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ARTICLE

Leveraging Functional-Annotation Data
in Trans-ethnic Fine-Mapping Studies

Gleb Kichaev1 and Bogdan Pasaniuc1,2,3,*

Localization of causal variants underlying known risk loci is one of the main research challenges following genome-wide association

studies. Risk loci are typically dissected through fine-mapping experiments in trans-ethnic cohorts for leveraging the variability in

the local genetic structure across populations. More recent works have shown that genomic functional annotations (i.e., localization

of tissue-specific regulatory marks) can be integrated for increasing fine-mapping performance within single-population studies.

Here, we introduce methods that integrate the strength of association between genotype and phenotype, the variability in the genetic

backgrounds across populations, and the genomic map of tissue-specific functional elements to increase trans-ethnic fine-mapping ac-

curacy. Through extensive simulations and empirical data, we have demonstrated that our approach increases fine-mapping resolution

over existing methods. We analyzed empirical data from a large-scale trans-ethnic rheumatoid arthritis (RA) study and showed that the

functional genetic architecture of RA is consistent across European and Asian ancestries. In these data, we used our proposedmethods to

reduce the average size of the 90% credible set from 29 variants per locus for standard non-integrative approaches to 22 variants.
Introduction

Genome-wide associations studies (GWASs) have reproduc-

ibly identified thousands of risk loci associated with com-

plex traits and diseases.1–7 Unfortunately, the index vari-

ants reported in these studies are typically not biologically

causal but rather correlated with the underlying causal

variant through linkage disequilibrium (LD).8 Fine-map-

ping experiments identify causal variants responsible for

the GWAS signal first by gathering dense genetic informa-

tion, either through targeted sequencing or dense imputa-

tion, and second by statistically prioritizing variants that

can subsequently be validated in functional studies.3,6,9,10

Divergent population histories due to various demo-

graphic forces such as bottlenecks and expansions have

produced unique genomic landscapes across ethnic-

ities.11,12 Such differences in LD patterns and variant fre-

quencies across populations can increase the power of sta-

tistical fine mapping if they are properly modeled.3,13–18

Intuitively, if a locus contains a causal variant, the neigh-

borhood of LD partners linked to this variant will be

distinct in different populations. Thus, aggregating the

strength of association across multiple populations might

accentuate the signal from the true causal variant(s) while

dampening the noise from correlated variants.

A common approach to combining information across

multiple studies is through inverse-variance fixed-effects

meta-analysis,19 which assumes that effect sizes of causal

variants are similar across studies or populations. This

assumption can be relaxed by a random-effects strategy,

although it has been observed that this usually results in

a decrease in statistical power.20 A recent, and more robust,

Bayesian meta-analysis framework15 was proposed to

reason over trans-ethnic studies with potential allelic het-
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erogeneity. Both the fixed-effects meta-analysis statistics

and the Bayes factors supplied by the latter approach can

be readily converted into posterior probabilities of associa-

tion (PPAs) for the construction of fine-mapping credible

sets.3,21 However, these credible sets are commonly built

under the assumption that a locus harbors at most a single

causal variant,3,22–24 which might be invalidated at many

risk loci,17,25,26 leading to miscalibrated credible sets.27,28

Although conceptually it might be possible to create cred-

ible sets on the basis of independent signals identified

through conditional analysis, this strategy suffers from

necessitating an ad hoc re-definition of the fine-mapping

region. Furthermore, multiple causal variants in LD can

create at neighboring sites synthetic associations that are

potentially stronger than the association at the true causal

variants. The iterative conditioning strategy would neces-

sarily select these synthetic SNPs first, thereby dissipating

the signal from the true causal variants.27

In addition to the strength of association between geno-

type and phenotype, an orthogonal source of information

lies within a variant’s functional genomic context. Projects

such as ENCODE29 and ROADMAP30 have provided a rich

atlas of functional information, and numerous groups

have reproducibly demonstrated that disease-associated

variants are systematically enriched within chromatin

marks that delineate active regulatory regions in phenotyp-

ically relevant cell types.31–35 Whereas functional genomic

data are often used as a post hoc validation of association

findings,4,10,36 a number of principled approaches have

been proposed to jointly integrate functional and associa-

tion data.28,35,37,38 In addition to increasing the accuracy

of fine mapping, these integrative approaches also provide

insights into the genetic architecture of the trait by identi-

fying relevant tissue-specific functional marks without
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Figure 1. Example of a Fine-Mapping Locus in Three Different Populations
In population 1 (left), the causal variants are present, but strong regional LDmakes it difficult to distinguish them from tagging SNPs. In
population 2 (middle), the causal variants both have a very low frequency and/or are monomorphic, resulting in no observable associ-
ation between the SNPs and the trait. In population 3 (right), the causal variants are common and have few tagging SNPs. Our framework
jointly models population-specific LD structure and integrates functional genomic data to prioritize causal variants.
making any prior assumptions. However, to the best of our

knowledge, functional integrative approaches have not

been extended to trans-ethnic finemapping, and a rigorous

assessment of trans-ethnic fine mapping in the presence of

multiple causal variants is currently lacking. Although in

principle the single-population frameworks that allow for

multiple causal variants27,28 can operate directly on trans-

ethnic meta-analysis statistics, they require ad hoc aver-

aging of trans-ethnic LD and do not properly account for

heterogeneity by ancestry at causal variants.

In this work, we propose a statistical framework that inte-

grates three sources of information to triangulate causal var-

iants infine-mapping studies: (1) the strengthof association

between genotype and phenotype, (2) differential genomic

background across ethnic groups, and (3) tissue-specific

functional genomic annotations (Figure 1). Different allele

frequencies (or sample sizes) across populations induce dif-

ferential standardized effect sizes at all the variants in a re-

gion, even in the presence of no allelic effect-size heteroge-

neity by ancestry. We model this induced heterogeneity

across populations through a multivariate normal (MVN)

framework wherein the sets of population-specific associa-

tion statistics are realizations from population-specific

MVN distributions. Similar to the case of a single popula-

tion,27,28 this allows us to consider multiple causal variants

at any risk locus. We integrate functional genomic data by

using Empirical Bayes,28 which provides a means of select-

ing functional annotations most relevant to the trait of in-

terest. Most importantly, our proposed approach requires

only the summary association data for each population,

thereby avoiding themany restrictions that can accompany

analysis of individual-level genotype data.

Through extensive simulations, we show that our trans-

ethnic framework significantly improves fine-mapping res-

olution over conventional meta-analysis strategies and

demonstrate that considering multiple causal variants in

multi-ethnic cohorts yields large gains in fine-mapping effi-

ciency. We showcase our framework by reanalyzing empir-

ical summary data from a large trans-ethnic rheumatoid
The Amer
arthritis (RA [OMIM: 180300]) GWAS.4 We first demon-

strate that the functional architecture of RA is consistent

across ethnicities and that there is a strong preponderance

of immune-related functional classes that are enriched

with causal variants. We then fine map the RA GWAS loci

by using functional data and show that our method greatly

outperforms current state-of-the art methodologies and

uncovers a number of plausible functional variants.
Material and Methods

Multi-population Fine-Mapping Framework
Without loss of generality (given that similar results can be derived

for case-control traits), let y be a quantitative phenotype such that

yi ¼ gibþ ei, where ei � Nð0; s2e Þ, and gi denotes a multi-SNP geno-

type containing {0,1,2} counts of the reference allele atM SNPs for

an individual i. The b vector represents allelic effects where the jth

entry will be non-zero only if SNP j is causal. Given genotype (Gp)

and phenotype (Yp) data over Np individuals from population p, a

standard approach to measuring association strength at SNP j is

through the Wald statistic

zjp ¼
bbj

p

SE
�c
bj
p

� ¼
Cov

�
Gj

p;Yp

� ffiffiffiffiffiffi
Np

p
Var

�
Gj

p

�
s2
e

;

which asymptotically follows a normal distribution:

N

0BB@bj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
Gj

p

�r
se

ffiffiffiffiffiffi
Np

p
;1

1CCA:

We denote the non-centrality parameter (NCP) of the normal

distribution as

ljp ¼
bj
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var

�
Gj

p

�r
se

ffiffiffiffiffiffi
Np

p
:

Under the null hypothesis that SNP j is not causal (or does not

tag a causal variant; see below), b
j
p ¼ 0 and thus l

j
p ¼ 0. If the

SNP is causal, then b
j
ps0, yielding a non-zero l

j
p, and governs
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the power of detecting this variant in an association study (i.e., re-

jecting the null at some confidence level). Importantly, evenwhen

the allelic effects at the causal variants are similar across popula-

tions (i.e., b
j
p ¼ b

j
p0 ), different allele frequencies and sample sizes

induce population-specific NCPs, yielding larger NCPs at more

common SNPs and/or larger studies. This leads to the well-known

result that causal variants are more readily detectable in popula-

tions in which they are present more frequently.

Pervasive LD at fine-scale resolutions induces correlations be-

tweentagSNPsandcausalSNPs, thuscreatinganindirectassociation

between tag SNPs and traits.13 More specifically, the LD-induced

NCP at a SNP j ðLj
pÞ can be approximated as a linear combination

of NCPs at the causal SNPs with LD-adjusted weights13,27,28,39 as

Lj
p ¼

X
c

rj;cp lcp; (Equation 1)

where the sum is taken across all causal SNPs c, and r
j;c
p is the Pear-

son correlation coefficient between SNPs j and c in population p.

We expand Equation 1 to include all SNPs in the locus by incorpo-

rating indicator variable Ck
p, which is set to 1 if SNP k is causal in

population p and 0 otherwise:

Lj
p ¼

XM
k¼1

rj;kp lkpC
k
p: (Equation 2)

In vector notation,

Lp ¼ Sp

�
lp+Cp

�
; (Equation 3)

where Sp is the LD matrix of Pearson correlations among the M

SNPs, Cp is a binary vector indicating which SNPs are causal,

and + denotes the element-wise multiplication between two vec-

tors. We can now write the probability of the data (i.e., the

observed standardized effect sizes, Z scores) given the causal vari-

ants (Cp) in population p under a MVN assumption:

Zp j lp;Cp � N �Lp;Sp

�
: (Equation 4)

This allows us to define the total likelihood of the data by

marginalizing across all sets of causal SNPs (C) as

LðZ1;Z2;/;ZP ; l1; l2;/; lPÞ ¼
Y
p

X
Cp˛C

P
�
Zp j lp;Cp

�
P
�
Cp

�
;

(Equation 5)

which we simplify under the assumption that the causal vector set

is identical across populations:

LðZ1;Z2;/;ZP ; l1; l2;/; lPÞ ¼
X
C˛C

Y
p

P
�
Zp j lp;C

�
PðCÞ:

(Equation 6)

Here, PðZp

��lp;CpÞ is defined as the probability density function

of the MVN (see Equation 4), and PðCÞ is the probability of a given

causal set. Note that Equation 6 assumes that the causal set is iden-

tical across populations but allows for different effect sizes at

causal SNPs across populations.

Integration of Functional-Annotation Data
We assume that each variant can potentially have several pheno-

typically relevant genomic functional annotations (e.g., transcrip-

tion factor binding site), which can be encoded as binary variable

Ajk for variant j and annotation k or as a continuous value (e.g.,

a probabilistic membership of variants in different functional

classes). We integrate the functional information through the

probability of the causal set C as follows,
262 The American Journal of Human Genetics 97, 260–271, August 6
PðC;gÞ ¼
Y 

1

1þ exp
��gTA

�!Cj
 

1

1þ exp
�
gTA

�!1�Cj

;

j j j

(Equation 7)

where g is a vector containing the prior log-odds ratio of causality

for every functional annotation. We extend the likelihood to

incorporate functional data as

LðZ1;Z2;/;ZP ; l1; l2;/; lP ;gÞ ¼
X
C˛C

Y
p

P
�
Zp j lp;C

�
PðC;gÞ;

(Equation 8)

which we can further simplify by assuming that data at different

loci are independent:

LðZ1;Z2;/;ZP ; l1; l2;/; lP ;gÞ ¼
Y
l

X
Cl˛Cl

Y
p

P
�
Zl;p j lp;l;Cl

�
PðCl;gÞ:

(Equation 9)

Finally, to obtain posterior probabilities that each SNP is causal,

we use Bayes theorem to compute the joint posterior for each

causal set,

PðCl jZl;1;Zl;2;/;Zl;P ; ll;1; ll;2;/; ll;P ;gÞ ¼Q
pP
�
Zl;p j lp;l;Cl

�
PðCl;gÞP

Cl˛Cl
Q

pP
�
Zl;p j lp;l;Cl

�
PðCl;gÞ

;
(Equation 10)

and subsequently marginalize across all Cl ¼ ðC1l;C2l;.;CNl
Þ such

that Cjl ¼ 1:

P
�
Cjl jZ1;Z2;/;ZP ; ll;1; ll;2;/; ll;P ;g

� ¼X
Cl˛Cl :Cjl¼1

PðCl jZ1;Z2;/;ZP ; ll;1; ll;2;/; ll;P;gÞ: (Equation 11)

Model Fitting
Because of the finite nature of either the sample or the reference

panel, the LDmatrix in practice could be ill conditioned.We apply

a Tikhonov Regularization40 to all LD matrices to ensure their in-

vertibility and as a result preserve the non-degeneracy and numer-

ical stability of the MVN approximation. Furthermore, because we

ensure that all S are positive definite, there exists a Cholesky

decomposition for each LD matrix and its corresponding inverse.

Let Lp ¼ CholðSpÞ�1; it follows that eZp ¼ LpZp � NðLpLp; IÞ. In

practice, we operate in the transformed-Z-score space ð eZpÞ because
it improves numerical stability and reduces computational burden

by removing a large, repetitive matrix multiplication when

computing the MVN density.

We fit the parameters of the model to the data across all loci by

using a variant of the expectation maximization over the func-

tional annotations (g) and approximate the NCPs by using a sim-

ple function of the observed Z scores (see Appendix A). We note

that because enumerating over all possible causal sets is combina-

torially intractable, we typically restrict the number of causal var-

iants per locus to two or three in practice.

Simulation Data
We benchmarked our proposed framework by using simulations

starting from real genotype data. Using the NHGRI catalog of

GWAS variants on chromosome 1,1 we centered 25-kb windows

on the lead SNP and used HAPGEN241 and 1000 Genomes12 to

simulate individuals from the Asian (n ¼ 286), African (n ¼ 246),

and European (n ¼ 379) ancestries. SNPs that were polymorphic

with a minor allele frequency R 0.01 in at least one population
, 2015



were retained for analysis. For each simulation, we randomly chose

50 loci and simulated causal variants by drawing causal status ac-

cording to the logistic prior model described above. Unless other-

wisenoted,weused the annotations (coding,UTR,promoter,DNase

hypersensitivity site [DHS], intronic, and intergenic) and functional

enrichments (13.83, 8.43, 2.83, 5.13, and0.13) observed inGusev

et al.35 for simulations below. We simulated phenotypes under a

linearmodel such that for individual i of population p, their pheno-

type Y was drawn as Yi;p ¼
PNc

j¼1bj,gj;i;p þ ei;p, where Nc is the total

number of causal variants, bj is the effect size of the jth causal SNP,

gj;i;p is the number of copies of the risk allele j for individual i of pop-

ulation p. Following recent works, we simulated similar heritability

across populations.42 The population-specific error term, ei;p, was

drawn according to a Nð0; s2e;pÞ, where s2e;p ¼ ðs2g;p � h2
g
� s2g;pÞ=h2

g ,

s2g;p ¼ b0CovðXpÞb, and CovðXpÞ is the population-specific covari-

ance of the genotypes (LD). The effect size, bj, was set to be inversely

proportional to the average SD of the population allele frequencies;

this is roughly equivalent to assuming that each causal SNPexplains

an equal proportion of the phenotypic variance.43

Existing Methods
We compared our proposed methods with other well-established

probabilistic methods for fine mapping. First, we investigated

MANTRA, a Bayesian trans-ethnic meta-analysis technique pro-

posed by Morris.15 We obtained the software implementation from

the author and ran it with the default settings; we provided the fixa-

tion index (FST) between the three populations as determined in

Nelis et al.44 as theprior for theBayesianpartitionmodel.Theoutput

of MANTRA is a Bayes factor, which we subsequently converted to

PPAi ¼ BFiP
kBFk

as previously recommended.3,22,45 Similarly, we calculated poste-

rior probabilities that SNPs are causal strictly on the basis of the in-

verse-variance fixed-effects19 meta-analysis by using the PAINTOR

(Probabilistic Annotation Integrator)28 and CAVIARBF46 frame-

works. We note that the CAVIARBF and PAINTOR models require

LD as input, which we calculated as the average of the population-

specific LD weighted by the sample size of each population.We as-

sessed accuracy by rank ordering SNPs across all fine-mapping loci

according to the output of each method and then determined the

proportion of identified causal variants as more SNPs were

selected. We typically report the median number of SNPs one

would need to validate in order to resolve 90% of the causal vari-

ants as our main metric of accuracy.

RA Multi-ethnic Fine-Mapping Dataset
We downloaded summary statistics from a large trans-ethnic RA

GWAS consisting of over 100,000 individuals (~68,000 of European

ancestry and ~36,000 of Asian ancestry).4 We used the reported

genome-wide-significant loci, excluding human leukocyte antigen

regions, and centered 100-kbwindows around the top SNP, yielding

a total of 89 fine-mapping loci. For each of these regions, we esti-

mated LD by using the European and Asian individuals from 1000

Genomes.12 We integrated 482 publicly available functional anno-

tations comprising 406 DHSs spanning numerous cell types and

tissues,31,47 the seven genomic segmentations of the eight primary

ENCODE cell lines,48 Fantom5 enhancer and transcription start

site regions,49 immune cell enhancers,10 genic elements derived

from GenCode,50 and overall methylation and acetylation marks
The Amer
from ENCODE.29 The construction of a phenotypically specific

fine-mapping model requires two phases. First, we ran the model

marginally on each annotation and subsequently rank ordered all

the annotations according to likelihood-ratio statistics.28,37 Second,

weselected the topannotations thatwereminimallycorrelatedwith

one another (usually no more than five) to enter a final model to

estimate posterior probabilities that variants are causal.
Results

Joint Modeling of Association Statistics across

Populations Increases Fine-Mapping Performance

We used simulations to investigate the benefit of jointly

modeling population-specific association statistics versus

standard meta-analysis approaches. We simulated fine-

mapping datasets over 10,000 individuals equally divided

among European, Asian, and African ancestries with total

heritability of h2
g ¼ 0:25 across 50 loci with genetic archi-

tecture similar to that in Gusev et al.35 The loci were simu-

lated such that in expectation, each locus harbored a single

causal variant with allelic effects shared across populations

(see Material and Methods). This yielded an average of 15

loci with a single causal variant and 13 loci with multiple

causal variants per simulation. In general, we find that

trans-ethnic fine-mapping strategies that assume a single

causal variant are less optimal than those that allow for

multiple causal variants (Table 1). For example, MANTRA

meta-analysis requires 1.9 and 96.8 SNPs per locus in order

to identify 50% and 90% of the causal variants, respec-

tively, whereas methods that allowmultiple causal variants

but do not incorporate functional data require 1.2 and 7.0

SNPs per locus to identify 50% and 90% of the causal var-

iants, respectively.46 Existing integrative fine-mapping

methods that leverage functional data28 applied to fixed-

effects meta-analysis statistics achieve accuracy of 1.0

and 5.6 SNPs per locus to find 50% and 90% of the causal

variants, respectively. In contrast, our proposed framework

resolves causal variants with the greatest efficiency

(Figure 2) in that it requires only 0.9 and 5.2 SNPs per locus

to find 50% and 90% of the causal variants, respectively

(paired t test, p < 0.001). Overall, this can be attributed

to the fact that our approach models population-specific

LD patterns while allowing for multiple causal variants in

the presence of functional information.

Recent studies have shown that GWAS findings generally

replicate across populations,42,51 thus suggesting sharing of

underlying causal variants. However, it is generally un-

known whether these variants contribute to disease risk

uniformly across populations. We sought to assess the per-

formance of finemapping in the situation where the causal

variants have either weak or strong heterogeneity by

ancestry. In addition to fine mapping datasets in which

causal effects were similar across populations (no heteroge-

neity), we simulated allelic effects inversely proportional to

thepopulation-specific allele-frequency SD (weakheteroge-

neity) and normally distributed allelic effects for each

ancestry independently (strong heterogeneity). We found
ican Journal of Human Genetics 97, 260–271, August 6, 2015 263



Table 1. Our Trans-ethnic Integrative Framework Is Superior to Conventional Meta-analysis Strategies and Current State-of-the-Art
Methodologies

Heterogeneity
Level

Identified Proportion
of Causal Variants

Single Causal Variant per Locus Multiple Causal Variants per Locus

Fixed-Effects
Meta-analysis MANTRA15

Fixed-Effects
CAVIARBF46

Fixed-Effects
PAINTOR28,a

Trans-ethnic
PAINTORa

None 0.50 1.9 2.0 1.2 1.0 0.9

0.75 29.8 30.3 2.9 2.1 1.9

0.90 96.8 96.8 7.0 5.6 5.2

Weak 0.50 1.9 2.0 1.1 0.9 0.9

0.75 62.3 62.7 2.9 2.0 1.8

0.90 118.1 118.6 6.8 4.9 4.1

Strong 0.50 29.0 11.1 12.6 9.6 2.3

0.75 105.0 92.7 68.6 58.4 19.7

0.90 143.9 139.8 134.4 121.3 56.5

We simulated 1,000 multi-ethnic fine-mapping datasets under various levels of allelic heterogeneity across populations. For the first two levels of heterogeneity
(‘‘none’’ and ‘‘weak’’), we invoked the standard infinitesimal assumption on allelic effects either globally or at the population level by setting effect sizes ðbc;pÞ at the
causal SNPs inversely proportional to either the mean allele-frequency SD or the population-specific allele-frequency SD. To simulate strong heterogeneity across
ancestries, we drew effect sizes from a standard normal distribution for each population independently and added enough Gaussian noise to maintain h2

g ¼ 0:25.
Displayed here is the median number of SNPs selected per locus for identifying a specified proportion of the causal variants.
aMethods that also integrate functional data.
that our framework significantly outperformed the fixed-ef-

fects meta-analysis followed by probability estimation by

existing methods. For example, in the case of weak hetero-

geneity, our approach required 4.1 as opposed to 4.9 SNPs

per locus (19.5% improvement); in addition, in the pres-

ence of strong heterogeneity, our approach dramatically

outperformed existingmeta-analysis strategies by reducing

the number of SNPs required for identifying 90% of the

causal variants from 121.3 to 56.5 (214% improvement)

(Table 1; Figure 2). The increase in performance is likely

due to the fact that our framework makes no assumptions

pertaining to the population-specific allelic effects at causal

SNPs, given that we allow the empirically observed Z scores

in each population to dictate the effect size. This allows for

arbitrary levels of heterogeneity in the effect size by popula-

tion,whereas fixed-effectsmeta-analysis assumes similar ef-

fect sizes across populations.
Figure 2. Trans-ethnic PAINTOR Is Most Efficient in Identifying Ca
The distributions of the number of SNPs required for follow-up ident
displayed as boxplots. The different panels represent increasing levels
and strong (right). The widths of the notches in each boxplot roughly
SNPs required for resolving 90% of the causal variants. For the sake o
ence in performance across all three methods.
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Performance of Trans-ethnic Fine Mapping

The benefit of trans-ethnic fine mapping has been thor-

oughly documented both in simulations and in empirical

data.3,13,15 However, previous works have assumed a single

causal variant at a risk locus, and this assumption is often in-

validated in practice. Here, we sought to assess trans-ethnic

finemapping in thepresence ofmultiple causal variants at a

risk locus while integrating functional-annotation data.

Consistent with previous works,13 we found that for the

same sample size,multi-ethnic cohorts attained superior ac-

curacy over single-population studies. However, allowing

for multiple causal variants enabled trans-ethnic fine map-

ping to perform even better than single-population fine

mapping. We observed a near 3- to 4-fold increase in the

median resolution for methods that model multiple causal

variants but only a 1.4- to 1.6-fold gain formethods that as-

sume a single causal (see Table 2). We attribute this to the
usal Variants
ification of 90% of the causal variants across 1,000 simulations are
of effect-size heterogeneity by ancestry: none (left), weak (middle),
correspond to 95% confidence intervals for themedian number of
f clarity, we have cut the y axis to emphasize the significant differ-

, 2015



Table 2. Modeling Multiple Causal Variants in Multi-ethnic
Cohorts Yields Larger Relative Gains in Fine-Mapping Efficiency

Ethnic
Group

Single Causal Variant Multiple Causal Variants

� þ � þ

Asians 136.9 134.4 89.3 36.2

Europeans 135.0 130.9 82.9 33.5

Africans 104.0 95.0 34.4 14.7

Trans-ethnic 72.6 58.4 8.5 4.9

Relative 1.4 1.6 4.0 3.0

We simulated fine-mapping datasets with various ethnic compositions and
allelic effects shared across populations. Displayed here are four fine-mapping
strategies that consider either single or multiple causal variants at each risk lo-
cus and either have (þ) or do not have (�) access to functional data across
different ethnic study designs. The bottom row represents the relative gain
in the median 90% causal-variant resolution of trans-ethnic cohorts over the
next best-performing group.
much smaller number of sets of causal variants (as a propor-

tion of the total possible sets) that are compatible with the

observed association statistics. Diversity in LD patterns

across populations additionally penalizes sets of variants

that do not contain the true causal variants because they

are unlikely to explain the observed data. Consequently,

multi-ethnic cohorts not only will have proportionally

moreLDpatterns than single-populationcohorts (therefore

placing larger penalties on incorrect causal sets) but can also

borrow power from populations where the causal variants

are present more frequently.

Genetic-Trait Architecture Affects Fine-Mapping

Performance

Functional information was demonstrated to improve

fine-mapping resolution in a single population,10,28,37,38

and we investigated the potential gains in a trans-ethnic
The Amer
setting. We simulated two disease architectures by using

five functional annotations where causal variants either

localize predominantly within a single broad functional

class, as observed by Gusev et al.35 (A1), or have a smaller,

more diffuse localization within functionally specific cell

types28 (A2). For each class of disease architectures, we fit

six trans-ethnic integrative models such that each succes-

sive model incorporated an additional functional annota-

tion into a joint framework. Not surprisingly, when the

true genetic architecture of a trait at fine-mapping regions

has a strong enrichment of causal variants within a com-

mon functional class (i.e., DHSs35), these functional anno-

tations will be most informative for the purposes of fine

mapping (see Figure 3). On the other hand, more diffuse

localization of causal variants requires multiple annota-

tions for maximizing the utility of functional data. For

example, for genetic architecture A1, the addition of the

DHS annotation yielded a 70% increase in fine-mapping

resolution, whereas genetic architecture A2 required all

five annotations to improve resolution by 18% (see

Figure 3).
Integrative FineMapping in aMulti-ethnic RADataset

We investigated whether similar results from simulations

can be attained in empirical data from a trans-ethnic RA

GWAS over more than 100,000 individuals4 (see Material

and Methods). Because the functional genetic architecture

of RA across different populations is unknown, we first

quantified whether the enrichment of causal variants in

various functional annotations is consistent across ances-

tries. Reassuringly, we saw a strong correspondence in func-

tional enrichment at the fine-mapping loci across all 482

functional categories we investigated (r ¼ 0.597; Figure 4).

This provides evidence supporting the assumption that a
Figure 3. The Underlying Functional Ar-
chitecture of a Trait Affects Fine-Mapping
Performance
We simulated two classes of disease archi-
tectures: A1 (solid line) and A2 (dashed
line). Architecture A1 was based on the
functional enrichment observed in Gusev
et al.35 and had a strong enrichment
within a single DHS class. Architecture A2
was simulated with a more diffuse enrich-
ment in various cell types and classes
and was based on what we empirically
observed in the RA dataset. Displayed on
top of each point is the percentage of
SNPs falling within that annotation and
its corresponding enrichment.
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Figure 4. Functional Enrichment Is Consistent across Europeans
and Asians
Wecompared the enrichment across 482 functional annotations at
89 RA-associated loci in Europeans (n z 68,000) and Asians (n z
36,000) separately. Eachpoint represents theestimatedenrichment
of an annotation in both European and Asian populations.

Figure 5. Trans-ethnic Functional Enrichment at RA GWAS Loci
Indicates Immune-Related Regulatory Architecture
Here, we compare the enrichment of casual variants within 42
DHSs of immune-related cell types (B cells, T cells, natural killer
cells, keratinocytes, monocytes, and thymic cells) and the enrich-
ment of causal variants in 354 DHS annotations of other cell types.
The widths of the notches in each boxplot roughly correspond to
95% confidence intervals for the median enrichment.
single functional prior can be applied across populations

uniformly in trans-ethnic fine mapping.

Next, we estimated trans-ethnic enrichment for each of

the 482 annotations independently to allow the model to

discern themost functionally relevant cell types andclasses.

Theenrichment likelihood ratios suppliedby thisprocedure

provideanaturalway toprioritize functional annotations to

move forward with fine mapping.28 We consistently found

a strong and significant enrichment of causal variants

within activity regulatory regions of immune-related cell

types (see Figure 5), which is largely in linewith RA etiology

(rank permutation p < 0.001). The final trans-ethnic inte-

grativemodel included annotations of DHS regions specific

to three cell types (skin keratinocytes, T helper 2 cells, and

B lymphocytes), immune enhancer regions described in

Farh et al.,10 and GENCODE-defined exon regions. We

found that simply applying existing multi-causal frame-

works27,28 on the trans-ethnic meta-analysis statistics

yielded wider 90% credible sets (it required approximately

28.5 SNPs per locus as opposed to 24.0 SNPs per locus for

our proposed framework), thus demonstrating the benefit

ofmodeling population-level LD. Furthermore, the integra-

tion of functional data additionally reduced the size of the

credible set to 21.7 SNPs per locus (see Table 3), showing

that leveraging functional annotations refines trans-ethnic

fine-mapping signal.

Next, we explored the plausible causality of the SNPs

that attained a high posterior probability under our frame-

work (Table 4). For example, rs968567, which lies within

the promoter region of FADS2 (OMIM: 606149) and was

functionally validated to disrupt transcription factor

binding and subsequent gene expression,52 achieved a

trans-ethnic posterior probability of 0.29. However, this

variant fell within all five functional annotations that
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our framework deemed important for this trait and,

upon appropriate re-weighting, achieved a posterior

probability of 0.84. Alternatively, trans-ethnic association

can be extremely beneficial on its own. For example,

rs12693993, a variant within the coding region of CD28

(OMIM: 186760), a gene implicated for its importance in

T cell development and proliferation and cytokine produc-

tion, achieved a posterior probability for causality of 0.34

and 0.02 in Europeans and Asians, respectively. However,

upon integration of trans-ethnic association with func-

tional data, it achieved a posterior probability for causality

of 0.85. The identification of these two SNPs, among

others, serves as an important illustration of the benefit

of our proposed methodologies.
Discussion

In this work, we introduced a fine-mapping framework

that bridges several sources of evidence to prioritize func-

tional SNPs and demonstrated its efficacy in real and simu-

lated datasets. As fine-mapping data become increasingly

multi-ethnic3,4 and functional data become larger and

more refined,30 we believe that our proposed methodology

will have increasing relevance. By operating exclusively on

summary data, our approach reduces the need to share in-

dividual data, which often prohibits large-scale analyses.

In addition, a key advantage of our proposed methodology

is that it provides an unbiased perspective on which func-

tional genomic data aremost relevant to the trait within an

Empirical Bayes framework. Rather than relying on careful

and manual selection of functional elements when con-

ducting fine mapping,10,36 we allow the data to dictate
, 2015



Table 3. Integrative Approaches that Model Population-Level LD
Yield the Smallest Credible Sets in Empirical Data

Association Statistics

Average No. of SNPs

Without
Annotations

With
Annotations

Asians 35.2 31.9

Europeans 32.0 28.7

Fixed-effects meta-analysis 28.5 25.0

Trans-ethnic 24.0 21.7

Displayed here is the average number of SNPs per locus in the 90% credible
sets for single and multi-population fine mapping of RA-associated loci. To
compute credible sets, we first ordered the SNPs across all 89 loci and then
took the total number of ordered SNPs that consumed 90% of the total poste-
rior probability mass. Consistent with simulation findings, integrating multiple
populations with functional data improved fine-mapping resolution.
the functional relevance of a particular annotation. As the

catalog of functional data expands to encompass more

diverse cell types and genomic signatures, a principled

strategy to parsing these annotations is paramount.

We note that although our model does not assume a pri-

ori that there exists allelic heterogeneity by ancestry,15 by

construction, it is capable of handling trans-ethnic hetero-

geneity whether it is due to a true difference in the per-

allelic effects or simply a result of genetic drift that yielded

distinct allele frequencies at the causal SNPs. We have

found that as the level of heterogeneity across popula-

tions increases, our framework increasingly outperforms
Table 4. Integrating Trans-ethnic Association Strength with Function
Probability for Causality

rsID
Chromosomal
Position

European
Association
(Z Score)

Asian
Association
(Z Score)

Posterior
Probabilit
without
Annotatio

rs2476601 chr1: 114,377,568 �26.04 NA 1.00

rs7731626 chr5: 55,444,683 �9.84 NA 1.00

NA chr1: 2,523,878 �5.22 �4.18 1.00

rs1893592 chr21: 43,855,067 �5.73 �4.01 1.00

NA chr19: 10,771,941 �6.13 NA 1.00

rs72767222 chr5: 55,440,788 5.11 NA 0.99

rs12715125 chr3: 27,763,427 5.58 NA 0.95

rs71508903 chr10: 63,779,871 7.26 5.88 0.76

rs12693993 chr2: 204,595,597 �2.74 �1.76 0.68

rs968567 chr11: 61,595,564 �4.95 NA 0.29

rs909685 chr22: 39,747,671 6.29 4.62 0.65

rs657075 chr5: 131,430,118 2.54 4.46 0.73

We applied our framework across all 89 GWAS RA loci with relevant functional dat
of greater than 0.8. Abbreviations are as follows: NA, not applicable; Th2, T help

The Amer
competing strategies. Although extreme heterogeneity

might be unlikely, gene-environment interactions in com-

plex traits canmanifest themselves as distinct allelic effects

across populations.53

We conclude with several limitations of our proposed

framework. The efficacy of our proposed method is inti-

mately connected to the underlying functional architec-

ture of the trait being examined. In the scenario where

the correct functional annotation is unavailable or the

distribution of casual variants is more or less uniform

across the functional-annotation categories, our method

will most likely underperform fine-mapping strategies

that either do not estimate parameters for functional

enrichment27,46 or pre-specify the correct enrichment pa-

rameters from other external analyses.35 However, there

is mounting evidence that suggests that casual variants

for most complex traits co-localize with epigenetic

marks10,31,35,37 that are now available for the vast majority

of human cell types.54 Finally, additional improvements in

performance could be made through a Bayesian treatment

of non-centrality parameters within our framework,46

which we leave as a potential direction for future work.
Appendix A: Optimization Procedure

We optimize the parameters of our model by using expec-

tation maximization. First, we take expectations of the

complete data log-likelihood with respect to the posterior
al Data Promotes a Number of SNPs to Attain a High Posterior

y

ns

Posterior
Probability with
Annotations Functional Annotations

1.00 coding exons, skin keratinocyte DHSs

1.00 GM12865 DHSs, Th2 DHSs, immune
enhancers

1.00 immune enhancers

1.00 coding exons, immune enhancers

1.00 immune enhancers

0.99 skin keratinocyte DHSs, immune enhancers

0.99 coding exons, GM12865 DHSs, Th2 DHSs,
skin keratinocyte DHSs, immune enhancers

0.93 GM12865 DHSs, skin keratinocyte DHSs,
immune enhancers

0.88 Th2 DHSs, skin keratinocyte DHS, immune
enhancers

0.85 coding exons, GM12865 DHSs, Th2 DHSs,
skin keratinocyte DHSs, immune enhancers

0.84 Th2 DHSs, skin keratinocyte DHSs, immune
enhancers

0.82 skin keratinocyte DHSs, immune enhancers

a. Displayed in this table are SNPs achieving a trans-ethnic posterior probability
er 2 cell.
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distribution of causal sets and simplify to obtain a func-

tion, Q, that is readily optimized via standard techniques.

Let Zl;� represent all P vectors of association statistics

ðZl;1;Zl;2;/;Zl;PÞ at locus l, and let ll;� be the corresponding
vectors of non-centrality parameters,
Q
�
g; l jgðtÞ; l

� ¼X
l

X
Cl

P
�
Cl jZl;�ll;�;g

ðtÞ�ln P
�
Zl;�; ll;�;g

ðtÞ�
¼P

l

P
Cl

P
�
Cl jZl;�ll;�;g

ðtÞ� ln P
�
Cl;g

ðtÞ�þX
p

ln P
�
Zl;p jCl; ll;p

�!
¼P

l

P
Cl

P
�
Cl jZl;�ll;�;g

ðtÞ�ln P
�
Cl;g

ðtÞ�þX
l

X
Cl

P
�
Cl jZl;�;g

ðtÞ; ll;�
�X

p

ln P
�
Zl;p jCl; ll;p

�
¼ Q

�
g jgðtÞ�þ Q

�
lp j lp

�
;

thereby decoupling the prior from the likelihood. We

simplify Qðg��gðtÞÞ to obtain

Q
�
g jgðtÞ; l

� ¼X
l

X
j

X
cjl˛0;1

P
�
cjl jZl;�;g

ðtÞ; ll;�
�
ln P

�
cjl;g

ðtÞ�
¼ �P

l

P
j

P
�
cjl ¼ 1 jZl;�;g

ðtÞ; ll;�
�
ln
�
1þ exp

��gTAjl

��
�P

l

P
j

P
�
cjl ¼ 0 jZl;�;g

ðtÞ; ll;�
�
ln
�
1þ exp

�
gTAjl

��
;

which is a concave function whose gradient is simply
vQ
�
g jgðtÞ; l

�
vg

¼
X
j

X
l

P
�
cjl ¼ 1 jZl;�;g

ðtÞ; ll;�
� 1

1þ exp
��gTAjl

�Ajl

�
X
j

X
l

P
�
cjl ¼ 0 jZl;�;g

ðtÞ; ll;�
� 1

1þ exp
�
gTAjl

�Ajl:
To avoid potential numerical instability resulting from

inverting a Hessian matrix, as would be required for stan-

dard Newton-Raphson, we optimize this function Q

by using a limited-memory Broyden-Fletcher-Goldfarb-

Shanno algorithm implemented in the NLopt library.

Finally, as previously mentioned, the non-centrality

parameter for SNP j at locus l from population p, l
j
p;l, is

set simply as
f
�
Zj
p;l

�
¼

8>>><>>>:
arg min

�
� 3:7;Zj

p;l

�
ifZj

p;l < 0

arg max
�
3:7;Zj

p;l

�
ifZj

p;l > 0

0 if Zj
p;l ¼ 0 ðSNP j is monomorphic in population pÞ;
a strategy that was previously demonstrated to work well

in practice.28 This iterative algorithm is repeated until the

change in the log-likelihood is less than 0.01.
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The URLs for data presented herein are as follows:

1000 Genomes, http://www.1000genomes.org/data

DHS maps 1, http://www.uwencode.org/proj/Science_Maurano_

Humbert_et_al/
DHS maps 2, http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

encodeDCC/wgEncodeAwgDnaseUniform/

ENCODE Genome Segmentation, http://hgdownload.cse.ucsc.

edu/goldenPath/hg19/encodeDCC/

wgEncodeAwgSegmentation/

Ensembl, http://www.ensembl.org/index.html

FANTOM 5, http://fantom.gsc.riken.jp/5/data/

Finemapping Data Portal, http://www.broadinstitute.org/pubs/

finemapping/?q¼data-portal
OMIM, http://www.omim.org

PAINTOR, http://bogdan.bioinformatics.ucla.edu/software/

paintor/
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RA GWAS summary statistics, http://plaza.umin.ac.jp/~yokada/

datasource/software.htm
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B.J., Xu, H., Zang, C., Ripke, S., Bulik-Sullivan, B., Stahl, E.,
270 The American Journal of Human Genetics 97, 260–271, August 6
et al.; Schizophrenia Working Group of the Psychiatric Geno-

mics Consortium; SWE-SCZ Consortium; Schizophrenia

Working Group of the Psychiatric Genomics Consortium;

SWE-SCZ Consortium (2014). Partitioning heritability of reg-

ulatory and cell-type-specific variants across 11 common dis-

eases. Am. J. Hum. Genet. 95, 535–552.

36. Hazelett, D.J., Rhie, S.K., Gaddis, M., Yan, C., Lakeland, D.L.,

Coetzee, S.G., Henderson, B.E., Noushmehr, H., Cozen, W.,

Kote-Jarai, Z., et al.; Ellipse/GAME-ON consortium; Practical

consortium (2014). Comprehensive functional annotation

of 77 prostate cancer risk loci. PLoS Genet. 10, e1004102.

37. Pickrell, J.K. (2014). Joint analysis of functional genomic data

and genome-wide association studies of 18 human traits. Am.

J. Hum. Genet. 94, 559–573.

38. Chung, D., Yang, C., Li, C., Gelernter, J., and Zhao, H. (2014).

GPA: A statistical approach to prioritizing GWAS results by

integrating pleiotropy information and annotation data. ar-

Xiv, arXiv:1401.4764, http://arxiv.org/abs/1401.4764v1.

39. Pasaniuc, B., Zaitlen, N., Shi, H., Bhatia, G., Gusev, A., Pickrell,

J., Hirschhorn, J., Strachan, D.P., Patterson, N., and Price, A.L.

(2014). Fast and accurate imputation of summary statistics en-

hances evidence of functional enrichment. Bioinformatics 30,

2906–2914.

40. Tikhonov, A.N., and Arsenin, V.Y. (1977). Solutions of Ill-

Posed Problems (John Wiley & Sons).

41. Su, Z., Marchini, J., and Donnelly, P. (2011). HAPGEN2: simu-

lation of multiple disease SNPs. Bioinformatics 27, 2304–

2305.

42. Coram, M.A., Duan, Q., Hoffmann, T.J., Thornton, T.,

Knowles, J.W., Johnson, N.A., Ochs-Balcom, H.M., Donlon,

T.A., Martin, L.W., Eaton, C.B., et al. (2013). Genome-wide

characterization of shared and distinct genetic components

that influence blood lipid levels in ethnically diverse human

populations. Am. J. Hum. Genet. 92, 904–916.

43. Yang, J., Manolio, T.A., Pasquale, L.R., Boerwinkle, E.,

Caporaso, N., Cunningham, J.M., de Andrade, M., Feenstra,

B., Feingold, E., Hayes, M.G., et al. (2011). Genome partition-

ing of genetic variation for complex traits using common

SNPs. Nat. Genet. 43, 519–525.
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