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Identification of group differences in predictive
anticipatory biasing of pain during uncertainty:
preparing for the worst but hoping for the best
Irina A. Strigoa,b,*, Molly Kadlecc, Jennifer M. Mitchellb,d, Alan N. Simmonse,f

Abstract
Pain anticipation during conditions of uncertainty can unveil intrinsic biases, and understanding these biases can guide pain
treatment interventions. This study used machine learning and functional magnetic resonance imaging to predict anticipatory
responses in a pain anticipation experiment. One hundred forty-seven participants that included healthy controls (n 5 57) and
individuals with current and/or past mental health diagnosis (n 5 90) received cues indicating upcoming pain stimuli: 2 cues
predicted high and low temperatures, while a third cue introduced uncertainty. Accurate differentiation of neural patterns associated
with specific anticipatory conditions was observed, involving activation in the anterior short gyrus of the insula and the nucleus
accumbens. Three distinct response profiles emerged: subjects with a negative bias towards high pain anticipation, those with
a positive bias towards low pain anticipation, and individuals whose predictions during uncertainty were unbiased. These profiles
remained stable over one year, were consistent across diagnosed psychopathologies, and correlated with cognitive coping styles
and underlying insula anatomy. The findings suggest that individualized and stable pain anticipation occurs in uncertain conditions.

Keywords: Expectation, Insula, Nucleus accumbens, Catastrophizing, Imaging, fMRI, MVPA

1. Introduction

How an individual anticipates an upcoming painful experience
modulates how pain is perceived,49,74,91,94 partly by changing
how pain relief mechanisms are engaged.28,61 Previous studies
have shown that by changing an individual’s expectation or
awareness, the perception of the pain is changed,43,49,94 and this
is reflected through changes in brain activa-
tion.7,12,13,30,34,43,51,59,68,87 Positive expectancy cues (ie, the
expectation of analgesia) have been shown to reduce pain and
induce placebo analgesia, while negative expectancy cues (ie,
expectation of worsening pain) can lead to an increase in reported

pain and a nocebo response.43,44,48–50,62 Anticipation of pain,
and of pain relief, is coded in the reward/motivational meso-
limbic57 and interoceptive circuits.23 Substantial animal literature
supports the notion that the activity in the reward/motivation
circuit reflects motivated behavior to predict the onset of an
aversive event,36 as well as to seek relief from pain or
aversion.36,96 Likewise, human imaging studies show that activity
in the nucleus accumbens (NAc) is associated with both
impending pain and pain relief.6,8,9 Furthermore, the anterior
insula is a key part of the brain that participates in expectation of
impending pain.2,3,22,47 It has been shown to mediate negative
valence emotions,14,21,22,26 negative expectation of nocebo
hyperalgesia,32,66,67 increased negative emotional response to
experimental pain processing, and anticipation in anxiety/
depression and emotional allodynia.72,73,75,76

Just as there is individual variability in placebo and nocebo
responses,35 people also differ in their emotional biases. In other
words, some individuals are adaptive (those with positive bias),
who successfully regulate emotional responses to unpleasant
stimuli,72,78 while others are maladaptive (those with negative
bias), who show heightened reactivity, behavioral and cognitive
avoidance, helplessness, and increased threat
attention.37–39,53,65,75 This is most important clinically in cases
when cues are ambiguous and do not clearly predict an outcome.
Although several studies have examined how biasing anticipa-
tions leads to biased perceptions and the underlying neuro-
circuitries of such biases,51,87 less is known about the neural
bases of individual variability in such anticipatory biases,
especially when the outcome is uncertain.

To address current gaps in the field, this study aims to assess
the extent to which an individuals’ neural activity patterns during
acute pain anticipation could identify their positive or negative
anticipatory response biases in ambiguous and uncertain
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situations. Usingmachine learning techniques and single-subject
data analytics, our primary aims were to create a subject-specific
activation pattern distinguishing 2 levels of cued pain anticipation
(ie, anticipating a “high” pain stimulus vs anticipating a “low” pain
stimulus) and to use this activation pattern to predict the
individual’s anticipation response patterns during uncertainty.
Our secondary aim was to discover subgroups in terms of
affective biasing during uncertain conditions and determine
whether these related to psychopathology, demographics, pain
cognitions, and/or brain structure. Intrigued by a notable overlap
in altered pain and anticipatory processes across multiple mental
health diagnoses,5,72,75–77,80 we used a mixed psychopathology
chronic pain-free sample for this work. Based on the extensive
literature, we hypothesized that both anterior insula and ventral
striatum would play an important role in predicting anticipatory
biases.

2. Methods

2.1. Participants

Data for 147 subjects (50 female participants, mean6 SD age,
28 6 6.8 years) were used for this study and combined
previously published datasets.72,73,77,78 Data analyzed and
reported here are original, that is, they were not reported in
previous publications. The sample described here includes 57
(22 female participants) healthy controls with no current or
history of pain, mental illness, or trauma and 90 (28 female
participants) subjects in a “mixed psychiatric” group (major
depressive disorder N 5 35; combat trauma N 5 25; mild TBI
N 5 19; and recovered anorexia nervosa N 5 11, all without
chronic pain, see Table 1 for details). Subjects were recruited
using flyers at the University of California San Diego (UCSD)
clinics, internet sites (eg, Craigslist), local papers, and word of
mouth from 2008 to 2011. The study was approved by the
UCSD Human Research Protection Program and Veterans
Affairs San Diego Healthcare System Research and De-
velopment Committee. All methods were performed in
accordance with the relevant guidelines and regulations.
Before participating, all subjects gave their written informed
consent and underwent a Structured Clinical Interview for
DSM-IV (SCID)31 to establish current and past psychiatric
diagnoses. All subjects completed behavioral questionnaires,
including the Beck Depression Inventory (BDI)–210 for de-
pressive symptom severity, the Spielberger State-Trait Anxiety
Inventory (STAI-T)69 for trait anxiety, the Pain Catastrophizing
Scale (PCS)81 for pain coping cognitions, and the Toronto
Alexithymia Scale (TAS20)83 for the ability to identify and
evaluate feelings (see Table 1 for details). Subjects were
excluded from the study if they: (1) used psychotropic
medication within the last 30 days; (2) fulfilled DSM-IV criteria
for alcohol/substance abuse or dependence within 30 days of
study participation; (3) fulfilled DSM-IV criteria for lifetime
bipolar or psychotic disorder; (4) have ever experienced a head
injury with a loss of consciousness of .30 minutes; (5) had
clinically significant comorbid medical conditions, such as
cardiovascular and/or neurological abnormality, including
chronic pain; (6) had irremovable ferromagnetic material; (7)
were pregnant or claustrophobic; and (8) were left-handed. All
female subjects were scanned during the first 10 days of their
menstrual cycle. A subset of these subjects (N 5 32)
underwent the same pain anticipation paradigm on at least 2
separate occasions. Each scan was roughly 12 months (61
month) apart. This cohort will be referred to as the replication
cohort (see Table 1 for details).

2.2. Neuroimaging protocol

Two functional magnetic resonance imaging (fMRI) runs (412
brain volumes per run) sensitive to blood oxygen level–dependent
(BOLD) contrast were collected for each subject using a 3.0T GE
Signa EXCITE scanner (GE Healthcare, Milwaukee, WI) (T2*-
weighted echo planar imaging, TR 5 1500 ms, TE 5 30 ms, flip
angle 5 90, FOV 5 23 cm, 64 3 64 matrix, 30 2.6-mm 1.4-mm
gap axial slices) while they performed the pain anticipation
paradigm described further. These parameters were optimized
for mesolimbic acquisition.55,64,70 Acquisitions were time-locked
to the onset of the task. During the same experimental run, a high-
resolution T1-weighted image (FSPGR, TR 5 8 ms, TE53 ms,
TI 5 450 ms, flip angle 5 12, FOV 5 25 cm, 172 sagittal slices,
2563 256matrix, 13 0.973 0.97mm3 voxels) was obtained for
anatomical reference. The fMRI protocol was the same for most
(N5 125) of the subjects, but a small subset of subjects (N5 22)
were scanned separately with a TR of 2000 ms for the T2*-
weighted echo planar imaging.

2.3. Pain anticipation functional magnetic resonance
imaging paradigm

The pain anticipation paradigm used 2 predetermined and
consistent temperatures, 45.5˚C and 47.5˚C, across subjects to
elicit a low-pain (LP) and a high-pain (HP) sensation, respectively.
Average postscan subjective ratings were 4.3 6 2.8 and 1.6 6
1.7 for HP and LP, respectively. Stimulation was delivered
through a 9-cm2 thermode (Medoc TSA-II, Ramat-Yishai, Israel)
on the participant’s left forearm, as described elsewhere.72 Each
trial began with a period of anticipation (10 seconds) initiated by
a visual cue (Fig. 1A). The cue was always followed by painful
stimulation (7 seconds, either HP or LP) and a period of rest
(jittered between 24 and 30 seconds) before the next trial began.
The schedule of stimuli differed between runs in a pseudorandom
and counterbalanced order. A single imaging session included 7
HP trials (HP cue followed by HP stimulation), 7 LP trials (LP cue
followed by LP stimulation), and 14 uncertain (UN) trials
(nonspecific pain cue followed by either HP or LP stimulation at
50% probability, unknown to the subject). For a more detailed
explanation of the pain anticipation paradigm, see supplemental
digital content 1, http://links.lww.com/PAIN/C20.

2.4. Functional magnetic resonance imaging
image processing

All fMRI data were preprocessed using a MatLab-based
functional connectivity toolbox, CONN,93 to denoise and align
the images for analysis (Fig. 1B). A detailed account of the
preprocessing pipeline is given in supplemental digital content 2,
http://links.lww.com/PAIN/C20. Further analysis was conducted
using the Analysis of Functional NeuroImages (AFNI) software
package.18 A multiple regression model corrected for autocor-
relation consisting of 28 anticipation-related regressors and
28 stimulus-related regressors was applied to preprocessed time
series data for each individual, as recommended.56 A separate
regressor was calculated for each trial such that each event had
its own estimated amplitude. The 28 anticipation-related
regressors modeling the entire anticipation period consisted of:
(1) anticipation of moderately painful heat stimulation (HP
anticipation), (2) anticipation of mildly painful heat stimulation
(LP anticipation), and (3) anticipation of uncertain painful heat
stimulation (UN anticipation). All stimulation conditions (HP and
LP) were modeled as regressors of no interest. Six additional
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regressors were included in the model as nuisance regressors: 1
outlier regressor to account for physiological and scanner noise
(ie, the ratio of brain voxels outside of 2 standard deviations of the
mean at each acquisition), 3 movement regressors to account for
residual motion (in the roll, pitch, and yaw directions) and
regressors for baseline and linear trends to account for signal
drifts. To reduce the false positives induced by collinearity, time
series data were fit using the AFNI18 program 3dLSS.56 3dLSS
applies a least squares sum model estimation to the resulting
individually modulated time series data to deconvolve BOLD
activation in the Multi-Variate Pattern Analysis (MVPA) of task-
based fMRI data.56 This approach was chosen following previous
findings that 3dLSS, as opposed to a traditional least squares
approaches, achieved higher classification accuracy with low
variance56 (see Fig. 1B for the Study Imaging Pipeline).

2.5. Structural analysis

A fully automated processing pipeline, Advanced Normalization
Tools (ANTs), was applied to each T1w scan. Preprocessing
involved correction of magnetic field intensity in homogeneity (eg,
N4 bias correction),88 extraction of brain tissues, and Atropos
n-tissue segmentation.4 The T1w MRI volume of each subject
was spatially normalized to a widely used T1w MRI template in
stereotaxic space, the Montreal Neurological Institute/
International Consortium for Brain Mapping (MNI-152). Spatial
normalization and ROI segmentation results for each scan were
inspected visually for accuracy. Morphometric measures in-
cluding total gray matter volume in mm3 were estimated using

ANT built-in functions for each ROI (see below). The relative
intracranial volume (ICV)–to-template size was determined by
calculating the determinant of the affine registration matrix from
the ANT registration. The relative ICV value was thenmultiplied by
the ICV of the MNI-152 template to calculate a total ICV value per
subject).

2.6. Regional activation maps

Activationmapswere created on a single-subject basis. Masks of
selected ROIs were created in MNI space using AFNI and
Hammers atlas.27,40 A total of 26 ROIs were chosen based on
their prominent roles in pain prediction, processing, and
relief.20,23,30 Twelve ROIs (6 on each side) were selected within
the insula27: (1) posterior long gyrus, (2) anterior short gyrus, (3)
middle short gyrus, (4) posterior short gyrus, (5) anterior inferior
cortex, and (6) anterior long gyrus (Fig. 1B) based on the
prominent role of insular subregions in various aspects of pain
prediction and experience22,34 and the critical role of insula
subregions in our prior work on pain anticipation.72,73 In addition,
these ROIs were augmented by 14 functionally relevant bilateral
ROIs (7 on each side): (1) anterior cingulate cortex, (2) amygdala,
(3), nucleus accumbens, (4) caudate nucleus, (5) putamen, (6)
pallidum, and (7) substantia nigra. The anterior cingulate and
amygdala ROIs were chosen for their role in affective processing
networks, the nucleus accumbens as a vital region of the ventral
striatum involved in evaluation, alongwith its common targets, the
pallidum and substantia nigra, and lastly, the caudate nucleus
and putamen as representative of the dorsal striatum (see

Table 1

Sample characteristics.

Full cohort Healthy controls, n 5 57 Mixed psychiatric, n 5 90 Stats

Mean 6 SD Mean 6 SD t/x2 P

Demographic variables

Gender 35 M/22 F 62 M/28 F 0.87 0.35

Age (y) 27.3 6 7.4 28.4 6 6.4 0.97 0.33

Race 0.64 0.88

African American N 5 4 N 5 5

Asian N 5 7 N 5 8

Caucasian N 5 30 N 5 49

Other N 5 16 N 5 28

Clinical variables

Major depressive disorder N 5 35

Combat trauma N 5 25

Mild TBI N 5 19

Recovered anorexia nervosa N 5 11

BDI-2 3.2 6 5.7 17.2 6 12.4 8.0 ,0.001

PCS 9.6 6 9.6 16.5 6 12.1 3.6 ,0.001

TAS-20 39.5 6 11.6 54.2 6 13.9 6.6 ,0.001

STAI-T 30.2 6 9.5 47.7 6 13.2 8.6 ,0.001

Replication cohort* 8 healthy controls 24 mixed psychiatric Stats

Demographic variables Mean Mean t/x2 P

Gender 8 M/0 F 17 M/7 F 1.16 0.28

Age, y 27.1 6 4.14 26.9 6 7.2 20.07 0.94

Race 1.08 0.78

African American N 5 4 N 5 13

Asian N 5 2 N 5 9

Caucasian N 5 1 N 5 2

Other N 5 1 N 5 0

* Replication cohort, 32 subjects from the original full cohort who completed a follow-up session at ;12 mo.

BDI, -2 Beck depression inventory; PCS, Pain catastrophizing scale; STAI-T, Spielberger state-trait anxiety inventory; TAS-20, Toronto Alexithymia scale; TBI, Traumatic brain injury.
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supplemental digital content 3, http://links.lww.com/PAIN/C20
for details). Using the AFNI program 3dROIstats,18 the mean
activation was extracted as the beta coefficient from each region
during each individual anticipation trial. The use of t values, as
opposed to beta coefficients, suppresses the contribution of
noisy voxels and has shown improved classification accuracy in
previous studies.54

2.7. Whole-brain activation maps

To evaluate the significance of effect of anticipation of high pain,
low pain, and the difference in the whole sample, the whole-brain
linear mixed-effects model (ie, high, low) was run on activation in
the HP anticipation and LP anticipation with subject entered as
a random factor using AFNI function 3dLMEr.16 Voxel-level
results were thresholded at P 5 0.00005 and cluster volume of
100 (P , 0.00005).19

Likewise, to evaluate the significance of effect of heat pain after
known and unknown cues for each anticipation bias cluster defined
further (ie, positive/unbiased/negative), whole-brain linear mixed-
effects model for group (ie, positive/unbiased/negative), and cue (ie,
known/unknown) and subject as a random factor was run using
AFNI function 3dLMEr.16 The effects were examined for group
activation during each cue, voxel thresholded at P 5 0.00005 and
cluster volume of 300 (P, 0.00000). In an exploratory analysis, we
also performed a 3dLMEr on the group by cue interaction, voxel
thresholded at P, 0.01 and a cluster volume of 100.

2.8. Functional analysis of regional activation maps for
multi-variate pattern analysis

The average activation within each region underwent regression
analysis byway of elastic net. The regressionmodel was executed in

R84 using the glmnet package84 for Lasso and Elastic Net
Regularized General Linear Models. Penalized regression methods

are especially important in this case because they allow for a smaller

number of predictors to be included in the model. In glmnet, 2

variables, alpha and lambda, must be specified to control the fit and

regularization of the regression model. Alpha represents the elastic

net mixing parameter such that a value of 0 uses a ridge penalty, 1
uses a LASSO penalty, and an intermediate value uses a weighted

combinationof the 2. Lambda is the regularizationparameter. Elastic

net was performed on a single-subject basis in which the training set

was individuals’ neural activation (from 26 ROIs simultaneously as

independent predictors) during 14 certain anticipation trials (HP and

LP as dependent outcome). For the initial training, that is, low pain vs
high pain anticipation model, data were split into 2/3 and 1/3 for the

training and test sets, respectively. The model was cross-validated

(n5 100) using 3 folds on certain anticipation trials, and lambda and

then alpha were selected for optimal fit for this training set. The

optimal value of alpha for each subject was determined by testing

values (0-1) at regular intervals of 0.1 and selecting that which
resulted in the greatest subject-specific classification accuracy (see

supplemental digital content 4, http://links.lww.com/PAIN/C20).
This allowed for accurate and consistent discrimination between

Figure 1. Illustration of applied methods. (A) Data collection: pain anticipation paradigm; high pain (red, N5 7), low pain (green, N5 7), and uncertain pain (yellow,
N 5 14) visual cues, followed by pain stimulation. (B) Model verification: fMRI preprocessing with CONN toolbox (www.nitrc.org/projects/conn, RRID:
SCR_009550) and task-based regression (including least squares summodel) completed in AFNI. Activation maps extracted in 26 a priori–chosen ROIs depicted
in glass brain on the right side only for each high and low pain anticipation event (see supplemental digital content 3, http://links.lww.com/PAIN/C20 for further
details). Elastic net regression is used to train and test classifier to separate low and high pain anticipation neural patterns (c.f. Methods for more details) (C)
Uncertainty prediction: Each uncertain anticipation trial is compared with the certain activation maps and a probabilistic prediction is determined by LASSO.
Predictions $0.5 are classified as “high,” and predictions ,0.5 as “low.” (D) Group classification: Predictions across all 14 uncertain trials for each subject are
provided to mixAK cluster analysis in R, and each subject is clustered based on individual anticipation profile.
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single-subject neurobiological patterns of low pain and high pain
anticipation. The optimal model for certain trial separation (ie, HP vs
LP) was then applied to predict classification (ie, HP or LP) in the 14
uncertain trials.

2.9. Cluster analysis

Cluster analysis was completed using the R-based package
MixAK.45,46 MixAK uses a generalized linear mixed model (GLMM)
with Markov Chain Monte Carlo (MCMC) methods45,46 to cluster
subjects based on the multidimensional (ie, N 5 14 uncertain trials
separately) probabilistic predictions made for each UN trial obtained
from the elastic net model. Effects accounted for in the GLMM
included the fixed effect of timeand the randomeffect of theprevious
pain stimulation experienced (HP or LP). Previous pain was included
as a random effect based on findings indicating that prior
experiences can modulate the experience of painful stimula-
tion.7,12,13,34,49,59,94 The model used a normal mixture distribution
of random effects. To validate this model, a k-means (k 5 3)
clustering was also applied that did not include the temporal lagged
effect that was provided by the GLMM-MCMCmodel (X-squared5
150.2, df5 4, P, 0.001; Jaccard index5 0.7619).

2.10. Functional analysis of replication cohort

For the subset (N 5 32) of the cohort that underwent multiple
scanning sessions (Table 1), prediction analysis was trained on
certain anticipation activation maps from session 1 for each
subject and applied to certain anticipation activation maps for the
subsequent session.

2.11. Statistical analysis

To explore whether psychiatric and demographic variables
influenced predictions, we performed chi-square tests on the
elastic net regression analysis results to compare predictions
between the healthy controls and mixed psychiatric group, as
well as male and female individuals. Pearson correlation tests
were performed to assess possible relationships between cluster
classification and demographic variables (sex and age). To
assess the role of psychological variables (BDI2, PCS, TAS20,
and STAI-T) in our predictions of cluster group assignment,
logistic regression was performed. Categorical variables were
assessed with chi-square tests, 2-tailed t tests, and an ANOVA.

3. Results

3.1. Subject-specific neural response patterns distinguish
low pain and high pain anticipation

The study flow is summarized in Figure 1A–D. The performance
of individualized neural patterns in separating anticipation of
high pain vs anticipation of low pain was 97.4 6 7.9% accurate
with 98.4 6 5.9% sensitivity, 96.5 6 13.1% specificity, and
97.4% area under the curve (AUC) across all subjects, as
indicated by the receiver operating characteristic (ROC) curves
in Figure 2A. High-pain and low-pain anticipatory neural
patterns were separable in 145 of 147 subjects in our study
based on a single-subject accuracy threshold of 75% or greater.
To ensure that single-subject (or “idiographic”) approach to
distinguish between the high-pain and low-pain anticipatory
neural patterns was the most effective, a group-based (or
“nomothetic”) approach, based on population-wise activation
maps averaged across all subjects,92 was also performed. This

model assessed the extent to which population-based average
pain anticipatory neural patterns distinguished low-pain and
high-pain anticipatory neural patterns on the single-subject
level. Population-based model performance was 59.46 13.5%
accurate across all subjects, with similarly low specificity,
sensitivity, and AUC. In addition, only in 22 (15%) subjects,
high-pain and low-pain anticipatory neural patterns were
separable at a 75% accuracy level using the population-based
elastic net model. Whole-brain activation for high pain and low
pain anticipation in the entire sample (see Methods), as well as
postscanner subjective anticipatory ratings (t[141] 5 12.143,
P , 0.001, ES 5 1.022), showed the expected significant
differences (Fig. 2A, see supplemental digital content 5, http://
links.lww.com/PAIN/C20 for detailed activation tables). Across
all subjects’ elastic net models, insular regions were the most
frequently included regional neural activity predictors of low pain
vs high pain anticipation neural pattern separation (96% of the
subjects), with the anterior short gyrus being the most frequent
(63%). Other highly contributing regions were the nucleus
accumbens (64%), substantia nigra (61%), and amygdala (60%)
(Fig. 2B, see supplemental digital content 6, http://links.lww.
com/PAIN/C20).

3.2. Subject-specific activation pattern classifies
anticipation response patterns during uncertainty

Once we confirmed that neural patterns of low pain and high
pain anticipation are separable with high accuracy on an
individual level (see above and Fig. 2A), we classified each
neural pattern during uncertainty into either high pain or low
pain anticipation for each individual subject. Classifier deci-
sions at each of the 14 anticipation periods during uncertainty
were based on a continuous classifier evidence value (0-1) in
that predictions $0.5 are classified as “high,” and predic-
tions ,0.5 as “low.” Individual predictions for each uncertain
anticipation for a single example subject and average
predictions during uncertainty for the entire sample are shown
in Figure 1C. Of importance, we assessed the stability of each
subject’s decoded anticipation biases during uncertainty over
time. This was examined in a replication cohort of 32 subjects
who had repeated fMRI data collection 12 6 1 months apart
(Table 1, see supplemental digital content 7, http://links.lww.
com/PAIN/C20). Each subject’s individualized elastic net
modeling of certain anticipatory trials from the first imaging
session (train) was applied to uncertain pain anticipation trials
of the subject’s subsequent imaging session (test). The
interclass correlations were highly significant (ICC 5 0.72; F
[31,32] 5 3.6, b 5 0.57 [0.44-0.87], P 5 0.00027), confirming
the stability of our predictions during uncertainty.

3.3. Discovery of affective biasing subgroups
during uncertainty

3.3.1. Subject cluster by anticipation biases during
uncertainty

Our secondary aim was to discover subgroups within anticipa-
tory biases during uncertainty and how factors such as
demographics and/or psychopathology may influence sub-
grouping (Fig. 1D). The GLMM identified 3 clusters based on
subjects’ response patterns to uncertain trials (Fig. 3A). The first
cluster (n 5 55; olive) was characterized by a low-pain
anticipatory response to uncertain trials (ie, “positive bias”), the
second cluster (n 5 47; pink) was characterized by a high pain
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anticipatory response to uncertain trials (ie, “negative bias”), and
the third cluster (n5 45; dark grey) was not a strong fit to the first
or second clusters (ie, “unbiased”) and had ;0.5 average
likelihood across all uncertain trials. As expected, there was
a statistically significant difference between the subgroups in
their average probability during uncertainty (F[2,144]5 225, P,
0.0001). Furthermore, as demonstrated in Figure 3B, regardless
of previous pain stimulation, “Positive Bias” cluster subjects
(olive) were more likely to anticipate low pain (yellow), and
“Negative Bias” cluster subjects (pink) were more likely to
anticipate high pain (orange). The unclassified subjects “un-
biased” (dark grey) anticipated low pain and high pain at

approximately 50% after high pain, while after low pain, the
unbiased group anticipated high pain more often than low pain
(x2 54.555, P 5 0.0328). The three-cluster solution was robust
and consistent with the k-means model (see Methods and see
supplemental digital content 8, http://links.lww.com/PAIN/C20).
We further examined whether anticipation bias groups differed in
the feature importance that provided pattern separation in high
and low anticipation conditions (Fig. 2C). Specifically, we
examined subject-level importance scores and determined
whether weights differed by ROI, the affective bias cluster group,
and their interaction. We found that the importance scores of
these ROIs were significantly different (ANOVA, F[12,1236]5

Figure 2. (A) Individual patterns for anticipation high and low pain are shown (representative subject #147). Using an elastic net approach, which allows for optimal
selection ranging from penalized regression analysis with least absolute shrinkage and selection operator (LASSO)86 regularization to ridge regression,41 the
performance of individualized neural patterns in separating anticipation of high pain vs anticipation of low pain was 97.4 6 7.9% accurate with 98.4 6 5.9%
sensitivity, 96.56 13.1% specificity, and 97.4% area under the curve (AUC) across all subjects. Likewise, subjective ratings for anticipation of high pain and low
pain (shown by the raincloud plots) were significantly different (stats). Anticipation-related brain response also significantly differed in the entire sample. (B)
Frequency map of regions of interest included in single-subject elastic net models. Models varied between subjects, resulting in a high variation of predictors
included in each model. X-axis is frequency (in percent) of inclusion in all single-subject models (N 5 147). Brain regions are displayed accordingly.
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3.8905, P , 0.0001) but that there was no main effect of group
(F(2, 1236)5 0.3598, P 5 0.6979) and no group by ROI
interaction (F[24,1236]5 0.8337, P 5 0.6954) (Fig. 3C).

3.3.2 . Classification based on neural activity patterns during
uncertainty only weakly relates to mental health diagnosis
and demographics

Density maps depicting average prediction of subjects’
diagnostic group vs cluster classification are shown in
Figure 3D separately for the healthy controls and mixed
psychiatric, depression (MDD), mild TBI, recovered anorexia
nervosa (RAN), and combat trauma group. A formal compar-
ison between anticipatory biases by mental health status was
not significant (x2 5 6.037; P 5 0.643). Comparison of
“healthy” and the “mixed psychiatric” cohort was also not
significant (x2 5 4.017, P 5 0.134). Similarly, there were no

significant effects when comparisons were made between
“healthy” and individual diagnoses (P’s . 0.05). Likewise,
biological sex was not a significant predictor of cluster
classification (x2 5 1.026, P 5 0.599).

3.3.3 . Classification based on neural activity patterns during
uncertainty relates to cognitive coping styles

To validate our findings, we wanted to examine whether brain-
based classification of individuals’ anticipatory response biases
during uncertainty into adaptive (“positive bias”) and maladaptive
(“negative bias”) anticipators is supported by individual’s cogni-
tive coping styles and/or emotional factors. To determinewhether
and what cognitive/emotional factors explain the biologically
determined differences between the 2 well-defined and stable
neural clusters, ie, “positive bias” cluster (olive, Fig. 3A) and
“negative bias” cluster (pink, Fig. 3A), we performed logistic

Figure 3. (A) Distribution of anticipatory bias across affective biasing groups: Histograms depicting cluster classification versus average predictions. The GLMM
model identified, 3 clusters based on subjects’ response patterns to uncertain trials. The first cluster (n5 55; olive) were characterized by a low-pain anticipatory
response to uncertain trials (ie, “positive bias”), the second cluster (n 5 47; pink) were characterized by a high-pain anticipatory response to uncertain trials (ie,
“negative bias”), and the third cluster (n5 45; dark grey) were not strong fits to first or second clusters (ie, “unbiased”) and had;0.5 average likelihood across all
uncertain trials. As expected, there was a statistically significant difference between the subgroups in their average probability during uncertainty (F[2,144]5 225,
P, 0.0001). Predictions during uncertain trials for the entire sample are depicted in the histogram. (B) Proportion of affective biasing by pain prior in each cluster:
Regardless of previous pain stimulation, “Positive Bias” cluster subjects (olive, left) were more likely to anticipate low pain (yellow), and “Negative Bias” cluster
subjects (pink, middle) weremore likely to anticipate high pain (orange). The unclassified subjects “Unbiased” (dark grey, right) anticipated low pain and high pain at
approximately 50% after high pain, while after low pain, the unbiased group anticipated high pain more often than low pain (x25 4.555, P5 0.0328). (C) Regional
feature importance by affective biasing subgroups. Subject-level importance scores in predicting neural separation of high and low pain anticipation were
examined to determine whether weights differed by ROI, the affective bias cluster group, and their interaction. The importance scores of these ROIs were
significantly different (ANOVA, F[12,1236]5 3.8905, P5 6.91E-06), but there was nomain effect of group (F[2,1236]5 0.3598, P5 0.6979) and no group by ROI
interaction (F[24,1236] 5 0.8337, P 5 0.6954). (D) Anticipatory bias cluster classification vs clinical subgroups. Density maps depicting average prediction of
subjects’ diagnostic group vs cluster classification within the healthy controls, mixed psychiatric group, individuals with major depressive disorder (MDD), those
withmild traumatic brain injury (mTBI), womenwith recovered anorexia nervosa (RAN), and those withmixed combat trauma. Therewas no significant difference in
cluster classification within any of the aforementioned diagnostic groups (P’s. 0.005). Mixed combat trauma included veterans with comorbid major depression,
posttraumatic stress disorder, and mild TBI.
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regression with subscales of PCS, TAS20, STAI-T, and BDI-2
used as predictors, while also accounting for age and gender.
The results of logistic regression showed that helplessness from
PCS (ES5 0.22603; SE5 0.08049, Z5 2.81, P5 0.005), and to
a lesser degree difficulty to describe feelings from TAS20 (ES 5
0.14402, SE50.07248, Z5 1.99;P5 0.047), showed significant
differences between these 2 clusters, that is, individuals with
positive and negative biases. Of importance, helplessness from
PCS further differentiated all 3 clusters as determined by k-means
clustering (ES5 0.1456; SE5 0.0724; Z5 2.01; P5 0.044) (see
supplemental digital content 9, http://links.lww.com/PAIN/C20).

3.3.4. Classification based on neural activity patterns during
uncertainty relates to brain structure

To assess to what extent the anatomic architecture was
associated with the decoded anticipatory response biases
during uncertainty, we estimated gray matter tissue volume of
26 regions of interest (seeMethods). Oof these 26 regions, only
the volume of the right anterior short insular gyrus was

significantly and inversely associated with the average
anticipatory response bias during uncertain trials (Pearson
correlation coefficient r 5 20.262, P , 0.05, corrected for
multiple comparisons, df 5 145, see supplemental digital
content 10, http://links.lww.com/PAIN/C20), indicating that
those with the greatest right anterior short insular gyrus volume
were more likely to anticipate low pain during uncertainty (ie,
more likely to show a “positive bias”).

3.4. Pain-related blood oxygen level–dependent response in
affective bias subgroups

The average pain-related whole-brain response (see Methods)
and subjective pain ratings in 3 affective bias subgroups and their
overlap are shown in Figure 4A, following the known cues, and in
Figure 4B, following the unknown cues. All groups showed
overlapping activation within most of the regions (see supple-
mental digital content 11, http://links.lww.com/PAIN/C20 for
detailed activation tables) including activation of the insula and
deactivation within the default mode network regions. Notably,

Figure 4. (A) Brain pain maps following known cue: Pain-related brain response in each of the 3 affective bias clusters (positive bias, olive, top row; unbiased, dark
grey, middle row; and negative bias, pink, bottom row) during high pain stimulus following known cue, corresponding subjective ratings and overlap between the 3
affective biasing subgroups rendered on a glass brain (dark green). All groups showed overlapping activation within most of the regions (glass brain, dark green
overlap map, see supplemental digital content 11, http://links.lww.com/PAIN/C20 for detailed activation tables) including activation of the bilateral insula (1, 2),
anterior cingulate (3), striatum (green square), and deactivation within the default mode network regions (4). Subjective pain ratings did not differ significantly in the
3 clusters during high pain stimulus following known cue. (B) Brain pain maps following unknown cue: Pain-related brain response in each of the 3 affective bias
clusters (positive bias, olive, top row; unbiased, dark grey, middle row; and negative bias, pink, bottom row) during high pain stimulus following unknown cue,
corresponding subjective ratings and overlap between the 3 affective biasing subgroups rendered on a glass brain (teal). All groups showed overlapping activation
within most of the regions (glass brain, teal overlap map, see supplemental digital content 11, http://links.lww.com/PAIN/C20 for detailed activation tables)
including activation of the insula (1, 2), anterior cingulate (3), and deactivation within the default mode network regions (4). However, only the “positive bias” group
(olive, top row) showed striatal activation during pain following the unknown or uncertain cue (green square). Despite segregated densities, subjective pain ratings
did not differ significantly in the 3 clusters during high pain stimulus following the unknown cue.
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the striatum showed overlapping activation during pain following
the known cue (Fig. 4A, green square). However, only the
“positive bias” group (olive) showed striatal activation during pain
following the unknown or uncertain cue (Fig. 4B, green square).
Exploration of the voxel-wise group by cue interaction effects
identified 3 clusters that survived significance at P, 0.01 (cluster
threshold 100) (Fig. 5). Clusters were located in the posterior
cingulate gyrus (x/y/z: 22/227/21; Χ2 5 10.4; 265 voxels), right
fusiform gyrus (x/y/z: 42/232/221; Χ2 5 10.6; 122 voxels), and
the right striatal region (x/y/z: 18/7/9; Χ2 5 9.3; 101 voxels).
Exploration of the interaction effects confirmed that the striatal
cluster was activated during pain following both, the known and
unknown cues in the “positive bias” group only (Fig. 5). Likewise,
subjective pain ratings showed variability following the unknown
cue that matched the positive/negative bias subgrouping, that is,
lower in the “positive bias” group following the unknown cue
(Fig. 4B). However, the affective biasing group (positive, negative,
and unbiased) by cue (known, unknown) interaction was not
significant (F[1,2,111] 5 1.321, P 5 0.271).

4. Discussion

The goal of this study was to assess the extent to which an
individuals’ neural activity patterns during cued anticipation of
high and low painful stimulus could identify their positive or
negative anticipatory response biases during ambiguous or
uncertain situations. Our major findings are as follows. First,
using a multivariate pattern analysis and single-subject analytics,
it is possible to distinguish between subjects’ neural activation
patterns of anticipation of high and low pain stimuli with high
accuracy, sensitivity, and specificity. Second, nucleus accum-
bens and dorsal anterior insula were the 2 brain regions that

contributed most frequently to the distinction between the neural
patterns of high and low pain anticipation. Third, 3 clusters of
subjects were defined from the response patterns to uncertain
anticipatory cues: (1) positive bias, (2) negative bias, and (3)
unbiased. Fourth, these individual neural response patterns
during uncertainty were stable over time and suggested
mechanistic differences in brain activation when pain was
experienced. Five, we found that the 3 groups clustering solution
was related to cognitive coping styles and the underlying
anatomical architecture and less to mental health status and
demographics. These findings add valuable information to the
current models of the expectation of pain and extend current
knowledge on perceptual biases to unique neural biases during
pain anticipation in uncertainty.

The main and unique finding from this study is that an
individual’s neural activation patterns show stable biases when
anticipating pain during uncertainty. We identified 3 affective
biasing subgroups based on anticipatory neural patterns during
uncertainty. Using personalized elastic net models on low and
high pain anticipation, we categorized uncertain pain anticipation
as high or low. Results showed 37% anticipate low pain (positive
bias), 32% anticipate high pain (negative bias), and 31% were
unbiased. Notably, subgroups differed in anticipatory behaviors
toward pain stimulation priors. Positive and negative bias clusters
consistently anticipated low or high pain, regardless of prior
stimulus. Conversely, prior stimulus influenced unbiased cluster’s
uncertainty anticipations—equal anticipation after high pain,
more high pain anticipation after low pain (x2 5 4.555, P 5
0.0328). This hints that these subjects’ predictions might be
influenced by prior experiences rather than predetermined.

The premise of most pain as predictive signal models is based
on updating information.33 When sensory evidence fails to

Figure 5. Group-by-Cue Interaction Effects. Exploration of the voxel-wise affective bias group-by-cue interaction effects showed 3 clusters that survived
significance at P , 0.01 (cluster threshold 100). Clusters were located in the (1) posterior cingulate gyrus (x/y/z: 22/227/21; x2 5 10.4; 265 voxels, (2) right
fusiform gyrus (x/y/z: 42/232/221; x25 10.6; 122 voxels, and the right striatal region (x/y/z: 18/7/9; x25 9.3; 101 voxels, green square). Raincloud plots show
that activation within this cluster between known and unknown cues increased in the “positive bias” group only, while in the “negative” and the “unbiased” groups,
activation within this cluster between known and unknown cues decreased.
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confirm the prediction, either the sensory evidence is ignored
and, in turn, biases perception, or the brain learns from the error
and updates subsequent predictions and evaluations to keep
bias in check.29,63 Our findings demonstrate that there is
variability in an individual’s updating processes, that is, some
predictions are predetermined and less influenced by sensory
inputs. Strikingly, when we examined these predictions in the
replication cohort 1 year later, these biases showed significant
stability. This suggests that the observed differences in affective
biasing during uncertainty had less to do with learning and more
to do with the fundamental differences in predictions that could
remain stable over time. Of importance, we confirmed that the
brain response to pain is in fact more about prediction and less
about evaluation.1,15,30 We found that once the pain was actually
experienced, it was evaluated similarly across the 3 affective
biasing groups. Nevertheless, the whole brain response to pain
differed, albeit at a more lenient exploratory threshold level (P ,
0.01) matching the affective biasing subgroupings. The most
striking observation was striatal activation during pain that
followed the unknown cue, which was observed in the positive
bias subgroup only. We posit that relief-related processes8,9,36,96

are recruited more readily during anticipation in the positive bias
group; hence, they are more likely to predict low pain even when
the situation becomes uncertain. Although the observed in-
teraction must be interpreted with caution, this represents an
interesting mechanistic interpretation for positive affective bias
behavior and a plausible avenue for future research.

Notably, affective biasing clusters did not consistently corre-
spond to specific DSM-IV–defined mental illnesses. This is not
surprising given the intertwined nature of various psychiatric and
pain conditions.5,72,75–77,80 Thus, our results suggest that
anticipatory biases during uncertainty are likely to cut across
various diagnoses. However, biasing clusters did align with vital
transdiagnostic pain behaviors; specifically, the helplessness
aspect of pain catastrophizing and, to a lesser degree, difficulty in
describing feelings from the Toronto alexithymia scale
(TAS20).42,82 Catastrophizing significantly affects experimental
and clinical pain responses25,58,82,89 and is linked to psychopa-
thology.58 High catastrophizing associates with chronic pain
development, severity, disability, and treatment resis-
tance.11,24,95 Thus, our findings concur with previous data on
catastrophizing and extend these data to include neutral affective
biasing clusters.

Several studies have demonstrated a mechanistic role of
predictions in influencing pain perception in processes that are
believed to occur through modulation of pain-related brain
response,87 such as perceptual biasing by cues.1,15 Recent
work shows that perceptual biasing is consistent with predictive
painmodels, that is, it can be reducedwith increases in prediction
error but cannot be fully corrected, evenwhen the prediction error
is at its highest.87 These findings are in direct agreement with the
current observations showing that neural predictions are
predetermined in approximately 70% of individuals, are stable
over time, and are less influenced by sensory inputs. Further-
more, the degree of updating of prediction errors to threat cues is
influenced by cognitions.51 Those with more catastrophic
thinking about pain and less mindfulness are significantly more
reliant on predictions than on the sensory evidence from the pain
stimulus.51 These behavioral differences map to variability in
responses in the striatum, a finding not dissimilar to ours. The
finding that higher perceptual bias (rating) towards cues was
related to higher pain catastrophizing is also in direct agreement
with our findings.

Although the regions of interest (ROIs) chosen for this study were
previously implicated in multidimensional pain experi-
ence,39,53,60,72,74,90 we found that the predictive value of each
region for low vs high pain anticipation discrimination varied widely
across subjects and did not differ between the 3 affective bias
groups. The most common regions predictive of low vs high
anticipatory responses included the insular regions (particularly the
anterior short gyrus) and the nucleus accumbens, with varying
inclusion frequencies in the individualized elastic net models. The
frequent inclusion of the nucleus accumbens, which has previously
been implicated in the anticipation of pain and pain relief,6 as well as
in animal studies of pain-predictive, cue-influenced decision-
making,68 suggests that there is a synergistic relationship between
the anticipation of pain and the expectation, or hope, of relief from
pain. Likewise, the role of anterior insula in pain processing and
anticipation cannot be overstated.2,3,14,21–23,26,32,47,66,67,72,73,75,76

In fact, we recently showed a brain mechanism associated with
chronic neuropathic pain may be acting through increased aversion
or emotional distress during expectation of pain relief within this
region.71 Specifically, we observed a significant interactionwithin the
right anterior insula during relief expectation in a chronic pain group
when a painful stimulus was at the site of the endogenous pain.71

Based on our recent work,79 we believe that the NAc-insula
connection provides a balance between pain and pain relief and that
functional connectivity between these regions at rest underlies
a healthy (or resilient) response to stressful and/or threatening
events. Communication between these nodesmay assist in building
a better predictive estimation of pain/tissue damage.

A limitation of this study is the unequal gender representation,
despite the known influence of sex on pain anticipation and
perception, with female individuals often experiencing greater
psychological distress from pain.52,85 Although our results did not
distinctly differentiate anticipation bias patterns based on sex or
psychiatric diagnoses, future research with larger unique di-
agnostic samples is still warranted. Similarly, while our findings
linking helplessness to affective biasing clusters are robust,
replication will be needed. In addition, optimism measures and
perceptual biases, unexamined in this study, offer avenues for
future investigation. Of importance, considering the significance
of relief expectation in chronic pain,17 replicating our findings in
a chronic pain sample are imperative. Exploring affective biasing
in individuals experience chronic pain could provide important
clinical insights and extend these findings into practical cost-
effective applications.

5. Conclusions

The stable anticipation bias–derived subject clusters identified
here are a corollary of having an optimistic or pessimistic filter. By
identifying whether uncertain cues were mapping to low or high
pain, the individual’s propensity towards optimistic or pessimistic
assumptions could be assessed. This neurally derived cue
biasing was related to a clinical measure of helplessness, further
validating the conceptualization of cue response as important in
understanding predicted pain experience. We suggest that these
acute automatic predictions in the face of uncertainty are stable
overtime andmay be critical to catastrophizing. The predictions of
pain can influence or determine an individual’s experience of pain.
Thus, the delineated subject clusters could be indicative of
vulnerabilities to pervasive attitudes on threat, and these may
respond differently across sex due to either societal or biological
interactions. Further study of how this automatic biasing
architypes may influence clinical treatment outcomes is

1744 I.A. Strigo et al.·165 (2024) 1735–1747 PAIN®



important. While fully mechanistic work of this nature is not
imminently available in clinical settings, it is our hope that
techniques such as those presented in this study, potentially
using more broadly available and requiring lower overhead, can
be streamlined and made available to clinics to ascertain
objective measurements of intrinsic behaviors and guide pain
interventions.
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