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Tree simplification and the ‘plateaux’ phenomenon of
graph Laplacian eigenvalues

Naoki Saitoa,∗, Ernest Woeia,1

aDepartment of Mathematics, University of California, Davis, CA 95616, USA

Abstract

We developed a procedure of reducing the number of vertices and edges of a
given tree, which we call the “tree simplification procedure,” without changing
its topological information. Our motivation for developing this procedure was
to reduce computational costs of graph Laplacian eigenvalues of such trees.
When we applied this procedure to a set of trees representing dendritic struc-
tures of retinal ganglion cells of a mouse and computed their graph Laplacian
eigenvalues, we observed two “plateaux” (i.e., two sets of multiple eigenvalues)
in the eigenvalue distribution of each such simplified tree. In this article, after
describing our tree simplification procedure, we analyze why such eigenvalue
plateaux occur in a simplified tree; explain such plateaux can occur in a more
general graph if it satisfies a certain condition; and identify these two eigenval-
ues specifically as well as the lower bound to their multiplicity.

Keywords: vertex reduction; graph Laplacian eigenvalues; eigenvalue
multiplicity; monic polynomials with integer coefficients
2000 MSC: 05C07, 05C50, 15A42, 65F15

1. Introduction

In order to characterize and cluster dendritic trees of retinal ganglion cells
(RGCs) of a mouse, our previous work [9] illustrated the use of graph Lapla-
cian eigenvalues rather than using the morphological features derived manu-
ally from those dendritic trees. We note that each dendritic tree was literarily
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represented by a tree in the sense of graph theory. Furthermore, in [10, 8], we
provided our theoretical understanding of the peculiar eigenvalue/eigenvector
phase transition phenomenon we observed on each of our dendritic trees.

Continuing on our road to characterizing dendritic trees, once more we ob-
served a new eigenvalue phenomenon on our simplified (or vertex-subsampled)
dendritic trees. Discovery of this phenomenon has the following history. Each
of the dendritic trees first analyzed in [9] has a large number of vertices (rang-
ing from 565 to 24474 depending on the RGCs) since they represent dense spa-
tial sample points traced along the actual dendritic arbors in the 3D images
measured by a confocal microscope using specialized segmentation software
operated by our neuroscience collaborators; see [3] for the details. If we are
only concerned about their topological properties (e.g., connectivities of vari-
ous branches, bifurcation patterns, etc.) but not their geometric aspects (e.g.,
branch lengths, branch angles, etc.), then it is unnecessary to keep most of
the vertices of degree 2 since they do not alter topology of the trees. Section 3
describes our procedure to eliminate such vertices, which we call a “tree sim-
plification procedure.” After simplifying all these trees, we once again started
analyzing their graph Laplacian eigenvalues. Interestingly enough, the phase
transition phenomenon we observed in the original trees disappeared com-
pletely. Instead, we observed a new phenomenon in the eigenvalue distribu-
tions of such simplified trees. For each such simplified tree, the eigenvalue dis-
tribution has two “plateaux,” i.e., a pair of distinct eigenvalues having the same
multiplicity greater than one as shown in Figures 6 and 7. The purpose of this
article is to describe this phenomenon and provide a theoretical explanation of
this phenomenon.

The organization of this article is the following. Section 2 sets up our nota-
tion for this article and defines some basic quantities. Then, Section 3 describes
our tree simplification procedure and illustrates several examples. Section 4
describes our main result along with its theoretical consequences. Finally, we
conclude in Section 5 with discussion and state a conjecture on more general
situations.

2. Notation and Definitions

In this article, we follow the standard notation and terminology in the graph
theory literature, e.g., [6]. All the graphs we consider throughout are finite, sim-
ple (i.e., with no multiple, weighted, or directed edges and no loops), and con-
nected. Let G = (V ,E) be a graph where V = V (G) = {v1, v2, . . . , vn} is the vertex
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set of G and E = E(G) = {e1,e2, . . . ,em} is its edge set where ek connects two ver-
tices vi , v j for some 1 ≤ i , j ≤ n. |V | = n is also referred to as the order of V .
The degree of a vertex v , i.e., the number of edges incident with v , is denoted as
dv . A vertex v is referred to as a leaf or a pendant vertex if dv = 1. A path from vi

to v j in a graph G is a subgraph of G consisting of a sequence of distinct vertices
starting with vi and ending with v j such that consecutive vertices are adjacent.
We say the length `(P ) of a path P is the number of its edges, i.e., `(P ) :=|E(P )|.
A rooted tree T (V ,E) is a tree with a vertex labeled as the root vertex, vr ∈ V . A
starlike tree is a tree which has exactly one vertex of degree greater than 2. Let
S (n1,n2, . . . ,nk ) be a starlike tree that has k(≥ 3) paths (i.e., branches) emanat-
ing from the central vertex v1 with dv1 = k. Let the i th branch have ni vertices
excluding v1. Let n1 ≥ n2 ≥ ·· · ≥ nk . Then, n = |V (S(n1, . . . ,nk ))| = 1+∑k

i=1 ni .
In this article, we refer to a vertex of degree 2 in a given graph as a trivial

vertex. All the other vertices are referred to as nontrivial, with the following ex-
ception: if the graph is a rooted tree, then its root vertex is treated as a nontrivial
vertex regardless of its degree. For a graph G(V ,E), a pair of nontrivial vertices,
say, (vi1 , vik ) ∈V ×V , is referred to as a neighboring pair of nontrivial vertices if
there is a path between them with a vertex sequence

(
vi1 , vi2 , . . . , vik

)
where the

intermediate vertices vi2 , . . . , vik−1 are all trivial.
The Laplacian matrix of G is L(G) :=D(G)− A(G) where A(G) = (

ai j
)

and
D(G) := diag

(
dv1 , . . . ,dvn

)
are the adjacency matrix and the degree matrix of G ,

respectively. Let 0 = λ0 ≤ λ1 ≤ ·· · ≤ λn−1 be the sorted eigenvalues of L(G).
Let mG (λ) denote the multiplicity of the eigenvalue λ of L(G), and let mG (I ) be
the number of eigenvalues of L(G), multiplicities included, that belong to I , an
interval of the real line.

3. Tree Simplification

As mentioned earlier, we only deal with simple, connected, undirected, and
unweighted graphs in this article as we did in our previous works [9, 10, 8]. In
other words, we focus on the topological aspects of graphs rather than geomet-
rical aspects. For the latter, we refer the readers to [13, Chap. 7] as well as our
ongoing work [2]. We also assume that each tree we deal with in this article
is a rooted tree whose root vertex corresponds to the so-called “soma” (a.k.a.
cell body) if that tree represents an actual neuronal dendritic tree. Once we de-
cide to restrict our attention to the topological aspects of trees, then it seems
obvious that all trivial vertices defined earlier can be removed without alter-
ing the topology and connectivities. Removal of such trivial vertices certainly
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saves subsequent computations of eigenvalues and eigenvectors of the result-
ing Laplacian matrices.

Can we really remove all trivial vertices in an original tree? If we dealt with
topological and geometrical aspects of trees by using weighted trees with edge
weight representing the Euclidean distance between the associated pair of ver-
tices, then the answer would be ‘Yes’. However, the answer is in fact ‘No’ for
unweighted trees of our interest. This is due to the existence of the so-called
spines2 in our dendritic trees. Each spine is represented by a pendant edge (i.e.,
an edge connecting a leaf and one of the intermediate vertices in a path); see,
e.g., Figure 5.

We want to distinguish spines from longer paths in our resulting simplified
trees. To do so, we need to do the following: for each pair of neighboring non-
trivial vertices in an original tree, check the length of its associated path; if it is
greater than one (i.e., a non-spine path), then we remove all those intermedi-
ate trivial vertices but one in the middle of the path, which results in the path
of length two. Note that this tree simplification procedure keeps all the spines
intact.

Let us briefly illustrate the benefits we obtain from this tree simplification
procedure on our dataset by displaying a histogram of an agglomeration of all
the vertices and their degrees over all dendritic trees in Figure 1(a). There we
can see that the number of trivial vertices outnumber the number of nontrivial
vertices. Most trivial vertices in our original dendritic trees lie on paths between
neighboring nontrivial vertices. Figure 1(b) shows the degree distribution of the
simplified dendritic trees after our tree simplification procedure is applied. We
can see that the number of degree 2 vertices in the simplified trees are compa-
rable with the nontrivial vertices with degree 1 and degree 3. See also Table 1
for more quantitative information on our tree simplification procedure applied
to our dendritic trees.

Let us now describe our tree simplification procedure in detail. Let T (V ,E)
be a rooted tree. Assume V is an ordered list of vertices that are labeled as vi for
i = 1, . . . ,n = |V |. Without loss of generality, let us assume v1 is the labeled root
vertex. Our procedure starts by examining vertex v1, then v2, and so on till we
examine the last vertex vn (See Algorithm 1).

2Spines are small membranous protrusion along a neuron’s dendrite. They typically receive
input from a single synapse of another neuron’s axon. They also serve as a storage site for
synaptic strength and help transmit electrical signals to the neuron’s cell body [12]. Therefore,
spines are a very important feature of dendrites.
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Figure 1: Histogram of an agglomeration of all vertices and their degrees for (a) unmodified
dendritic trees; (b) simplified dendritic trees with one trivial vertex on each non-spine path.
Note that the scale of the vertical axis in (a) is different from that in (b).

Algorithm 1 Tree Simplification

1: Set i = 0.
2: If i > n, then terminate; else set i = i +1 and v = vi .
3: If v is v1 or v ∉V , then goto Step 2.
4: If dv , 2, then goto Step 2.
5: If dv = 2, then v is adjacent to two vertices. Let u and w be these two ver-

tices. If u or w is v1, then goto Step 2.
6: If du = 2, then ‘coalesce’ u and v (i.e., delete the edges (v,u), (v, w) from E ;

add a new edge (u, w) to E ; and delete v from V ), and goto Step 2.
7: If dw = 2, then follow Step 6 with w instead of u.
8: Go to Step 2.

A few remarks are in order. First, note that from Step 3 to Step 7, we would
coalesce at most one pair of vertices. Second, upon the completion of the above
procedure, the pair of sets (V ,E) form the desired simplified tree. The number
of nontrivial vertices in the simplified tree is preserved by this simplification
procedure as can be seen from Step 3 and Step 4.

Now let us illustrate our tree simplification procedure by applying it to very
simple two trees in Figures 2 and 3. Figure 2 shows a simplification of tree P6

with root vertex vr to P4. In Figure 3, the tree simplification procedure keeps P5

intact since vr is adjacent to two trivial vertices, hence we “go back" to Step 2

5



vr

(a) P6

Tree Simplified−−−−−−−−−−→ vr

(b) P4

Figure 2: P6 simplified to P4.

vr

(a) P5

Tree Simplified−−−−−−−−−−→ vr

(b) P5

Figure 3: P5 with center root vertex simplified is still P5.

in Steps 3 and 5.
Figures 4 and 5 illustrate the simplified trees of a few dendritic trees in our

dataset. Table 1 provides information about how much we simplified (i.e., sub-
sampled) our original dendritic trees. From this table, we see that on average,
approximately 84% of vertices of our dendritic trees are removed by our proce-
dure.

4. Eigenvalue ‘Plateaux’ Phenomenon

After simplifying all of the dendritic trees in our dataset, we computed their
Laplacian eigenvalues. We then observed an “eigenvalue plateaux” phenomenon
for each of the newly formed simplified trees. In Figures 6 and 7, we display a
couple of simplified trees and their respective eigenvalue plots. The eigenval-
ues which form these plateaux are approximately 0.3820 and 2.6180. In fact, as

we will explain shortly, these values are more precisely written as θ := 3−p
5

2 =
2− 2cos π5 ≈ 0.3820 and θ∗ := 3+p

5
2 = 2− 2cos 3π

5 ≈ 2.6180. It is interesting to
note that the multiplicity of each of those eigenvalues are exactly the same. In
Table 2, we present some statistical information on the eigenvalue multiplicity
across all trees for each cluster. For these dendritic trees, the multiplicities of θ
were determined numerically by counting all the eigenvalues lying within the
interval of width of 2×10−10 centered at θ, and the same procedure was used
for θ∗.

Below we mention a simple example of a tree which contains these eigen-
values and a type of tree that has identical multiplicities of θ and θ∗.

Example 4.1. The simplest tree possessing Laplacian eigenvalues θ and θ∗ is
P5. It is well known that the eigenvalues of Pn are 2−2cos kπ

n for k = 0,1, . . . ,n−1;
see, e.g., [11]. Hence for n = 5, we have θ = 2−2cos π5 and θ∗ = 2−2cos 3π

5 .
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Figure 4: RGC #100 from Cluster 6. (a) Original, 1154 vertices. (b) Simplified, 53 vertices. (c)
Overlayed. Approximately 95% vertices reduction from the original tree to the simplified tree.
Note that these plots are 2D projections of the 3D dendritic structures since each original vertex
has a 3D spatial coordinate. The units of the horizontal and vertical axes are inµm = 10−6meter.
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Figure 5: RGC #60 from Cluster 1. (a) Original, 5636 vertices. (b) Simplified, 612 vertices.
Approximately 89% vertices reduction from the original tree to the simplified tree. Note that
“spines” are preserved.
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Vertex Count Statistical Information

Cluster # # RGCs |Vo | σo |Vs | σs Red. Avg. Red. Std.
1 9 4650.8 3693.68 866.8 189.98 70.23% 17.80%
2 8 1562.4 565.18 337.1 167.65 78.46% 5.78%
3 18 2262.4 1448.48 422.7 169.37 77.83% 8.27%
4 8 9378.1 7369.27 645.0 300.54 88.38% 8.50%
5 10 2778.1 1841.34 343.6 115.20 85.02% 6.68%
6 9 758.7 172.16 39.6 19.60 94.55% 3.11%
7 15 3245.0 3299.06 333.3 52.40 83.44% 8.46%
8 19 3323.5 2125.14 302.7 49.42 87.25% 6.81%
9 21 3113.9 2021.73 210.7 60.25 90.23% 6.21%

10 13 3561.8 2727.46 173.6 35.98 91.22% 6.18%
11 12 4668.8 2697.87 981.7 256.64 74.53% 10.95%
12 9 8273.1 6809.86 599.3 189.34 87.02% 10.89%
13 19 5043.2 2744.18 724.8 205.49 80.62% 11.56%
14 8 3684.0 2763.62 446.9 144.29 83.49% 7.10%
no 1 5590.0 0.00 103.0 0.00 98.16% 0.00%

Total 179 3852.5 3565.28 442.0 293.10 83.99% 10.89%

Table 1: Vertex count statistical information for the original and simplified dendritic trees for
each cluster of RGCs. These clusters were identified by Coombs et al. [3] from their morpholog-
ical analysis followed by the hierarchical clustering technique. Cluster ‘no’ indicates a singular
dendritic tree that does not belong to any of the 14 distinct clusters. The 3rd and 5th columns
are the average number of vertices across all trees for each cluster, for the original and simpli-
fied tree, respectively. The 4th and 6th columns represent the standard deviation of the number
of vertices across all trees for each cluster. The final two columns represent the average percent-
age reduction and reduction standard deviation of number of vertices from the original to the
simplified dendritic tree. The subscripts ‘o’ and ‘s’ indicate ‘original’ and ‘simplified’, respec-
tively.
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Figure 6: RGC #102 of Cluster 6. (a) Simplified tree overlaid on original dendritic tree. (b) Eigen-
value distribution of the simplified tree. Note that mT (θ) = mT (θ∗) = 3.
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Figure 7: RGC #108 of Cluster 6. (a) Simplified tree overlaid on original dendritic tree. (b) Eigen-
value distribution of the simplified tree. Note that mT (θ) = mT (θ∗) = 4.
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Eigenvalue Multiplicity Statistical Information

Cluster # mT ({θ,θ∗}) σm Cluster # mT ({θ,θ∗}) σm

1 29.3 15.94 2 20.2 10.27
3 34.2 11.45 4 58.8 19.54
5 24.8 11.43 6 7.6 3.98
7 36.3 10.19 8 31.2 8.47
9 26.3 6.85 10 20.8 9.43

11 68.7 39.04 12 36.7 10.99
13 34.6 9.99 14 34.0 8.25
no 20.0 0.00 All 32.9 19.61

Table 2: Summary of the Laplacian eigenvalue multiplicity of the simplified dendritic trees of
our dataset separated by each cluster. The 2nd and 5th columns contain the average multiplic-
ity of the eigenvalues θ and θ∗, while the 3rd and 6th columns contain the standard deviation
of these specific eigenvalue multiplicities. Note that mT ({θ,θ∗}) = 2mT (θ) = 2mT (θ∗).

Now the following proposition demonstrates a concrete example of the ex-
istence of θ and θ∗ with multiplicities.

Proposition 4.2. Let T (V ,E) = S(k.2) :=S(2,2, . . . ,2︸      ︷︷      ︸
k

) be a starlike tree with k >

1 branches with each branch containing 2 vertices so that |V | = 2k + 1. Then
mT (θ) = mT (θ∗) = k −1.

We note that P5 = S(2.2).

Proof. This easily follows from the following lemma due to Das:

Lemma 4.3 (See Das [4, Lemma 3.1]). The Laplacian eigenvalues of starlike tree
S(k.m) are

2+2cos
( pπ

2m +1

)
, p = 2,4, . . . ,2m, (1)

and each of multiplicity k −1. Also the remaining eigenvalues satisfy the follow-
ing system of equations:

λx1 = x1 −x2

λxi = 2xi −xi−1 −xi+1 i = 2,3, . . . ,m

λxm+1 = kxm+1 −kxm
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Hence, setting m = 2 in this lemma, the eigenvalues (1) are of the form 2+
2cos pπ

5 , p = 2,4. But 2+2cos 2π
5 = 2−2cos 3π

5 = θ∗, and 2+2cos 4π
5 = 2−2cos π5 =

θ. Their multiplicies are k −1 as Das’s lemma guarantees.

We now explain why the eigenvalue plateaux phenomenon occurs in our
simplified dendritic trees. First, let us define some notation that will be used
in our theorem below. Let G(V ,E) be a simple, connected, undirected, and un-
weighted graph. Let

V1 := {v ∈V |dv = 1} ⊂V (2)

be the set of pendant vertices and

V2∼1 := {v ∈V |dv = 2 and ∃u ∈V1 s.t. u ∼ v} (3)

be the set of pendant neighbors of degree 2, and

VI := {v ∈V |dv ≥ 3 and ∃u ∈V2∼1 s.t. u ∼ v} (4)

be the set of vertices of degree 3 or greater which are adjacent to vertices in V2∼1.
For every v ∈VI , let us define the following two quantities

c(v) := ∣∣{v ′ ∈V2∼1 |v ′ ∼ v
}∣∣ (5)

and
τVI

:= ∑
v∈VI

(c(v)−1) . (6)

Note that there may be vertices of degree 3 or greater in V that do not belong to
VI . The following theorem explains the eigenvalue plateaux phenomenon not
only for simplified trees but also for more general graphs.

Theorem 4.4. Let G(V ,E) be a simple, connected, undirected, and unweighted

graph with n = |V |. Let θ = 3−p
5

2 and θ∗ = 3+p
5

2 be as defined previously in this
section. Suppose τVI

≥ 1, then

mG (θ) = mG (θ∗) ≥ τVI
. (7)

In other words, the multiplicity of the graph Laplacian eigenvalues θ and that of
θ∗ are the same and at least τVI

.
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Proof. Let κ := |VI |. If κ = 0, then obviously τVI
= 0 ≤ mG (θ). Similarly, for

mG (θ∗). Suppose κ > 0, then VI , ;. For every v ∈ VI , we have c(v) ≥ 1 by
the definitions of (5) and (4).

Suppose VI = {v1, . . . , vκ}. A Laplacian matrix of G takes the form

L(G) =



B1 r 1
. . . . . .

Bκ r κ
r T

1
. . . C1 C2

r T
κ

C3 C4


, (8)

where for each j with 1 ≤ j ≤ κ, and B j := diag(Q, . . . ,Q) ∈ R2c(v j )×2c(v j ), i.e., a

block diagonal matrix with c(v j ) copies of Q :=
[

2 −1
−1 1

]
, and r j ∈R2c(v j )×1 is a

vector of c(v j ) stacks of the vector r :=
[−1

0

]
, i.e.,

r j :=


r
r
...
r

 ∈R2c(v j )×1.

Note that the eigenvalues of Q is θ and θ∗.
To describe the block matrices C` for `= 1,2,3,4, first let us define

V I
2∼1 := {

v ∈V2∼1 |∃v ′ ∈VI s.t. v ∼ v ′}⊆V2∼1 (9)

and
V I

1 := {
v ∈V1 |∃v ′ ∈V I

2∼1 s.t. v ∼ v ′}⊆V1. (10)

Note that
∣∣V I

2∼1

∣∣ = ∣∣V I
1

∣∣ = ∑κ
j=1 c(v j ). Let Vr :=V \

(
VI ∪V I

2∼1 ∪V I
1

)
. C1 is a κ×κ

matrix whose diagonal entries are dv1 ,dv2 , . . . ,dvκ and whose off-diagonal en-
tries depends on the interactions (edges) between vertices within VI . The block
matrices C2 and C3 correspond to the interactions between vertices in VI and
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Vr , while the block matrix C4 corresponds to the interactions between vertices
within Vr .

We need only consider the case when c(v j ) > 1, since if c(v j ) = 1, then
it does not contribute to the sum in (6). Our strategy is to construct a set of
c(v j )−1 eigenvector(s) associated with the eigenvalue λ, where λ = θ or θ∗ or
equivalently when λ satisfies the characteristic equation λ2 −3λ+1 = 0. First,
let

x
λ

:=
[ −1

2−λ
−1

]
(11)

and let 0k denote the zero vector of length k.
For `= 1, . . . ,c(v j )−1, let y` be the vector of length 2c(v j ) where x

λ
occupies

the 1st and 2nd entries of y` and −x
λ

occupies the 2`+1 and 2`+2 entries of
y`, i.e.,

y` =



x
λ

02
...

02

−x
λ

02
...

02


← 2`+1 and 2`+2 positions.

Therefore,

y` ∈





x
λ

−x
λ

02
...
...
...

02


,



x
λ

02

−x
λ

02
...
...

02


, . . . ,



x
λ

02
...
...

02

−x
λ

02


,



x
λ

02
...
...
...

02

−x
λ



︸                                               ︷︷                                               ︸
c(v j )−1 vector(s)

.

Note that,

Qx
λ
=

[
2 −1
−1 1

][ −1
2−λ
−1

]
=

[ −λ
2−λ
λ−1
2−λ

]
=λ

[ −1
2−λ
−1

]
=λx

λ
, (12)

where the second equality from the right of (12) holds if λ= θ or θ∗. From this
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it is easy to see that

B j y` =λy`, `= 1, . . . ,c(v j )−1.

Hence, y` is an eigenvector of B j with eigenvalue λ for each `= 1, . . . ,c(v j )−1.
It is clear that r T

j y` = 0 for all `= 1, . . . ,c(v j )−1 using the definition of both
vectors. Hence we can construct our eigenvectors for L(G) corresponding to
the eigenvalue λ= θ or θ∗ as

φ(`, j) =



02c(v1)
...

02c(v j−1)

y`
02c(v j+1)

...
02c(vκ)

0n−∑κ
i=1 2c(vi )


, (13)

for each j = 1, . . . ,κ and ` = 1, . . . ,c(v j )− 1. It is clear that the multiplicity of
θ accounted by the vectors of the form (13) is

∑κ
j=1(c(v j )−1), which is exactly

equal to τVI
. The same argument also holds for θ∗. Therefore the inequality of

(7) is achieved.
Finally, in order to show mG (θ) = mG (θ∗), let us first recall that the charac-

teristic polynomial of L(G) is a monic polynomial of integer-valued coefficients.
Moreover, the numbers θ and θ∗ are the so-called algebraic integers in the field
of Q

[p
5
]

[1, Chap. 13]. Combining these with the fact that the eigenvalues of
L(G) are nonnegative real numbers, thanks to the Galois theory [1, Chap. 16],
we know that if θ is a root of such characteristic polynomial, then its “real con-
jugate” θ∗ must also be a root and their multiplicities must be the same, i.e.,
mG (θ) = mG (θ∗).

We note that the eigenvectors constructed in (13) do not include the re-
maining eigenvectors of L, especially those related to the C1,C2,C3, and C4 por-
tions.

We now present some examples below to demonstrate our Theorem 4.4.

Example 4.5 (mG (θ) = mG (θ∗) = τVI
). Figure 8 shows that τVI

= 3. We can see
this by observing the bordered rectangles encompassing the indicated vertices.
Here, we have vi ∈ VI with c(vi ) = 2 for each i = 1,2,3 in Figure 8. By compari-
son to the results displayed in Figure 6(b), we see that mG (θ) = mG (θ∗) = 3 = τVI

.
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Figure 8: RGC #102 of Cluster 6 dendritic tree simplified. vi ∈VI for each i = 1,2,3 with c(vi ) = 2
for i = 1,2,3, hence τVI

= 3.
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Figure 9: RGC #96 of Cluster 3 dendritic tree simplified. τVI
= 12, yet mG (θ) = mG (θ∗) = 13.

Vertices of interest are surrounded by green outlined squares and encompassed by a rectangle.

Example 4.6 (mG (θ) = mG (θ∗) 	 τVI
). Figure 9 shows an example where 13 =

mG (θ) = mG (θ∗) 	 τVI
= 12. The rectangles in this figure indicates locations of

vertices vi ∈VI for i = 1,2, . . . ,12, which contribute to τVI
.

5. Discussion

In this article, we introduced a tree simplification procedure that yielded the
highly pronounced “eigenvalue plateaux” phenomenon in all of our simplified
dendritic trees. We explained the reason of the occurrence of this phenomenon
by splitting the vertex set V of a graph (more general than such simplified trees)
into a set of mutually exclusive subsets, VI , V I

2∼1, V I
1 , and Vr followed by the ex-

plicit construction of eigenvectors corresponding to the multiple eigenvalues.
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We now discuss a potential generalization to our Theorem 4.4. Recall the
following theorem on the relationship between the pendant vertices and pen-
dant neighbors:

Theorem 5.1 (Faria [5]; see also Merris [7]). Let G be a graph, and let p(G) and
q(G) be the number of pendant vertices and pendant neighbors in G, respectively.
Then,

p(G)−q(G) ≤ mG (1).

This inequality was used to derive a spectral feature for clustering dendritic
trees in [9]. In this article, if we refer to the vertices in VI as pendant P2 neighbors
and the vertices in the set V I

2∼1 as pendant P2 vertices, with q2(G) and p2(G) as
their cardinalities, respectively, then it is clear that p2(G) = ∣∣V I

2∼1

∣∣ = ∑
v∈VI c(v),

q2(G) = |VI | = κ. Hence, Theorem 4.4 can be rewritten as

p2(G)−q2(G) ≤ mG (θ) = mG (θ∗).

More generally, let us define the notion of a pendant P j vertex and a pendant
P j neighbor. A vertex v in a graph G(V ,E) with |V | = n is said to be a pendant
P j vertex (1 ≤ j ≤ n) if the following conditions are satisfied: 1) v is a trivial
vertex; 2) v is adjacent to a nontrivial vertex u of degree greater than two; and
3) there is a pendant vertex w ∈ V such that u and w form a neighboring pair
of nontrivial vertices with a path of length j . A vertex u ∈G(V ,E) is said to be a
pendant P j neighbor if u is a nontrivial vertex with degree greater than two and
is adjacent to a pendant P j vertex. We then have the following:

Conjecture 5.2. Let G(V ,E) be a simple, connected, undirected, and unweighted
graph with |V | = n. Let 1 ≤ j ≤ n, and let p j (G), q j (G) be the number of pendant
P j vertices and the number of pendant P j neighbors, respectively. Then,

p j (G)−q j (G) ≤ mG (λs(G)),

holds for some s ∈ {0, . . . ,n −1}.

This conjecture is certainly true if G(V ,E) = S(k.m) where 1 ≤ j ≤ m. This is
because we can easily show from the definitions:

p j (G) =
{

0 if 1 ≤ j < m;

k if j = m
and q j (G) =

{
0 if 1 ≤ j < m;

1 if j = m
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imply

p j (G)−q j (G) =
{

0 if 1 ≤ j < m;

k −1 if j = m.

Since mG (λs(G)) ≥ 0 for every s ∈ {0,1, . . . ,n − 1}, the former case of p j (G) −
q j (G) = 0 ≤ mG (λs(G)) is certainly true. If j = m, then there are m eigenvalues
with multiplicity k −1 as Lemma 3.1 of Das [4] shows. Hence, p j (G)− q j (G) =
k −1 ≤ mG (λs(G)) also holds for certain s ∈ {0,1, . . . ,n −1}.
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