
UC Irvine
ICS Technical Reports

Title
Design of a transducer for parity encoder

Permalink
https://escholarship.org/uc/item/2bk2h153

Authors
Yu, Haobo
Xie, Qiang
Gajski, Daniel D.

Publication Date
2000-02-14

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bk2h153
https://escholarship.org
http://www.cdlib.org/

A

Haobo Yu
Qiang Xie

Daniel D. Gajski

Technical Report ICS-.01-08
Feb 14, 2000

Center for Embedded Computer Systems
. Department of Information and Computer Science

University of California, Irvine
Irvine, CA 92697-3425, USA

(949) 824-8059

{ haoboy, qxie, gajski}@ics.uci.edu
http://www.ics.uci.edu/,..,haoboy

Notice:
may be
by Copyright Law
(Title 17 U.S.C.)

Contents
1 Introduction
2 The parity encoder

1

1
3 Parity encoder with transducer 2
4 Coldfire Master Bus 2
5 Transducer design 3

5.1 The first transducer . 3

5 .2 The second transducer . 4

6 Conclusion 5
References 5

Appendix A: Spece code for the first transducer 6
A.l bus.sc........ 6

A.2counter.sc.. 8

A.3 tb.sc.. ... 10
A.4 transducer.sc... 11

Appendix B: Spece code for the second transducer 13
B.lqueue.sc.. 13

B.2 transducer.sc .. 15

List of Figures

1 Communication Model with bus ... 2
2 Communication Model : bus inlined .. 2

3 Parity Encoder with transducer ... 3
4 FSMD for the first transducer ... 4

5 Block diagram for the second transducer .. 4

6 FSMD 1 and FSMD2 for the second transducer . 4

1 5 2002

Design of A Transducer for Parity Encoder

Haobo Yu, Qiang Xie, Daniel D. Gajski
Center for Embedded Computer Systems

University of California, Irvine
Irvine, CA 92697-3425, USA

Abstract
This report describes the design of a transducer
for parity encoder using SpecC RTL
methodology. We first begin with the
introduction of parity encoder. Then the bus
protocol of ColdFire processor is introduced and
we present two ways to implement the
transducer. The source codes are also included
in the Appendix.

1 Introduction
The goal of this project is to explore the ways of
synthesizing the communication model into
implementation model in Spece. We do this by
showing the design of a parity encoder using
Spece methodology.

The Spece methodology [GZDGOO][GERsoo1 has four
different levels of abstraction: specification,
architecture, communication and implementation
model.

The specification model is a pure behavior
description. The communications between the
behavioral blocks are implemented by using
global variables rather than channels since up to
now no concurrency and synchronization is
specified.

The architecture model is a refined model from
the specification model with the partition of
hardware and software. The concurrency and
synchronization relationships resulting from this
partitioning are explicitly described by
substituting the global variables with the
channels, which will finally be encapsulated into
a global bus. The communication between
software blocks running on the same processor is
still implemented by using the global variables.

The communication model is the same as the
architecture model in that the blocks are mapped
to the same components. However, the protocol
description for the inter-block communication is
refined into the timing-accurate description.
The implementation model is the result of
scheduling the functionality mapped to the

1

components (computation and communication
functionality) into register transfers per clock
cycle. Therefore, the implementation model is a
cycle-accurate model at the register-transfer
level.

The implementation model supports two views
of the components in the design: a behavioral
RTL view and a structural RTL view. In both
cases, the steps of allocation, binding and
scheduling are required to derive the
implementation model. The behavioral RTL does
not explicitly represent the datapath architecture
and the binding information. The structural RTL
view, on the other hand, explicitly describes the
structure of data path plus control unit.

In this report, we describe the design of a
transducer for parity encoder using Spece
MethodologylGZDGOOJ(GERsooi. The rest of the report
is organized as follows: section 2 shows the
parity encoder communication model, section 3
describe the parity encoder design with a
transducer. Section 4,5,6 describes the design of
a transducer for ColdFire and one's counter in
the implementation of a parity encoder.

2 The parity encoder
The parity encoder is used in many areas as error
detection/correction. In our project, we use it to
illustrate the communication model synthesis.

The parity encoder consists of two parts: the
parity encoder main part and the one's counter.
The parity encoder main part use the result from
one's counter to calculate the parity encoder bit.

In our communication model for one's counter,
the main part of parity encoder and one's counter
communicates using a bus. We implemented the
parity encoder communication model both with
the bus as separate behavior and with the bus
inlined as shown in Figurel and Figure2.

Main

Bus

Data,Ocount
start, done

One's counter

Figure! .Communication Model with bus

Main One's counter
start

- ..
JI"'

data

- ====-crone

...
"""11111

ocount

I-=:::::
__..

Figure 2.Communication Model: bus inlined

3 Parity encoder with transducer
In the above implementation, both the main part
of parity encoder and one's counter are
implemented in hardware. Now, we implement
the parity encoder main part in software using
ColdFire as processor. We need a transducer to
connect the ColdFire with the one's counter.
Figure 3 shows the structure of our parity
encoder with transducer

Main SW transducer

start

data

done

ocount

Figure 3.Partiy Encoder with transducer

One's counter
HW

2

4 Coldfire master bus
In our parity encoder example, the ColdFire
protocal is employed for the software part to
input/output the data. The protocol for the
ColdFire and the one's counter are not
compatible, so a transducer is inserted.

The communication between the ColdFire
processor and an external device is based on the
ColdFire Master Bus protocol. A subset of the
master bus signals used in our model are listed
below.

Master Address Bus (MADDR[31:0]). If these
output signals are used, the memory space of the
external device is implicitly mapped into the
memory space in the ColdFire processor. So the
ColdFire processor can explicitly specify the
target address of the external device during the
1/0 process.

Master Read/Write (MRWB). This output
signal indicates a data read/write operation for
the current bus communication. A high level '1'
indicates a read and a low level 'O' indicates a
write.

Master Transfer Start (M~SB). This output
signal indicates the start of a bus transfer when it
is asserted to be 'O'.

Master Read/Write Data Bus
(MRDATA[31:0] and MWDATA[31:0]).
These input/output bus signals provide the
datapaths for the data 1/0. We can choose to use
8, 16, 32 bits of the data bus per data bus
transfer.

Master Transfer Acknowledge (MTAB). This
input signal is asserted to 'O' by the slave to
indicate the successful completion of a bus
transfer. It is sampled by the ColdFire Processor
at the end of each clock cycle. If it is not
asserted, the ColdFire inserts one or more wait
states.

Master Write Data Output Enable
(MWDATAOE). when asserted to 'l', this
output signal indicates that the ColdFire is
driving the master write data bus. This is used to
control optional bi-directional data bus three
state drivers.

For the ColdFire read 1/0, in the first clock cycle
(CRO), the address (MADDR) and control
information (MTSB, MRWB) are driven onto
the bus. In the next cycle (CRI), the address
MADDR remains on the bus. The MRWB is still
asserted. But MTSB is deasserted to 'l'. At this

time, one wait states may be inserted if the slave
is not ready to send the data. In this case, the
slave will keep (deserting) MT AB as 'l '. The
ColdFire samples the MT AB at the end of the
current clock cycle. Because it finds that the
MT AB is deasserted ('l), the ColdFire will
insert one wait state (CRl wait). In other words,
the ColdFire will stay one more clock cycle at
this state (CRl). In the next cycle (the ColdFire
is still at state CRl), if the slave is ready to send
the data, it will assert the MT AB to 'O'. At the
end of this clock cycle, the ColdFire samples the
MT AB. It finds that the MT AB is asserted to 'O ',
so at the end of this clock cycle, the data at the
data bus MRDATA is latch into the ColdFire
data buffer. If there are more I/O requests
suspending, the ColdFire will immediately go
back to the state CRO and start the next data I/0.
Otherwise, if there is no more I/O requests, the
ColdFire will go to the IDLE state

For the ColdFire write I/O, in the first clock
cycle (CWO), the ColdFire asserts the MTSB to
'O', drives the address to address bus MADDR,
asserts the MRWB to 'O' indicating a write I/0.
The MWDATAOE is kept deasserted as 'O'
indicating that data will be not ready on the
MWDATA bus until the next clock cycle. In the
next clock cycle (CWl), the data is driven onto
the data bus by the ColdFire. Also in this clock
cycle, the address remains at the MADDR. The
MRWB is still asserted as 'O'. But the MTSB is
deasserted to 'l', and the MWDATAOE is
asserted to 'l' indicating that data is now on the
data bus MWDAT A. If the slave is not ready to
latch the data, the MT AB will not be asserted,
that is, the MT AB is 'l' in this clock
cycle(CWl). At the end of the current clock
cycle (CWl), the ColdFire samples the MTAB,
and if the MT AB is still deasserted ('l), one
more wait state (CWl wait) will be inserted. In
the next clock cycle (now the ColdFire is still in
the state CWl), if the slave is ready to latch the
data (which is not shown in the timing diagram),
it will assert the MT AB to 'O'. At the end of this
clock cycle (CWl), the ColdFire samples the
MT AB, and it finds that the MT AB is asserted to
'O', so it removes the data from MWDATA and
jumps out of the wait state (CWl). If there is
more I/O requests suspending, the ColdFire will
immediately go to the state CWO and starts a
new data transfer. Otherwise, it will go to the
IDLE state. busses.

3

5 .. Transducer design

MTAB=l

done=!

Reg_data=o
utport

MRDATA=Re
g_data

MTAB=O

MRDATA=Re
g_data

MTAB=O

MT~=() G
MRWB=l

done=O

13 R2

MTSB=O
&

MRWB=O

MWDATA
OE=!

start=!
Reg_Data=
MWDATA

Figure4. FSMD for the first transducer

The functionality of a transducer includes

MTAB=l

MTAB=l
outport=Reg_data

start= I

MTAB=O

MTAB=O

• Re-pack the data to the type which can be
recognized by the other communicating
block;

• Adjust the data arrive and leaving time such
that data is safely transferred

In this section, we implemented the transducer
for parity encoder in two ways.

5.1 The first transducer

The clock for ColdFire bus is 6ns and the one's
counter use the 4ns clock. So in our transducer,
we set the clock as 4ns.Figure 4 is the FSMD
model of our transducer

When the MRWB bit of ColdFire is 'l ',that is
for the ColdFire to read one's counter result. In
Rl state, the MT AB is not asserted (that is 'l ').
At the end of WI, the transducer samples the
done signal from the one's counter. If the done
signal is asserted to 'l ', the transducer goes to
R3. If the done signal is not asserted (that is 'O'),
the transducer will stay at R2 state and keeps
sampling the done signal. When the done signal
is assigned to 'l' by the one's counter, the
transducer will enter R3. During R3, the one's

,oldFire

MWDATA

counter drives data from outport to transducer
internal storage unit Reg_data. In R4, the data is
driven onto the ColdFire's master read data bus
(MRDATA[3I:O]). At the same time, the MTAB

l--r-;;~-~~~~--1

: 6~ !

One's
Counter

Ocount
MRDATA 11----4----t-- .--+=64 __._I --4lldata

fsad2_husy

MTSB>--~-W

MTAB 11---1----1

MWDATAOE

fs1ull_busy

l_fione

A<k
f----+--11 Start

INTC 11---+----1
FSl!Dl Enable FSl!D2

MRWB

I 11----4----l Done

I
I ! Queue

! L ___ J

Figure 5: Block diagram for the second transducer
is asserted to 'O'. The data remains on the data
bus and the MT AB is still asserted 'O' in TR5
because the ColdFire's clock is 6ns while our
transducer's clock is 4ns. We need to make 2
transducer state (8ns) to ensure ColdFire samples
the correct value of the MT AB.

When the MRWB bit of ColdFire is 'O' ,that is
for the ColdFire to send start signal and data to
one's counter. In WI state, the MTAB is not
asserted (that is 'I') .At the end of WI, the
transducer samples the MWDATAOE and
latches the current value on the
MWDATA[3I:O]. If the MWDATAOE is
asserted to 'l ', the transducer goes to W3. If
MWDATAOE is not asserted (that is 'O'), the
transducer goes to W2. In W2, the transducer
keeps sampling the MWDATAOE and latches
the current value on the MWDATA[31:0] until
the MWDATAOE is asserted to '1', then it goes
to W3.In W3, the transducer get the data from
ColdFire bus MWDATA and write to its storage
unit Reg_Data. During W 4, the transducer
asserts the start singal to '1' telling the one's
counter to begin its operation and drives the data
onto the one's counter. In W5 and W6, the
transducer asserts the MT AB to 'O' indicating
the ColdFire the completion of this bus 1/0.
Because ColdFire' s clock is 6ns while our
transducer's clock is 4ns, we need to make 2
transducer state (8ns) to ensure ColdFire samples
the correct value of the MT AB.

4

5.2 The Second Transducer

Now, we try to design the transducer in a general
way. This method uses queue to transfer data

FSMDl FSMD2

Firgure 6 :FSMDl and FSMD2 for the second transducer

between two FSMD. Figure 5 shows the block
diagram of this transducer.

The transducer includes three parts: two FSMD
and one data queue. FSMD 1 is used to
communicate with ColdFire. It will receive the
data from ColdFire and put to the queue or get
the data from the queue and send to ColdFire.
FSMD2 read the data from the data queue and
sends the data to one's counter or get the result
from one's counter and put into the queue. We
selected the queue from standard queues: The
data queue includes two parts, the queue
controller and a data buffer that can store up to
Ik 64-bit data. Figure 6 shows the FSMD
diagram of this transducer which illustrate the
communication process between the ColdFire
and the One's Counter. When ColdFire begins to
transfer data, it executes the ColdFire Master bus
protocol and send the data out. FSMD 1 receives
the data and put the incoming data to a data
queue. We should notice that the ColdFire send
Shit data per time while FSMD 1 converts these 8

bit data to 64bit data using some shift registers
and send to the queue. If the data queue is not
full(Full = 0), the data will be stored to the data
queue. After FSMD2 detects that the data queue
is not empty (Empty = 0), it read the data from
the queue and send the data to the One's
Counter. When the One's Counter finishes the
calculation, it set the Done signal and send the
result back to FSMDl. FSMDl receives the
result and send it back to the data queue. Then
FSMD 1 fetch the result and send back to
ColdFire by executing the bus protocol.

6 .. Conclusion
In this report, we designed a transducer for the
parity encoder. We explored two ways to design
the transducer: the first transducer consists of
one FSMD and a register. But it can only work
in our example, we just take advantage of the
ColdFire protocol and the simple protocol of
one's counter. The second transducer is
composed of two FSMD and one queue (with 8,
16, 32, 64, 128, 256 bit wide memory). This is a
general transducer model. Actually, the design
process of a transducer with two FSMD and one
queue shows that we can use this general
transducer model to connect any two IPs with
different protocols. Based on this design, we are
further thinking of ways to generate transducer
automatically from the given protocols.

References
[GZDGOO]D. Gajski er al. Spece: Specification
La.nguage and Design Methodology, Kluwer
Academic Publishers, 2000
[GERSOO]A. Gerstlauer Spece Modeling
Guidelines, University of California, Irvine,
Technical Report ICS-00-xx, September 2000

[YDLGOO] H.Yin, H,Du, Lee, D.D. Gajski ,
Design of a JPEG Encoding System using Spece
Methodology

5

Appendix A: Spece code for the first transducer

A.1 bus.sc
/**

*
Filename: bus.sc
Description: Bus Definition
**/
#include <stdio.h>
#define HW_CLKl 6
interface ISignal{

void assign(int v);
int val();
void waitval(int v);
} i

interface OSignal{
void assign(int v);
int val();
void waitval(int v);
} i

channel CSignal() implements ISignal, OSignal
{

} i

int value;
event ev;
void assign(int v){ //assign a value;

value = v;
notify (ev) ;

int val() { II return the value;
return value;

}

void waitval(int v){ //wait for value
while(value != v) wait(ev);

}

interface iMasterBusProtocol
{

bit[31:0] read(bit[31:0] addr);
void write(bit[31:0] addr, bit[31:0] data);

} i

II master bus side of protocol
channel cMasterBusProtocol(out bit[31:0] MWDATA,

in bit[31:0] MRDATA,
OSignal MTSB,
ISignal MTAB,
OSignal MWDATAOE,
out bit[31:0] MADDR,
OSignal MRWB

implements iMasterBusProtocol

bit[31:0] read(bit[31:0] addr)
{

6

transfer

int data;
int val;

II first clock cycle CRO
MADDR = addr ; II assign address lines
MTSB.assign(O) II assert the start of bus transfer
MRWB.assign(l) II assert read control
waitfor (HW_CLKl) ;

II second clock cycle CRl
val = MTAB. val () I I
while (val==l)
{

MADDR = addr ; II
MTSB.assign(l) ;II

sample acknowledge line

assign address lines
deassert the start of bus

MRWB.assign(l) ;II assert read control
waitfor(HW_CLKl);
val= MTAB.val();ll sample acknowledge line

data = MRDATA i

waitfor(HW_CLKl);
return data;

II sample data bus

void write(bit[3l:OJ addr, bit[31:0] data)
{

transfer

} i

int val ;

II first clock cycle CWO
MADDR = addr ; II assign address lines
MTSB.assign(O) II assert the start of bus transfer
MRWB.assign(O) II assert write control
MWDATAOE.assign(O) ; II deassert write data available
waitfor (HW_CLKl) ;

II second clock cycle CWl
val = MTAB. val () I I sample acknowledge line
while(val==l)
{

MADDR = addr ; II
MTSB.assign(l) ;II

assign address lines
deassert the start of bus

MRWB.assign(O) ;II assert write control
MWDATAOE.assign(l) ;II assert write data available
MWDATA =data ; II drive data outputs
waitfor(HW_CLKl) ;
llprintf("wait for the MTAB value to be 1 ");
val = MTAB.val() ; II sample acknowledge line

waitfor(HW_CLKl);

interface iMasterBus
{

void send(int data, int addr);

7

int recv(int addr);
} i

channel cMasterBus (out bit[31:0] MWDATA,
in bit[31:0] MRDATA,
OSignal MTSB,
ISignal MTAB,,,
OSignal MWDATAOE,
out bit[31:0] MADDR,
OSignal MRWB,
ISignal INTC
)

implements iMasterBus

cMasterBusProtocol protocol (MWDATA, MRDATA, MTSB, MTAB,
MWDATAOE,

} ;

MAD DR I MRWB) ;
int i ,temp;

void send(int data, int addr)

II data transfer
protocol.write (addr, data)

int recv(int addr)
{

II high-level synchronization, wait for ready signal
INTC.waitval (0)
waitfor(HW_CLKl)

II data transfer
temp = protocol.read (addr)
return(temp);

A.2 counter.sc
I**

*
Filename: counter.sc
Description: One's counter model(bus interface not inline)

**I
import "bus" ;
#ifndef HW_CLK
#define HW_CLK 4
#endif
behavior HW(in bit[31:0] inport,

out bit[31:0] outport,
ISignal start,
OSignal done

void main(void)

8

{

bit[31:0] data, Mask, temp; //temp. variables;
bit[7:0] count;
enum state {SO, Sl, S2, S3, S4, SS, S6,S7,SB} state;
state= SO; //initial states;
while(state != SB) {

switch(state)
{

case SO :
done.assign(O);

if (start.val() == 1)
state Sl;

else
state SO;

break;

case Sl:
data = inport;
printf ("data=%d \n" , (int) data);
state = S2;
break;

case S2:
count = OOOb;
state =S3;
break;

case 83:
Mask = OOlb;
state = S4;
break;

case S4:
temp = data & Mask;
state = SS;
break;

case SS:
count += temp;
state S6;
break;

case S6:
data = data >> l;
if (data)

state S4;
else

state S7;
break;

case S7:
done.assign(l);
outport=count;
state = SB;
break;

}

waitfor(HW_CLK);

//output data;

9

}

};

A.3 tb.sc
/**

*
Filename: tb.sc
Description : One's counter model,TestBench

**/
import "transducer";
behavior SW(out bit[31:0] MWDATA,

in bit[31:0] MRDATA,
OSignal MTSB,

{

ISignal MTAB,
OSignal MWDATAOE,
out bit[31:0] MADDR,
OSignal MRWB,
ISignal INTC)

cMasterBus
INTC);

bus(MWDATA, MRDATA, MTSB, MTAB, MWDATAOE,MADDR, MRWB,
void main(void)

{

}

} i

int inport,outport;
printf("Input for one's counter: ");
scanf ("%d" , &inport) ;
printf("Bus sending %d to one's counter ",inport);
bus.send(inport,0);
outport=bus.recv(O);
printf("The one's number is %d\n", outport);

behavior Main
{

bit[31:0] MWDATA
bit[31:0] MRDATA
bit[31:0] MADDR

II coldfire write data bus
II coldfire read data bus
II address

II coldfire-transducer control
CSignal MTSB, MTAB, MWDATAOE,MRWB, INTC
//transducer-one's counter control

CSignal start,done;
bit[31:0] inport,outport;
SW sw(MWDATA, MRDATA, MTSB, MTAB, MWDATAOE,MADDR, MRWB, INTC);
HW hw(inport,outport,start,done);
INTERFACE inter(MWDATA, MRDATA, MTSB, MTAB, MWDATAOE, MADDR,

MRWB,inport,outport,start,done);
int main(void){

MWDATAOE.assign(O)
printf("*********************\n");
printf (" Begin ... \n") ;
printf("*********************\n");
par
{

sw.main();
inter.main();

10

} ;

hw.main();
}

printf{"*******************\n");
printf(" End ... \n");
printf{"*******************\n");
return(l);
}

A.4 transducer .sc
/**

*
Filename: transducer.sc
Stage: transducer for coldfire and one's counter

**!
#ifndef ~INTERFACE_
#define ~INTERFACE_
import "counter";
#ifndef HW_CLK
#define HW_CLK 4
#endif
behavior INTERFACE(in bit[31:0] MWDATA,

out bit[31:0] MRDATA,
ISignal MTSB,
OSignal MTAB,
ISignal MWDATAOE,
in bit[31:0] MADDR,
ISignal MRWB,
out bit[31:0] inport,

in bit[31:0] outport,
OSignal start,
ISignal done)

int Reg_Data ;
void main(void)

enum state {SO, Rl, R2, R3, R4, RS, Wl,W2,W3,W4,W5,W6} state;
int val,temp
state=SO;
while (1) {
switch(state) {

case SO:
MTAB.assign(l)
val = MTSB. val ()
if(val==O){ //begin a new bus transfer

temp=MRWB. val ()
if (temp ==0)

state=Wl;
else

state=Rl;
}

else
state=SO;

break;

case Rl :
MTAB.assign(l)

11

state=R2;
break;

case R2 :
if (done.val()==l) {

state=R3;
goto labell;
}

else
state=R2;

break;

case R3 :
labell:
Reg_Data
state=R4;
break;

outport

case R4 :
MRDATA = Reg_Data
MTAB.assign(O)
state=RS;
break;

case RS :
MRDATA = Reg_Data
MTAB.assign(O)
state=SO;
break;

//coldfire write to one's counter
case Wl :

MTAB.assign(l)
state=W2;
break;

case W2 :
val = MWDATAOE.val()
if (val == 0) {

state=W2;
MTAB.assign(l) ;}

else {
state=W3;
goto label2;
}

break;

case W3 :
label2:
MTAB.assign(l)
start.assign(O) ;
Reg_Data = MWDATA
state=W4;
break;

case W4 :
MTAB.assign(l)

12

inport = Reg_Data
start.assign(l)
state=W5;
break;

case WS :
MTAB.assign(O)
state=W6;
break;

case W6 :
MTAB.assign(O)
waitfor(HW_CLK)
state=SO;

}

waitfor(HW_CLK);
}

} i
#endif

Appendix B: Spece code for the second transducer

B.1 queue.sc
!***

Project: RTL Model Implementation
Stage: One's counter model(with ColdFire)
Filename: queue.sc
Last change: 1/11/01
Author: Qiang Xie

**/
#define HW_CLK 6
import 11 bus 11

;

behavior MEM(ISignal CS,
ISignal RWS,

{

addr);

inout bit[31:0] Data,
in bit[3:0] addr)

int mem_data[7J;
void main(void)
{

enum State{SO} state;
state = SO;

while (1) {
switch(state) {

case SO:
if((CS.val()==l)&&(RWS.val()==l))

mern_data[addr] = Data;
printf(11 write data: %d, Addr: %d\n 11

, mem_data[addr], (int)

}

else if((CS.val()==l)&&RWS.val()==O){

13

Data = mem_data[addr];
printf("Read data: %d; Addr: %d\n", (int) Data, (int)

addr);

} ;

}

state SO;
break;
}

waitfor(HW_CLK);
}

}

behavior Queue_Ctrl_Logic(
ISignal Enable,
ISignal RW,
out bit[3:0] addr,
OSignal Empty,
OSignal Full,
OSignal CS,
OSignal Ready)

bit[3:0] back_addr, front_addr;
void main(void)
{

enum State{SO, Sl}state;
//initial state
state = SO;
back_addr = lOOOb;
front_addr = lOOOb;
Empty. assign (1) ;
Full. assign (0) ;

while(l){
switch(state){
case SO:
Ready.assign(O);
if(back_addr[2:0] == front_addr[2:0]) {

if(back_addr[3] == front_addr[3]) {
Empty.assign(l);

else{

Full. assign (0);
}else{

Empty.assign(O);
Full.assign(l);
}

Empty.assign(O);
Full. assign (0) ;
}

if(Enable.val())
{

//select read and write address,
if (RW.val() ==1) {

addr = back_addr&Olllb;
back_addr++;
}

14

} ;

else {
addr = front_addr&Olllb;
front_addr++;
}

//select memory
CS.assign(l);
state = Sl;

}else {
CS.assign(O);
Ready.assign(O);
}

break;

case Sl:
Enable.assign(O);
Ready.assign(l);
state = SO;
break;
}

wai tfor (HW_CLK) ;

behavior Queue(
ISignal Enable,
ISignal RW,
inout bit[31:0] data,
OSignal Full,
OSignal Empty,
OSignal Ready)

bit[3:0] addr;
CSignal CS;

MEM mem(CS, RW, data, addr);
Queue_Ctrl_Logic q_ctrl(Enable, RW, addr, Empty, Full, CS,

Ready);

} i

void main(void)
{

}

par{
q_ctrl .main ();
mem.main();}

B.2 transducer.sc
!***

Project: RTL Model Implementation
Stage: One's counter model(with ColdFire)
Filename: transducer.Sc
Last change: 1/10/01

15

Author: Qiang Xie
**!
#define HW_CLK_l 6
#define HW_CLK_2 4
import 11 bus 11

;

import 11 queue 11
;

#ifndef ~INTERFACE_
#define ~INTERFACE_

behavior FSMD_l(
in bit[31:0] MADDR,
in bit[31:0] MWDATA,
out bit[31:0] MRDATA,
ISignal MTSB,
OSignal MTAB,
ISignal MWDATAOE,
OSignal INTC,
ISignal MRWB,
OSignal Enable,
OSignal RW,
ISignal Full,
ISignal Empty,
inout bit[31:0] iodata,
ISignal Ready,
ISignal Done)

int Reg_data;

void main(void)
enum State{SO, Sl,

Wl, W2, W3,
RSO, RO, Rl, R2}

state;
state = SO;
//initilize signal
MTAB.assign(l);
INTC.assign(l);
Enable.assign(O);
RW. assign (0);

//TO
while (1) {
switch(state){

case SO:
if((MTSB.val()==O)&&(MRWB.val()

//write data
if (Full.val()==l) {

0)) {

printf (11 Data buffer full, Please send data
later. \n 11

) ;

MTAB.assign(O);
state= SO;}
else {

MTAB.assign(l);
state= Sl ;}

}

16

break;

case Sl:
if (Enable. val ()
break;

0) state Wl;

//begin write data to slave bus
case Wl:
if (MWDATAOE.val()==O)MTAB.assign(l)
else state = W2;
break;

case W2:
if(Ready.val() ==0){

Enable.assign(l);
RW.assign(l);

MTAB.assign(l);
iodata = MWDATA;}

else
state = W3 ;

break;

case W3:
Enable.assign(O);
RW.assign(O);
MTAB.assign(O);
state = RSO;
break;

case RSO:
·if((Empty.val() == O)&&(Dohe.val()

INTC.assign(O);
state = RO; -
}

break;

case RO:
if ((MTSB. val ()

) state Rl ;
0) && (MRWB. val ()

break;

case Rl:
//TRl
if(Ready.val() == 0) {

MTAB.assign(l);
Enable.assign(l);
RW. assign (0) ;
INTC.assign(l);
MRDATA = iodata;

else
state = R2;

break;

case R2:
Enable.assign(O);
Done.assign(O);
MTAB.assign(O) ;

17

1)) {

l)&&(Enable.val() ==0)

}

} i

state = SO;
break;
}

waitfor(HW_CLK_l);
}

behavior FSMD_2(
inout bit[31:0] DB,
OSignal Start,
ISignal Done,
OSignal Enable,
OSignal RW,
ISignal Full,
ISignal Empty,
inout bit[31:0] iodata,
ISignal Ready,
OSignal t_done
)

int addr;
int Reg_data;

void rnain(void) {
enurn State{SO, Sl, Rl, R2, Wl, W2, W3, W4} state;
state = SO;
t_done.assign(O);

while(l){
switch(state){

case SO:
if((Ernpty.val()== O)&&(t_done.val()==O)) state Sl;
break;

case Sl:
if(Enable.val() 0){

state= Rl;}
break;

case Rl:
printf (11 FSMD2 state Rl \n 11

) ;

if (Ready.val() == 0) {
Start.assign(l);
Enable.assign(l);
RW.assign(O);
DB = iodata; }
else
state = R2;
break;

case R2:
Enable.assign(O);
state = Wl;
break;

18

}

} i

//wait for result and write result to queue
case Wl: //wait Done
if((Done.val() == l)&&(Full.val()==O))

state ::;; W2;
break;

case W2:
if (Enable.val() == 0)
{

t_done.assign(l);
state= W3;}

break;

case W3:
if(Ready.val() ==0){

Enable.assign(l);
RW.assign(l);
iodata =DB;}

else
state = W4;

break;

case W4:
RW.assign(O);
Enable.assign(O);
Done.assign(O);
state = SO;

break;
}

waitfor(HW_CLK_2);
}

behavior Transducer(
in bit[31:0] MADDR,
in bit[31:0] MWDATA,
out bit[31:0] MRDATA,
ISignal MTSB,
OSignal MTAB,
ISignal MWDATAOE,
OSignal INTC,
inout bit[31:0] DB,
OSignal Start,
ISignal Done,
ISignal MRWB)

bit[31:0] data;
CSignal Enable;
CSignal RW;
CSignal Full, Empty;
CSignal Ready;
CSignal t_done;

19

FSMD_l fsml(MADDR, MWDATA, MRDATA, MTSB, MTAB, MWDATAOE,
INTC,

MRWB, Enable, RW, Full, Empty, data,Ready,
t_done) ;

FSMD_2 fsm2(DB, Start, Done, Enable, RW, Full, Empty, data,
Ready, t_done) ;

} i

#endif

Queue queue(Enable, RW, data, Full, Empty, Ready);

void main(void){
Start.assign(O);
Done.assign(O);

par{
queue.main();
fsml .main ();
fsm2 .main ();
}

20

