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P1.2 SELF-ORGANIZING NONLINER OUTPUT MAP (SONO): AN ARTIFICIAL NEURAL NETWORK SUITABLE 
FOR CLOUD-PATCH BASED RAINFALL ESTIMATION  

 
Kuo-Lin HSU*, Yang Hong, and S. Sorooshian 

 
University of California, Irvine, California 

 
 
 
1. INTRODUCTION 
 

The spatial and temporal distribution of precipitation 
is crucial for water management for agriculture, 
electrical power, and for drought and flood control. For 
many regions where ground observations are lacking, 
the development of satellite remote sensing techniques 
provides a unique opportunity to extend precipitation 
measurement. 

Remote sensing of precipitation usually depends on 
visible/infrared (IR) and microwave (MW) radiometers to 
interpret rainfall over the surface. From previous 
intercomparison project, it has been demonstrated that 
MW-based algorithms give better instantaneous 
estimates from their direct sensing capability, while 
IR/VIS-based algorithms give better long-term average 
estimates from the advantage of large amount of 
temporal samples from geostationary orbits (Ebert, 
1996). Many recent developments have been in the 
merging both IR and MW sensor’s information to 
generate better precipitation fields.  

One particular example of merging IR and MW 
information to generate improved rainfall estimates is 
the PERSIANN (Precipitation Estimation from Remotely 
Sensed Information using a Artificial Neural Network) 
algorithm. This algorithm calculates rainfall rate (RR) 
based on the local texture of cloud top IR brightness 
temperatures (Tb) near the calculation pixels, while 
limited MW rainfall estimates from low orbital satellites 
are regularly used in the adjustment of algorithm 
parameters (Hsu et al., 1997; Sorooshian et al., 2000). 
In this study, Self-Organizing Nonlinear Output (SONO) 
is presented in the retrieval of surface rainfall. Instead of 
extracting local texture information and facilitating one 
adjustable fitting function in PERSIANN, SONO extracts 
information from the whole cloud patch and provides 
multiple Tb-RR functions for different cloud types. Based 
on a step-by-step data processing through satellite IR 
cloud image segmentation, classification, and nonlinear 
mapping, surface rainfall rates are generated.  

 
 

* Corresponding author address: Kuo-Lin Hsu, 
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In this study, the development of SONO and its 
application to the rainfall retrieval using geostationary 
satellite IR imagery is introduced. Evaluation of SONO 
rainfall retrieval based on WSR-88 radar data and a 
comparison of model performance with UAGPI method 
is discussed. 
 
 
2. METHODOLOGY 
 

The SONO model is shown in Figure 1. This model 
has an input preprocessor which extracts IR cloud 
features as input variables. SONO performs two basic 
functions as “switchboard” and “approximator”. First, the 
SOFM (self-organizing feature map) is used as a 
classification tool to select or assign the candidate unit 
in the Nonlinear Output layer, while this output layer 
consists a number of exponential fitting functions, which 
served as an approximator to the Tb-RR relationship.  
 

 
 

Figure 1. Preprocessor and Self-Organizing Nonlinear Output 
(SONO) map 
 
2.1 Image Preprocessing 
 

Segmentation of IR imagery is a preprocess step 
for cloud analysis. Incremental Temperature Threshold 
(ITT; Hong et al. 2003) method is proposed for this 
purpose. The ITT is a hybrid patch segmentation 
approach, which includes the advantages of both 



hierarchical thresholding and Seeded Region Growing 
(SRG; Adams 1994). Given a snapshot of satellite IR 
image, ITT first locates the minimum temperature (Tbmin) 
as seeds (illustrated by cross marker), and then starts to 
iteratively expand each seed’s area one neighborhood 
size at a time until touching neighboring clouds or 
temperature threshold that delineates cloud from the 
clear sky. Figure 2 shows an example of cloud 
segmentation using ITT method. 
 

 
Figure 2. Cloud patches from (a) GOES infrared imagery are 
separated slowly by increasing IR temperature thresholds from 
low to high (b)-(e) in the ITT segmentation algorithm.  
 
2.2 Input Feature Extraction 
 

The characteristics of cloud patches, relevant to 
precipitation, are grouped into three categories: 
coldness, geometry, and texture. The first category is 
generally associated with the geophysical variables—
cloud brightness temperature; the second one is derived 
from the geometric properties of cloud patch; and the 
third is the texture variation of cloud brightness 
temperature (see Table 1). Statistical analysis found 
that the first category is mostly relevant to the rainfall 
intensity in a manner of negative correlation and that the 
size in the second category is positively correlated to 
rainfall volume. Although the features in third category 
are not necessary directly related to rain rate or rainfall 
volume, they do improve the discrimination of cloud 
clusters.  
 

Table 1.  The input features extracted from cloud patches 
 

Category Features 
Minimum temperature of a cloud patch 
(IRmin) 

Coldness 

Mean temperature of a cloud Patch 
(IRmean) 
Cloud patch size (Size) Geometric 
Cloud Patch Shape Index (SI) 
Standard deviation of cloud patch 
(STD) 

Texture 

Mean value of local standard deviation 
of cloud patch (MSTD(5x5)) 

Standard deviation of local standard 
deviation (STDstd(5x5)) 

 

Gradient of cloud top brightness 
temperature (TOPG) 

 
2.3 Image Classification 
 

Given a cloud patch p, the preprocessor provides 
three sets of input vectors for SONO:  

   
p=([xi], [Tbm], [RRm]), i=1,…,n0; m=1,…,N(p)              (1) 

 
Where [xi] = (x1, x2,..., xn0) is the feature vector listed in 
Table 1; n0 is the number of input features; [Tbm] is the 
IR brightness temperature vector within the patch and 
[RRm], if available, is the corresponding observation of 
rainfall vector; and N(p) is the number of pixels of the 
cloud patch p.  

SONO consists of two major components: SOFM 
and nonlinear regression fittings (see Figure 1). 
Classification layer is comprised of n1 units or groups: 
y=[y1, y2, ..., yn1]; the weight matrix wij is a set of 
parameters connecting from input node xi to the 
classification units yj. The mapping layer, z=[z1, z2, ..., 
zn1] contains n1 nonlinear fitting functions, where vjk are 
the kth parameter of a nonlinear function connecting 
from unit yj to output unit zj. The SOFM classification 
proceeds based on the similarity of the cloud patch 
features x and the connection weights w. The training of 
SOFM projects input patterns of many variables into an 
organized cloud classification map. Detail of the training 
procedure is described in Kohonen (2001) and Hsu et 
al. (1999). A brief summary of the training algorithm is 
listed below: 

 
Step 1: Prepare the input x and initialize the weights 

wij as normalized random number. 
Step 2:  Determine the winner node that has 

minimum distance between x and weight w:  
)(minarg*

ijijj wxj −=               (2)                   

Step 3: Update weight for the neighborhood (radius 
r) nodes of j* with learn rate α :  
wij=wij+α (xij-wij)               (3) 

Step 4: Terminate if the wij is converged, or reduce r 
and α and go to step 3.  

 
 

2.4 Mapping Pixel Rainfall 
 

As a result of SOFM classification, a dataset of Tb-
RR pairs is classified to the unit j and the data pairs are 
sorted based on the Probability Matching Method (PMM; 
Atlas et al. 1990). It is assumed that higher rain rates 
are associated to lower IR brightness (Arkin and 
Meisner 1987). Thus, the PMM matches the cumulative 



distribution functions (CDF) of the data pairs of Tb-RR 
as follows:  
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Where the P(.) is the probability distribution function and 
the estimated value of Tb and RR is in the range [0 
RRmax] and [Tbmin Tbmax], respectively.  

The use of power-law mapping between Tb and RR 
was suggested by the study of Gagin et al. (1985) and 
implemented by several others (Martin et al., 1990; 
Goodman et al., 1994; and Vicente et al., 1998). Here 
the nonlinear IR-RR fitting function is:  
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The above function consists of five parameters [vjk], 
k=1,2, …, 5.  In this case, SONO processes a large 
number (n1) of IR-R mapping relationships 
corresponding to different classified cloud group in the 
SOFM layer. 
 
 
3. CASE STUDY 
 

The SOFM classification layer is assigned as a 20 x 
20 matrix, which classifies cloud patches into 400 
groups (see Figure 3a). Note that both the SOFM 
classification layer and nonlinear mapping layer consist 
of the same arrangement of units in a 2-D coordinate. 
Therefore, a matrix (20 x 20) of Tb-RR relationships are 
calibrated according to Equation (5) and all the 400 
curves are plotted on an Tb-RR plane (Figure 3b). Flat 
curves indicate that the cloud top temperatures are 
usually cold but produce little or no rain; steep curves 
are relevant to the convective clouds that are capable of 
producing significant rainfall.  
 

 
Figure 3. (a) 400 classification groups in SOFM and (b) their 
IR-RR fitting curves in each classified data group. 

Validation and comparison of SONO was 
conducted at sub-daily, daily, and monthly temporal 

resolutions for spatial scales such as 0.04o, 0.12o, 0.5o, 
and 1.0o. Another cloud patch-based algorithm, 
Universal Adjusted GPI (UAGPI) (Xu et al., 1999) was 
used in the comparison. 
 
3.1 Sub-Daily Rainfall 
 

The rainfall observations used to evaluate SONO 
estimates are collected from Weather Surveillance 
Radar-1988 Doppler (WSR-88D), which is accessible 
from the National Center for Environmental Prediction 
(NCEP). Evaluation of rainfall estimates from SONO is 
conducted of various spatial and temporal scales. Here 
we have listed part of the performance evaluation at four 
1o x 1o grids (28oN-30oN and 102oW-100oW) located at 
Texas from July 1st through 10th, 2002. Figure 4 
presents the scatter plots of hourly, 3-hour, 6-hour, and 
daily rainfall of those four grids. It shows that at 1ox1o 
scale, SONO estimates are with high correlation 
coefficients (CC) to the radar rainfall around 0.75 at 
hourly scale and 0.85 at 24-hour (daily) scale. 
Comparison of model performance with the UAGPI (see 
Table 2), SONO is consistent with lower RMSE and 
Bias errors. Both UAGPI and SONO consist of high CCs 
in all scales. CCs of both models are high (around 0.9), 
especially for rainfall at daily scale, 
 

 
 
Figure 4. Scatterplots of time series of  hourly, 3-hour, 6-hour, 
and 24-hour rainfall at four 1o x 1o grids for July 1-10 2002 
located in Texas, 28oN-30oN and 102oW-100oW region 

 



Table 2 Statistical comparison of time series averaged 1ox1o 
SONO estimates vs. WSR-88D radar located Texas region 29o-
30oN and 101o-100oW at 1-hour, 3-hour, 6-hour, and daily 
intervals from 1st July 2002 through 10th July 2002. 
 

RMSE (mm) CORR Bias (mm) Time 
Period 

Radar 
mean 
(mm)  

UA 
GPI 

SO 
NO 

UA 
GPI 

SO 
NO 

UA 
GPI 

SO 
NO 

Hour 1.32 1.51 1.39 0.69 0.79 -0.6 -0.1 
3-hrs 3.96 4.23 3.12 0.77 0.85 -1.8 -0.5 
6-hrs 7.93 7.56 5.42 0.80 0.87 -3.7 -1.1 
Daily 31.71 23.2 12.9 0.89 0.93 -14. -4.4 

 
 
3.2 Monthly Rainfall 

 
Evaluation of SONO and UAGPI monthly rainfall 

covers a 10o x 10o region (30o-40oN and 105o-115oW) at 
central Texas plain using WSR-88D network data. One 
month of data in July 2002 was used in the case study. 
Figure 5 shows the scatter plots of monthly rainfall total 
at 0.04o ~ 1.0o grid scales generated from SONO and 
UAGPI rainfalls. Overall, UAGPI fails to catch high 
rainfall but its performance improved when spatial 
resolution is accumulated to a low-resolution scale; at 
spatial scales 0.5o~1.0o, CCs are around 0.6~0.7.  

SONO, on the other hand, is able to catch the 
rainfall at higher spatial resolution (e.g. 0.04o). The 
model performance is also improved at lower spatial 
resolution. Correlation coefficients of SONO are as high 
as 0.75 at all scales. In comparison with UAGPI, SONO 
estimates consistently show better performance in terms 
of the listed evaluation statistics (CCs, RMSEs, and 
BIASs).  
 

 
 
Figure 5. Scatterplots of July 2002 monthly rainfall total derived 
from Exponential function, UAGPI, and SONO vs. radar at 
30No-40oN and 105Wo-115oW region. 
 

 
3.3 Adaptability of SONO model 
 

The re-calibration of parameter vjk enables a better 
fit to the data provided by surface radar or TMI and 
SSM/I rainfall estimates. In this study, SONO model was 
trained using one-month (June 1999) WSR-88D radar 

rainfall, which might not represent the generalized 
behavior of those classified Tb-RR curves. For future 
operation of SONO algorithm beyond the test regions 
and seasons, it will be useful to include additional 
information from MW TMI and SSM/I rainfalls.  
 
 
4. CONCLUSIONS 
 

In this study, we introduced the SONO model and 
its application to the retrieval of surface rainfall using 
geostationary imagery. Ground radar rainfall data was 
used for the calibration and validation of SONO. The 
SONO includes image processing, feature extraction, 
classification at rough cloud patch scale and provides 
multiple functions of mapping pixel image to rainfall at 
small scale. The different Tb-RR mapping functions for 
the classified cloud patch groups generate variable rain 
intensities at a given IR brightness temperature. 
Comparison of SONO and UAGPI shows that SONO 
estimates outperform UAGPI in terms of three 
evaluation statistics (RMSE, BIAS, CC). 

Future work is to develop SONO as an operational 
satellite-based estimation system to produce rainfall 
information at small scales. Given the more accurate 
rainfall estimates from low-orbital MW imagers, an 
adaptive procedure will be used to adjust SONO model 
parameters.  
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