Simulated 30 by 30 pixel patterns with 80% voids. Patterns result from 
clipping a correlated Gaussian process. Top row has patterns 30a, 30b, 
30c, and 30d. Second row has 30e, 30f, 30g and 30h. Third row has 
30i, 30j, 30k and 301. Bottom row has 30m . 
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4. FLOW MODEL 

Introduction and Summary 

Since analytical solutions for flow through complicated patterns of void and con­

tact area pixels do not exist, approximate numerical solutions are obtained using the 

computer. In this thesis, fluid flow is modeled by a local cubic law; local fluid flow 

is assumed proportional to aperture cubed times local pressure gradient. Approximate 

solutions for flow are obtained using a finite difference method. The numerical 

method determined the flow through each of the 10 by 10 pixel and 30 by 30 pixel 

simulated patterns to a precision of about a percent. Since the variation of equivalent 

permeability among the simulated patterns is far greater than this numerical error, the 

numerical method is adequate for the purpose of building a model to predict flow. 

Flow model 

For motivation, consider flow between two parallel plates. In cartesian coordi­

nates, suppose the upper plate is at z=d/2, and that the lower plate is at z=-d/2 as in 

Figure 4.1. Neglecting the effects of gravity, the Navier-Stokes Equations (Schlicht­

ing, 1979) for an incompressible fluid are 

V·'i/ = 0 (4.1) 

and 

(4.2) 

where It is fluid velocity, p1 is fluid density, 1J. is fluid viscosity and t is time. If a 

uniform pressure gradient 

ap 
VP = (ox ,O,Q) (4.3) 

forces fluid between the plates, and fluid velocity is assumed to vanish at the plates, 

the Navier-Stokes equations solution for fluid velocity is 

: .; 
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Figure 4.1 
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z = d/2 

z = -d/2 

X 

XBL 893-1060 

When a uniform pressure gradient in the x direction forces a fluid 
between parallel plates, the Navier-Stokes equations predict a parabolic 
fluid velocity profile between the plates and that total flow is propor­
tional to aperture cubed (d 3). 



11 = {Uz ,0,0) 

where the x component of fluid velocity is 

1 (Jp d2 2 
Ux = --(--z ). 

~ dX 4 
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(4.4) 

(4.5) 

Schlichting (1979) derives the above result. Note that if the effect of the earth's grav­

itation field is considered, P in Eqs. 4.2 and 4.3 would be replaced by the difference 

between the total pressure and the hydrostatic pressure (pressure at rest). For exam­

ple, if the gravitational field is in the z direction, the pressure minus hydrostatic pres­

sure is P- p1 gz where g is the acceleration of gravity. However, for gravity in the z 

direction, Eq. 4.5 would still be valid; the velocity profile is still parabolic and "" is 

proportional to x component of the pressure gradient. Henceforth, we neglect gravity 

in our calculations. 

The volumetric flow per unit area is in the x direction. ~e magnitude of the 

flow rate is 

d a=-
1 2 

q,. = d t Uxdz = 
(Jp d2 --
dX 12~ 

(4.6) 
I•T 

The total volumetric flow per distance I in the y direction (into the page in Figure 

4.1) is 

Q_iJP.!f_ 
I - dx 12~ 

Since fl.ow is proportional to aperture cube, this is called the cubic law. 

(4.7) 

A last remark concerns the permeability of the parallel plates. The empirical 

Darcy's Law (Beran, 1968) relates permeability K to flow rate per unit area as follows 

K q = --VP. 
~ 

Thus, based on Darcy's law, the permeability of the parallel plate fracture is !f._. 
12 

(4.8) 
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Local Cubic Law Mode/ 

In general, for fractures more complex than parallel plates. there are no simple 

solutions to the Navier-Stokes equations. To same time and money, rather than solve 

the Navier-Stokes equations, we assume a approximate flow model called the local 

cubic law. 

In the local cubic law model, fluid velocity between the upper and lower surfaces 

which define the fracture is assumed parabolic and local volumetric flow per unit area 

q, is assumed to be 

(4.9) 

where b is aperture. Conservation of mass gives the following continuity equation 

(4.10) 

Eq. 4.10 is also known as the Reynold's Lubrication Equation. Brown (1987) also 

assumed this model to solve for flow through simulated fractures. 

Note that for the parallel plate where aperture is everywhere constant, the local 

cubic law model agrees with the Navier-Stokes equations. However, because the 

local cubic law model ignores drag forces on the fluid accounted for by the Navier­

Stokes equations, the local cubic law overestimates fluid flow for more complex frac­

tures. The magnitude of this error is not studied in this work, but is in Coakley et al. 

(1989), Muralidhar and Long (1987) and Rothman (1988). 

Equivalent Permeability defined 

To actually solve Eqs. 4.9 and 4.10 for a pattern of voids and contact areas, 

boundary conditions are required. Consider a square pattern of side length 1 where 

aperture is defined on the region ~~/ <n;;y~l. Consider a left to right pressure drop 

across the pattern, i.e. a pressure drop in the x direction. For this pressure drop, the 

boundary conditions are 



P(O,y) = P1 + llP 

P(l ,y) = P1 

and 

CJP CJP 
CJy (x,/) = ay-<x ,0) = 0. 

Figure 4.2 illustrates the boundary conditions. 

The flow across the pattern is 

y=l 3 
Q = f b(O,y) CJP (O,y)dy . 

y=G 1:41 ax 
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(4.11) 

(4.12)' 

Rather than repon the flow Q which depends on the pressure drop across the pattern 

and the apenure distribution in the pattern, a normalized flow called equivalent per­

meability (K69 ) is reponed. Equivalent permeability is 

K69 = _Q_ 
Qmu 

(4.13) 

h bmai.J d · th 1 • th . h fl w ere Qm ... = M'-
2

- an bma .. 1s e argest apenure m e pattern. Qma .. 1s t e ow 
1 IJ. 

through the pattern where each aperture equals bmu. K.9 ranges from 0 to 1 and does 

not depend on I, llP or bmu.. Flow can be recovered from equivalent permeability as 

follows 

b 3 

Q ="D~K uc l2J.L ~ . (4.14) 

To illustrate how equivalent permeability depends on void fraction and the 

arrangement of voids and contact areas, consider the pattern shown in Figure 4.3. 

Black pixels are voids with constant apenure and white pixel are contact areas. For a 

pressure drop in the x direction, K,9 = 0.80. However for a pressure drop in the y 

direction, K~ = 0. In general, if a pattern has void fraction p, K,9 falls somewhere 

between 0 and p. 
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aP -ay< X, [ ) = 0 

y =I 

P ( 0, y ) = P1 + M' P( l, y ) = P, 

y=O 
aP ay-< X, 0) = 0 

x=O X= I 

XBL 893-1061 

Figure 4.2 Boundary conditions for solving for flow due to a pressure drop in the 
x direction. 
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XBL 893-1045 

A 10 by 10 pixel pattern with 80% voids. Black pixels are voids with 
constant aperture. White pixels are contact areas. For flow in the x 

direction, equivalent permeability is 0.80. For flow in the y direction, 
equivalent permeability is 0.0. 
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Nwnerical Solution 

To get an approximate solution to Eqs. 4.9 and 4.10, a finite difference method 

was used. The area of the fracture pattern is covered with a finite difference mesh. 

Neighboring nodes are separated by a distance a. For instance, for a square fracture 

pattern with side length 1 as shown in Figure 4.4, the location of the (i J)tit node is 

(i fl,j 8) and the pressure at the (i J )tit node is P (i 8J [,). The range of i and j is (0,! ). 

For each pattern of voids and contact areas, flow is solved by the method of 

finite differences for meshes of various sizes. For larger meshes, the distance between 

nodes (5) is less. To illustrate how a mesh is associated with a pattern, suppose we 

wish to solve for flow through a 10 by 10 pixel pattern. If a 10 by 10 mesh is used 

to solve for flow, each pixel would get one node. If a 20 by 20 mesh is used, each 

pixel gets 22 nodes. In general, if a k by k mesh is used, each node is assigned k2 

pixels. Figure 4.5 shows how many nodes a pixel in a 10 by 10 pattern gets for three 

meshes-- a 10 by 10, a 20 by 20 and a 30 by 30 mesh. All the nodes in a particular 

pixel get assigned the same aperture value. However, nodes that fall in the same 

pixel are assigned different pressures in general. 

At each node in the mesh, a discrete version of the continuity equation relates 

the pressure at a node to the pressure assigned to its four nearest neighboring nodes. 

For example, for the center node shown below in Figure 4.6, the continuity equation 

(Eq. 4.10) gives 

4 

L(P 0 - P") b"0
3 = 0 (4.15) 

lt.=l 

where 

(4.16) 

P; is the pressure at the ;tit node, b" is the aperture at the location of the ktit node and 

ba is aperture at the center node. b" 0
3 is the harmonic average of the apertures at the 
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(x,y)=(l,l) 

( X, Y ) = ( 0, 0 ) X 

Figure 4.4 

XBL 893-1062 

In the finite difference solution for flow, pressure is solved for at nodes 
of a mesh which covers the fracture region. The nodes are where the 
lines intersect. 
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For a 10 by 10 pixel pattern, a finite difference mesh of size 10 by 10 
would assign one node to each pixel. A 20 by 20 mesh would assign 4 
nodes per pixel. A 30 by 30 mesh would assign 9 nodes per pixel. 
Above, from left to right, we show how a pixel in a 10 by 10 pixel pat­
tern would be assigned nodes for the three meshes mentioned. 
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Each node in the mesh, except for boundary nodes, has four neighbor­
ing nodes. In the finited difference model, the flow between nodes is 
proportional to the pressure differences between the neighboring nodes 
times the harmonic average of aperture cubed. 
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O'h and klh nodes. This assignment scheme can be viewed as the fluid flow analogy of 

the electric circuit theory rule that equates the resistance of two resistors in series to 

the sum of the resistances. In our flow model, hydraulic resistance is proportional to 

the inverse of aperture cubed. Hence, the arithmetic average of hydraulic resistance is 

the harmonic average of aperture cubed. 

For a pressure drop in the .x direction, the discrete version of the boundary con­

ditions (Eq. 4.11) specifies pressure at the nodes on the inflow boundary (.x=O) and the 

outflow boundary (.x=l) as follows 

P (OJ O)=P1 + M' 

P(l JO)= P1 for j=O,! . (4.17) 

The boundary condition, ~~ = 0 at the y = 0 and y = I boundaries, motivates the fol­

lowing boundary conditions on pressure 

P(j5J)=PU5,1- 5) for j=O,! (4.18) 

and 

P U 5,0)=P (j 5,5) for j =0, ! . (4.19) 

To determine pressure, we follow Kirkpatrick (1973), and solve Eq. 4.15 iteratively 

subject to the above boundary conditions. The iterative method is a Gauss-Seidel 

method (Strang, 1980). At each step in the iteration, pressure at each node is updated 

in terms of the pressures at the neighboring nodes during the previous iteration step. 

For instance, for the center node pictured in Figure 4.6, the iteration step is 

(4.20) 

To insure convergence, contact areas are assigned very small apertures equal to 
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0.0001 bmu. rather than zero valued apertures. In all calculations, pressure is updated 

often enough so that the percentage change in pressure, at each node, between succes-

sive iteration steps falls below 0.01% 

After solving for pressure, the pressure gradients at the inflow and outflow boun­

daries are approximated using a three point Lagrangian interpolation formula (Hilde-

brand, 1974). For instance, the approximation for ~~ (OJo) is 

~~ (O,jO) = ~ [-3 P(OJo)+4 P{o,jo)-P(2o,jo)) . (4.21) 

The flow contributed by this node is approximated as 

o 3 A 

Q. = o b (OJ o) aP <o . o) . 
,J 12~ ax J 

(4.22) 

Using Simpsons Rule (Hildebrand, 1974), the total flow Q across the inflow boundary 

is estimated as 

(4.23) 

Simpson's rule approximates the integral of 1 (x) from x; to x;+2 as 

~ (I (x;) + 41 (x;+1) +I (x;d ) where the distance between x; and x;+t is ~- The same 

kind of calculation is repeated for the x=l outflow boundary to get flow out of the pat-

tern. The flows across the inflow and outflow boundaries are averaged to estimate the 

total flow across the pattern. 

Mesh effects 

As the distance between nodes o approaches zero (Figure 4.4), estimated 

equivalent permeability should converge to the real equivalent permeability of the pat­

tern. However, when o is not infinitesimally small, computed equivalent permeability 

depends on mesh size in general. Table 4.1 shows how the computed equivalent per­

meability of pattern lOe (Figure 3.7) depended on mesh size. The applied pressure 
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drop was in the y direction. For future reference, in data tables, (j) denotes that 

equivalent permeability was computed for a pressure drop in the y direction and (i) 

denotes that a flow was computed for a pressure drop in the x direction. In the 

numerical solution for pressure field, at the coarsest mesh, the initial guess for pres­

sure was the pressure field which dropped off linearly from the inflow to outflow 

boundary. After the final iteration of Eq. 4.20 for a given mesh, the pressure field 

was interpolated to get the initial guess for pressure for the next finer mesh. 

Table 4.1 Dependence of Equivalent Permeability on mesh size for pattern lOe 
{j). 

mesh iJerations K.q 

10 by 10 4000 0.663 
20 by 20 4000 0.471 
30 by 30 4000 0.553 
40 by 40 2000 0.572 
50 by 50 2000 0.570 
60 by 60 2000 0.580 
70 by 70 2000 0.577 
80 by 80 2000 0.584 

Table 4.1 and Figure 4. 7 show that computed equivalent permeability is stable; Keq is 

the same, within a percent and a half, for all mesher finer than the 40 by 40 mesh. 

Hence, an 80 by 80 mesh is sufficiently fine to determine the K.q of the pattern to 

within a precision of about a percent. Since the variation in equivalent permeability 

among the 10 by 10 pixel pattern is much more than this numerical error, equivalent 

permeability is sufficiently well determined. Table 4.2 lists the equivalent permeabil­

ity of each of the 10 by 10 pixel simulated patterns computed using a 80 by 80 mesh. 

For each pattern, equivalent permeability is computed for a pressure drop in the x 

direction and a pressure drop in the y direction. 
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Equivalent Permeabilty versus mesh size 
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Computed equivalent permeability versus mesh size for pattern lOe. 
Pressure drop applied in y direction. Mesh size is k by k. X axis is k. 
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Table 4.2. Equivalent Permeability of the 10 by 10 pixel patterns with 80% 
voids. 

Pattern K.q(j) K,q (.i) 

lOa 0.564 0.457 
lOb 0.356 0.665 
10c 0.000 0.670 
10d 0.465 0.505 
10e 0.584 0.324 
10f 0.605 0.624 
lOg 0.000 0.776 
10h 0.343 0.757 
10i 0.622 0.414 
lOj 0.727 0.376 

For pattern 30b (Figure 3.8), flow was computed for a pressure drop in the x 

direction. Table 4.3 shows how computed equivalent permeability depended on mesh 

size. 

Table 4.3. Dependence of Equivalent Permeability on mesh size for pattern 30b 
(.i ). 

mesh itertions K,q 

30 by 30 8000 0.474 
60 by 60 4000 0.475 
90 by 90 4000 0.513 

120 by 120 4000 0.514 
150 by 150 4000 0.518 
180 by 180 4000 0.517 
210 by 210 4000 0.519 
240 by 240 4000 0.518 

Table 4.3 and Figure 4.8, show that computed K.9 levels off, to within a half percent, 

for meshes of size 90 by 90 or finer. Since the equivalent permeability of the 30 by 

30 patterns varied by much more than this numerical error, equivalent permeability is 

adequately determined. 

-"'' 

.#' 



51 

Equivalent Permeability versus mesh size 
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Computed equivalent permeability versus mesh size for pattern 30b. 
Pressure drop applied in x direction Mesh size is k by k. X axis is k. 
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Table 4.4 lists the equivalently permeability of each of the 30 by 30 pixel pat­

terns determined using a 240 by 240 mesh. For each pattern, equivalent permeabili­

ties are computed for both pressure drop directions. 

Table 4.4 Equivalent Permeability of the 30 by 30 pixel patterns with 80% 
voids. 

Pattern K.., (j) Keq (.£) 

30a 0.580 0.567 
30b 0.427 0.518 
30c 0.510 0.507 
30d 0.405 0.486 
30e 0.606 0.535 
30f 0.512 0.496 
30g 0.247 0.486 
30h 0.587 0.431 
30i 0.553 0.422 
30j 0.566 0.425 
30k 0.419 0.634 
301 0.439 0.525 
30m 0.504 0.561 

Summary 

A local cubic law model was used to model flow through complex patterns of 

voids and contact areas. Approximate solutions to the equations of the model were 

obtained using a finite difference method. The normalized flow through a pattern of 

voids and contact areas was defined as equivalent permeability. The numerical 

method determined the equivalent permeability of the 10 by 10 pixel and 30 by 30 

pixel patterns to a precision of about a percent. Since equivalent permeability varied 

from pattern to pattern by much more than a percent, the numerical method is ade­

quate for developing a model to predict equivalent permeability in terms of spatial 

statistics computed from the arrangement of voids and contact areas within a pattern. 
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5. SPATIAL STATISTICS FOR FLOW 

Introduction 

Now that equivalent permeability has been computed for the simulated patterns 

of voids and contact areas, we can examine the relationship between spatial statistics 

computed from the arrangement of voids and contact areas within a pattern and flow. 

Three criteria described in Section 5.1 guided the selection of the spatial statistics 

which are examined. The spatial statistics measure how well contact area features 

block flow and are sensitive to the shape of contact area features as well as the rela­

tive location of contact area features in a pattern. Based on the analysis of the 10 by 

10 and 30 by 30 pixel simulated patterns with 0.80 void fractions, empirical models to 

predict equivalent permeability in terms of the individual statistics are presented in 

Sections 5.2, 5.3 and 5.4. Section 5.5 presents a model to predict equivalent permea­

bility in terms of a linear combination of the spatial statistics. Later, Chapter 6 

presents an extended version of the 0.80 void fraction model for patterns with other 

void fractions. As a caveat, we do not claim that the spatial statistics examined in 

this thesis are the only reasonable ones to examine. Other choices might lead to 

empirical prediction models just as good. 
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5.1 MATHEMATICAL PROPERTIES OF SPATIAL STATISTICS 

Introduction and Summary 

Some mathematical criteria motivated by the physics of flow, guided the selec­

tion of the spatial statistics computed from the pattern of voids and contact area 

within a pattern. Below, the criteria are stated. 

Directional Dependence 

The flow through a pattern of voids and contact area depends on the direction of 

the applied pressure drop. For instance, consider patterns A and B which are shown 

in Figure 5.1.1. Even though the patterns are rotated versions of one another, if the 

same pressure drop is applied across each pattern in the x direction, flow is greater 

through pattern B than through pattern A. Hence, like flow, any spatial statistic should 

depend on the direction of the applied pressure drop. 

Statistical Replication Invariance 

The second criteria follows from what is known about continuum limit behavior 

of homogeneous patterns. Suppose that a infinitely large pattern is simulated using 

the model presented in Chapter 3. For such a pattern, equivalent permeability 

depends on the collective behavior of all the contact area features and is exactly 

predictable in principle. Consistency requires that any spatial statistic converge to a 

informative asymptotic limit as the size of a simulated pattern from Chapter 3 

increases. A informative limit for a spatial statistic can give a predicted equivalent 

permeability consistent with actual equivalent permeability provided that all model 

parameters values are properly estimated. Statistics which converge to informative 

limits are statistically replication invariant because a large homogeneous simulated 

pattern can be partioned into statistically similar smaller blocks. 
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Pattern A 

.. 

Pattern B 

X 
XBL 893-1047 

Figure 5.1.1 Even though patterns A and B are rotated version of one another, for 
flow in the x direction, the contact area feature in pattern A blocks flow 
more efficiently than the contact area feature in pattern B. Since flow 
depends on the direction of the pressure drop, any spatial statistic com­
puted from a pattern must also depend on the direction of the applied 
pressure drop. 
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Deterministic replication invariance 

Statistical replication invariance is not demonstrated for all the spatial statistics. 

For these cases, a property called deterministic replication invariance is demonstrated. 

Deterministic replication invariance insures that the spatial statistic of a basic pattern 

agrees with the spatial statistic of any replication of the basic pattern. To illustrate, 

Figure 5.1.2 shows a basic pattern and the 2 by 2 and 8 by 8 replications of the basic 

pattern. To be deterministic replication invariant, the statistics should be the same for 

all these patterns. 

Discretization I nvariance 

Another criteria insures that spatial statistics do not arbitrarily depend on the size 

of the pixels in the pattern. That is, if two discretizations give exactly the same infor­

mation about the pattern, the spatial statistic must be the same for both discretizations. 

To illustrate, suppose a pattern of voids and contact areas is described using pix­

els which are k em long. Further, suppose the pattern is 10 by 10 pixels in size. 

Now partition each pixel into four smaller pixels. Each k em long pixel becomes four 

~ em long pixels in the new discretization which is now 20 by 20 pixels. Discretiza­

tion invariance requires that the spatial statistics of the 10 by 10 pixel version and the 

20 by 20 pixel version of the pattern agree. 

Note, if a finer discretization reveals new details in a pattern, then the two 

discretizations give different information and a. statistic which satisfies the mathemati­

cal property of discretization invariance would, in general, depend on pixel size. 

Summary 

Based on physical considerations, mathematical criteria that any good spatial 

statistic should obey were stated. These criteria guided the selection of the spatial 

spatial statistics which are examined in the next three sections. 
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Figure 5.1.2 A basic pattern (10 by 10 pixels), its 2 by 2 replication (20 by 20 pix­
els) and its 8 by 8 replication (80 by 80 pixels). Spatial statistics 
which are detenninisitic replication invariant are the same for all three 
patterns. 
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5.2 THE CHANGE POINT STATISTIC 

Introduction and Summary 

The first spatial statistic considered measures how often adjacent pixels change 

from void to contact area (or vice versa) in the rows of the pattern which are parallel 

to the applied pressure drop across the pattern. This change point statistic measures 

how stretched out contact area features are in the direction of flow. Below, the flow 

through each of the 10 by 10 and 30 by 30 pixel patterns with 0.80 void fractions is 

related to the change point statistic. 

Motivation 

To illustrate the change point statistic, consider the 10 by 10 pixel pattern shown 

in Figure 5.2.1. For a pressure drop in the x direction, there are no changes in the 

rows parallel to the pressure drop and equivalent permeability equals p--the void frac­

tion of the pattern. However, for a pressure drop in the y direction, there are two 

changes per column and equivalent permeability is zero. Hence, a negative correla­

tion is expected between the number of changes in the rows parallel to the applied 

pressure drop and equivalent permeability. 

Statistic defined 

In the rows parallel to the applied pressure drop, CP is defined as the fraction of 

pairs of pixels which alternate from void to contact or vice versa. For instance, for 

the 10 by 10 pixel pattern shown in Figure 5.2.1, each column which runs in the y 

direction has two change points. Since there are nine possible change points in each 

row of ten pixels, CP = ~ for this pattern. 

CP is related to other spatial statistics. Let I (x) be the indicator function for the 

void space geometry. /(x) equals one if r lies in a void and zero if .r lies in a contact 

area. Hence, E (I (X)) = p. The indicator semi-variogram (Journel and Huijbregts, 
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X 

XBL 893-1045 

Figure 5.2.1 In the rows which run in the x direction, there are no alternations 
between contact areas and voids or vice versa. In the columns which 
run in the y direction, there are two alternations (change points) per 
column. 
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1978) at lag r is 

(5.2.1) 

The two-point correlation function (Beran, 1968) at lag r is the probability that two 

points separated by r both lie in voids, i.e. 

The correlogram (Journel and Huijbregts, 1978) at lag r is 

Thus, 

Sir">- p 2 

p(r") = p(l-p} . 

(5.2.2) 

(5.2.3) 

(5.2.4) 

where 1 is a lag of unit pixel length in the direction of the applied pressure drop. 

Further, 

(5.2.5) 

and 

1\ CP 
p(lJ = 1- 2p(l-p} . (5.2.6) 

Permeability and S2(r") 

For a three dimensional porous medium with a isotropic two-point correlation 

function, Berryman and Blair (1986) bound permeability as follows 

2 .. S2(r}-p
2 

K5. -
3 

f 2 r dr . 
b (1-p) 

(5.2.7) 

Here, r has units of length rather than pixel lengths (which are dimensionless). 

Because p - CP = S 2(1}, where 1 denotes a lag of unit pixel length, this bound suggests 

a negative correlation between equivalent permeability and CP. However, the single 
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fracture geometry is not isotropic in three dimensions because we can fully describe it 

by specifying the location of contact areas within a two-dimensional plane. More­

over, a three dimensional porous medium with 100% voids has infinite permeability 

whereas a single fracture with no contact area has equivalent permeability equal to 

one. Therefore, the above bound is merely suggestive that CP carries information 

about equivalent permeability. 

Normalization 

We are not ready to relate CP to flow because it is not discretization invariance. 

For example, reconsider the 10 by 10 pixel pattern shown in Figure 5.2.1. For a pres­

sure drop in the y direction, CP = ~ . But if describe the same pattern with pixels one 

half as long, i.e. a 20 by 20 pixel description, each of the twenty rows still has only 

two pairs of alternating pixels, but the total number of pairs of pixels in each row is 

now 19. Hence, in the 20 by 20 description, CP = 
1
; . In general, if the pattern is 

described by N by N pixels, CP = - 2-. 
N-1 

To get a discretization invariant statistic, the obvious thing to do is to multiply 

CP by N-1 where N is side length of the pattern in pixel units. However, CP (N - 1) 

is not deterministic replication invariant. To see why, reconsider the patterns shown in 

Figure 5.1.2. Figure 5.1.2 shows a basic 10 by 10 pixel pattern and its 2 by 2 replica­

tion (20 by 20 pixels) and 8 by 8 replication (80 by 80 pixels). The basic 10 by 10 

pixel pattern has a rectangular contact area of dimension four by five pixel lengths. 

Hence, for a pressure drop in the x direction, four rows have two change points each. 

Hence, CP = 
90
8 and CP (N-1) = ~. By a similar argument, CP (N - 1) equals ..!§_ for 

10 10 

the 2 by 2 replication and CP (N - 1) equals ~ for the 8 by 8 replication. In general, 

CP (N - 1) equals ~~ for the k by k replication of the basic pattern. Because of the k 

dependence, CP (N - 1) is not deterministic replication invariant. 
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To get a deterministic replication invariant statistic, CP (N -1) must be divided by 

something proportional to k. Observe that the number of contact area features F in the 

family of patterns considered in Figure 5.1.2 is proportional to k2• Hence, a deter­

ministic replication invariant statistic for the patterns under consideration is 

NCP = CP (N -1) . -IF (5.2.8) 

Besides satisfying deterministic replication invariance, NCP also is statistical 

replication invariant for simulated patterns from Chapter 3. That is, NCP converges to 

a non trivial ~syrnptotic limit because CP converges to 2"1) and (N ;;/) converges to 

some positive constant as N increases because the range of correlation in the model is 

finite. 

A Geometric Interpretation 

For the 10 by 10 pixel pattern shown in Figure 5.2.1, for a pressure drop in they 

direction, CP is ; , N-1 is 9, and therefore NCP is 2. For this particular pattern, the 

contact area feature is 10 pixels long in the direction normal to the applied pressure 

drop. Thus, for this pattern, NCP is the ratio of the projected perimeter of the contact 

area feature onto the inflow and outflow boundaries and the length of the pattern. In 

other words, NCP measures how stretched out the contact area feature is in direction 

normal to flow. For patterns with many features, NCP is interpreted as a measure of 

how stretched out, on average, the features in the pattern are. Next, the statistical 

relationship between flow and NCP is examined for the simulated patterns. 

Simulated Patterns 

Table 5.2.1 and 5.2.2 list CP, F, NCP and equivalent permeability for the 10 by 

10 pixel and 30 by 30 pixel patterns with 0.80 void fractions. Again, (Y) denotes 

equivalent permeability for a pressure drop in the y direction and (i) denotes 

equivalent permeability for a pressure drop in the x direction. 

... 

.. 
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Table 5.2.1. Change point statistics and actual and predicted equivalent permea­
bility for the 10 by 10 pixel patterns with 80% voids. 

Pattern CP F NCP Keq K«~ 

lOa (j) 0.189 5 0.760 0.564 0.546 
lOa (.i) 0.233 5 0.939 0.457 0.486 
lOb (j) 0.189 2 1.202 0.356 0.398 
lOb (.i) 0.189 2 1.202 0.665 0.398 
lOc (j) 0.167 2 1.061 0.000 
lOc (.i) 0.100 2 0.636 0.670 0.587 
lOd (j) 0.133 1 1.200 0.465 0.399 
lOd (.i) 0.078 1 0.700 0.504 0.566 
lOe (j) 0.167 4 0.750 0.584 0.550 
lOe (.i) 0.244 4 1.100 0.324 0.433 
lOf (j) 0.111 2 0.707 0.605 0.564 
lOf (.i) 0.078 2 0.495 0.624 0.635 
lOg (j) 0.111 1 1.000 0.000 
lOg (.i) 0.033 1 0.300 0.776 0.700 
lOh (j) 0.100 2 0.636 . 0.343 0.587 
lOh (.i) 0.056 2 0.354 0.757 0.682 
lOi (j) 0.178 3 0.924 0.622 0.491 
lOi (.i) 0.211 3 1.097 0.414 0.434 
lOj (j) 0.067 1 0.600 0.727 0.600 
lOj (.i) 0.100 1 0.900 0.376 0.499 
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Table 5.2.2. Change point statistics, actual and predicted equivalent permeability 
for the 30 by 30 pixel patterns with 80% voids. 

Pattern CP F NCP Keq K~q 

30a (j) 0.109 12 0.914 0.580 0.495 
30a (.i) 0.117 12 0.981 0.567 0.472 
30b (j) 0.132 16 0.958 0.427 0.480 
30b (.i) 0.119 16 0.866 0.518 0.511 
30c (j) 0.113 16 0.816 0.510 0.527 
30c (.i) 0.126 16 0.916 0.507 0.494 
30d (j) 0.113 16 0.816 0.405 0.527 
30d (.i) 0.101 16 0.733 0.486 0.555 
30e (j) 0.113 19 0.749 0.606 0.550 
30e (.i) 0.099 19 0.658 0.535 0.580 
30f (j) 0.126 18 0.864 0.512 0.511 
30f (.i) 0.132 18 0.904 0.496 0.498 
30g (j) 0.139 18 0.951 0.247 0.482 
30g (.i) 0.135 18 0.919 0.486 0.493 
30h (j) 0.095 8 0.978 0.587 0.473 
30h (i) 0.106 8 1.084 0.431 0.438 
30i (j) 0.147 16 1.066 0.553 0.444 
30i (i) 0.144 16 1.042 0.422 0.452 
30j (j) 0.108 12 0.904 0.566 0.498 
30j (i) 0.115 12 0.962 0.425 0.479 
30k (j) 0.105 12 0.876 0.419 0.508 
30k (.i) 0.092 12 0.770 0.634 0.543 
301 (j) 0.148 23 0.897 0.439 0.500 
301 (i) 0.159 23 0.959 0.525 0.486 
30m (j) 0.135 20 0.872 0.504 0.509 

. 30m (i) 0.148 20 0.962 0.561 0.479 

Figure 5.2.2 graphically demonstrates the correlation between equivalent permeability 

and the NCP. 

Prediction Model 

The equivalent permeability of a pattern with 80% voids is predicted in terms of 

NCP as 

Kcq = 0.8 - ~ NCP (5.2.9) 

where ~ is to be determined. Prior information is built into this model; for patterns 

with 0.80 void fractions where each row parallel to the applied pressure drop has 
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Figure 5.2.2 Equivalent permeability versus NCP for 10 by 10 pixel and 30 by 30 
pixel simulated patterns with 80% voids. Straight line is predicted 
equivalent permeability according to NCP model. 
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either all voids or all contact areas, the model predicts equivalent permeability 

exactly. For instance, for the pattern shown in Figure 5.2.1, for a pressure drop in the 

x direction, NCP = 0 and both k., and K., equal 0.80. 

A best fit value for ~ was determined by fitting the prediction model to the 10 by 

10 pixel patterns alone, the 30 by 30 pixel patterns alone and then patterns from both 

scales pooled together. ~ minimized 

M 1 
A 1 A 2 2 

RSE = [ M-
1 
~ (K., - K.,,(~) ); ] 
•=I 

(5.2.10) 

where Keq and i .. ,(~) denote actual and predicted equivalent permeability and M is the 

number of data points in the fit. M is 18 for the 10 by 10 pixel case, 26 for the 30 by 

30 case, and 44 for the pooled case. Since, the 10 by 10 pixel patterns with Keq = 0 

do not follow the linear trend set by the other patterns, they are excluded from the fit. 

Hence, the prediction model is intended to predict the flow through patterns with 

equivalent permeability in the range of the patterns included in the fit. No prediction 

is listed for the K.,, = 0 data. 

Table 5.2.3 shows that the best fit values of ~ were nearly the same for both 

scales. In parentheses, the standard errors from the regression are listed. 

Table 5.2.3. Fitted values of Change Point statistic model parameter and RSE. 

Scale 

10 
30 

both 

M 

18 
26 
44 

0.316(0.017) 
0.334(0.017) 
0.327(0.016) 

0.114 
0.081 
0.095 

For the patterns under consideration, NCP is not greater than 1.1. Hence, using 0.316 

instead of 0.334 changes the prediction by at most 0.02. This is a minor difference. 

Moreover, the difference between the fitted values of ~ at the two scales is equal to 

0.018 and the standard error reported for each fit is 0.017. Thus, the difference is not 
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statistically significant. As a caveat, to interpret the standard error as a precision for 

the estimated value of p, it is assumed that the prediction errors for each pattern 

(Kcq - Kcq) have approximately normal, i.e. Gaussian, distributions with mean zero and 

constant variance. Since these assumptions need not be met, interpretation of the 

standard error is ambiguous. 

Figure 5.2.2 also plots predicted equivalent permeability. To predict equivalent 

permeability, the 44 pattern fitted value, ~ = 0.327, was used. Tables 5.2.1 and 5.2.2 

list both predicted and actual equivalent permeability for each pattern. 

Consistency Caveat 

By forcing the model to consistently predict the equivalent permeability of pat­

terns with NCP = 0, we might not be predicting the equivalent permeability of patterns 

with non-zero NCP as well as possible. To explore this possibility, the model 

i., = a - l3 NCP (5.2.11) 

was fit to the 44 patterns by minimizing 

. 44 I 
A 1 A 2 2 

RSE = [ 
4
4-

2 
~ (K., - K-. (a,j3) ); ] 
•=I 

(5.2.12) 

The best fit values of the parameters and the new RSE are listed in Table 5.2.4. 

Table 5.2.4. Fitted model parameter values and RSE for inconsistent Change 
Point statistic model. 

~(s.e.) 

0.791(.065) 0.317(0.073) 0.096 

Table 5.2.4 shows that adding the extra parameter did not improve prediction; RSE 

actually increased. Furthermore, the fined value of a is close to 0.80; the difference 

between 0. 791 and 0.800 is less than the reported standard error. Therefore, setting a 

to 0.80 is reasonable. 
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Summary 

For the simulated 10 by 10 and 30 by 30 pixel patterns with 0.80 void fractions, 

equivalent permeability was related to the normalized change point statistic. The fol­

lowing empirical model, 

i., = p -~ NCP, 

was fit to data from 10 by 10 pixel and 30 by 30 pixel simulated patterns with 80% 

voids. The fitted value of ~ was nearly the same for both the 10 by 10 pixel and the 

30 by 30 pixel scales. Moreover, NCP was shown to be discretization invariant, deter­

ministic replication invariant for a special class of patterns and statistical replication 

invariant for simulated patterns from Chapter 3. Although NCP is a very promising 

statistic, there is still work to do because it does not capture all possible information 

imponant for flow. For instance, NCP is insensitive to the relative location of contact 

area features. 

As an illustration of this limitation of NCP, consider the two patterns shown in 

Figure 5.2.3. Although both patterns have the same NCP statistic for a pressure drop 

in the x direction, they surely have different equivalent permeabilities. Hence, NCP is 

not sufficient to predict flow exactly. In the next section, spatial statistics sensitive to 

both the shapes and the relative location of the features are presented. 
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Pattern C 

.. 

Pattern D 

X 
XBL 893-1048 

Figure 5.2.3 For patterns C and D, for a pressure drop in the x direction, NCP is the 
same even though the relative locations of the contact area features are 
different for each pattern. 

-~ 
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5.3 Row and Column Dispersion Statistics 

Introduction and Summary 

As noted in Section 5.2, the change point statistic relays information about 

shapes of contact area features, but misses information about the relative location of 

contact area features within a pattern. Here, two spatial statistics sensitive to feature 

shapes as well as the relative location of contact area features are examined. The spa­

tial statistics measure the dispersion of void pixels in the rows and columns of a pat­

tern. To illustrate dispersion, reconsider the pattern shown in Figure 5.2.1. In the 

rows which run in the x direction, the dispersion of void pixels is maximal because 

each row is either 100% or 0% void. However in the columns which run in the y 

direction, the dispersion of voids is minimal because each column has exactly the 

same fraction of voids (0.80). When the dispersion of voids in the rows parallel to 

the pressure drop which drives the flow is maximum, flow is greatest. Similarly, 

when the dispersion of voids in the columns normal to the applied pressure drop is 

minimal, flow is greatest. For example, for the two patterns show in Figure 5.2.3, 

voids are more widely dispersed in the rows that run in the x direction in pattern D 

than in pattern C. Hence, although NCP is the same for each of these patterns, the 

extra information provided by the dispersion statistic should predict a higher 

equivalent permeability for pattern D (for a pressure drop in the x direction). In this 

Chapter, flow through the simulated 10 by 10 and 30 by 30 pixel patterns with 0.80 

void fractions is related to the dispersion statistics. 

Statistics Defined 

To get a row dispersion statistic for a N by N pixel pattern, we first compute the 

fraction of voids in each row. Let r 1 denote the number of void pixels in the first 

row, r 2 be the number of voids in the second row, ... and 'N the number of voids in the 

Nu. row. From these row counts, a vector of void fractions is formed as follows 
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(5.3.1) 

With Pt = ~ denoting the void fraction of the k 111 row, the variance of the row frac-

tions is defined as 

1 N [ 1 N ]
2 

CJ,, 2 = -r, Pi- -Di . 
N i=t N i=l 

(5.3.2) 

In general, for a pattern with void fraction p, the maximum value that e1,1 can take is 

..Jp(l-p). This is the standard deviation of aN by N pattern where a fraction p of the 

rows have void fraction equal to unity and the rest of the rows have void fraction 

equal to zero. For example, for the pattern shown in Figure 5.2.1, for a pressure drop 

in the x direction, eight rows have void fraction equal to unity and two rows have 

void fractions equal to zero. Hence, for this pattern, 

_ I 1 
CJ,, = -v ~o< 8 (1-.8)2 + 2 (Q-.8)2 

) = -../.8(1-.8) = 0.4. 

The explicit dependence on void fraction is removed as follows 

SIGR = CJ,t 
..Jp(l-p) 

(5.3.3) 

Thus, SIGR ranges from zero to unity. In exactly the same way as SIGR was com­

puted from the row void fractions, a column dispersion statistic SIGC is computed 

from the column void fractions. 

Both SIGR and S/GC are discretization invariant To illustrate this, consider a 

simple 2 by 2 pixel pattern with row void fractions of (1.0,0.5). If the same pattern is 

described with pixels one half as long, the new 4 by 4 pixel pattern has row void 

fractions of (1.0,1.0,0.5,0.5). Both the 2 by 2 and 4 by 4 patterns have the same row 

fraction standard deviation and hence the same SIGR. 

However, SIGC and SIGR are not statistical replication invariant. To demonstrate 

this, suppose each pixel in a N by N pixel pattern is independently assigned as void 
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with probability p and contact area with probability 1-p. As N increases, both (Jrf and 

(Jet tend to .Jp<.Jip) because the number of voids in a row is a binomial distribution 

with mean Np and variance Np(l-p). Because the fraction of void pixels in a row is 

~ times the number of voids in a row, the variance of the row fraction is the row 

count variance ( Np(l-p) ) divided by N 2• Thus, as the size of one of the simulated · 

pattern increases, SIGC and SIGR tend to the uninformative limit of zero. 

Zero is uninformative because two infinitely large patterns with different 

equivalent permeabilities should have different dispersion statistics. For instance, sup­

pose the independence assumption is relaxed and that neighboring pixels in rows are 

assigned as void or contact in a spatially dependent way which affects flow. Further, 

suppose that the range of correlation is finite; pixels far enough away are independent. 

For these kinds of spatially correlated patterns, both SIGC and SIGR asymptotically 

tend to zero regardless of the strength of the correlation. Since, equivalent permeabil-

ity permeability surely depends on the strength of correlation, asymptotic limits of 

zero for SIGC and SIGR are uninformative. 

To get statistics which converge to informative limits, SIGC and SIGR must be 

multiplied by a geometric factor proportional to #i. Now, for the N by N patterns 

patterns described above, the number of contact area features F, on average, grows as 

1 

N 2
• That is, F = 0 (N2). Thus, F 4 = 0 (#f). Therefore, 

and 

1 

NSIGC = SIGC F 4 

1 

NSIGR = SIGR F 4 

are statistical replication invariant for these patterns. 

(5.3.4) 

(5.3.5) 
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As a caveat, note that the dispersion statistics are not deterministic replication 

invariant for the replication family of patterns shown in Figure 5.1.2. For instance, 

for all three patterns shown in Figure 5.1.2, SIGC is the same, but the number of con­

tact area features is different in each pattern. Hence, NSIGC is different for each pat­

tern. Thus, any prediction model based on the dispersion statistics is intended for 

irregular patterns rather than for periodic regular patterns like the ones shown in 5.1.2. 

Next, for the 10 by 10 and 30 by 30 pixel simulated patterns, NSIGC and NSIGR are 

related to equivalent permeability. 

Simulated Patterns 

Tables 5.3.1 and 5.3.2 list the statistics and equivalent permeabilities of the simu­

lated patterns. 
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Table 5.3.1. Dispersion statistics, predicted and actual equivalent permeability 
for 10 by 10 pixel patterns with 80% voids. 

SIGR SIGC F NSIGR NSIGC Keq Keq 

lOa (j) 0.433 0.158 5 0.647 0.236 0.564 0.632 
lOa (i) 0.158 0.433 5 0.236 0.647 0.457 0.397 
lOb (j) 0.296 0.661 2 0.352 0.787 0.356 0.388 
lOb (i) 0.661 0.296 2 0.787 0.352 0.665 0.637 
lOc (j) 0.224 0.622 2 0.266 0.740 0.000 
lOc (i) 0.622 0.224 2 0.740 0.266 0.670 0.649 
lOd (j) 0.559 0.524 1 0.559 0.524 0.465 0.523 
lOd (i) 0.524 0.559 1 0.524 0.559 0.504 0.503 
lOe (j) 0.447 0.335 4 0.632 0.474 0.584 0.558 
lOe (i) 0.335 0.447 4 0.474 0.632 0.324 0.467 
lOf (j) 0.524 0.536 2 0.624 0.638 0.605 0.507 
lOf (.i) 0.536 0.524 2 0.638 0.624 0.624 0.515 
lOg (j) 0.112 0.942 1 0.112 0.942 0.000 
lOg (i) 0.942 0.112 1 0.942 0.112 0.776 0.751 
lOh (j) 0.224 0.844 2 0.266 1.004 0.343 0.300 
lOh (i) 0.844 0.224 2 1.004 0.266 0.757 0.722 
lOi (j) 0.500 0.112 3 0.658 0.147 0.622 0.662 
lOi (i) 0.112 0.500 3 0.147 0.658 0.414 0.369 
10j (j) 0.783 0.296 1 0.783 0.296 0.727 0.652 
lOj (i) 0.296 0.783 1 0.296 0.783 0.376 0.373 
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Table 5.3.2. Dispersion statistics, predicted and actual equivalent permeability 
for 30 by 30 pixel patterns with 80% voids. 

SIGR SIGC F NSIGR NSIGC Keq i«~ 

30a (Y) 0.278 0.192 12 0.518 0.358 0.580 0.561 
30a (i) 0.192 0.278 12 0.358 0.518 0.567 0.469 
30b {Y) 0.289 0.224 16 0.578 0.449 0.427 0.550 
30b (i) 0.224 0.289 16 0.449 0.578 0.518 0.476 
30c (Y) 0.305 0.409 16 0.610 0.819 0.510 0.450 
30c (i) 0.409 0.305 16 0.819 0.610 0.507 0.569 
30d (Y) 0.243 0.459 16 0.487 0.919 0.405 0.386 
30d (i) 0.459 0.243 16 0.919 0.487 0.486 0.633 
30e (Y) 0.393 0.287 19 0.821 0.599 0.606 0.573 
30e (i) 0.287 0.393 19 0.599 0.821 0.535 0.446 
30f {Y) 0.330 0.305 18 0.680 0.629 0.512 0.525 
30f (i) 0.305 0.330 18 0.629 0.680 0.496 0.496 
30g (Y) 0.212 0.297 18 0.436 0.613 0.247 0.463 
30g (i) 0.297 0.212 18 0.613 0.436 0.486 0.563 
30h {Y) 0.451 0.365 8 0.758 0.613 0.587 0.551 
30h (i) 0.365 0.451 8 0.613 0.758. 0.431 0.469 
30i (Y) 0.371 0.316 16 0.743 0.631 0.553 0.542 
30i (i) 0.316 0.371 16 0.631 0.743 0.422 0.478 
30j {Y) 0.298 0.272 12 0.555 0.506 0.566 0.527 
30j (.f) 0.272 0.298 12 0.506 0.555 0.425 0.499 
30k {Y) 0.276 0.521 12 0.514 0.970 0.419 0.378 
30k (i) 0.521 0.276 12 0.970 0.514 0.634 0.640 
301 {Y) 0.342 0.356 23 0.748 0.779 0.439 0.500 
301 (i) 0.356 0.342 23 0.779 0.748 0.525 0.517 
30m {Y) 0.263 0.239 20 0.556 0.505 0.504 0.528 
30m (i) 0.239 0.263 20 0.505 0.556 0.561 0.498 

Figure 5.3.1 and 5.3.2 show a correlation between the dispersion statistics and flow. 

Besides being correlated with flow, Figure 5.3.3 shows that NSIGC and NSIGR are 

correlated with each other. However, the statistics are not obviously colinear, there is 

a lot of scatter about the linear trend between NSIGR and NSIGC. Hence, the statistics 

are not obviously redundant. Next, equivalent permeability is predicted in terms of 

the dispersion statistics. 
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Figure 5.3.1 Equivalent permeability versus column dispersion statistic (NSIGC) for 
10 by 10 pixel and 30 by 30 pixel simulated patterns with 80% voids. 
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Figure 5.3.2 Equivalent permeability versus row dispersion statistic (NSIGR) for 10 
by 10 pixel and 30 by 30 pixel simulated patterns with 80% voids. 
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Figure 5.3.3 Row dispersion stausuc (NSIGR) versus column dispersion statistic 
(NSIGC) for 10 by 10 pixel and 30 by 30 pixel patterns. Patterns with 
zero equivalent permeability are not plotted. 
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Prediction Model for K.9 

Since Figures 5.3.1 and 5.3.2 show linear trends between equivalent permeability 

and each of the dispersion statistics, we make the parsimonious choice of predicting 

equivalent permeability as 

Kcq = 0.8- f3c (NS/GC) + f3,. (NS/GR-1) (5.3.6) 

where f3c and f3,. are empirical parameters to be determined. The model is parsimoni­

ous because it is linear in both NSIGC and NSIGR and because it consistently predicts 

equivalent permeability for patterns where each row has void fraction equal to zero or 

unity. For instance, for the pattern shown in Figure 5.2.1, for a pressure drop in the x 

direction, NSIGC equals zero, NSIGR is unity and both actual and predicted equivalent 

permeability are 0.80. As a caveat, the prediction model which best predicts the 

equivalent permeability or" the simulated patterns need not be linear in NSIGC and 

NSIGR nor consistent. Later, the consistency issue is addressed. We do not explore 

the non-linearity issue. 

The best fit values of !3,. and f3c minimize 

(5.3.7) 

where M is the number of data points in the fit. The Model was fit to the 10 by 10 

pixel patterns, the 30 by 30 pixel patterns and then both scales together. Like in the 

previous section, K.9 = 0 data points were excluded from the fit because they do not 

follow the linear trends set by the other data points. Table 5.3.3 shows how RSE and 

the fitted parameters depended on scale. In Tables 5.3.1 and 5.3.2, equivalent per­

meability is predicted using the 44 pattern fitted values, i.e. 

K.9 = .8 - .296 NSIGC + 0.277 ( NSIGR - 1 ) . 

Figure 5.3.4 plots predicted equivalent permeability versus actual equivalent permea­

bility for all the patterns. 
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30 by 30 pixel patterns with 80% void fractions. 
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Table 5.3.3. Fitted parameters and root mean square prediction error for disper­
sion statistic prediction model. 

Scale M ~c (s.e.) ~,(s.e) RSE 

10 18 0.164(0.093) 0.404(0.105) 0.061 
30 26 0.311 (0.055) 0.273(0.089) 0.076 

both 44 0.296(0.043) 0.277(0.060) 0.071 

Scale effects 

Note that when the model is fit to all the data, the fitted values of J3c and J3, are 

only slightly different from the values of ~c and J3, that result from fitting the model 

to the 30 by 30 pixel patterns. This suggests that the 44 pattern fitted values of the 

model parameters are appropriate for both the 10 by 10 pixel and 30 by 30 pixel pat­

terns. Furthermore, the , standard errors (s.e) are large enough so that the difference 

between fitted parameter observed at the two scales may not be statistically 

significant. That is, the differences could be due to fitting the model to an insufficient 

amount of data. 

To determine if the fitted values of J3c are significantly different at the two scales, 

the standard procedure is to form the ratio of the difference of the fitted parameters 

and the estimate of the standard error of the difference. Thus, the test statistic for 

determining if the fitted values of J3c at the 10 by 10 and 30 by 30 scales are statisti-

cally significant is 

10.311- 0.1641 = 1 36 
..J(o.oss2 + 0.0932) • • 

By similar calculation, the test statistic for determining if the fitted values of J3, are 

significantly different at the two scales is 0.95. According to standard hypothesis test­

ing theory (Mood et al, 1974), if there is no scale effect, the above test statistics are 

to a good approximation, random realizations from a normal distribution with mean 

zero and variance one provided that the residuals about the fit are independently dis-

tributed, have mean zero, equal variances, and are approximately Gaussian. As a 
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caveat, if these assumptions are not be obeyed by the data, the result of a hypothesis 

test is ambiguous. Outside of the textbook, this can easily happen. For instance, if the 

data follows a nonlinear trend in some predictor and a linear model is fit, the residuals 

will not have mean zero. With the caveat noted, the null hypothesis that ~c is the 

same at the 10 by 10 pixel and 30 by 30 pixel scales, i.e. 

is rejected with only 82% confidence because the probability that a random realization 

of a Gaussian with mean one and variance one having absolute value greater than or 

equal to 1.36 is 18%. By similar calculation, the hypothesis that ~r is not dependent 

on scale is rejected at a confidence level of only 66%. Hence, hypothesis testing does 

not provide strong evidence that the "true" model parameters, i.e. the fitted values 

obtained from fitting the model to millions of statistically similar data points, are scale 

dependent. 

Lastly, when the equivalent permeabilities of the 10 by 10 patterns were 

predicted using the 44 pattern fitted values for ~c and ~r, RSE was nearly the same as 

when using the parameters from the fit using only the 10 by 10 patterns. RSE 

increased from 0.060 to only 0.066. This supports the claim that the 44 pattern fitted 

values do a good job for both scales. 

Consistency Caveat 

By forcing the prediction model to consistently predict the equivalent permeabil­

ity of patterns like the one shown in figure 5.2.1, the equivalent permeability of other 

patterns may not be predicted. as well as possible. It is possible that a model which is 

linear in the dispersion statistics but inconsistent, might predict the equivalent permea­

bility of the simulated patterns better. To explore this possibility, the model, 

Keq =a+ ~c NSIGC - ~r ( NSIGR-1) 

was fit to data from the 44 patterns by minimizing 
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44 1 
A 1 A ~ 2 

RSE = [ 44-
3 
~(Kcq - KeqJ] . (5.3.10) 

Table 5.3.4 shows that a is close to 0.80 and that the new RSE is the same as the RSE 

for the consistent model. Hence, relaxing the consistency constraint does not improve 

prediction. Therefore, setting a =0.80 is reasonable. 

Table 5.3.4. Fitted parameters and root mean square prediction error for incon­
sistent dispersion statistic prediction model. 

Scale M ~c(s.e.) 

both 44 0.776(0.034) 0.267(0.060) 0.265(0.063) 0.071 

Summary 

Statistical replication invariant and discretization invariant dispersion statistics 

were presented. The equivalent permeability of the 10 by 10 pixel and 30 by 30 pixel 

simulated patterns was predicted in terms of the row and column dispersion statistics. 

The fitted parameter values from fitting the model to data from both scales were close 

to the fitted parameters from fitting the model to only the 30 by 30 pixel patterns. 

Furthermore, using the fitted parameters from fitting the model to the pooled data, the 

10 by 10 pixel pattern equivalent permeabilities were predicted almost as well as 

when using the fitted parameters from fitting the model to only the 10 by 10 patterns. 

This is good because we would like one prediction model to work for many scales. 
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5.4 EROSION STATISTIC 

Introduction and Summary 

How well contact areas block flow partly depends on the width of flow channels 

between contact area features. Narrow channels bottleneck fluid flow like narrow 

roads bottleneck traffic flow. This section presents a spatial statistic which measures 

the width of flow channels between contact area features. To motivate the statistic, 

we show how the narrowest width of flow channel determines flow for patterns with 

trapezoidal shaped void regions. The equivalent permeabilities of the 10 by 10 and 

30 by 30 pixel patterns are predicted in terms of a spatial statistic based on erosion 

(Serra, 1982) transformations of each pattern. 

Motivation 

Consider patterns with trapezoidal shaped void regions as shown in Figure 5.4.1. 

All of these square patterns have side length I but different 10 and 11• Without loss of 

generality, the smaller side is always 11• Void fraction is related to these lengths as 

I cr+l1 
p=2J· (5.4.1) 

That is, void fraction is the ratio of the average width of the channel ( lo;/ 1 
) and the 

length of the pattern (/ ). Voids are assumed to have constant aperture b. 

For flow across the trapezoidal pattern due to a pressure drop in the x direction, 

the continuity equation for flow in the cubic law flow model (Eq. 4.8) is approximated 

by a one-dimensional continuity equation 

(5.4.2) 

where P is pressure, q = (q. ,0,0) is the flow per unit area and A (x) is channel width. 

Within the void region, permeability equals a positive constant (K). Outside the void 
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Figure 5.4.1 Trapezoidal pattern. Void region is black. Contact areas are white. 
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region, permeability is zero. This one dimensional flow model is called a fin approxi-

marion (Holman, 1976). The fin approximation ignores local fluid velocities and local 

pressure gradients in the direction normal to the applied pressure drop. 

Assuming the above one-dimensional flow model, the flow through the tra­

pezoidal patterns is Q =- b 10 K P (0) where IJ. is fluid viscosity and P (0) is the deriva­
IJ. 

tive of pressure at x=O. Since the channel width A varies as 

Eq. 5.4.2 can be written as 

For the boundary conditions, 

and 

solution of Eq. 5.4.4 gives: 

X 
A(x)=lo + ( /1 -1 o) T• 

A P +A P= o. 

P(O) =PI+ M' 

P(l) =PI, 

(5.4.3) 

(5.4.4) 

(5.4.5) 

(5.4.6) 

Flow is maximum when /0 and /1 equal I, that is if void fraction is unity. For this 

case; the pressure gradient at x=O is - ~ and therefore 

Thus, 

loP(O) 

M' 

(5.4.7) 

(5.4.8) 



Doing some algebra and calculus gives, 

Eq. 5.4.1 and 5.4.9 imply that 

Also, 

and by L 'Hospitals Rule, 

lo -l1 
KM~ = lo 

1 log/; 

/1 
2(p- T > 

log( 2£!..-1) 
/1 

lim 1 K.q = 0 . 
..!.....o 
I 
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(5.4.9) 

(5.4.10) 

(5.4.11) 

For trapezoids with void fraction 0.5, Figure 5.4.2 shows that K.q is a monotoni­

cally increasing function of ( t ). Next, a statistic which measures this controlling 

channel width is defined. 

Statistic Defined 

The statistic is based on erosional transformations of the pattern (Serra, 1982) An 

erosion transformation thins out the flow path by peeling away voids layer by layer. 

Because any spatial statistic must depend on the direction of pressure drop, the ero-

sion is done in a directional way. For instance, for a pressure drop in the y direction, 

all voids which are bordered on the immediate right (x direction) by contact area pix­

els are transformed into contact areas. Void pixels on· the far right boundary are 

transformed into contact areas in the first erosion. In the second step, the pattern 

resulting from the first erosion is eroded using the same rules. After enough succes- _ 

sive erosions, the flow path across the patterns thins out too much and the connection 
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Figure 5.4.2 Fin approximation for equivalent permeability of trapezoidal patterns 
with 50% contact area. 
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of voids from inflow to outflow boundary is broken. Two void pixels are directly 

connected if they share a side. BREAK is the number of successive erosions necessary 

to break the connected path of voids from the inflow to outflow boundaries. 

Figure 5.4.3 illustrates how erosion peels away voids from the flow path across a 

10 by 10 pixel pattern. For a pressure drop in the y direction, the inflow and outflow 

boundaries are disconnected after the third erosion. Hence, BREAK equals 3. Note, if 

the 10 by 10 pixel pattern were described with pixels half as long, BREAK would be 

twice as great (6). Thus, NBREAK is not discretization invariant Next, the trapezoids 

are reconsidered so as to motivate a way to normalize BREAK. 

So as to motivate a way to find a discretization invariant statistic, we note that 

for the trapezoids shown in Figure 5.4.1, the ratio -
1 

1
t

1 
and p jointly determine Ktq· 

t + 0 

This ratio and p do not depend on discretization. This suggests that BREAK which 

depends on It and how finely the pattern is discretized, should be divided by the aver-

age width of the flow path It; 
10 (in pixel lengths units). The average width of the 

flow path in pixel lengths is also the average run length (RUN) of voids in the 

columns of the pattern. Thus, if the pattern is discretized so that It is k pixels 

lengths, and the average width of the channel ( l~lt) is m pixel lengths, BREAK= k, 

RUN is m and B;~K equals ! . Even though both BREAK and RUN depend on 

discretization, their ratio does not. Thus, 

NBREAK = BREAK 
RUN 

is discretization invariant for the trapezoidal patterns. 

(5.4.12) 

Although we have no proof that NBREAK is statistical replication invariant for 

general patterns, NBREAK is deterministic replication invariant for the family of pat­

terns described below. In this family, the basic pattern is 10 by 10 pixels. Rows 1 
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after 3 erosions 
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Figure 5.4.3 Original 10 by 10 pixel pattern and eroded versions of it for a pressure 
drop in the y direction. BREAK is three because it takes three erosions 
to disconnect the inflow and outflow boundaries. 
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through 8 are filled with conducting voids and rows 9 and 10 are filled with non­

conducting contact areas. Figure 5.4.4 shows the basic pattern and the 2 by 2 and 8 

by 8 replications of the basic pattern. For each of these patterns, BREAK= 8, RUN= 8 

and NBREAK = 1 for flow in the x direction. 

Caveats 

For other families of patterns, NBREAK is not deterministic replication invariant. 

For instance, consider the replication family shown in Figure 5.4.5. Figure 5.4.5 

shows a basic pattern and the 2 by 2 and 8 by 8 replications of the basic pattern. For 

either pressure drop direction, for the k by k member of the replication family, RUN 

increases without limit as k increases even though BREAK is independent of k. Hence, 

BREAK · fin" Th c · d · · · RUN goes to zero as k goes to m 1ty. ere1ore, NBREAK 1s not eterm1msuc 

replication invariant for this family of patterns. 

Run length normalization failed to make sense for the patterns in Figure 5.4.5 

because certain columns were 100% void and RUN did not converge as k increased. 

But for the simulated patterns from Chapter 3, Appendix A shows that RUN converges 

to an asymptotic limit of approximately 12.6 pixels lengths. Hence, run length nor­

malization makes sense for patterns simulated using the Chapter 3 model. Next, the 

equivalent permeabilities of the 10 by 10 and 30 by 30 pixel simulated patterns are 

predicted in terms of NBREAK. 
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Figure 5.4.4 Replication family of patterns for which NBREAK is invariant. 
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Figure 5.4.5 Replication family for which NBREAK is not invariant. 
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Simulated Patterns 

Table 5.4.1 and Table 5.4.2 list BREAK, RUN, NBREAK and Keq for the 10 by 10 

and 30 by 30 pixel simulated patterns. 

Table 5.4.1 Erosion statistics, equivalent permeability and predicted equivalent 
permeability for 10 by 10 pixel patterns with 80% voids. 

Pattern BREAK RUN NBREAK Keq i.q 

lOa (9) 3 4.211 0.713 0.564 0.618 
lOa (.£) 3 5.000 0.600 0.457 0.575 
lOb (9) 1 4.444 0.225 0.356 0.474 
lOb (.i) 4 4.444 0.900 0.665 0.603 
lOc (9) 0 6.154 0.000 0.000 
lOc (.£) 6 5.714 1.050 0.670 0.646 
10d.(9) 3 8.000 0.375 0.465 0.489 
lOd (.£) 3 5.333 0.563 0.504 0.560 
lOe (9) 2 3.810 0.525 0.584 0.496 
lOe (.£) 2 5.000 0.400 0.324 0.460 
lOf (9) 4 7.273 0.550 0.605 0.503 
lOf (.£) 5 6.154 0.813 0.624 0.625 
lOg (9) 0 8.889 0.000 0.000 
lOg (£) 7 8.000 0.875 0.776 0.632 
lOh (9) 1 8.000 0.125 0.343 0.417 
lOh (£) 7 8.000 0.875 0.757 0.632 
lOi (9) 3 4.444 0.675 0.622 0.603 
lOi (.£) 4 5.000 . 0.800 0.414 0.575 
lOj (9) 7 7.273 0.963 0.727 0.661 
lOj (.£) 2 6.667 0.300 0.376 0.432 
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Table 5.4.2. Erosion statistics, equivalent permeability and predicted equivalent 
permeability for 30 by 30 pixel patterns with 80% voids. 

Pattern BREAK RUN NBREAK K.., i~q 

30a (j) 6 9.012 0.666 0.580 0.536 
30a (.f) 5 10.603 0.472 0.567 0.507 
30b (j) 6 9.627 0.623 0.427 0.524 
30b (.f) 7 9.256 0.756 0.518 0.593 
30c (j) 5 9.089 0.550 0.510 0.534 
30c (.f) 10 10.716 0.933 0.507 0.613 
30d (j) 3 10.894 0.275 0.405 0.450 
30d (i) 6 9.849 0.609 0.486 0.520 
30e (j) 11 11.852 0.928 0.606 0.636 
30e (.f) 6 10.329 0.581 0.535 0.512 
30f (j) 8 9.244 0.865 0.512 0.593 
30f (i) 4 9.244 0.433 0.496 0.469 
30g (j) 3 9.114 0.329 0.247 0.471 
30g (i) 4 8.372 0.478 0.486 0.482 
30h (j) 12 9.986 1.202 0.587 0.690 
30h (i) 2 11.234 0.178 0.431 0.396 
30i (j) 4 7.783 0.514 0.553 0.493 
30i (i) 2 7.783 0.257 0.422 0.419 
30j (j) 4 10.183 0.393 0.566 0.458 
30j (£) 8 9.904 0.808 0.425 0.577 
30k (j) 3 11.581 0.259 0.419 0.444 
30k (.f) 12 10.257 1.170 0.634 0.681 
301 (j) 3 7.793 0.385 0.439 0.492 
301 (.f) 3 7.793 0.385 0.525 0.492 

30m (j) 6 8.287 0.724 0.504 0.553 
30m (.f) 4 8.482 0.472 0.561 0.480 

Figures 5.4.6 shows the correlation between equivalent permeability and the erosion 

statistic. 

Prediction Model 

Since Figure 5.4.6 shows a linear trend between equivalent permeability and 

NBREAK for patterns with positive equivalent permeability, a model linear in NBREAK 

was fit to data from the 10 by 10 pixel and 30 by 30 pixel patterns. The model is 

K.9 = a. + ~ NBREAK (5.4.13) 

where a. and ~ are to determined. The best fit values of a. and ~ minimize 
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Figure 5.4.6 Equivalent permeability versus NBREAK for 10 by 10 pixel and 30 by 
30 pixel simulated patterns with 80% voids. Predicted equivalent per­
meability according to NBREAK model is plotted as a line. 



97 

M 1 
A 1 A ll 2Z 

RSE = [ M _
2 
~( K.9 - K.9 (a,p); ) ] (5.4.14) 

where M is the number of data points in the fit. For the 10 by 10 pixel data set, 

M = 18. For the 30 by 30 pixel data set, M = 26. Since the K.9 = 0 data points do not 

follow the trend defined by the other data points, they were excluded from the regres-

sion. However, patterns with zero equivalent permeability are trivial cases because 

they have NBREAK = 0. Table 5.4.3 shows the fitted values of the model parameters. 

Figure 5.4.6 plots predicted equivalent permeability along with actual equivalent per­

meability. To predict equivalent permeability, the 44 pattern values of the fitted 

parameters were used. Tables 5.4.1 and 5.4.2 list predicted equivalent permeability 

beside actual equivalent permeability for each pattern. Note that the intercepts are 

significantly above zero. Hence, the prediction model inconsistently predicts a non­

zero equivalent permeability for patterns with NBREAK = 0. Thus, the model is not 

intended for patterns with equivalent permeabilities which are close to zero. Instead, 

the model is intended for patterns with equivalent permeabilities which fall in the 

range of those computed for the simulated patterns. 

Table 5.4.3. Fitted parameters for Erosion statistic prediction model. 

scale M (J.(s.e.) ~(s.e.) RSE 

10 18 0.261 (0.052) 0.453(0.077) 0.085 
30 26 0.399(0.032) 0.169(0.050) 0.069 

both 44 0.345(0.032) 0.287(0.048) 0.085 

Scale Effect . 

Table 5.4.3 shows that the fitted parameters are sensitive to scale. The test 

statistics to determine if the fitted intercept (a) and slope (~) significantly differ at the 

two scales are 
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and 

(5.4.15) 

The difference between the fitted slopes is very significant; we would reject a 

hypothesis that that slopes are the same with confidence over 99% using standard 

hypothesis testing (Mood et al., 1974). Similarly, the hypothesis that the intercepts 

are the same is rejected at 96% confidence. Perhaps the scale effect reflects the sensi­

tivity of BREAK and RUN to boundary effects that occur for patterns with only a few 

contact area islands. Further, the fitted parameters may be different for simulated pat­

terns with scales in between the 10 by 10 and 30 by 30 pixel scales studied. The 

scale dependence of the fitted parameters casts doubt on the utility of using NBREAK, 

alone, for predicting the equivalent permeability of other kinds of patterns. 

Summary 

A model which predicts equivalent permeability in terms of NBREAK was fit to 

data from the simulated patterns. However, the fitted parameters depended on scale. 

This suggests that NBREAK, alone, is not a reliable statistic to predict flow with. Next, 

NBREAK will be included in a multivariate model along with NCP, NSIGR and NSIGC 

to predict the equivalent permeability of the 10 by 10 and 30 by 30 pixel simulated 

patterns. 
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5.5 A Multivariate Model 

Introduction and Summary 

In this section, equivalent permeability is predicted in terms of a linear combina­

tion.of the four spatial statistics examined in Sections 5.2, 5.3 and 5.4. Below, a mul­

tivariate model including all four spatial statistics is fit to the 10 by 10 pixel and 30 

by 30 pixel patterns with 80% voids. Because the four statistic model fitted parame­

ters are not well determined, a three statistic model is fit to the data from the simu­

lated patterns. The three statistic model fitted parameters are well determined. 

Predictor Correlation 

Before fitting a multivariate model to data, it is important to determine that the 

the predictor variables are not obviously redundant. A redundant statistic carries the 

same information as one of the others, or a combination of the others. If a redundant 

statistic is included in the regression, prediction is not improved and the fitted parame­

ters will not be well determined This is called colinearity. The most striking evidence 

for colinearity would be a linear relationship between one statistic and another. Fig­

ure 5.5.1 shows scatterplots of each spatial statistic versus each of the other spatial 

statistics for all 44 patterns. Because each plot has a lot of scatter, no two spatial 

statistics appear colinear. Next we fit a multivariate model involving all four spatial 

statistics to the data from the 10 by 10 and 30 by 30 pixel patterns. 

Modell 

The first multivariate model examined is 

K.q = 0.8 + 13t ( NBREAK - 1 ) -132 NCP - !33 NSIGC + 13i NSIGR -1 ) (5.5.1) 

where the j3's are to be determined. This model is parsimonious because it is linear in 

the spatial statistics and predicts the correct equivalent permeability for the familiar 

pattern of voids and contact area shown in Figure 5.2.1. That is, for a pressure drop in 
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Figure 5.5.1 Scatterplots of spatial statistics of 10 by 10 pixel and 30 by 30 pixel 

simulated patterns with 80% voids. 
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the x direction, NSIGC and NCP are zero, NSIGR and NBREAK are one, and both K~q 

and Keq are 0.80. 

The best fit values of the parameters ~'' !32, ~3 and ~4 minimized 

M I 
A 1 A 2 2 

RSE = [ M -4 ~(K.q - Keq) ] 
a=! 

(5.5.2) 

where M is the number of data points in the fit. The model is fit to data from the 10 

by 10 pixel patterns alone, the 30 by 30 pixel patterns alone and then both scales 

pooled together. As in sections 5.2, 5.3 and 5.4, the 10 by 10 patterns which had 

zero equivalent permeability were excluded from the fit. 

Tables 5.5.1 and 5.5.2 show the statistics for the 10 by 10 pixel and 30 by 30 

IJixel patterns. 
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Table 5.5.1. Spatial statistics, equivalent permeability and multivariate model 
prediction for the equivalent permeability of the 10 by 10 pixel pat­
terns with 80% voids. 

NBREAK NCP NSIGC NSIGR Keq i~q 

lOa (j) 0.713 0.760 0.236 0.647 0.564 0.591 
lOa (.i) 0.600 0.939 0.647 0.236 0.457 0.420 
lOb (j) 0.225 1.202 0.787 0.352 0.356 0.380 
lOb (.i) 0.900 1.202 0.352 0.787 0.665 0.535 
lOc (j) 0.000 1.061 0.740 0.266 0.000 
lOc (.i) 1.050 0.636 0.266 0.740 0.670 0.619 
lOd (j) 0.375 1.200 0.524 0.559 0.465 0.464 
lOd (.i) 0.563 0.700 0.559 0.524 0.504 0.520 
lOe (j) 0.525 0.750 0.474 0.632 0.584 0.547 
lOe (.i) 0.400 1.100 0.632 0.474 0.324 0.443 
lOf (j) 0.550 0.707 0.638 0.624 0.605 0.522 
lOf (.i) 0.813 0.495 0.624 0.638 0.624 0.556 
lOg (j) 0.000 1.000 0.942 0.112 0.000 
lOg (.i) 0.875 0.300 0.112 0.942 0.776 0.729 
lOh (j) 0.125 0.636 1.004 0.266 0.343 0.402 
lOh (.i) 0.875 0.354 0.266 1.004 0.757 0.705 
lOi (j) 0.675 0.924 0.147 0.658 0.622 0.587 
lOi (.i) 0.800 1.097 0.658 .0.147 0.414 0.381 
lOj (j) 0.963 0.600 0.296 0.783 0.727 0.626 
lOj (.i) 0.300 0.900 0.783 0.296 0.376 0.412 
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Table 5.5.2. Spatial statistics, equivalent permeability and multivariate model 
prediction for the equivalent permeability of the 30 by 30 pixel pat­
terns with 80% voids. 

NBREAK NCP NSIGC NSIGR Keq i.q 

30a (J) 0.666 0.914 0.358 0.518 0.580 0.525 
30a (.£) 0.472 0.981 0.518 0.358 0.567 0.459 
30b (J) 0.623 0.958 0.449 0.578 0.427 0.514 
30b (.£) 0.756 0.866 0.578 0.449 0.518 0.480 
30c (J) 0.560 0.816 0.819 0.610 0.510 0.472 
30c (.£) 0.933 0.916 0.610 0.819 0.507 0.533 
30d (J) 0.275 0.816 0.919 0.487 0.405 0.432 
30d (.£) 0.609 0.733 0.487 0.919 0.486 0.598 
30e (J) 0.928 0.749 0.599 0.821 0.606 0.558 
30e (.£) 0.581 0.658 0.821 0.599 0.535 0.492 
30f (J) 0.865 0.864 0.629 0.680 0.512 0.512 
30f (.£) 0.433 0.904 0.680 0.629 0.496 0.489 
30g (J) 0.329 0.951 0.613 0.436 0.247 0.460 
30g (.£) 0.478 0.919 0.436 0.613 0.486 0.527 
30h (J) 1.202 0.978 0.613 0.758 0.587 0.513 
30h (.£) 0.178 1.084 0.758 0.613 0.431 0.447 
30i (J) 0.514 1.066 0.631 0.743 0.553 0.495 
30i (.i) 0.257 1.042 0.743 0.631 0.422 0.459 
30j (J) 0.393 0.904 0.506 0.555 0.566 0.507 
30j (.i) 0.808 0.962 0.555 0.506 0.425 0.481 
30k (J) 0.259 0.876 0.970 0.514 0.419 0.420 
30k (.£) 1.170 0.770 0.514 0.970 0.634 0.597 
301 (J) 0.385 0.897 0.779 0.748 0.439 0.493 
301 (.£) 0.385 0.959 0.748 0.779 0.525 0.495 
30m (J) 0.724 0.872 0.505 0.556 0.504 0.511 
30m (.i) 0.472 0.962 0.556 0.505 0.561 0.480 



104 

Table 5.5.3 shows_ fitted model parameters and estimated standard errors for the 

fitted parameters for the four statistic prediction model. 

Table 5.5.3 Fitted parameters and root mean square prediction error for four 
statistic prediction model. 

Scale M ~~(s.e) ~2(s.e) ~(s.e.) ~4(s.e.) RSE 

10 18 0.230(0.063) 0.044(0.032) -0.0 19(0.081) 0.341 (0.085) 0.045 
30 26 0.096(0.063) 0.154(0.069) 0.135(0.087) 0.1 02(0.1 06) 0.073 
both 44 0.116(0.046) 0.096(0.035) 0.159(0.054) 0.163(0.062) . 0.063 

Table 5.5.3 shows that the fitted parameters were very different at each scale. Two of 

the parameters (~2 and ~4) varied by over a factor of three between the two scales. 

Also, one of the fitted parameters (~3) took the wrong sign at the 10 by by 10 scale. 

Further, the difference between the fitted value of~ using the 30 by 30 patterns and 

the fitted value of ~2 using all 44 patterns is about 50% of the 44 parameter value for 

~2• The same comment applies to ~4• However, because the standard errors are so 

large relative to the differences, the differences are not overwhelmingly statistically 

significant. The test statistics, i.e. the differences divided by estimated standard error 

for the differences, for testing the hypotheses that the model parameters are the same 

at the 10 by 10 and 30 by 30 scales are 1.50, 1.45, 1.30 and 1.76 for ~t. ~2, ~3, and ~4 

respectively. By the same reasoning as presented in Section 5.3, the null hypotheses 

that the parameters are the same at each scale would be rejected at confidence levels 

of 86%, 85%, 80% and 92%. 

Although the statistical tests do not decisively rule out that the possibility that 

the "true" value of the model parameters are scale independent, there is no denying 

that the fitted parameters were sensitive to scale. Hence, we next consider a three 
' 

statistic model in hopes of getting a better determined model. Before moving on, we 

remark on the consistency caveat. A model just like Model 1, but with an an adju­

stable intercept, was fit to data from the 44 patterns. The fitted value for the intercept 
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was 0.860(0.046) and RSE was 0.062. Since RSE is about the same and the difference 

between 0.860 and 0.800 is only 1.3 standard errors, setting the intercept to 0.80 is 

reasonable. 

Model2 

To get a better determined model, we leave out NBREAK and form Model 2 . 

which is 

K~q = 0.80 - ~1 NCP - ~2 NSIGC + ~3 (NSIGR - 1) (5.5.3) 

Since the fitted parameters in the NCP prediction model presented in Section 5.2 and 

the fitted parameters in the NSIGC and NSIGR model presented in Section 5.3 were less 

sensitive to scale than the ·fitted parameters in the NBREAK model in Section 5.4, 

NBREAK was left out of the model. The best fit value of the parameters minimized 

M 1 
~ 1 ~ 2 2 

RSE = [ M-3 ~(K~- K.q)] . (5.5.4) 

Table 5.5.4 shows that the parameters were better determined than the Model 1 

parameters. 

Table 5.5.4. Fitted parameters and root mean square prediction error for three 
statistic prediction model. 

Scale 

10 
30 

both 

M 

18 
26 
44 

0.053(0.043) 
0.110(0.047) 
0.091 (0.037) 

~z(s.e.) 

0.142(0.093) 
0.200(0.063) 
0.215(0.053) 

~3(s.e.) 

0.343(0.114) 
0.179(0.085) 
0.2 !'2(0.065) 

0.060 
0.072 
0.067 

The fitted parameters corresponding to fitting the model to the 30 by 30 pixel patterns 

alone are only slightly different from the fitted parameters from fitting the model to 

data from all 44 patterns. Further, if the 44 pattern fitted parameter values are used to 

estimate the equivalent permeability of the 10 by 10 pixel patterns, RSE is 0.064. 

Thus, the 44 pattern fitted values predict the equivalent permeability of the 10 by 10 
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pixel patterns almost as well as the 10 by 10 pixel fitted values do. Hence, the 44 

pattern fitted values are good for both scales. 

Predicted equivalent permeability, i.e., 

K.9 = 0.8 - 0.091 NCP - 0.215 NSIGC + .212 ( NSIGR - 1 ), 

is listed for each pattern in Tables 5.5.1 and 5.5.2. Further, K.9 is plotted versus K.9 in 

Figure 5.5.2. 

Consistency 

To determine if a inconsistent model fits the data better than the consistent model 

considered, we fit a model linear in NCP, NSIGC and NSIGR-1 with an adjustable inter­

cept to the data from the 44 patterns. The new RSE (0.065) was almost the same as 

the consistent model RSE (0.067). Since the improvement is slight, setting the inter­

cept to 0.80 is reasonable. 

To illustrate how including three spatial statistics in a multivariate model 

improved prediction, Table 5.5.5 lists the RSE for the univariate models from Sections 

5.2, 5.3 and 5.4 as well as the multivariate model developed in this section. 

Table 5.5.5. Comparison of RSE for prediction models for patterns with 80% 
voids. 

Model 

0.8 - 0.327 NCP 

0.8 - 0.296 NSIGC + 0.277(NS/GR-1) 
0.345 + 0.287 NBREAK 

0.8 - 0.091 NCP - 0.215 NSIC + 0.212 (NS/GR-1) 

Summary 

0.095 
0.071 
0.085 
0.067 

A model to predict the equivalent permeability of the 10 by 10 and 30 by 30 

pixel simulated patterns in terms of all four spatial statistics was fit. However, the 
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Figure 5.5.2 Predicted equivalent permeability according to three stansnc (NCP, 
NSIGC and NSIGR) model versus actual equivalent permeability for 10 
by 10 pixel and 30 by 30 pixel simulated patterns with 80% voids. 
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fitted parameters were sensitive to scale and not well determined. However, a three 

statistic model 

K~ = 0.8- ~1 NCP - ~2 NSIGC + ~3 ( NSIGR - 1) 

had better determined parameters. When the model was fit to data from the 30 by 30 

pixel patterns, and then to both the 10 by 10 pixel and 30 by 30 pixel patterns, the 

fitted parameters were close. Further, the fitted parameter values from the pooled fit 

predicted the equivalent permeability of the 10 by 10 patterns almost as well as using 

the 10 by 10 pixel pattern fitted values. This suggests that the 44 pattern fitted model 

may work for other scales too. In the next section, models for predicting the 

equivalent permeability of patterns with other void fractions are presented. 
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6.0 Extension to Other Void Fractions 

Introduction and Summary 

Chapter 5 presented a model to predict the equivalent permeability of a pattern 

with 0.80 void fraction in terms of spatial statistics computed from the arrangement of 

voids and contact areas within the pattern. This Chapter presents two parsimonious 

extensions of the 0.80 void fraction model. In 6.1, two candidate models are fit to 

data from 30 by 30 and 64 by 64 pixel simulated patterns with void fractions between 

0.60 and 0.95. One extended model (Model A) predicts equivalent permeability in 

terms of three spatial statistics (NCP, NSIGC, NSIGR) considered in Chapter 5. The 

other (Model B) predicts equivalent permeability in terms of one of the spatial statis­

tics (NCP ). All of these patterns of voids and contact areas result from clipping a 

correlated Gaussian process as described in Chapter 3. In Section 6.2, the equivalent 

permeabilities of the simulated and observed 128 by 128 pixel patterns are predicted 

with the extended models. Both models are also applied to patterns simulated by 

other algorithms. To get one kind of different pattern, the shape of the moving aver­

age filter in the Chapter 3 model is modified. Other kinds of patterns are simulated 

using fractal ideas (Mandelbrot, 1983). For the patterns simulated using fractal ideas, 

Model B did a much better job of predicting flow than did Model A. Although 

Model B did well in predicting the equivalent permeability of most all of the patterns 

studied, there was one pattern for which it too failed. This pattern was so inhomo­

geneous, that flow was nearly blocked off. This limitation is discussed in more detail 

later. First, we present each candidate model. 
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6.1 Extended Models 

Recall that in Section 5.5, the equivalent permeability of a pattern with 80% 

voids was predicted as 

K~q = 0.80- 0.091 NCP - 0.215 NSIGC + 0.212 (NSIGR - 1) (6.1.1) 

where NCP, NSIGC and NSIGR are spatial statistics computed from each pattern. The 

obvious extension of the above to other void fractions p is 

Keq = p- a 1(p) NCP- a 2(p) NSIGC + a 3(p) (NSIGR - 1). (6.1.2) 

In principle, the coefficients can be empirically determined by repeating the kind of 

analysis that was done to get the 0.80 void fraction model. To do this, many more 

patterns would have to be simulated at each void fraction of interest. Rather than 

finding three new coefficients for each new void fraction of interest, simple linear 

extensions are offered. These extensions are parsimonious; only. one new parameter 

has to be estimated. Further, at p = 0.80, the extended models predict the same 

equivalent permeability that Eq. 6.1.1 does. 

The first guess for an extended model, called Model A, is 

i,q" = P - [o.091 NCP + o.215 NSIGC - 0.212 (NSIGR - 1)] [ 1+~" (p-<>.80) J (6.1.3) 

where ~" is to be determined. Although Model A incorporates all three spatial statis­

tics, it assumes a rather simplistic form for the p dependence of the coefficients; the 

relative ratios of the coefficients do not depend on p. To get away from such a res­

trictive assumption, the simplest thing to do is to consider an extended model with 

only one spatial statistic. We extended the model from Section 5.2 

K,q = 0.80 -{).327 NCP (6.1.4) 

as follows 

K,q 8 = p - 0.327 NCP [ 1 + ~a(p-D.8) J (6.1.5) 
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where ~8 is to be determined. We chose the NCP model because its fitted parameter 

was not sensitive to scale effects like the NBREAK model fitted parameter was. We 

could also have extended a model to predict equivalent permeability in terms of 

NSIGC alone, but did not. A comparison between the NCP extended model and a 

NSIGC extended model would be interesting to make. This alternative extension (Eq. 

6.1.5) is called Model B. The remaining part of this Chapter will deal with determin-

ing the empirical model parameters, ~A and ~8 , and comparing how well these two 

models predict equivalent permeability for a variety of patterns. 

Determination of model parameters 

Models A and B are fit to data from eight 30 by 30 pixel patterns (Figures 6.1.1 

and 6.1.2) and four 64 by 64 pixel patterns (6.1.3) with void fractions between 0.60 

and 0.95. For each of the 64 by 64 pixel patterns and for the 30 by 30 pixel patterns 

shown in Figure 6.1.2, equivalent permeability was computed for both pressure drop 

directions. For the four 30 by 30 pixel patterns shown in Figure 6.1.1, equivalent per­

meability was computed for a pressure drop in the y direction. Thus, in all, twenty 

equivalent permeabilities were computed. The best fit values of ~A and ~8 minimized 

the sum of the square of the prediction errors for these patterns. That is, ~A was 

chosen to minimize 

(6.1.6) 

where K.q and K.q A(~A) denoted actual and Model A predicted equivalent permeability. 

Similarly, ~8 was chosen to minimize 

20 .!. • 1 • B 2 2 
RSEB = ( }9 L (Keq - K•q (~B) ); ] . 

•=I 
(6.1.7) 

To get the 30 by 30 pixel patterns, shown in Figure 6.1.1, the same realization of 

a correlated Gaussian Process was clipped at different levels. This realization was 

generated using the same model which simulated the 0.80 void fraction patterns 
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I 

X 
XBL 893-1079 

Figure 6.1.1 From the top, simulated patterns 30m, 30n, 30o, 30p, 30q. Void frac­
tions are 0.60, 0.70, 0.80, 0.90 and 0.95. Voids have constant aperture. 
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X 

XBL 893-1080 

Figure 6.1.2 From the top, simulated patterns 30r, 30s, 30t, and 30u. Void fractions 
are 0.65, 0.75, 0.85, and 0.95. Voids have constant aperture. 
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X 

XBL 893-1049 

Figure 6.1.3 In clockwise order, from upper left, simulated patterns 64a, 64b, 64c 
and 64d. Voids have constant aperture. 
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discussed in Chapter 3. The moving average filter was the same; the weights dropped 

off exponentially where the damping factor(x:) equaled 0.75 (inverse pixel lengths). To 

get the 30 by 30 pixel patterns shown in Figure 6.1.2, four ~ferent realizations from 

the same simulation model were clipped at different levels. 

Equivalent permeability was determined using the finite-difference method 

described in Chapter 4. Table 6.1.1 shows how the equivalent permeability of pattern 

30n, computed for a pressure drop in the y direction, depends on mesh size. Com­

puted equivalent permeability is the same within a half percent, for meshes of size 90 

or 90 or larger. Hence, a 150 by 150 mesh determines equivalent permeability to a 

precision of a percent or so. Since equivalent permeability varies among the new pat­

terns by much more than this error, the numerical method is adequate. For all the 30 

by 30 pixel patterns studied in this chapter, a 150 by 150 mesh was used to determine 

equivalent permeability. Hence, each pixel is assigned 52 nodes. 

Table 6.1.1. Equivalent permeability dependence on mesh size for pattern 30n 
(j). 

mesh 

30 by 30 

60 by 60 
90 by 90 

120 by 120 

150 by 150 

iterations 

8000 
6000 
4000 
2000 
2000 

0.138 
0.326 
0.345 
0.348 
0.350 
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Table 6.1.2 lists all the patterns and computed equivalent permeability using 150 by 

150 meshs. 

Table 6.1.2. Spatial statistics, predicted and actual equivalent permeability for 30 
by 30 pixel patterns with variable void fractions. 

p NCP NSIGC NSIGR Kcq 
A A 

Keq 
A B 

Keq 

30m (j) 0.600 1.258 0.551 0.949 0.101 0.178 0.112 
30n (j) 0.700 1.036 0.509 0.985 0.350 0.417 0.330 
30o (j) 0.800 0.938 0.500 0.839 0.551 0.573 0.493 
30p (j) 0.900 0.600 0.418 0.746 0.756 0.775 0.722 
30q (j) 0.950 0.424 0.434 0.522 0.868 0.845 0.831 
30r (j) 0.650 1.269 0.447 0.576 0.257 0.182 0.176 
30r (i) 0.650 1.269 0.576 0.447 0.175 0.097 0.176 
30s (j) 0.750 1.073 0.587 0.827 0.310 0.442 0.383 
30s (i) 0.750 1.066 0.827 0.587 0.298 0.321 0.385 
30t (j) 0.850 0.753 0.678 0.480 0.627 0.585 0.615 
30t (i) 0.850 0.738 0.480 0.678 0.654 0.655 0.620 
30u (j) 0.950 0.533 0.487 0.431 0.854 0.827 0.800 
30u (i) 0.950 0.433 0.431 0.487 0.851 0.842 0.828 

To get the 64 by 64 pixels patterns with variable void fractions, pattern 128b 

from Figure 3.2 of Chapter 3, was partioned into four quadrants. Figure 6.1.3 shows 

the four 64 by 64 pixel patterns (64a,64b,64c,64d) which result. Again, using the 

methods described in Chapter 4, equivalent permeability was determined. Table 6.1.3 

shows how equivalent permeability depended on mesh size for pattern 64a. The pres-

sure drop was in the x direction. 

Table 6.1.3. Equivalent permeability dependence on ·mesh size for pattern 64a 
(x ). 

mesh iterations Keq 

64 by 64 4000 0.448 
128 by 128 2000 0.440 
192 by 192 2000 0.456 
256 by 256 800 0.456 
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Based on this example, the numerical method determines equivalent permeability to a 

precision of a percent or so. Since the variation of equivalent permeability among the 

64 by 64 patterns is far greater than a percent or two, this precision is adequate. 

Table 6.1.4 lists the statistics and equivalent permeabilities, determined with a 256 by 

256 mesh, for all the 64 by 64 pixel patterns. 

Table 6.1.4. Spatial statistics, predicted equivalent permeability and actual 
equivalent permeability for 64 by 64 pixel patterns. 

p NCP NSIGC NSIGR Keq 
A A 

Keq 
A B 

Keq 

64a (j) 0.826 0.781 0.636 0.727 0.559 0.586 0.577 
64a (£) 0.826 0.869 0.727 0.636 0.456 0.543 0.549 
64b (j) 0.818 0.905 0.506 0.574 0.500 0.555 0.527 
64b (£) 0.818 0.883 0.574 0.506 0.528 0.530 0.534 
64c (j) 0.854 0.738 0.592 0.724 0.615 0.650 0.624 
64c (i) 0.854 0.801 0.724 0.592 0.553 0.600 0.605 
64d (j) 0.768 1.093 0.654 0.740 0.410 0.439 0.403 
64d (£) 0.768 1.105 0.740 0.654 0.399 0.396 0.396 

Table 6.1.5 shows how well each model fit the data. 

Table 6.1.5. Fitted parameters and root mean square prediction error for 
extended models. 

~A (s.e.) ~B (s.e.) 

-3.67(0.47) 0.056 -0.938(0.328) 0.046 

Since Model B is more parsimonious than Model A, and RSE9 is less than RSEA, 

Model B seems preferable to Model A. However, since the RSE 's are close, we will 

compare how each model does for a variety of patterns. Figures 6.1.4 and 6.1.5 plot 

predicted versus actual equivalent permeability for Model A and B for the 30 by 30 

pixel and 64 by 64 pixel patterns that were used to determine the model parameters. 



0.8 

0'" 
Q) 

0.6 ~ 

"C 
Q) .... 
. 9 
"C 
Q) 0.4 ..... a.. 

0.2 

0 
0 

00.65 

0.2 

Model A 

0.4 o~6 

Actual Keq 

0 30 by 30 

• 64 by 64 

0.8 

XCG 893-4631 

118 

Figure 6.1.4 Predicted equivalent permeability according to Model A (three statistic 
extended model) versus actual equivalent permeability for 30 by 30 
pixel and 64 by 64 pixel patterns with variable void fractions. Void 
fractions are indicated on the plot. 
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Figure 6.1.5 Predicted equivalent permeability according to Model B (NCP extended 
model) versus actual equivalent permeability for 30 by 30 pixel and 64 
by 64 pixel patterns with variable void fractions. Void fractions are 
indicated on the plot. 



120 

Limitations 

For patterns with very small equivalent permeabilities, Model A and Model B 

are not appropriate. To demonstrate this, predicted equivalent permeability according 

to Model A and Model B is plotted for a family of patterns. The patterns in this fam­

ily result from clipping the same realization of a correlated Gaussian process at 

different levels. The same realization which was clipped to get the patterns in Figure 

6.1.1 is clipped again. Hence, equivalent permeability is known at void fractions 

0.60, 0.70, 0.80, 0.90 and 0.95. The empirical percolation threshold, i.e. the largest 

void fraction where equivalent permeability is zero, is 0.478. Between 0.478 and 

0.60, actual equivalent permeability slowly increases from zero to 0.101. However, 

Figure 6.1.6 shows that the Model A and Model B prediction curves dip below the 

Keq = 0 axis to the right of the percolation threshold. Thus, for patterns too near the 

percolation threshold, both Model A and B are inappropriate. This is not surprising 

since the estimation error (RSE) for each extended model is comparable to the 

equivalent permeability of patterns with void fractions close to the threshold. Since 

the percolation threshold is known for this family of patterns, it may be possible to 

predict equivalent permeability using Percolation Theory (Broadbent and Hammersley, 

1957) for the range of void fraction where our models are inappropriate. Next, Model 

A and B are used to predict the equivalent permeability of other patterns. 

6.2 Applications 

Model A and B are used to predict the equivalent permeabilities of the 128 by 

128 pixel patterns from Figure 3.1 and 3.2 in Chapter 3. Pattern 128a is the observed 

pattern of voids and contact areas that motivated this study and patterns 128b, 128c, 

and 128d were simulated. 

The equivalent permeabilities of the 128 by 128 patterns were determined using 

the same finite difference method from Chapter 4. For each pattern, a 256 by 256 
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Figure 6.1.6 Model A and Model B predicted equivalent permeability for a family 
of patterns. The same 30 by 30 pixel realization of a correlated Gaus­
sian defined on a 30 by 30 pixel square region, is clipped at different 
levels to get different members of the family. Computed equivalent at 
void fractions of 0.60, 0.70, 0.80, 0.90 and 0.95 is plotted for com­
parison. 
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mesh was used to determine equivalent permeability. Table 6.2.1 shows how the 

equivalent permeability of pattern 128b (9) depended on mesh size. Since the varia-

tion is just a couple of percent, the 256 by 256 result is precise to within a few per­

cent. Therefore, differences between predicted values and reported values less than a 

few percent may not be significant. 

Table 6.2.1. Equivalent permeability dependence on mesh size for pattern 128b 
(9). 

mesh 

128 by 128 
256 by 256 
512 by 512 

iterations 

2000 
1000 
200 

0.548 
0.519 
0.548 

Table 6.2.2 lists Model A and B predicted equivalent permeability and actual 

equivalent permeability for each of the 128 by 128 pixel patterns. Figures 6.2.1 and 

6.2.2 show that Model B predicted the equivalent permeability of 128 by 128 patterns 

better than Model A did. 

Table 6.2.2. Predicted and actual equivalent permeabilities for the 128 by 128 
pixel patterns. 

NCP NSIGC NSIGR K•q 
~ A 

K.q 
~ B 

Keq 

128a (Y) 1.015 0.895 0.652 0.433 0.480 0.490 
128a (i) 0.889 0.652 0.895 0.534 0.580 0.530 
128b (Y) 0.915 0.631 0.786 0.519 0.570 0.523 
128b (i) 0.952 0.786 0.631 0.477 0.505 0.511 
128c (Y) 0.970 0.577 0.788 0.522 0.575 0.505 
128c (i) 0.971 0.788 0.577 0.471 0.490 0.504 
128d (Y) 0.879 0.540 0.801 0.505 0.593 0.534 
128d (i) 0.921 0.801 0.540 0.456 0.485 0.520 

Table 6.2.3 lists the root mean square prediction error (RSE) and average bias 

(<Keq - Ke9 >) for the 30 by 30 pixel, 64 by 64 pixel and 128 by 128 pixel patterns 
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Figure 6.2.1 Model A prediction for equivalent permeability versus actual equivalent 
permeability for observed (128a) and simulated (128b, 128c, 128d) 128 
by 128 pixel patterns. 
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Figure 6.2.2 Model B prediction for equivalent permeability versus actual equivalent 
permeability for observed (128a) and simulated (128b, 128c, 128d) 128 
by 128 pixel patterns. 
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considered in this section. For each group of patterns, Model B had a lower RSE . 

Note that even though the RSE for Model B decreases as the scale of the simulated 

patterns increases, bias for Model B increases as scale increases. As scale increases, 

the simulated patterns become more homogeneous. Hence, if the model parameters are 

estimated precisely and do not depend on scale, both RSE and bias should decrease. 

The slight increase of bias of Model B with scale indicates that the fitted model 

parameters may depend on scale. 

Table 6.2.3 Comparison of root mean square prediction error and bias of Model 
A and Model B for 30 by 30, 64 by 64 and 128 by 128 pixel patterns 
from Chapter 3 model. 

30 by 30 

64 by 64 
128 by 128 

0.058 
0.044 
0.050 

RSE8 

0.048 
0.039 
0.037 

0.006 
0.035 
0.046 

<Bias>s 

-0.014 
0.024 
0.025 

For even larger simulated patterns from the Chapter 3 model, there is reason to 

expect that Model B will predict equivalent permeability well. This is because NCP is 

statistical replication invariant and because Desbarats (1987) showed in a numerical 

study that the effective permeability of a pattern of high and low permeability regions 

with exponential correlogram stabilized as pattern size increased. However, this does 

not mean that the model will work for all large patterns. How well the model works 

for more complex patterns, or patterns simulated differently, is an open question. Par-

tial answers to this open question are provided next. 

Different Moving Average Filter 

Instead of simulating patterns with a moving average with 1e = 0.75 as before, 1e 

was changed. With 1e = 0.25, four different 30 by 30 pixel realizations of a correlated 

Gaussian process were clipped. These new patterns 30v, 30w, 30x, 30y are shown in 
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Figure 6.2.3. With 1e = 1.25, four different 30 by 30 pixel realizations of a correlated 

Gaussian process were clipped. These new patterns 30z, 30aa, 30bb, 30cc are shown 

in Figure 6.2.4. 

Tables 6.2.4 and 6.2.5 list the statistics of the patterns and the predicted and 

actual equivalent permeabilities according to Model A and Model B. Equivalent per­

meability was determined using the same technique as was used for the other 30 by 

30 patterns in this section; a 150 by 150 finite difference mesh was used. 

Table 6.2.4. Predicted and actual equivalent permeability for 30 by 30 simulated 
patterns simulated with moving average filter parameter 1e = 0.25. 

p NCP NSIGC NSIGR K.q 
A A 

K.q 
A B 
K"~ 

30v (j) 0.650 1.017 0.566 0.496 0.252 0.152 0.270 
30w (j) 0.750 0.735 0.538 0.668 0.586 0.451 0.498 
30x (j) 0.850 1.131 0.370 0.719 0.734 0.652 0.497 
30y (j) 0.950 0.667 0.458 0.372 0.860 0.819 0.763 

Table 6.2.5. Predicted and actual equivalent permeability for 30 by 30 simulated 
patterns simulated with moving average filter parameter 1e = 1.25. 

p NCP NSIGC NSIGR K.q 
A A 
K"~ 

A B 
K.q 

30z (j) 0.650 ·1.269 0.447 0.576 0.127 0.050 0.150 
30aa (j) 0.750 1.073 0.587 0.827 0.387 0.434 0.398 
30bb (j) 0.850 0.753 0.678 0.480 0.529 0.636 0.597 
30cc (j) 0.950 0.533 0.487 0.431 0.870 0.834 0.829 

Figures 6.2.5 and 6.2.6 plot predicted versus actual equivalent permeability for 

these patterns simulated with 1C equal to 0.25 and 1.25 for both Model A and Model 

B. Table 6.2.6 lists the root mean square prediction error (RSE) and average bias for 

the 30 by 30 pixel patterns simulated with 1C = 0.25, 1C = 0.75 and 1C = 1.25. 
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Figure 6.2.3 From the top, simulated 30 by 30 pixel patterns 30v, 30w, 30x, 30y. 
Void fractions are 0.65, 0.75, 0.85 and 0.95. Voids have constant aper­
ture. Moving average filter parameter (1e) is 0.25. 
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Figure 6.2.4 From the top, simulated 30 by 30 pixel patterns 30z, 30aa, 30bb, 30cc. 
Void fractions are 0.65, 0.75, 0.85 and 0.95. Voids have constant aper­
ture. Moving average filter parameter (~e) is 1.25 . 
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Figure 6.2.5 Model A predicted equivalent permeability versus actual equivalent per­
meability for simulated 30 by 30 pixel patterns shown in Figures 6.2.3 
and 6.2.4. For each pattern, the moving average filter parameter (K) was 
0.25 or 1.25. 
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Figure 6.2.6 Model B predicted equivalent permeability versus actual equivalent per­
meability for simulated 30 by 30 pixel patterns shown in Figures 6.2.3 
and 6.2.4. For each pattern, the moving average filter parameter (K) was 
0.25 or 1.25. 
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Table 6.2.6. Comparison of RSE and bias of Model A and Model B for 30 by 30 
pixel patterns simulated using different moving average filters. 

1C RSEA. RSE8 <Bias>A <Bias>s 

0.25 0.096 0.136 0.089 0.101 
0.75 0.058 0.048 -0.006 0.014 
1.25 0.072 0.042 -0.010 -0.015 

In summary, except for the K = 0.25 patterns, Table 6.2.6 shows that Model B 

predicted equivalent permeability better than Model A did. Further, for the K = 0.25 

patterns, Model B did well except for pattern 30x (j ). Roughly speaking, Model A 

did equally well for all the K = 0.25 patterns. Perhaps the K = 0.25 patterns were not 

as consistently well predicted because of a scale effect. That is, it may be harder in 

general, to predict the flow through simulated patterns with just a few random features 

than for more homogeneous simulated patterns with many features. As K increased, 

and patterns became more homogeneous, the RSE and bias for Model B decreased. 

This is consistent with the notion that homogeneous patterns are easier to predict and 

that the fitted parameters for Model B are not sensitive to K. However, for Model A, 

RSE does not monotonically decrease as K increases; RSE is lowest for the 1c: = 0.75 

patterns. Note that the Model A parameters were found by fitting the model to data 

from simulated patterns obtained from the Chapter 3 model with K = 0.75. Hence, the 

fitted parameters for Model A may depend on K. In summary, based on evidence so 

far, Model B appears to be the more generally applicable extended model. As a 

further check, the next section compares how well the Models predict the equivalent 

permeability of patterns simulated using fractal ideas. 

Fractals 

Fractal patterns (Mandelbrot, 1983) are self similar. For instance, if a fractal 

pattern were ·photographed, the picture would look the same regardless of the 

magnification scale. Thus, a fractal rock fracture would have contact area features at 
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all scales. Below, Figure 6.2. 7 shows an example of a fractal. The last pattern in the 

infinite sequence of patterns that begins with the three shown here is the Sierpinski 

Carpet. The figure is from Stauffer (1985). 

Random patterns of voids and contact areas are simulated in two ways. Follow­

ing an idea by Nolte et al. (1987), we simulate random Sierpinski carpets. In the first 

simulation method, randomly located rectangular void region are cut out, in successive 

stages, of a 64 by 64 pixel pattern with an initial void fraction of unity. In the first 

stage, a randomly located 32 by 16 pixel rectangle of voids is cut out In the second 

stage, a randomly located 8 by 4 pixel rectangle is cut out each of the 42 16 by 16 

pixel subquadrants in the pattern. In the third and final stage, a randomly located 2 

by 1 pixel rectangle is cut out of each of the 162 4 by 4 pixel sub-subquadrants in the 

pattern. Rectangles can overlap. Pattern 64fa, shown in Figure 6.2.8, was simulated 

by the above method. Figure 6.2.8 also shows pattern 30fa which is the upper left 

hand 30 by 30 pixel comer of pattern 64fa. None of the patterns simulated in this 

work are true fractals because the contact area features have a limited size range. 

Hence, the simulated patterns are quasi-fractal. 

For each of these patterns, equivalent permeability is computed for both pressure 

drop directions using the same methods as used for the other 30 by 30 and 64 by 64 

pixel patterns in this Chapter. Table 6.2.7 shows that Model B does a better job of 

predicting flow than does Model B. In particular, for flow in the x direction across 

pattern 64a, Model A is way off. 
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Figure 6.2.7 The buildup of the Sierpinski carpet fractal. The n = oo member of the 
above sequence is a fractal. Figure is from Stauffer (1985). 
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Figure 6.2.8 Patterns 64fa and 30fa are simulated using fractal ideas. Black pixels 
are voids and white pixels are contact. Void fractions are 0.667 and 
0;631. 
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Table 6.2.7. Predicted and computed equivalent permeability for patterns 64fa 
and 30fa. 

p NCP NSIGC NSIGR K.q 
A A 

Keq 
A B 

Keq 

64fa (j) 0.667 0.608 0.999 1.466 0.485 0.412 0.444 
64fa (.i) 0.667 1.162 1.466 0.999 0.258 0.041 0.240 
30fa (j) 0.631 0.635 1.115 0.985 0.384 0.144 0.391 
30fa (.i) 0.631 1.143 0.985 1.115 0.296 0.159 0.198 

To determine if the performance of Model A improves for patterns with larger 

void fractions, pattern 64fb, shown in Figure 6.2.9 below, was simulated in a manner 

almost identical to the first pattern except that the rectangles were half as wide as 

before. This pattern had void fraction equal to 0.819. The upper left hand 30 by 30 

pixel corner of pattern 64fb is displayed in Figure 6.2.9 as pattern 30fb. 

As conjectured, Table 6.2.8 shows that Model A predicts equivalent permeability 

better for these patterns. Model A should do better for patterns with void fractions 

near 0.80 because it agrees with Eq. 6.1.1 when void fraction equals 0.80. 

Table 6.2.8. Predicted and computed equivalent permeability for patterns 64tb 
and 30tb. 

p NCP NSIGC NSIGR K.q 
A A 

Kcq 
A B 

Keq 

64fb (j) 0.819 0.545 0.804 1.591 0.698 0.729 0.644 
64fb (.i) 0.819 0.770 1.591 0.804 0.452 0.398 0.572 
30fb (j) 0.788 0.558 0.936 1.082 0.636 0.543 0.603 
30fb (.i) 0.788 0.818 1.082 0.936 0.485 0.453 0.517 

For completeness, the next section investigates how well the models do for quasi­

fractal patterns simulated in a different way. 

Another kind of fractal 

In the first simulation technique, contact area regions were cut out of a sheet of 

voids. In the second method, conducting void regions are thrown down on a origi­

nally non-conducting sheet. Like in the first simulation, the second kind of patterns 
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Figure 6.2.9 Patterns 64fb and 30fb are simulated using fractal ideas. Black pixels 
are voids and white pixels are contact. Void fractions are 0.819 and 
0.788. 
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are simulated in three stages. In the first stage, five randomly located 32 by 16 void 

regions are thrown down. In the second stage, five randomly located 8 by 4 pixel 

void regions are thrown down on each of the 42 16 by 16 pixel subquadrants of the 

pattern. In the last stage, five randomly located 2 by 1 void regions are thrown down 

onto each of the 162 4 by 4 sub-subquadrants in the pattern. Figure 6.2.10 shows two 

64 by 64 pixel patterns simulated this way-- patterns 64fc and 64fd. 

Table 6.2.9 shows that Model A and Model B predicted equivalent permeability 

reasonablely well except for flow in the x direction across pattern 64d. 

Table 6.2.9 Predicted and computed equivalent permeability for patterns 64fc 
and 64fd. 

p NCP NSIGC NSIGR K~q 
A A 

Keq 
A B 

Keq 

64fc (j) 0.865 0.605 0.837 0.987 0.630 0.685 0.680 
64fc (.£) 0.865 1.084 0.987 0.837 0.464 0.603 0.533 
64fd (J) 0.837 0.709 0.945 1.080 0.566 0.621 0.613 
64fd (.£) 0.837 1.212 1.080 0.945 0.255 0.531 0.455 

Note that in pattern 64fd, flow is almost blocked in the x direction. We conjec­

ture that the disagreement between predicted and actual flow is due to the spatial 

statistics being computed from all the voids and contact areas in the pattern, whereas 

flow is passing only through a limited part of the pattern. Consequently, if more chan­

nels for flow existed in the x direction, the agreement should be better. 

To check out this conjecture, pattern 64fd was altered. In the first altered pattern 

64fe, shown in Figure 6.2.11, all contact area pixels in rows 8 and 56 were converted 

to voids. In the second altered pattern 64ff, also shown in Figure 6.2.11, contact area 

pixels in rows 8, 16, 24, 32, 40, 48, and 56 were converted to voids. The alterations 

changed void fraction by a minute amount but dramatically increased flow. Further­

more, agreement between the predicted and actual equivalent permeability improved 

as more flow channels were created. 
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Figure 6.2.10 Patterns 64fc and 64fd are simulated using fractal ideas. Black pixels 
are voids and white pixels are contact. Void fractions are 0.865 and 
0.837. 
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Figure 6.2.11 Patterns 64fe and 64ff are modified versions of 64fd. Void fractions 
are 0.842 and 0.852. 
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Table 6.2.10 Predicted and computed equivalent permeability for patterns 64fd, 
64fe and 64ff. 

p NCP NSIGC NSIGR K~q 
~ A 

Keq 
~ B 

Keq 

64fd (£) 0.837 1.212 1.080 0.945 0.255 0.531 0.455 
64fe (£) 0.842 1.141 1.072 1.002 0.393 0.560 0.484 
64ff (£) 0.852 1.008 1.040 1.109 0.516 0.615 0.538 

Another example of this kind of disagreement is easy to imagine. Suppose that a 

1000 by 1000 pixel pattern had its equivalent permeability well predicted by our 

model. Now, if all the voids in one column in the direction perpendicular to the 

applied pressure drop are converted into contact area pixels, equivalent permeability 

drops to zero. However, the spatial statistics would only be slightly perturbed because 

at most only 0.1% of the voids were changed into contact areas. Thus, one column 

can dramatically affect fluid flow through the whole pattern while only slightly per­

turbing the spatial statistics. 

Fractal Summary 

For the patterns simulated using fractal ideas, Figure 6.2.12 plots predicted 

versus actual equivalent permeability for Model A. Figure 6.2.13 shows the same for 

Model B. Comparison of mean square prediction errors confirms the visual evidence; 

RSE for Model A was 0.143 and 0.079 for Model B. For all the fractal patterns, 

Table 6.2.11 lists equivalent permeability and prediction error (e = Keq -Keq) for the two 

models. 
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Figure 6.2.12 Model A predicted equivalent permeability versus actual equivalent per­
meability for 30 by 30 and 64 by 64 pixel patterns simulated using 
fractal ideas. 
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Figure 6.2.13 Model B predicted equivalent permeability versus actual equivalent per­
meability for 30 by 30 and 64 by 64 pixel patterns simulated using 
fractal ideas. 
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Table 6.2.11. Prediction errors for 30 by 30 and 64 by 64 pixel patterns simu­
lated using fractal ideas. 

p Kcq eA eB 

64fa (j) 0.667 0.458 0.073 0.041 
64fa (.i) 0.667 0.258 0.217 0.018 
30fa (j) 0.631 0.384 0.246 -0.007 
30fa (.i) 0.631 0.296 0.137 0.098 
64fb (j) 0.819 0.698 -0.037 0.054 
64fb (.i) 0.819 0.452 0.054 -0.120 
30fb (j) 0.788 0.638 0.093 0.033 
30fb (.i) 0.788 0.485 0.032 -0.032 
64fc (j) 0.865 0.630 -0.055 -0.050 
64fc (.i) 0.865 0.464 -0.139 -0.069 
64fd (j) 0.837 0.566 -0.055 -0.047 
64fd (.i) 0.837 0.255 -0.276 -0.200 
64fe (.i) 0.842 0.393 -0.167 -0.091 
64ff (.i) 0.852 0.516 -0.099 -0.022 

However, closer inspection of Table 6.2.11 shows that for patterns with void 

fraction close to 0.80, Model A did well. Hence, a three statistic extension might still 

be appropriate but the coefficients of NCP, NSIGC and NSIGR should be determined for 

each void fraction of interest rather than assuming that the ratios of the coefficients 

are independent of void fraction. To demonstrate this, Figure 6.2.14 plots the abso­

lute value of prediction error (IK.q - K.q I) versus void fraction for both models. Data 

corresponding to flow in the x direction across patterns 64fd is not plotted because 

this pattern is qualitatively different that the rest of the patterns. For this pattern, nei­

ther Model A nor Model B predict flow well because flow is almost completely 

blocked. Patterns 64fe and 64ff were also excluded from the plot because they are 

modified versions of 64fd. 
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Figure 6.2.14 Magnitude of the prediction error (IKcq - K,q I) for Model A and Model 
B for the 30 by 30 and 64 by 64 pixel patterns simulated using fractal 
ideas. 



Conclusion 

Both Model A 

Keq A = p - [o.091 NCP + 0.215 NSIGC- 0.212 (NSIGR - 1)) [ 1-3.67(p-.8)) 

and Model B 

iVI s = p - o.327 NcP[1-0.938(p-.s)) 
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were applied to a variety of patterns. Tables 6.2.3 and 6.2.6 show that, in general, 

Model B predicted flow better than Model A for the patterns simulated using the 

Chapter 3 model. All the patterns had void fractions between 0.60 and 0.95 and the 

moving average filter damping factor (K) which controlled the range of correlation was 

either 0.25, 0.75 or 1.25 (inverse pixel lengths) for each pattern. The patterns ranged 

in scale from 30 to 30 pixels to 128 by 128 pixels. Except for the K = 0.25 patterns, 

the root mean square prediction error for Model B was less than the root mean square 

prediction error for Model A. For the 30 by 30 clipped Gaussian process with just a 

few contact area features (K = 0.25), Model B predicted equivalent permeability less 

accurately for pattern 30x (Y) than for the others. (Table 6.2.6). 

In more detail, for the 30 by 30 pixel simulated patterns, for K = 0.25, 0.75 and 

1.25, RSE for Model B was 0.136, 0.048 and 0.042 (Table 6.2.6). For Model A, RSE 

was 0.096, 0.058 and 0.072 for the same groups of patterns. For simulated patterns 

obtained by fixing K = 0.75 and varying scale (30 by 30 pixels, 64 by 64 pixels and 

128 by 128 pixels), RSE for Model B was 0.048, 0.039 and 0.037. For Model A, for 

the same three scales, RSE was 0.058, 0.044 and 0.050. Hence, in general, Model B 

predicted equivalent permeability better than Model A did. 

For patterns simulated using fractal ideas, Model B predicted equivalent permea­

bility much better than Model A did (Table 6.2.11, Figures 6.2.12 and 6.2.13). For 

all the 30 by 30 pixel and 64 by 64 pixel patterns, RSE was 0.143 for Model A and 

0.079 for Model B. This does not mean that a three statistic extension is invalid. In 
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fact for patterns with void fractions near 0.80, Figure 6.2.14 showed that Model A did 

well. Rather, the method of extending the 0.80 void fraction model is suspect. To 

get a better extension, the coefficients of NCP , NSIGC and NSIGR should be determined 

for each void fraction of interest rather than assuming that the ratios of the 

coefficients are independent of void fraction. 

For pattern 64d (i ), both models underestimated equivalent permeability by a 

factor of about two. This pattern is a special case because flow was almost com­

pletely blocked by contact area features. When passage ways were cut in the barriers 

so that flow could pass through more parts of the pattern, agreement between 

predicted and actual equivalent permeability improved. Hence, the disagreement is a 

consequence of predicting a flow which avoids large regions of a pattern, in terms of 

spatial statistics computed from all the voids and contact areas in pattern. That is, the 

spatial statistics were sensitive to void pixels which were isolated from the flow path. 

To correct for this effect, voids in regions of the pattern which are blocked off by 

contact area features might be viewed as contact areas. This is not pursued here, but 

is a future direction for research. 

To close this section, Table 6.2.12 lists the void fractions of all the patterns that 

were used to develop and test the prediction models presented. In the table, g 1 

denotes patterns simulated using the Chapter 3 model where the moving average filter 

decay constant is K = 0.75. g 2 denotes patterns simulated with the Chapter 3 model 

but with K = 0.25. g 3 denotes patterns simulated with the Chapter 3 model but with 

K = 1.25. f 1 denotes pattern simulated with fractal ideas using the first way, e.g. pat­

tern 64fa. f 2 denotes patterns simulated with fractal ideas by means of the second 

way, obs denotes an observed pattern. For instance, the table indicates that equivalent 

permeability was computed for a 30 by 30 pixel pattern, with 60% voids, that was 

simulated using the Chapter 3 model with K = 0.75. 



147 

Table 6.2.12. Summary of all the patterns studied to build and test prediction 
models. 

void fraction 10 by 10 30 by 30 64 by 64 128 by 128 

0.600 1'' 

0.631 z' 

0.650 211 112 113 

0.667 z' 

0.700 1'' 

0.750 211 112 113 

0.768 2'' 

0.788 z' 

0.800 1811 27'' 

0.817 2obs 6'' 
0.818 2'' 

0.819 z' 

0.826 2'' 

0.837 z2 

0.842 {2 

0.850 211 112 113 

0.852 1'2. 

0.854 2'' 

0.865 zz 
0.900 2'' 

0.950 211 112 113 
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7. ENSEMBLE VARIABILITY 

Introduction and Summary 

As a extension of the main thrust of this thesis, which is to predict the equivalent 

permeability of a specific pattern of contact areas and voids, we give a lower bound 

for the standard deviation of equivalent permeability for an ensemble of simulated 

patterns. To clarify the notion of the ensemble, imagine that an infinitely large pat­

tern of voids and contact areas is simulated using the Chapter 3 model. Now, parti­

tion the infinite pattern into N by N pixel blocks. The ensemble of N by N pixel pat­

terns consists of these infinitely many N by N pixel blocks. In general, equivalent 

permeability is different for each pattern in the ensemble. Thus, the standard devia­

tion of the equivalent permeability for the ensemble of patterns is positive for finite N. 

The standard deviation is interesting because it tells us how large a simulated pattern 

must be before equivalent permeability becomes very predictable. 

We call the scale at which the the coefficient of variation of equivalent permea­

bility (the ratio of the standard deviation and expected value of equivalent permeabil­

ity) falls below a very small level e the scale of the representative volume (REV) 

scale. Hence, the smallest scale for which the lower bound for the standard deviation 

of equivalent permeability can fall below e is a lower bound for the REV scale. 

To compute the lower bound, the expected equivalent permeability of a pattern 

from the ensemble is related to its void fraction. For patterns with high void frac­

tions, a Power Average Model (Journel et al., 1986) is assumed so as to relate the 

void fraction of a pattern to its expected equivalent permeability. The standard devia­

tion of void fraction for the ensemble is then expressed. With this expression, a 

lower bound for the standard deviation for equivalent permeability for patterns in the 

ensemble is derived by expanding the Power Average Model formula for expected 

equivalent permeability as a Taylor series in void fraction. For patterns with void 
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fractions near the percolation threshold, a lower bound for the ensemble variability of 

equivalent permeability is derived using Percolation Theory (Broadbent and Hammers-

ley, 1957). 

We are able to use these models to relate expected equivalent permeability to 

void fraction because we limit attention to simulated patterns from the Chapter 3 

model. In contrast, the spatial statistic models developed in Chapter 5 and 6 are 

intended to predict flow in terms of the spatial arrangement of voids and contact areas 

within a pattern for patterns simulated from the Chapter 3 model but also more gen­

eral patterns. In fact, we showed in Chapter 6 that the model predicted the equivalent 

permeability of a variety of patterns including some simulated using fractal ideas. 

Furthermore, the lower bounds derived here for the variability of equivalent permea­

bility do not account for how equivalent permeability depends on the specific arrange­

ment of a fixed voids and contact areas within a pattern. Instead, the lower bound · 

accounts for how the variability of void fraction leads to variability of equivalent per­

meability for the ensemble. 

7.1 Power Average Case 

Joumel et al. (1986) developed the Power Average Model to predict the effective 

permeability of a sandstone shale porous media. For a pattern consisting of a fraction 

p of high permeability (KJU) regions and a fraction 1-p of low permeability (K10,.,) 

regions, the Power Average Model predicts that 

.!.. 
K«ff =( p KjJ + (1-p) Ki;.., ) "' (7.1.1) 

where 

-1 ~ w ~ 1, (7.1.2) 

and w depends on the spatial arrangement of the high and low permeability regions. 
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Application to Rock Fractures 

We apply the a Power Average Model to predict the equivalent permeability of a 

N by N pixel pattern of voids and contact areas. Each void has constant aperture. 

Assuming w > 0, the Power Average model predicts that 

(7.1.3) 

or 

KA _ pl/w 
cq- (7.1.4) 

where p is void fraction. To determine the parameter, .!., the model was fit to the 
w 

data from the 64 by 64 pixel patterns shown in Figure 6.1.3. Table 6.1.4 lists the 

equivalent permeabilities for the patterns. The best fit value of .!. minimized 
w 

The best fit to the data was 

Further, 

8 1 
I:Oog(K.q) - -log(p) )2 

i=l w 

KA -p3,43 
•q-

8 .!. 
RSE = [ ~ I:<Kcq - K.q)?l 2 = 0.034 

i=l 

(7.1.5) 

(7.1.6) 

(7.1.7) 

Figure 7.1 plots the Power Average fit and actual equivalent permeability versus void 

fraction. 

With the above relation between expected equivalent permeability and void frac­

tion, a lower bound for the ensemble standard deviation of equivalent permeability for 

patterns from the statistical ensemble is derived below. Suppose that the infinite size 

pattern which defines the ensemble has void fraction <p > but that a particular N by N 

pixel member of the ensemble has void fraction p. Assuming the Taylor Series 

expansion 
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Legend 
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Figure 7.1 

void fraction 
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Power average model fit (K,, = p 3
·
43

) and actual equivalent permeability 
for 64 by 64 pixel patterns (Table 6.1.4). Void fraction denoted by p. 



• I 
• dK.~q I 

K.q(p)- K.q(<p>) = -d-1 (p - <p>) + 
p p=<p> 

152 

£ (7 .1.8) 

and that <£> = 0 and< e (p-<p>) > = 0, and taking the expected square value of both 

sides of Eq. 7.1.8 gives 

(7.1.9) 

Substituting in the derivative of K.q gives 

(7.1.10) 

Hence, a lower bound is 

(7.1.11) 

To complete the calculation, we need an expression for aP. 

Estimation of aP 

For N by N pixel simulated patterns with theoretical exponential correlograms 

e-"J.J, where r is pixel lengths and A is inverse pixel lengths, Appendix B shows that 

for N/..>10, 

= ..J<p>{l-<p>) - /1 2 -A.(.!.. _!_) 
aP N 'I + 1te A + Az . (7.1.12) 

Further, the correlogram of a clipped Gaussian process is approximately independent 

of the clipping level. This independence assumption is a good approximation for 

clipped Gaussian processes where the clipping level leaves between 10% and 90% 

voids (Switzer, 1977) Hence, Eq. 7 .1.12 is approximately correct for an ensemble 

where the average void fraction is between between 10% and 90% voids. Recall that 

in Chapter 3, an exponential approximation with A.= 0.505 fit the correlograms of the 

128 by 128 pixel simulated patterns rather well (Figure 3.4). Thus, Eq. 7.1.12 (with 

A = 0.505) is used to approximate aP. 
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Eq 7.1.12 predicts that as A. decreases, crP increases. This is because as A. 

decreases, the spatial correlation range of the pattern increases and contact area 

features get bigger. If the area of a pattern is fixed, as features get bigger, the pattern 

becomes less homogeneous and crP increases. 

Lower Bound for crK . ., 

To estimate a lower bound for the ensemble variability of equivalent permeabil­

ity of the simulated patterns from Chapter 3, Eq 7 .1.12 is substituted into Eq. 7 .1.11 

to get 

(7.1.13) 

For patterns with fixed side length N, Eq 7 .1.13 implies that as A. increases, crK 
•q 

decreases. Thus, equivalent permeability becomes more predictable as patterns 

becomes more homogeneous. 

To determine how much of the variability of equivalent permeability that the 

lower bound predicts, we compare the lower bound and eJK for the 64 by 64 pixel 
' ., 

patterns discussed earlier. Substituting <p> = 0.80, ..!.. = 3.43 and A.= 0.505 into Eq. 
w 

7 .1.13 yields 

(7.1.14) 

At N = 64, the lower bound is 0.060. Using the data from Table 6.1.4, the estimated 

standard deviation of equivalent permeability of the simulated 64 by 64 pixels is 

(7.1.15) 

Thus, the lower bound estimated a significant fraction of the total variability of 

equivalent permeability among the 64 by 64 pixel patterns. 
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Coefficient of Variation 

The coefficient of variation of equivalent permeability is the standard deviation 

of equivalent permeability divided by the expected value of equivalent permeability. 

Hence, a lower bound for the coefficient of variation is 

(7.1.16) 

From Eq. 7.1.16 and using <Keq> = .803·
43 = .465, we get that 

(7.1.17) 

Eq. 7.1.16 implies a lower bound for the REV scale. Recall that the REV scale 

(NREV) is the scale at which the coefficient of variation drops below a very small level 

e. From Eq. 7.1.16, we know that if 

then 

(7.1.18) 

Hence, the right hand side of the above equation is a lower bound for the REV scale. 

That is, 

(7.1.19) 

The Power Average approach is valid only for patterns with high void fractions. 

For example, according to Eq. 7.1.6, the Power Average Model predicts a positive 

definite equivalent permeability for all void fractions even though experience shows 

that if the fraction of contact area in a simulated pattern increases beyond a critical 

fraction, flow is completely blocked. For patterns where flow is nearly blocked, a 

lower bound for the standard deviation of equivalent permeability is derived using the 
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more appropriate Percolation Theory (Broadbent and Hammersley, 1957) below. 

7.2 Percolation Theory 

For an infinite pattern, if the fraction of conducting pixels is above Pc , then a 

infinite cluster of conducting pixels spans the infinite pattern. If the void fraction falls 

below Pc no infinite cluster of conducting pixels exist. Flow across the pattern is 

through the infinite cluster. Percolation Theory predicts that as P-+Pc from above, 

(7.2.1) 

where Pc is the percolation threshold, t depends only on dimension (according to 
-

universality arguments) and Ko is a constant of proportionality (Kesten, 1982). In two 

dimensions, numerical simulations show that t ::: 1.3. (Orbach, 1986). 

As stated in the literature review, the way the pattern is simulated determines the 

percolation threshold. For instance, when square pixels are independently assigned as 

conducting or non-conducting, Pc :::0.593 (Orbach, 1986). For a correlated assignment 

scheme, Skal et al. ( 1973) simulated patterns of voids and pixels in a manner very 

similar to the way we do. Pixels were first assigned independent Gaussians. Then the 

Gaussians were filtered with a exponential moving average filter just like ours. They 

found that as range of the correlation increased, the percolation threshold moved away 

from 0.59 towards 0.50. Since, our model is similar to this, we expect that our perco­

lation threshold falls somewhere between 0.59 and 0.50. 

Finite Scale 

Application of Percolation Theory to finite patterns necessitates some new voca-

bulary. For example, at small scales, the notion of a uniquely defined percolation 

threshold is not sensible. For instance, a finite region of the infinite plane might be 

connected by a cluster of conducting pixels even though the infinite pattern is not. Or 

vice versa. Hence, at finite scales, the percolation threshold is viewed as a random 
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variable Pc (N) where N is the length of the pattern in pixels. We call this the empiri­

cal percolation threshold. 

Not only is the threshold random, but so is the effective conductivity. The 

unpredictability of effective conductivity is expressed in terms of a function of the 

ratio of the length of the system and some characteristic length called the correlation 

length. In Percolation Theory, when p>pc, the correlation length C is conjectured to 

be the effective radius of the largest cluster of non-conducting pixels (Kesten, 1987). 

It is conjectured (Stauffer, 1985) that 

(7.2.2) 

where v = ~ in two dimensions (Orbach, 1986). Using this correlation length, Straley 

(1977) conjectured that the coefficient of variation for equivalent permeability has the 

form 

(7.2.3) 

provided that the pattern side length N exceeded the correlation length c. 
Simulated Patterns 

To express a lower bound for the coefficient of variation for equivalent permea­

bility for an ensemble of finite simulated patterns, Eq 7 .2.2 is rewritten as 

(7.2.4) 

where £ is the difference between the equivalent permeability of a pattern and the Per­

colation Theory prediction for equivalent permeability. We assume that K0 is a con-

stant and that r = 1.3. The next step is to relate the variance of p and Pc (N) to the 

variance of equivalent permeability. 

To do this, an expression for the standard deviation of empirical threshold is 

needed. Stauffer (1985) derives a general formula for the standard deviation of the 

t-



157 

empirical percolation threshold for a N by N pixel patterns using scaling arguments. 

The formula is 

(7.2.5) 

Further, Levinshtein et al. (1976) studied fluctuations of the empirical percolation 

threshold for independent site percolation in two dimensions and fit the following for-

mula 

I 

CJpc(J/):: 0.54(N+l.4) v. (7.2.6) 

For our simulated patterns, crP implicitly depends on the correlogram. We use Eq. 
c(N) 

7 .2.5 without evaluating B. 

Taylor Series 

Assuming a Taylor Series expansion for K.9 

(7.2.7) 

and taking the expected square average of both sides gives 

(7.2.8) 

To <,ierive the above, cross terms in e' were assumed to average to zero. Dropping the 

cr/ terin gives 

(JK ~ (1 + 7te - + -2 [ 2 -A.[ 1 1] •• 'A? A. 
) <p>(l-<p>) 

N2 

(7.2.9) 

Assuming that <K,9 > = K 0( <p>-<pc(N)> )1
, a lower bound for the coefficient of varia-

tion is 
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(7.2.10) 

The lower bound includes terms which explicitly depend on the correlogram via 

A. as well as terms which implicitly depend on the correlogram such as <pc (N)>, B and 

perhaps Ko. Although further work is needed to evaluate these terms before the for-

mula can be applied, its limiting behavior is clear. For patterns with fixed side length, 

as the average void fraction of the ensemble of patterns approaches the percolation 

threshold, the coefficient of variation of equivalent permeability and hence the REV 

scale diverges. Note that in Straley's expression (Eq. 7.2.2), as void fraction 

approaches the percolation threshold, the coefficient of variation also diverges. 

Summary 

A lower bound for the coefficient of variation of equivalent permeability for an 

ensemble of patterns was expressed for cases where the void fraction of a pattern is 

large enough so that the Power Average Model is valid. As the length of patterns in 

the ensemble increases, the lower bound for coefficient of variation tends to a small 

quantity. For the case where the void fraction is near the percolation threshold, a 

lower bound for the coefficient of variation of equivalent permeability was estimated 

using Percolation Theory. As the expected void fraction of a pattern in the ensemble 

approached the expected empirical percolation threshold, the lower bound for the 

coefficient of variation of equivalent permeability diverged. For both cases, as the 

spatial correlation range of the simulated patterns increased, the lower bound for the 

REV scale increased. 
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8. Variable Aperture Patterns 

Introduction and Summary 

In Chapters 5 and 6, the equivalent permeability of a pattern of contact areas and 

voids with constant apertures was predicted in terms of spatial statistics computed 

from the arrangement of the voids and contact areas within the pattern. How to apply 

the model to patterns where voids have variable apertures is the subject of this 

Chapter. Using the constant aperture model, two lower bounds for the equivalent per­

meability of variable aperture patterns are given. As an illustration, both bounds are 

compared to actual equivalent permeability for two 30 by 30 pixel simulated patterns 

with variable apertures. 

The first lower bound for the equivalent permeability of a variable aperture pat­

tern is obtained by first transforming all apertures. In the transformation, all apertures 

below an adjustable cutoff are set to zero and all apertures above the cutoff are set to 

the cutoff. Since each transformed aperture is less than or equal to each of original 

aperture, the flow through the original pattern is greater than or equal to the flow 

through the transformed pattern. This is because local hydraulic conductivity is pro­

portional to aperture cubed in our flow model. Hence, the model prediction for the 

equivalent permeability of the transformed pattern provides a lower bound for the 

equivalent permeability of the original pattern. The second lower bound is obtained 

by setting all the apertures above the cutoff to a intermediate value between the cutoff 

and the maximum aperture in the pattern. The intermediate value chosen is the cube 

root of the harmonic average of the cube of apertures above the cutoff. A heuristic 

argument based on circuit theory rules for finding the maximum resistance of a net­

work of variable resistors motivated this second bound. 
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First Lower Bound 

The first lower bound is based on an approach described by Kirkpatrick (1978) 

and motivated by work by Ambekagor (1971). Kirkpatrick describes how to estimate 

a lower bound for the effective conductivity of a system where local conductivity 

varies continuously, using Percolation Theory which is designed to work for systems 

where conductivities take one of two values-- zero or a constant To get the lower 

bound, all conductances below a cutoff are set to zero and all conductances above the 

cutoff are equated to the cutoff. The Percolation Theory estimate of the effective con-

ductivity of the transformed system is a lower bound for the effective conductivity of 

the original system. Since each cutoff gives a different lower bound, the best choice 

of cutoff is the one that gives the largest lower bound. 

Following the spirit of the above idea, a lower bound for the equivalent permea-

bility of a variable aperture pattern is estimated below. To get the first lower bound, 

the apertures of the variable aperture pattern are transformed as follows 

. . {bc111 forb(iJ)?:.bc111 

b(lJ)= 0 forb(iJ)<bcw (8.1) 

where b(i J) is the aperture of the (i J)~~o pixel and bcu~ is an adjustable cutoff. Since 

the new apenures are everywhere less than or equal to the original apenures, the flow 

across the transformed pattern is less than or equal to the total flow across the original 

pattern. 

The flow through the original pattern is related to its equivalent permeability K,q 

as follows 

b 3 

Q =!:!.P~K l2j..L eq 
(8.2) 

where bmu is the largest apenure in the pattern, !:!.P is the pressure drop applied and ll 

is fluid viscosity. By similar arguments, the flow through the transformed pattern is 

related to the equivalent permeability of the transformed pattern K.q T (bcus) as 
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(8.3) 

Since, Q ~Q T (bc14 ) for all choices of bc14 , 

(8.4) 

and 

(8.5) 

Although all choices of bc111 give lower bounds for K.q, the best choice of bc14 gives the 

largest of the lower bounds. This largest lower bound is closest to the equivalent per­

meability of the pattern. Next, the best lower bound and actual equivalent permeabil­

ity are computed for two simulated patterns. 

Application to Simulated Patterns 

Both simulated patterns are modifications of the same realization of a Gaussian 

process which is shown in Figure 8.1. This same realization was clipped to get the 

patterns shown in Figure 6.1.1. Each pixel gets an aperture as follows: 

eXY(i,j) 

b(iJ) = xr 
e "'"" 

(8.6) 

where r (i .J) denotes the Gaussian assigned to the (i J)dt pixel and r max is the largest 

Gaussian in the pattern. The broadness of the aperture distribution is controlled by X· 

For pattern 8a, x = 0.50, for pattern 8b, x = 0.75. Hence, pattern 8b has a broader dis­

tribution of apertures than does pattern 8a. Figure 8.2 shows the cumulative aperture 

histograms for each pattern. Because of the normalization, the maximum aperture in 

each pattern is unity. 

Equivalent Permeability 

For each pattern, equivalent permeability is computed using the methods 

described in Chapter 4. Tables 8.1 and 8.2 show that computed equivalent 
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Pattern of correlated Gaussians. Darker pixels correspond to larger 
Gaussians. 
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permeability stabilized as mesh size increased. 

Table 8.1. Equivalent permeability versus mesh size for variable aperture pate 
tern Sa. 

mesh iterations Keq 

30 by 30 8000 0.0140 
60by60 6000 0.0153 
90 by 90 4000 0.0159 

120 by 120 2000 0.0157 
150 by 150 2000 0.0159 

Table 8.2. Equivalent permeability versus mesh size for variable aperture pat­
tern Sb. 

mesh iterations Keq 

30 by 30 8000 0.00159 
60 by 60 6000 0.00175 
90 by 90 4000 0.00195 

120 by 120 2000 0.00193 
150 by 150 2000 0.00196 

Next, the lower bounds are computed and compared to the above equivalent per-

meabilities. 
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Lower Bounds for Simulated Patterns 

Since, both patterns are transformations of the same realization of Gaussian pro­

cess, the estimated equivalent permeability of the transformed patterns iT •q is the 

same function for both patterns. With p(hew) denoting the fraction of voids with aper-

ture greater than or equal to hCIII, the estimate of a lower bound is 

(8.7) 

where Model B from Chapter 6 is used to estimate the equivalent permeability of the 

transformed pattern as. follows 

K14 T (p (ht:lll)) = p (hew) - 0.327 NCP [ 1 - 0.938 ( p (heut) - 0.80 ) ) (8.8) 

In Figures 8.3 and 8.4, i./ (p(he111 )), hc111 
3 and their product which is the first lower 

bound, are plotted versus p (hew) for each pattern. 

For each pattern, the value of the cutoff that maximized the first lower bound 

was found by adjusting hcut· We call the value of he111 which maximizes the first lower 

bound h •. The maximum value of the first lower bound is denoted as K.q •. The frac­

tion of voids with aperture above h • is called p •. Table 8.3 lists h ·, p •, K.q • and the 

ratio of K.q • and K.q for both patterns. Table 8.3 shows that the discrepancy between 

the lower bound and actual equivalent permeability was greater for pattern 8h which 

had a broader distribution of apertures. In general, as the aperture distribution nar­

rows, the bound should approach actual equivalent permeability. Next, a lower bound 

which comes significantly closer to the equivalent permeability of the simulated pat-

terns is given. 

•·i· 
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To get the first lower bound for pattern 8a, all apertures below an adju­
stable cutoff (be..,) are set to zero. All apertures above the cutoff are set 
to the cutoff. Top plot is estimated equivalent permeability (K[q) of 
transformed pattern versus the fraction (p(be..,)) of apertures above the 
adjustable cutoff be111 • Middle plot is be.., 3 versus p (be..,). Bottom plot is 
K[q be111

3 versus p (bCJII ). The best lower bound is the maximum of the 
bottom curve. 
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Sa:ne as Figure 8.3 but for pattern 8b rather than pattern 8a. 
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Table 8.3. First lower bound for the equivalent permeability of variable aper­
ture patterns. 

8a 
8b 

0.183 
0.085 

Second Lower Bound 

• p 

0.745 
0.699 

2.56 w-3 

2.01 1cr 
1.59 10""2 

1.96 10""3 
0.161 
0.103 

The second lower bound is a modified version of the first The idea is based on 

work by Charlaix et al. (1987). They applied Percolation Theory to patterns with 

variable conductances by modifying the approach of Kirkpatrick (1978). Instead of 

setting all conductances above the cutoff to the cutoff, conductances above the cutoff 

were set to the harmonic average of conductances over the cutoff. They justified this 

assignment by arguing that the conducting regions in their system acted like electrical 

resistors in series. 

The justification for such an assignment is based on the lower bound for the 

effective permeability of a porous medium derived by Beran (1968). Recall from 

Chapter 2 that the equivalent permeability of a porous medium is bounded below by 

the harmonic average of the local permeabilities. To illustrate when equivalent per­

meability takes the lower bound, consider the pattern shown below in Figure 8.5. 

Apertures of equal value appear as the same color. 

For a pressure drop in the x direction, the local cubic law model equates the flow 

across the i Ill stripe to 

M'i 

.1xi 3 
Qi =I 12J.l. bi (8.12) 

where I is the length of the pattern, M'j is the pressure drop across the ;Ill stripe, .1xi is 

the width of the ;Ill strip and bi is the aperture in the ;Ill stripe. Hence, each stripe has 
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Figure 8.5 Variable aperture pattern. Equal apertures appear as same color. 
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hydraulic resistance proportional to the inverse of aperture cubed. Since the striped 

pattern can be viewed as a series arrangement of hydraulic resistors, the overall resis­

tance of the pattern is proportional to the average of inverse aperture cubed. This is 

the hydraulic equivalent of the electrical circuit rule which equates the overall resis-

tance of resistors in series to the sum of the resistances. Hence, overall flow is pro-

portional to the harmonic average of aperture cubed. Thus, 

(8.13) 

where the harmonic average of aperture cubed is <b-~-1 • 

Assuming the validity of the cubic law flow model, Eq. 8.13 exactly predicts the 

equivalent permeability of the pattern shown in Figure 8.6 and also serves as a lower 

bound for the equivalent permeability of more general patterns. 

Note that if a contact area strip is introduced as shown below in Figure 8.6, 

equivalent permeability drops by a factor of p where 1-p is the fraction of contact 

area in the pattern. The equivalent permeability of the striped pattern is 

K _ (-1-)3<b-3 -1 
•9- b > p 

max 
(8.14) 

This example suggests the following lower bound for more general patterns. 

K,9 ~ (I!-)3<b-3;bcwt>-1K.9 T (be..,) 
max 

(8.15) 

where <h-3;bc..,>-1 is the harmonic average of aperture cubed for apertures above the 

cutoff be..,. We have no proof that the above is a general lower bound for general pat-

terns. In fact, special cases exist for which it will overestimate flow. For instance, 

suppose that a void is off the flow path and hence has no influence on flow. If the 

aperture of this void off the flow path is large enough, Eq. 8.15 will overestimate 

flow. For future research, it would be wise to identify such pixels and treat them as 

contact areas. 
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Same pattern as in Figure 8.5 except for contact area strip in the middle 
of the pattern. Equal apertures appear as same color. 
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To interpret this as a modification of the first lower bound, consider the aperture 

transformation 

.. -{<b-
3
;bcut> -t for b(i j)~cut 

b(z,J)- 0 forb(ij)<bcut (8.16) 

The second lower bound is an estimate for the equivalent permeability of such a 

transformed pattern. Next, the second lower bound is compared to the actual 

equivalent permeability of patterns 8a and 8b. 

Application to Simulated Patterns 

In Figures 8.7 and 8.8, i.
9 

T(p(bc..,)), <b-3;bc..,>-1 and their product which is the 

second lower bound, are plotted versus p (ba~~) for both patterns. For each pattern, the 

value of the cutoff that maximized the second lower bound was found by adjusting 

be..,. The value of be.., which maximizes the second lower bound is called b ••. The 

maximum value the second lower bound takes is denoted by i.9 ••• The fraction of 

voids with aperture above b •• is called p ••. Table 8.3 lists b ••, p ••, i"" •
9 

and the 

ratio of i"" ,9 and K.9 for both patterns. Again, the agreement between the lower 

bounds and actual equivalent permeability was better for the pattern with the narrower 

range of apertures. 

Table 8.4. Second lower bound for the equivalent permeability of variable 
aperture patterns. 

.. 
b"" .. 

i.q 
.. 

K.q ~ p 
K.q 

8a 0.153 0.854 8.28 w-3 1.59 10-2 0.521 
8b 0.074 0.763 8.24 10-4 1.96 10-3 0.420 
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To get the second lower bound for pattern 8a, all apertures below an 
adjustable cutoff (be..,) are set to zero. The rest of the apertures are 
equated to harmonic average of apertures above the cutoff. From the 
top, (K!., ), harmonic average of apertures above the cutoff, and the their 
product which is the second lower bound. The best lower bound is the 
maximum of the bottom curve. 
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Figure 8.8 Same as Figure 8.7 but for pattern 8b instead of pattern 8a. 
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Summary 

The equivalent permeability of a variable aperture pattern depends on not only 

the arrangement of voids and contact areas within the pattern, but the apertures 

assigned to the void pixels. Hence, the information necessary to estimate equivalent 

permeability is much more complicated than the information necessary to estimate the 

equivalent permeability of a pattern where voids have constant apertures. By 

transforming a variable aperture pattern into a binary aperture pattern where apertures 

are zero or equal to a constant, lower bounds for equivalent permeability were 

presented using the prediction model developed in Chapter 5 and 6. In both lower 

bounds, all apertures below a chosen cutoff were equated to zero. In the first lower 

bound, all apertures above an adjustable cutoff were equated to the cutoff. In the 

second lower bound, all apertures above the cutoff were equated to the cube root of 

the harmonic average of the cube of apertures that were above an adjustable cutoff. 

Analysis of two simulated patterns showed that the second lower bound was closer to 

equivalent permeability than was the first The agreement between the lower bound 

and equivalent permeability was better for the pattern with the narrower range of 

apertures. These lower bounds are a first step in developing spatial statistics to esti­

mate the equivalent permeability of a variable aperture pattern. 
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9. CONCLUSION 

In this thesis, the normalized flow through a fracture, i.e. the equivalent permea­

bility of a fracture, was predicted in terms of spatial statistics computed from the 

arrangement of voids and contact areas within the fracture. 

Chapter 3 showed how patterns of voids with constant aperture and contact areas 

were simulated. The simulated patterns had complexity typical of experimental data. 

Chapter 4 detailed the local cubic law flow model and a finite-difference method was 

used to solve the equations for flow for each pattern. Based on the analysis of 10 by 

10 and 30 by 30 pixel simulated patterns of voids (with constant aperture) and contact 

areas with 80% voids, a model to predict equivalent permeability was presented in 

Chapter 5. 

In Section 5.2, equivalent permeability was predicted in terms of the change 

point statistic (NCP) which measures how often pixel alternate from void to contact 

area, or vice versa, in the rows of the pattern which are parallel to the applied pres­

sure drop across the pattern. The fitted model parameters were not sensitive to scale; 

they were almost the same when fitting the model to either the 10 by 10 pixel patterns 

alone or the 30 by 30 pixel patterns alone. In Section 5.3, equivalent permeability 

was predicted in terms of row and column dispersion statistics (NSIGR and NSIGC) 

which measured how dispersed pixels are in rows and columns of the pattern. In Sec­

tion 5.4, equivalent permeability was also predicted in terms of a statistic (NBREAK) 

which measured the width of the flow path between contact area features. Unlike for 

the other statistics, the fitted parameters for the NBREAK model were significantly 

different for the 10 by 10 and 30 by 30 pixel patterns. In Section 5.5, equivalent per­

meability was predicted in terms of a linear combination of NCP, NSIGC and NSIGR. 

The model parameters were well determined. 

In Chapter 6, the NCP model was extended to patterns with other void fractions. 

In general, for a variety of patterns from the Chapter 3 model which ranged in scale 

•.. 
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from 30 by 30 pixels to 128 by 128 pixels, the extended model predicted equivalent 

permeability well. Further, the extended model accurately predicted the equivalent 

permeability of patterns simulated by changing the range of correlation in the Chapter 

3 model. The extended model also did a reasonable job of predicting the equivalent 

permeability of patterns simulated using fractal ideas. (Table 6.2.11) However, for 

one of the inhomogeneous patterns simulated using fractal ideas (64d), the model 

underestimated equivalent permeability by a factor of about two (Table 6.2.9). For this 

case, flow across the pattern was almost entirely blocked. A extended model involv­

ing NCP, NSIGC and NSIGR did not predict equivalent permeability as well as the 

extended NCP model. We speculate that this is because the method of extension was 

too simplistic for the three statistic model. 

How well the prediction model works for more complex patterns or patterns , 

simulated in other different ways is an open research question. Even if the model 

does not work for more complex patterns of voids and contact areas, there may be 

ways of still using it. For· instance, suppose a pattern of voids and contact areas is so 

complex that flow can not be computed using the computer. It may be possible to 

simplify the pattern by partioning it into 30 by 30 pixel blocks and then estimating a 

x and y direction equivalent permeability for each block using our model. Hence, the 

900 bits of information contained by each block (each pixel is contact or voids) would 

be reduced to two bits of information. A future research direction is to determine 

how to combine the estimated equivalent permeabilities for each 30 . by 30 pixel 

blocks so as to estimate the flow through the whole pattern. 

Alternatively, the model may be useful for predicting the effect of selected con­

tact area features on flow. For instance, the influence of the largest contact area 

features in a complex pattern flow might be predicted by applying the prediction 

model to a transformed version of the original pattern. In such a transformation, all 

contact area features smaller than a certain size might be transformed into voids so as 
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to isolate the effect the largest features have on flow. 

The major point of this thesis is to predict the equivalent permeability of a 

specific pattern of voids and contact areas. To complement this effort, a lower bound 

for the variation of equivalent permeability for an ensemble of simulated patterns 

from the Chapter 3 model was given in Chapter 7. To get the lower bound, both the 

Power Average Model (Journel et al. 1986) and Percolation Theory (Broadbent and 

Hammersley, 1957) were used to relate the void fraction of a pattern to its expected 

equivalent permeability. As the size of a simulated pattern increased, the lower 

bounds approached zero. In terms of these lower bounds, a lower bound for the REV 

scale was derived. 

In Chapter 8, a lower bound for the equivalent permeability of a variable aper­

ture pattern was given. The NCP model from Chapter 6 which is valid for patterns 

where voids have constant aperture, was applied to transformed versions of variable 

aperture patterns. Two lower bounds were given. In the first transformation, all aper­

tures above a chosen cutoff were set to the cutoff; all apertures below the cutoff were 

set to zero. In the second transformation, instead of setting apertures above the cutoff 

to the cutoff, apertures were equated to the cube root of the harmonic average of the 

cube of apertures above the cutoff. For two simulated patterns, the second lower 

bound came much closer to actual equivalent permeability (Tables 8.3 and 8.4). The 

discrepancy between the bound and actual equivalent permeability was less for the 

pattern with the narrower range of apertures. These lower bounds for equivalent per­

meability are a first step in the development of a model to predict the equivalent per­

meability of a variable aperture pattern. 

... 
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APPENDIX A 

The average run length of void pixels in the rows of a simulated pattern with 

isotropic correlogram p(r ), where r is lag in pixel lengths, is shown to be 

<RUN>= ---
1
--­

(1-p )( 1 - p(l) ) 
(B.1) 

For simulated patterns with 0.80 void fractions, and p(l) = e-·505 , <RUN>= 12.6 pixels. 

Derivation 

Two void pixels belong to the same run of voids if no contact area pixel lies 

between them. Consider a long row of N pixels from a simulated pattern. Partition 

the row into distinct runs of voids and contact areas. From Section 5.2, the fraction 

of pairs of pixels which alternate from void to contact or contact to void is CP . 

Hence the number of pairs which alternate from contact to void is N c; . By Eq. -· 

5.2.6, 

CP - = p(l-p)(l- p(1)) 
2 

(B.2) 

where p(l) is the correlogram (Journel and Huijbregts, 1978) at lag 1. Hence, the 

average number of runs of voids is N p(l-p) (1- p(1) ). Since the average number of 

void pixels is Np, the average run length of void pixels is 

<RUN>= Np 
Np (1-p )(1-p(l) ) 

1 (B.3) 
(1-p) ( 1- p(1)) 

From Chapter 3 (Eq. 3.8), p(l) = e-.sos for our simulated patterns. Hence, for simu­

lated patterns with 0.80 void fractions, <RUN>= 12.6 pixels. 
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APPENDIXB 

The standard deviation of the void fraction for an ensemble of N by N pixel 

simulated patterns, with exponential correlogram 

and average void fraction, <p >, is well approximated as follows 

2 = <p>(1-<p>) [ 1 2 -A.(_!_ _1 ) l 
C1p N2 + 1te A. + 1.,2 

Derivation 

Let I;; be the indicator function for the ijrJt pixel. 

{ 
1 _ when ijrlt pixel is void 

I;; = 0 when ijrlt pixel is contact area 

The void fraction of a simulated pattern is 

The variance of p is 

From Eqs. B.4 and B.5, 

1 N N 

p=-2 1: 1: 1;; 
N i=l i=l 

By the definition of the correlogram (Eq. 3.6 in Chapter 3) 

1 [N N N N l 
crP 2 = N4 ~ i~ ~ ~ <p>2 + <p>(l=<p>) p( d(ij ,kl)) 

where the distance d between the (i J)rJt and (k J)rJt pixels equals 

d( ij ,kl ) = ..J (i-k)2 + (j-li. 

(B.l) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

• 
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The <p>2 term in the quadruple sum contributes <p>2 and exactly cancels the 

-<p >2 to the right of the quadruple sum. Hence, 

(1 ) N N N N 

cr/= <p> 7> :E:E:E:E P< d(ii.kl)) 
N i=li=U:=ll=l 

(B.9) 

The quadruple sum has N 4 terms. For each of the N 2 pixels in the pattern, there is 

double sum involving N 2 correlograms terms. Each double sum is approximated as 

N 
2 

1 + J 27tp(r )rdr. In this approximation, the discrete double sum of correlogram terms 
r=l 

is replaced by a integral within a circular region with radius ~. That is, 

N 

NNNN 2 
LLLL p( d(ij kl))::: N 2 

( 1 + J 21tp(r)rdr) (B.lO) 
i=lj=l.t=ll=l r=l 

Hence, 

(B.ll) 

For For NA>IO, some of the boundary terms vanish and the above can- be approxi-

mated as 

(B.l2) 

Collecting terms we have, 

2::: <p>(l--<p>) [ 1 2 -A.(_!_ _I ) l crP 2 + 7te '\ + 2 
N II. A. 

(B.13) 

For A.= 0.505, the approximation should be good for N>20 because then NA.>lO. 

Figure B.l plots Eq. B.13 and a numerical evaluation of Eq. B.9 for A.= .505 

<p> = 0.80. As expected, Eq. B.13 is a good approximation to Eq. B.9 when N>20. 
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Legend 
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Figure B.l Approximation and exact expression for standard deviation of void 
fraction as a function of pattern side length for a simulated pattern with 
exponential correlogram. Here, correlogram is taken to be e->.r where r 

is lag in pixel lengths and 1.. is taken to be 0.505 (inverse pixel lengths). 
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