
UC Irvine
ICS Technical Reports

Title
User interface development and software environments : the Chiron-1 system

Permalink
https://escholarship.org/uc/item/2bk5f5gz

Authors
Keller, Rudolf K.
Cameron, Mary
Taylor, Richard N.
et al.

Publication Date
1990
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bk5f5gz
https://escholarship.org/uc/item/2bk5f5gz#author
https://escholarship.org
http://www.cdlib.org/


User Interface Development and 
------So ft ware Environments: The Chiron-1 System 

Rudolf K. Keller_,_ 
-;;:::=-- ~ 

Mary Cameron, Richard N. Taylor, and Dennis B. Troup 

Department of Information and Computer Science 
University of California 

Irvine, CA 92717 

Technical Report 90-25 

September 1990 

Abstract 

User interface development systems for software environments have to cope 
with the broad, extensible and dynamic character of such environments, must 
support internal and external integration, and should enable various software de­
velopment strategies. The Chiron-1 system adapts and extends key ideas from 
current research in user interface development systems to address the particular 
demands of software environments. Important Chiron-1 concepts are: separation 
of concerns, dynamism, and open architecture. We discuss the requirements on 
such user interface development systems, present the Chiron-1 architecture and a 
scenario of its usage, detail the concepts it embodies, and report on its design and 
prototype implementation. 

Keywords: User Interface Development Systems, Software Engineering En­
vironments, Concurrent Systems. 

z 
0 

C-3 
Yj o. 7 () ,-)[; 



1 

1 Introduction 

There is a great need for tools to help design, implement, and maintain user ii:J.terfaces. 
Human interface development strategies such as those involving iterative design tend to be 
very expensive, and interface software seems to be inherently difficult to write. Furthermore, 
the trend towards ever more sophisticated interfaces is continuing, imposing new challenges 
on interface developers. User interface tools promise relief in that the quality of the interfaces 
is ensured, or even improved, while the effort to create and maintain them is kept under 
control and possibly radically reduced. 

Myers [Mye89b] distinguishes two types of user interface tools: user interface toolkits 
and user interface development systems. A user interface toolkit is a "library of interaction 
techniques, where an interaction technique is a way of using a physical input device to input 
a value, along with the feedback that appears on the screen." A user interface development 
system (UIDS) is "an integrated set of tools that help programmers create and manage many 
aspects of interfaces" [Mye89b]. These systems are often referred to as user interface man­
agement systems, but we prefer the more general notion of UIDS, and use that term to 
characterize our work. 

Early software environments typically supported a narrow range of activities, most notably 
programming, or have been restricted to a single "hard-wired" software development process. 
Consequently, user interface tools dealt with limited or relatively static tasks, which are typical 
features of most of the currently available systems. Moreover, many systems constrain the 
interface between application and user interface code by imposing, for example, a dispatch 
structure (often found with toolkits), or a transition-diagram-driven control structure. The 
emergence of much more general environments calls for novel user interface tools which are 
more powerful, more adaptive, and less restrictive than existing ones. 

The Arcadia research project [TBC+88] is investigating the construction of software envi­
ronments that are integrated, yet :flexible and extensible enough to support experimentation 
with alternative software processes and tools. A major sub-project of Arcadia is Chiron. The 
goal of the Chiron project is to explore the particular demands and constraints on a UIDS 
for such environments, the interrelation between the environment architecture and the UIDS, 
and the user interface development strategies most appropriate for such environments. 

This research is being validated by a series of prototypes of environments and UIDSs. A 
first effort resulted in Chiron-0, a UIDS which reflects the user interface research of the first 
phase of the Arcadia project and which is described in [YTT88]. The lessons learned from 
Chiron-0, the progress made in the Arcadia prototype environments, and the ambitious goals 
of the second phase of the Arcadia project inspired the Chiron-1 UIDS project. 

The proposed design of the Chiron-1 UIDS has been described in [KCTT90]; in this 
paper we present the system as it has been built. We first discuss the special requirements 
software environments impose on UIDSs. Then, an overview of the Chiron-1 system is given. 
Thereafter follows a description of how Chiron-1 applications are built. Next, we point out 
some important Chiron-1 concepts and show how they make Chiron-1 a powerful platform 
for user interface development in software environments. Finally, we give an evaluation of our 



2 

design, and present the current status and future research directions of our project. 

2 UIDS Requirements for Software Environments 

Arcadia research indicates that software environments must be broad in scope, highly flexible 
and extensible, and very well integrated. This set of characteristics drives special demands 
on the environments' user interface facilities. 

Below we briefly discuss these characteristics, together with the requirements they impose 
on supporting UIDSs. We have structured the discussion into five sections, claiming that a 
UIDS should support a broad and extensible scope, dynamism, tight integration, and various 
development strategies. 

These requirements are not disjoint, and there exist tensions between the different items 
(see below). Furthermore, we do not claim that the list of requirements is complete. It rather 
shows the major additional requirements that should come together with the requirements 
for "standard" UIDSs (cf. [Loe88]). 

2.1 Broad and Extensible Scope 

In our estimation software environments should support the full spectrum of software de­
velopment and maintenance activities: from requirements definition and test planning, to 
modeling and analysis, to preparation and maintenance of user manuals. There is also enor­
mous variation in the objects utilized (e.g., graphs, structured text, running programs, etc.). 
The scope of such environments is therefore much broader, for example, than the scope of 
programming environments. 

A UIDS must not limit the scope of environments by making assumptions about the 
types of objects to be manipulated. It should rather allow the presentation of a variety of 
objects, in various depictions, whether or not they are static or dynamically created. UIDS 
architectures are thus required to be open in respect to control models and tool interfaces. 
Many current UIDSs deal with restricted application areas, making, for instance, assumptions 
on the static nature of applications or relying on certain application models such as editor 
models, e.g., Dost [DS86]. For UIDSs in extensible software environments such limitations 
are not acceptable. 

Furthermore, software environments should allow adding new capabilities to address new 
needs. New development and analysis techniques appear regularly; it is only sensible to 
integrate them into an environment. Doing so can be difficult, however, unless an environment 
is designed with this kind of growth and change in mind. 

2 .2 Dynamism 

Many software development activities are dynamic, especially when executing code is involved. 
Typical examples are runtime analysis or interactive debugging. 

A UIDS should support the visualization of such activities. When objects are dynamically 
created, the UIDS should provide means to depict them in a way which is dependent upon 



3 

the current state of the execution. In many cases the depictions have to be created or adapted 
at runtime. Compelling examples are: long running processes such as system design, during 
which new tools are brought in and utilized, debuggers for concurrent programs where an 
error case might not be readily reproducible upon· re-start, applications where types to be 
depicted are dynamically created, or applications which deal with a lot of data and which 
lack a means for persistent storage. 

2.3 Tight Integration 

A software environment should be both externally and internally integrated. By external 
integration we mean that the user's interactions with all of the tools and facilities of the 
environment are as uniform and comfortable as possible. Internal integration deals with 
the tool builder's perspective: an environment is internally integrated if there are uniform 
mechanisms for tool invocation and combination, data sharing, persistent object management, 
etc. The addition of new tools to the environment, a quite common process in extensible 
environments, should hence be seamless for both the user and the tool builder. 

Current UIDSs often promote external integration; in fact, external integration is one 
of the fundamental goals of UIDSs. Internal integration, however, is sacrificed (or ignored) 
in many UIDSs in that the interface to the functional portion of applications is restricted, 
twisted or hampered by properties of the urns. 

2.4 Various Development Strategies 

We assume that in broad-scope software environments a variety of development strategies 
is adopted. These strategies can have heavy impacts on urns issues as the three examples 
below suggest. 

First, in large software projects, many developers are usually involved, and cooperative 
development might be applied. This can involve simultaneous access and manipulation of 
shared data, use of project management tools, use of various communication media, etc. 
(cf. [Gib89]). A UIDS should support cooperative work by pr~viding, for instance, user 
interface consistency (possibly at different levels) among users working on the same data or 
running the same application (cf. section 3.3). 

Second, development might be bi-directional in the sense that either the user interface or 
the functional parts of an application are the starting point of an application's development. 
An example of the former case is the technique of evolutionary prototyping (cf. [BK89]), 
where the user interface is iteratively specified, refined, implemented and finally extended to 
a full-blown application. The latter case can occur when the functional parts of an application 
have already been implemented, and a usPr interface should be attached without changing the 
already existing parts. It's clear that a UIDS should suppbrt both directions of development. 

Finally, a UIDS is used by a variety of people, acting in different roles, such as application 
programmers, user interface designers, etc. A UIDS should also take into account that users 
perceive their needs differently, according to their level of skill and experience. 



Concrete 
Depiction 

Chiron-1 
Server 

r---------------------------------------, 
I """- . Dispatcher 

Artist . , ~ 

.___Aru---... j ~ ~ ~ 

.___Arti_·_st __.I-~ -G 

Dispatcher 
.....-------. / 

: ... I _Ar_tis_1__.l ~ Tex.\ext 
: Text ADT 
I 
I 

Chiron-1 Client 

Figure 1: A tool and its user interface in the Chiron-1 model 

4 

This list of requirements is very ambitious; quite possibly, a single UIDS cannot cover 
all above mentioned issues. With Chiron-1 we have tried to investigate the most challenging 
ones, the results being presented in the rest of this paper. Other significant UIDSs include 
Dynamic Windows [MYM89], Garnet [Mye89a], Higgens [HK88], and Serpent [BCH+90]; space 
limitations do not permit a comparison of their capabilities and Chiron-l's in this paper. 

3 Chiron-1 System Overview 

To give an overview of Chiron-1, we first discuss the UIDS model on which the system is based. 
Then we describe its language interface. Finally, we present the Chiron-1 architecture. Since 
Chiron-1 at runtime is a system comprised of a server and an arbitrary number of clients, we 
have divided the discussion into a client and a server section. 

3.1 Chiron-1 UIDS Model 

Faced with the requirements discussed in the previous section and given the positive expe­
riences gained from the Chiron-0 model, ·,ve decided to adopt and substantially extend the 
Chiron-0 model. Chiron-1 uses an artist-based, concurrent UIDS model, which makes a clear 
separation between the applications' functional and user interface parts, while still guaran­
teeing effective and efficient communication between those parts. Moreover, it distinguishes 
application-specific and general-purpose user interface parts, allowing applications to be or­
ganized accordingly. 



5 

Artists for data structures were introduced by Myers [Mye83] in the Incense symbolic 
debugging system. Artists are associated with abstract data types (ADTs), and encapsulate 
decisions about how instances of those ADTs are depicted. In terms of Smalltalk's model-view­
controller paradigm, an artist maintains a bi-directional mapping between model objects and 
corresponding view objects. Loops [SB86, SBK86] binds the equivalent of artists to objects 
using a specialized form of inheritance called annotation. Chiron-1 adopts a more formal 
version of annotation for binding artists to ADTs. An annotation of an ADT may add new 
operations, extend existing operations, and add local state. New operations and extensions 
to existing operations may modify only local state. An artist adds local state to keep track 
of the depiction of an object, and extends existing operations to update the depiction when 
the object is modified. Annotations are further discussed in [YTT88]. 

The essential characteristic of annotation as a mechanism for binding artists to ADTs is 
that neither the semantics nor the syntax (signatures of operations) of the ADT are changed. 
Application code need not be modified just because the object it is manipulating is depicted 
on the screen. Thus, the interface to the functional parts of an application is not corrupted 
by the user interface. 

Since artists do not alter the syntax or semantics of the underlying ADT, multiple artists 
may be attached to a single ADT. This makes it possible to display multiple, coordinated 
views of instances of the same ADT. 

The artist approach has some implications for the functional parts of applications (hence­
forth referred to as "tools") to which Chiron-1 attaches user interfaces. Chiron-1 requires that 
the tools be ADT-based: all references and manipulations of objects should be performed by 
procedures and functions. In particular, objects should be explicitly created and destroyed 
with procedure or function calls. This gives the artists the opportunity to augment those 
operations (visually displaying their effects). 

Figure 1 illustrates the Chiron-1 model. The tool meets Chiron-l's requirements and is 
based on ADTs. Each ADT is wrapped into a dispatcher, a software layer that dispatches 
incoming calls from both the tool and the artists. When the tool calls an ADT (via the 
associated dispatcher), the call is propagated to all attached artists, which update the concrete 
depiction, i.e., the display. The double arrows indicate that information also flows from the 
display to the artists, and back to the ADTs. 

Chiron-1 manages all the parts of user interfaces which are not artist-specific (and not 
application-specific) in the Chiron-1 server (drawn as a black box in figure 1). The server can 
be viewed as a virtual machine which provides a high-level interface to the artists in the form 
of the Abstract Depiction Language (see below). Thus, lower-level user interface software, such 
as an underlying user interface toolkit and the window system, are hidden from the artists. 
As the name "server" suggests, several tools can communicate with the same Chiron-1 server. 
Accordingly, a tool together with its objects, dispatchers, and attached artists is called a 
client. Servers and clients run as separate processes (see section 3.4). 

The tool, the artists, and the server are all active and maintain their own, possibly multi­
ple, threads of control. This concurrent model avoids imposing sequential control upon tools, 
and can exploit potential parallelism in distributed implementations. 



6 

3.2 Chiron-1 Language Interface 

The Chiron-1 system contains an object-oriented language called the Abstract Depiction Lan­
guage (ADL), together with predefined ADL class libraries. ADL provides a framework in 
which the client developer programs the user interface parts of artists. Rather than being 
written directly in ADL, artists are programmed in an artist language, which is the language 
of the tool, supplemented with an interface to ADL. Below, we provide a description and 
rationale of these languages, discuss their impact on the design of Chiron-1, and show how 
they are used in concert for specifying event handling. An example of their usage is presented 
in section 4.1. 

3.2.1 Abstract Depiction Language 

ADL is used to describe and manipulate the artists' user interface objects. It is called ADL, 
because at runtime, the server stores information provided by ADL programs in abstract 
depiction data structures (see below). There are high-level ADL classes which handle default 
objects and behavior. The client developer specializes these classes to deal with objects and 
behavior specific to the user interface under consideration, using the inheritance mechanism 
built into ADL. 

Unlike many other UIDS languages, which are poorly structured (non-local control flow, 
use of global variables, etc. [Mye89b]), ADL should be a high-level programming language. It 
should be object-oriented, since this feature makes a language especially well-suited for the 
UIDS domain [LVC89]. Furthermore, an "ideal" ADL should be small, expressive, easy to 
use, and have fast execution. 

As a vehicle to specify ADL, we developed a language called Doodle which borrows ideas 
from other object-oriented languages and systems, including Smalltalk, Eiffel, Trellis/Owl, 
Coral, and c++. It supports constraints and persistence and contains a predefined class 
library. A preliminary description of Doodle can be found in [BCJ+89]. 

The Chiron-1 design is ADL-independent in that ADL can represent different object­
oriented languages such as C++, Eiffel, and Doodle. 

3.2.2 Artist Language 

In the current design, we call the artist language Lo-CAL. "Lo-CAL" stands for lo(w) Chiron 
Artist Language1 . Lo-CAL is a superset of Ada (we assume, for the Arcadia context, tools 
are written in Ada) that contains an interface to ADL, allowing artists to manipulate ADL 
class objects. At runtime, ADL instructions are sent to the server where they are interpreted. 
Thus, Lo-CAL bridges the gap between the "tool language" (Ada) and the "server language" 
(ADL). 

Artists are components which connect the tools to the server. Thus, prime candidates for 
an artist language were ADL and the tool languages. We have not chosen ADL as the artist 

1 "low" was adopted for historical reasons: at au earlier stage of development, we had planned to define an 
artist language which would have included the complete functionality of ADL. Since we called that language 
"CAL", we call the present, much simpler language "Lo-CAL". 



7 

language, because artist writers would possibly have to learn a new language and because 
there would be an ADL/tool language interface in the clients. Furthermore, we did not want 
to restrict the design to one particular tool language such as ADL. 

A natural solution was to adopt Ada as an artist language and to provide an Ada/ ADL 
interface. Instead of coercing legal Ada to be both the AD L and the artist language (faking 
features such as inheritance and dynamic binding as was done in Chiron-0), we decided to 
define Lo-CAL. 

Extending Chiron-1 in the future to support another tool language will mean that a new 
artist language, for instance, "Hi-CAL", has to be defined. Like Lo-CAL, Hi-CAL would be a 
superset of its tool language, containing an interface to ADL. Chiron-1 would have to adapt 
the standard client runtime system (see below) and the client building tools (see section 4). 
The server, however, would remain unchanged. 

With the ADL/Lo-CAL languages, a two-level mechanism for specifying event handling 
is provided: ADL classes may contain their own event methods. These methods can be used 
to specify (by a special command) that events should be propagated to the artists. In order 
to handle incoming events, artist programs have to specify their own event handlers. This 
is done by a Lo-CAL procedure which takes as parameters a class name, an event, and the 
associated event handler. If an event is handled neither at the ADL level nor at the Lo-CAL 
level, it is ignored. 

3.3 Client Architecture 

Figure 2 shows the client side of an executing application using Chiron-1. The figure is 
simplified in that it contains only one ADT. Ellipses represent components running in parallel; 
rectangles represent data, as well as components that are invoked by other components (i.e., 
that do not run continuously on their own). 

The tool makes calls into the dispatcher. 
The dispatcher is generated from the ADT specification by the dispatcher generator (see 

section 4). It wraps around all procedures and functions of the ADT, and presents an interface 
that is identical to the ADT's interface. The tool replaces all calls to the original ADT with 
calls to the dispatcher. The bodies of the wrapping procedures and functions contain calls to 
the original ADT, followed by a sequence of calls to the artists associated with the dispatcher 
(one call per artist). With this scheme, the artists are informed of each procedure call to 
the ADT, with only a minor modification to the tool's code. This scheme is a decentralized 
relative of the message-passing mechanisms used in Field [Rei90]. 

When called by the dispatcher, the artists may need to update their graphical depiction of 
the ADT, by sending instructions to the client protocol manager. The client protocol manager 
encodes the instructions into a protocol form and sends them to the server. 

The server sends Chiron-1 events to the client protocol manager, which acts as a decoder. 
Chiron-1 events describe the object receiving the event and information about the event. 
The client protocol manager forwards them to the client event manager, which calls the 



~---------------------------------------, 

sends I i scnds 
instructiom t Chiron-events 

,----------, 
I I 

• Chiron-1 
Server 

~---------· 

Client 
Configuration 

File 

refcrenccs 

Client 
Manager 

Client 
Event 

Manager 

Chiron-1 Client 

Figure 2: Chiron-1 client at runtime 

appropriate event handlers in the artists (artists register event handlers with the client event 
manager). 

The event handlers (or any part of an artist) may call the dispatcher to update the ADT 
instance and notify the other artists. If, for example, an artist deletes a view object after a user 
interaciion, it might call the dispatcher to perform a delete operation on the corresponding 
ADT object. The dispatcher would then call the other artists which might in turn delete 
their corresponding view objects. 

The client manager is responsible for coordinating the startup of the client, which involves 
starting the tool, starting the artists, and establishing the dispatcher-to-artist communication 
paths by registering artists with the dispatcher. The information needed to perform this job 
is contained in the client configuration file. 

The client configuration file is a text file that contains the client's ADT names (and, im-

8 

I 
1' 

I 



9 

plicitly, dispatcher names), the artist names, and numbers indicating how many instances of 
each artist to start up initially. To change the client configuration at runtime, the Chiron-I 
system provides a client configuration package, which consists of procedures to create and 
delete artist instances. This package can be called directly by the artists and the tool. More­
over, the client manager provides a graphical interface to this package, allowing the end user 
to alter the configuration. 

The client protocol manager, the client event manager, and the client manager are all 
client-independent. They are provided by the Chiron-I system and make up the standard 
client runtime system. 

3.4 Server Architecture 

The server architecture is illustrated in figure 3. 
Instructions are sent from the clients to the server. The server protocol manager decodes 

them from the protocol form and forwards them, along with their corresponding client iden­
tifications, to the scheduler. The scheduler buffers and prioritizes incoming instructions and 
events for processing by the interpreter. 

The interpreter is at the heart of the server, as it is responsible for controlling most of 
the functionality of the server. It gets commands (instructions and Chiron-I events) from the 
scheduler. The instructions are references to ADL classes which were previously written and 

· stored in ADL class libraries. Upon receipt of these instructions, the interpreter may either 
load in class code (as it maintains a cache of library information) or execute the loaded class 
code. It is the execution of this code that causes the abstract depictions to be maintained, 
that is, created and updated. The interpreter is also responsible for rendering the abstract 
depictions, i.e., it references the abstract depictions and invokes the drawing primitives. Upon 
getting a Chiron-I event, the interpreter determines whether the event can be handled within 
the server, or whether it is sent to the clients. 

Abstract depictions are the internal representation of the objects to be displayed. There 
is one abstract depiction per one client. They allow quick, incremental drawing and updating 
of the displays, and support the event translator. 

The event translator gets window system events from the window system and translates 
them to Chiron-I events. The translation is necessary because the window system events are, 
in general, too low-level and are targeted to windows as opposed to graphical objects. The 
event translator references the abstract depictions to correlate the event to the intended ADL 
object. The resulting Chiron-I event is then sent to the scheduler. 

To render the abstract depictions onto the concrete depictions, the interpreter calls upon 
the drawing primitives. The drawing primitives provide a window system independent inter­
face, and thus hide the underlying window system from the interpreter. 

Conceptually, Chiron-I can be built on any state-of-the-art window system. The window 
system interacts with the concrete depictions and allows the event translator to get window 
system events. 

We call the system comprising the abstract depictions, the event translator, and the 
drawing primitives the ADL system. 



r---------1 r---------1 
I I 

Client 1 
I I 
1 Client 2 • 
I 
I 

'"----~----· 

·---------. 
I I 
I I 

• Client n 1 
I I 
I 

refC>"CDCCS 
ADL 
Class 

Library 

gets window 
system events invoke 

. . . . . . . . . 
L••••••-••••••••• 

Concrete 
Depiction 1 

Concrete 
Depiction 2 

ADL 
System 

Chiron-I 
Server 

Concrete 
Depiction n 

Figure 3: Chiron-I server at runtime 

10 



11 

4 Building Chiron-1 Applications 

Building a Chiron-1 application involves in general three steps: specializing ADL classes, 
writing artists, and creating an executable client. In this section, we detail these steps along 
with the tools that Chiron-1 provides to perform them. The construction process is illustrated 
with a sample application. We conclude the section with a discussion of extensions to the 
Chiron-1 system that allow for the generation of certain artist classes. 

4.1 Building a Sample Application 

As an example, we have chosen the ubiquitous stack. We assume a trivial tool which is based 
on the following ADT: 

package Stack_ADT is 
procedure Push (x: integer); 
function Pop return integer; 
function Top return integer; 
function Depth return integer; 

end Stack_ADT; 

We want to build an application which allows the user to view and manipulate the stack 
in two different, coordinated representations (see figure 4). In the "cafeteria view", we use 
the well-known plate holder metaphor: the stack is represented as a pile of plates resting on. 
a spring. Dragging plates onto/from the top of the pile corresponds to push/pop operations. 
(For brevity, we have omitted a plate supply and a plate "trash can", two of the mechanisms 
which would give this metaphor full functionality.) In the "dialog view," information on the 
status of the stack is displayed in numerical fields, and manipulation is triggered by push 
buttons. 

To build the application (in the example, a client comprising a cafeteria and a dialog 
artist), one performs the following steps: 

Specializing ADL Classes The artist developer might specialize the predefined ADL 
classes to cope with the special needs of the artists under consideration. Chiron-1 provides an 
ADL processor, which checks new classes syntactically and translates them into the internal 
form which is required by the Chiron-1 server. Once a class is in the internal form, it can be 
inserted into a class library by using the librarian. The librarian is an interactive tool that 
controls all access to class libraries: it creates and destroys cla.ss libraries, inserts and deletes 
classes, and it allows class libraries and classes to be browsed. 

Chiron-1 's predefined class libraries will eventually be quite rich. Thus, this step may often 
be skipped. In the currently available "Chiron-1 standard library", dialog views are fully 
supported. To implement the cafeteria view, one could use the predefined ADLpolyline, 
ADLrectangle, and ADL_text classes. To simplify the artist, we defined two new classes, 
ADLspring and ADL_spring....stack (ADL....spring....stack was implemented with the ADL....spring 
class). 



12 

@) Dialog View @) Dialog View 

~ C1!U ~ C1!U 
Top Element: ~ Top Element: _1_ 

Stack Depth: 4 Stack Depth: _3_ 

Figure 4: Sample Chiron-1 application: Stack views before (left) and after (right) popping 
the top plate 

Writing Artists The artist developer writes the artist programs in Lo-CAL. (Figure 5 
shows excerpts of the cafeteria artist Lo-CAL program.) Lo-CAL differs from legal Ada by 
having a set of six predefined procedures and functions that might be called with a varying 
number of parameters, of distinct type. They allow the developer to open and close ADL 
class libraries (lines 30, 47), to create and delete ADL class instances (lines 31, 34), to apply 
ADL class methods (lines 13, 16, etc.), and to specify (artist) event handlers (lines 35, 36). 

To bridge the ADL and Lo-CAL type systems, the Chiron-1 system provides packages 
which contain Ada mappings of the ADL type definitions (lines 2, 9, 10, 28). These packages 
are generated upon insertion of ADL classes into class libraries. 

Since the artists' package specifications are determined by the ADTs (or dispatchers) 
to which they are attached, the Chiron-1 system provides an artist template generator. It 
generates complete artist package specifications and templates of the artist bodies. 

Artist programs are processed by the Lo-CAL processor, which checks them syntactically, 
and converts them into legal Ada. 

Creating an Executable Client Each of the tool's ADTs which will be annotated by 
artists, needs to be wrapped into a dispatcher. The dispatchers are generated by the dispatcher 
generator, which takes ADTs as its input. The tool, the ADTs, the dispatchers, and the 
artist programs (in Ada) are compiled and linked in with the standard client runtime system. 
Finally, to run the client, a client configuration file must be provided (cf. section 3.3). 

Figure 4 shows a snapshot before and after a pop operation. After the top plate (label 
"20") has been. dragged outside the loading area (the region above the plate holder from 
where plates "drop" onto the holder), the cafeteria artist's event handler is called (figure .5, 
line 9), which places the plate at its new location (line 20) and which calls the Stack_ADT's 
dispatcher (line 21). The dispatcher calls the Stack_ADT's Pop function and broadcasts a 
pop message to all attached artists, i.e., to the dialog and the cafeteria artist (line 41 ). The 



1 task type Caf eteria_Artist is 
2 entry Start (ID: Artist_ID); 
3 entry Push (x: integer); 
4 entry Pop (result: integer); 
5 entry Top (result: integer); 
6 entry Depth (result: integer); 
7 end Cafeteria_Artist; 
8 
9 procedure Handle_Move (Object: Object_Ptr; 

10 Event: Chiron_Event_Ptr) is 
11 
12 begin 
13 if Apply (ADL_spring_stack, Stack, 
14 is_in_loading_area, Event.Dest) then 
15 
16 elsif Apply (ADL_spring_stack, Stack, 
17 is_in_loading_area, Event. Orig) then 
18 -- top plate was moved outside loading area: 
19 -- complete the move and call dispatcher 
20 Apply (ADL_Rectangle, Object, set_xy, Event.Dest); 
21 Stack_ADT_Dispatcher.Pop; 
22 else 
23 null; -- spring stack not affected 
24 end if; 
25 end Handle_Move; 
26 
27 begin 
28 accept Start (ID : Artist_ID) do 
29 Artist_ID:= ID; end Start; 
30 Library_ID:= Open_Library ("My_Own_Library"); 
31 Frame:= Apply (ADL_base_frame, create, 
32 "Cafeteria View", ... ) ; 
33 
34 Stack:= Apply (ADL_spring_stack, create, ... ); 
35 Behaviors(Move_Event):= Handle_Move'address; 
36 Set_Behavior (ADL_rectangle, Behaviors); 
37 Apply (ADL_base_frame, Frame, start_processing); 
38 loop 
39 select 
40 

41 or accept Pop (result: integer) do 
42 Apply (ADL_spring_stack, Stack, pop_from_stack); 
43 end Pop; -- stack is redrawn without top plate 
44 
45 end select; 
46 end loop; 
47 Close_Library (Library_ID); 
48 end Cafeteria_Artist; 

Figure 5: Cafeteria artist code (excerpts) 

13 



14 

dialog artist then updates its numerical :fields. The cafeteria artist calls the ADLspring...stack 
object's pop_from...stack method to update its stack display (line 42). 

4.2 Artist Generation 

The presented scheme of application building is completely language-based (ADL, Lo-CAL). 
A major extension to this scheme are front-ends, tools which allow for the development of 
Chiron-1 applications on higher levels of abstraction. There is no doubt that front-ends are 
highly desirable, in particular for certain development strategies. 

The front-ends of many state-of-the-art UIDSs support application development either by 
automatic creation in the sense of Foley, Olsen, and Singh [Fol87, Ols86, SG89], or by graphic 
specification [Hen86]. In the former case, functional descriptions are used to specify the 
application's semantic procedures and to automatically generate the user interface. Chiron-1 
will eventually comprise front-ends of both types. 

The :first front-end which has been developed for Chiron-1 is the ?Graphite/artist gener­
ator (see figure 6). It is an extension of the ?Graphite system [WWFT88]. PGraphite takes 
a GDL specification as its input. GDL stands for "Graph Description Language" and allows 
for the description of the high-level structure of attributed, directed graphs. PGraphite then 
produces a graph ADT (interface package) that can be used to manipulate and persistently 
store graphs of that class. The PGraphite artist generator produces, in addition to the graph 
ADT, a graph artist which can be used to browse and manipulate the graph. For the purpose 
of artist generation, GDL was extended by a set of pragmas (in the sense of Ada). These 
pragmas allow for the specification of graph (artist) features such as the shape of nodes and 
edges, the layout algorithm, and the growth direction. To generate an executable graph client, 
the graph ADT and artist together with a tool are processed with the Chiron-1 client building 
tools (as described in section 4.1 ). 

An example of a front-end based on graphic specification is a dialog box artist builder: 
the user specifies the layout and the items of a dialog box with a graphic editor. The tool 
then generates an artist and an ADT. Its design is currently underway. 

5 Important Chiron-1 Concepts 

In this section we discuss some distinguishing features of Chiron-1: separation of concerns, 
various levels of dynamism, and open architecture. They are related to each other; the sum 
total of their impacts gives strong support to the requirements expressed in section 2. 

5.1 Separation of Concerns 

Separation of concerns is a main feature of the Chiron-1 model presented in section 3.1. The 
clear separation of the tool, artists, and server components is accompanied by powerful mech­
anisms for communication between these components (dispatchers, ADL), and by pervasive 
concurrency. 



Graph Specifi· 
cation (in GDL) 

Graph Client 

Figure 6: Graph artist/client generation 

15. 

The tool-artist separation is a consequence of Chiron-1 's annotation scheme. Tools need 
not be designed towards the UIDS, and thus, internal integration is promoted. The re­
quirements on the tools' ADTs imposed by Chiron-1 are basically the same as on any ADT 
(see [GHM78]). The dispatcher mechanism allows communication between the tool and the 
artists via the shared ADTs. It also provides a means to coordinate artists depicting different 
views of the same ADT. 

The artist-server separation promotes a clean design of the user interface components and 
runtime efficiency: the artists will usually take care of the top-level presentation decisions 
such as the relative positioning and selectability of figures, whereas decisions that require 
extensive calculations or knowledge of exact coordinates are left to the server. The interface 
between the artists and the server is defined by the ADL and its class libraries. Together 
with the event handling mechanism discussed in section 3.2, ADL is a flexible mechanism to 
distribute workload on the artists and the server. 

These separations are complemented by concurrency. Several control models for UIDSs 
have been proposed, most notably, the internal (or prompting) model, and the external (or 
dispatcher) model. While these models might be appropriate in certain fields, a concurrent 
model is best suited for the broad scope of applications Chiron-1 encompasses: both the tool 
and the artists have their own threads of control. In addition, the client and the server run 
in parallel (see below). 

5.2 Various Levels of Dynamism 

Chiron-1 gives strong support for dynamism at various levels: the artist instance level, the 
artist level, and the configuration level. 



16 

At any time during execution, new artist instances can be created, and existing ones can 
be destroyed. This can be done by the end users via the client manager, or by running artists 
calling appropriate procedures (see section 3.3). At this level, new instances of a certain artist 
can only be created if the artist has previously been linked into the running client. 

Chiron-1 also allows adding new artists at runtime (that is, artists which have not been 
linked into the running client), and allows for their seamless integration, later on. The basic 
idea of our approach is to have new artists as separate processes which communicate with 
the client process. These artist processes are developed using "standard" artist programs, 
i.e., artist programs that do not differ from artist programs written to be compiled and 
linked into clients. This idea is realized by furnishing the artist and client processes with a 
pseudo dispatcher and a pseudo artist, respectively, the pseudo entities having an inter-process 
communication back-end. The details are described in [BCJ+89). 

In general, an executing Chiron-1 system consists of many servers and many clients, with 
each client communicating with at least one server. Dynamism at the configuration level 
means that at any time, such systems can be changed by adding and deleting servers and 
clients, and by establishing new communication paths. 

5.3 Open Architecture 

Chiron-1 is characterized by an architecture which is open towards customization and ex­
tensibility. The underlying window system can be replaced by any state-of-the-art window 
system. Chiron's look and feel is encapsulated in the ADL system. It can be changed by 
changing the structure and implementation of the ADL class libraries. A change of the ADL 
language requires adjustments to the interpreter, the ADL processor, and the Lo-CAL pro­
cessor. Changing the artist language involves the steps described in section 3.2.2. Finally, 
as long as the clients obey the protocol rules, Chiron-1 allows them to abandon the artist 
structure altogether (although we do not recommend this kind of use). 

Furthermore, the organization of Chiron-1 as a client/server system makes it open for 
various client/server configurations. For example, a single client can communicate with several 
servers. The users interacting with the different servers then interact with the same client 
and access the same ADTs. While there is full data consistency, that is, the users share the 
same model data, viewing consistency is only partial: the viewing state of the client's artists 
is common to all users, whereas the viewing states of the servers might differ from user to 
user. Mechanisms to fully exploit these flexible configurations are being explored (protection 
and locking schemes for cooperative workers, means to control different levels of consistency, 
etc.). 

6 Evaluating the Design 

The Chiron-1 design has undergone several refinement cycles. Using an incremental devel­
opment strategy, we have produced a series of prototypes of high-risk components. In this 
section, we briefly detail some important issues which we have come across when realizing the 



17 

concepts of section 5. 
In mapping Chiron-l's annotation concept to a design, we could profit from the lessons 

learned from Chiron-0 [YTT88]. When approximating annotation with Ada in Chiron-0, 
code duplication from the ADTs into the artists is, in certain cases, inevitable, e.g., when 
annotating recursive data structures. To ease this problem, Chiron-1 introduces a package to 
support the artists in maintaining association tables of ADT objects and artist objects. 

Special care was taken in designing an efficient client/ server and client/ artist process 
communication. Considering the eventual support of clients written in different languages, we 
adopted the Q system [MS89]. Q provides support for interprocess communication between 
several languages, such as Ada, C, and Lisp. A series of prototypes, simulating different 
client/server configurations, has shown promising results. 

Given the dynamic character of the Chiron-1 system, processing ADL is a highly dynamic 
activity. This leaves two approaches to design the ADL processor, i.e., the server's interpreter: 
either as an ADL interpreter or as a dynamic linker with an interpretation component (to 
interpret incoming events and client instructions). To ensure portability, we have decided to 
go with the former approach. If execution is slowed down intolerably, as it has been reported 
for other UIDSs containing an interpretation layer [Mye89b], we might reverse this decision. 
Our first server prototype has been implemented with an ADL processor containing a fixed 
set of ADL libraries. 

Since we are not interested in toolkit development per se, nor in establishing a new look 
and feel, we have evaluated existing systems, e.g., ET++ [WGM88], Inter Views [LVC89], 
XView [Hel89]. Our first implementation supports Open Look, uses c++ as the ADL, and 
the XView toolkit as the basis for the ADL libraries. The ADL-independent design of Chiron-1 
will allow us to use Chiron-1 as a testbed for the concepts currently being explored with the 
Doodle language. 

7 Current Status and Future Work 

A prototype implementation of Chiron-1 has recently been completed. A series of different 
artists is being developed which allows for extensive testing of the system. Along with the 
artist development, the ADL class libraries are being populated. 

Among the activities which have yet to come to full fruition is development of the front­
ends (cf. section 4.2). We plan to provide a suite of front-ends which supports all major client 
building activities: an.ADL class builder, an artist builder, and a client builder. These tools 
will eventually be combined into one front-end system, which will also comprise a regular 
Chiron-1 server. This system will exploit Chiron-l's dynamic features to allow users to 
experiment with new artists, and to desigi: clients iteratively. 

We will also be promoting integration with the Arcadia environment, most notably with its 
object management facilities and with the Appl/ A process programming language [TBC+ss]. 
We want to use its object management components as vehicles to investigate persistence issues 
in Chiron-1. Appl/ A will be supported as a tool and artist language. 

Another activity we will be pursuing is validating the openness of the Chiron-1 architec-



18 

ture. We want to support ADLs such as Doodle which incorporate advanced features, e.g., 
persistence and constraints. We also want to study the impacts of different tool languages on 
the client design. 

Finally, we would like to generalize our mechanisms for client/server configurations and 
use Chiron-1 as a system for supporting cooperative work. 

Conclusion 

We have discussed a list of requirements which should be met by UIDSs to address the 
special demands of software environments. An overview on the Chiron-1 UIDS has outlined 
its UIDS model and language interface, and described its architecture. We have described 
how applications are built with Chiron-1, and have illustrated the process with an example. 
Important Chiron-1 concepts have been presented, and their significance in the software 
environment context has been explained. Finally, we have detailed some design issues and 
reported on the status of our work and the plans for future research. 

Acknowledgement 

We appreciate the comments and suggestions provided by our other colleagues in the Arcadia 
consortium. 

In addition to the authors, the Chiron-1 system is being designed and implemented by 
Ken Anderson, Gregory Balcer, Sheng-Lian Fu, Gregory James, Wai-Hung Lee, and John 
Self. 

References 

[BCH+90] L.J. Bass, B.M. Clapper, E.J. Hardy, R.N. Kazman, and R.C. Seacord. Serpent: A user 
interface environment. In Proceedings of the Winter 1990 USENIX Technical Conference, 
Washington D.C., January 1990. 

[BCJ+89] · Gregory Alan Boker, Mary Cameron, M. Gregory James, Rudolf K. Keller, Richard N. 
Taylor, and Dennis B. Troup. Chiron-1: Concept and design. Arcadia Technical Report 
UCI-89-12, University of California, Irvine, October 1989. (Revised, January 19, 1990). 

[BK89] Walter R. Bischofberger and Rudolf K. Keller. Enhancing the software life cycle by 
prototyping. Structured Programming, 10(1):47-59, January-March 1989. 

[DS86] Prasun Dewan and Marvin Solomon. Dost: An environment to support automatic gener­
ation of user interfaces. In Proceedings of the Second A CM SI GS OFT /SIGP LAN Sympo­
sium on Practical Software Deveiopment Environments, pages 150-159, Palo Alto, Cali­
fornia, December 1986. Appeared as SIGPLAN Notices 22(1), January 1987. 

[Fol87] J. Foley. Transformations on a formal specification of user computer interfaces. Computer 
Graphics, 21(2):109-112, April 1987. 

[GHM78] J. V. Guttag, E. Horowitz, and D. R. Musser. Abstract Data Types and Software Vali­
dation. Communications of the ACM, 21(12):1048-1064, December 1978. 



19 

[Gib89] Simon J. Gibbs. Liza: An extensible groupware toolkit. In Proceedings of the Conference 
on Human Factors in Computing Systems, pages 29-35, Austin, May 1989. Association 
for Computing Machinery. 

[Hel89] Dan Heller, editor. XView Programming Manual, volume 7 of The X Window System 
Series. O'Reilly & Associates, Inc., Sebastopol, CA, 1989. 

[Hen86} C. Austin Henderson. The Trillium user interface design environment. In Proceedings of 
the Conference on Human Factors in Computing Systems, pages 221-227, Boston, April 
1986. Association for Computing Machinery. 

[HK88] Scott E. Hudson and Roger King. Semantic feedback in the Higgens UIMS. IEEE Trans­
actions on Software Engineering, 14(8):1188-1206, August 1988. 

[KCTT90] Rudolf K. Keller, Mary Cameron, Richard N. Taylor, and Dennis B. Troup. Chiron-I: A 
user interface development system tailored to software environments. Arcadia Technical 
Report UCI-90-06, University of California, Irvine, June 1990. 

[Loe88] J. Loewgren. History, state and future of user interface management systems. SIGCHI 
Bulletin, 20(1):32-44, July 1988. 

[LVC89] Mark A. Linton, .John M. Vlissides, and Paul R. Calder. Composing user interfaces with 
InterViews. IEEE Computer, 22(2):8-22, February 1989. 

(MS89] Mark Maybee and Stephen D. Sykes. Q: Towards a multi-lingual interprocess commu­
nications model. Arcadia Technical Report UCI-89-06, University of California, Irvine, 
February 1989. 

(Mye83] Brad A. Myers. Incense: A system for displaying data structures. Computer Graphics, 
17(3):115-125, July 1983. 

(Mye89a] Brad A. Myers. Encapsulating interactive behaviors. In Proceedings of the Conference 
on Human Factors in Computing Systems, pages 319-324, Austin, May 1989. Association 
for Computing Machinery. 

[Mye89b] Brad A. Myers. User-interface tools: Introduction and survey. IEEE Software, 6(1):15-23, 
January 1989. 

(MYM89] S. McKay, W. York, and M. McMahon. A presentation manager based on application 
semantics. In Proceedings of the Symposium on User Interface Software and Technology, 
pages 141-148, Williamsburg, VA, November 1989. Association for Computing Machinery. 

(Ols86] Dan R. Olsen, Jr. MIKE: The menu interaction kontrol environment. ACM Transactions 
on Graphics, 5( 4):318-344, October 1986. Special Issue on User Interface Software-Part 
3. 

[Rei90] Steven P. Reiss. Connecting tools using message passing in the field environment. IEEE 
Software, 7(4):57-66, July 1990. 

(SB86] Mark Stefik and Daniel Bobrow. Object-oriented programming: Themes and variations. 
AI Magazine, 6(4):40-62, Winter 1986. 

[SBK86] Mark J. Stefik, Daniel G. Bobrow, and Kenneth M. Kahn. Integrating access-oriented 
programming into a multiparadigm environment. IEEE Software, 3(1):10-18, January 
1986. 



20 

[SG89] Gurminder Singh and Mark Green. Chisel: A system for creating highly interactive screen 
layouts. In Proceedings of the ACM SIGGRAPH Symposium on User Interface Software 
and Technology, pages 86-94, Williamsburg, Virginia, November 1989. 

[TBC+88] Richard N. Taylor, Frank C. Belz, Lori A. Clarke, Leon Osterweil, Richard W. Selby, 
Jack C. Wileden, Alexander L. Wolf, and Michal Young. Foundations for the Arcadia 
environment architecture. In Proceedings of ACM SIGSOFT '88: Third Symposium on 
Software Development Environments, pages 1-13, Boston, November 1988. Appeared as 
Sigplan Notices 24(2) and Software Engineering Notes 13(5). 

[WGM88] A. Weinand, E. Gamma, and R. Marty. ET++ - an object-oriented application framework 
in C++. In Object Oriented Programming Systems, Languages and Applications '88 
Conference Proceedings, pages 46-57, September 1988. 

[WWFT88] Jack C. Wileden, Alexander L. Wolf, Charles D. Fisher, and Peri L. Tarr. PGRAPHITE: 
An experiment in persistent typed object management. In Proceedings of ACM SIGSOFT 
'88: Third Symposium on Software Development Environments, pages 130-142, Boston, 
November 1988. 

[YTT88] Michal Young, Richard N. Taylor, and Dennis B. Troup. Software environment architec­
tures and user interface facilities. IEEE Transactions on Software Engineering, 14(6):697-
708, June 1988. 






