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ABSTRACT

UCRL-198l5

We discuss the possibility of using synchrotron radiation to form

electron rings having a very high electric field to hold the ions in-

side the ring. The formulas describing bow the energy and the dimen-

sion of the ring change under the effect of synchrotron radiation are

derived, and a numerical example is given.
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I. Introduction

In electron ring accelerators (ERA) it is required to have a high elec­

tric field, CH, holding the ions inside the ring, and a large rate of ac­

dE.
lceleration of ions, dz For a ring having a cylindrical cross section

of radius "a", and a uniform electron distribution inside this cylinder, the

holding field can be written as

eG
H

2
N r mc

e e
1C a R

( 1-1)

2
where N

e
is the number of electrons, e, r

e
and mc are the charge, clas-

sical radius and rest energy of the electron and R is the ring major

radius. The rate of energy gain can be written as

dE.
l

dz
e (1-2 )

are the ion and electron

is the external field accelerating the ring, areM

In order

andeZ

E. and E
l e

is the ratio of ion number to electron number.fenergies and

where C;
ex

the charge and rest mass of the ion,

not to lose the ions from the ring during the acceleration process one must

also satisfy the condition

dE.
Zec > __l

H dz
(1-3 )

In order to increase the holding field for a given number of electrons

one can reduce the ring major and minor radius. If the ring is formed by

magnetic compression of a circular electron beam, as has been done in all

the work on ERAs ca:rrie d on up to now, the quantities R and a are re­

lated approximately to their initial values at injection byl

1

R R./B2
l

1 (1-4 )
a a./B2 ,

l

where the subscript "i" indicates the initial value and B is the ratio

I'l' Ll\~' rill:!.1 ll' thl' lnit.i:\l \'a..!Ul' 01' i.110 1ll:tt;1l0ti,' field. In :ile S3.1ne
1process the electron energy transform s as
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(1- 5)

so that when reducing R) and increasing C
H

) one increases E
e

and reduces

dE./dz. It is possible to inject an electron beam of low energy in order
l

to have a low final energy and hence a high dEi/dz) but because space-

charge effects and beam instabilities are strong functions of beam energy)

the resulting limit on the eLectron number makes satisfying (1-3) difficult.

It is interesting to consider the possibility of using other processes)

to form electron rings in order that the transformation laws . 4\ (1- 5)(,1- J)

might be broken and) hopefully) ERA performance improved. One such possibil-

ity is to compress the ring in a magnetic field such that the field value at

the eLectron orbit and the nagnetic flux enclosed by the ring can be changed

independently2 An example of this class of compressors is the static com­

pressoy3in which the electron energy remains constant while ring radius de­

creases. In this paper we want to call attention to another possibility)

which employs the process of synchrotron radiation.

ELectrons moving in a magnetic field emit synchrotron radiationj and

as a consequence both the energy and the radius of the electron ring de­

creases and &H and dEi/dZ increases. The rate of change of energy and

major and minor radius is evaluated in sections II and III. A numerical

exampLe is given in section IV. It is interesting to note that the energy

spread in the ring can either decrease or increase because of synchrotron

radiation) depending on the choice of the magnetic field gradient in the

region where the radiation occurs. On the contrary) the betatron ampli­

tudes are almost unaffected by the radiation process in the case when the

energy spread decreases. Hence) in order to have a small ring minor radius)

ring compression by synchrotron radiation alone probably does not suffice.

We suggest that a combination of different compression techniques) for in­

stance the use of a static compressor plus an additional compression by

synchrotron radiation) could well lead to the formation of rings with very

high holding fields. Holding fields in the range of l GeV/m appear) in

this way) to be attainable.

One should also notice that the time necessary to achieve a significant

reduction in ring radius) by using synchrotron radiation) can in some cases

be very long) of t~e order of ten milliseconds or more. This introduces

an additional problem in connection with the process of ion loading of the



- 4 - UCRI,-19815

ring, since, in order to keep the contamination of the ring by unwanted
-11ions within tolerable limits, one requires a vacuum better than 10 torr.

Let us assume, for instance, that one wants to charge the ring with

one per cent of protons in ten milliseconds. The pressure required, in torr,

is given by

p 1.41 x 1017
f

act (1-6 )

where a is the ionization cross section (0

velocity of light and t is the time. From

-19 Z
10 cm for HZ)' c the

(1-6) one obtains F ~ 5 x

torr. If we want to keep the number of unwanted ions -- including +H
2

0 or

co+ -- at a level ten times smaller than that of protons we need a vacuum

-11
of the order 5 x 10 torr, since the ionization cross section for H

2
0 or

CO is about ten times as large as that for hydrogen.

II. Equations of Motion

The equation of motion of a particle in a magnetic field l!, can be

written as

(II-l)

where !(t) describes the position of the particle, E is the energy, R

is the average value of the reaction force due to photon emission, and G

is the fluctuation in this force. If ~ is the change in the electron

momentum due to the emission of a photon and F(~,t) the rate of photon

emission, one has

B(t) J~ P(~,t)d~

and

g(t) = I: q. o(t-t.)-R(t),
j ~J J -

(TI-2)

(II-3)

where q. is the electron momentum change upon emitting a photon at time
-J

t ..
J
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The force R can be written as

UCRL-19815

R=-rP (n-4)
I

Using (11-4) and multiplying equation (TT-l) by r, one obtains an equa­

tion for the energy variation of the particle

. .2
E = - r P + r . G.

I

Substituting in (II-I)) the equation of motion becomes

(II-5)

Er=ecrX H - (II-6)

where I is the ratio of E to the rest mass energy. It is interesting

to note that the radiation reaction terms are multiplied by a factor of

~ in equation (11-6)) and can be neglected -- to a good approximation -­
'1

for relativistic particles.

Since the rate of change of energy) described by (11-5), is very slow

compared to the cyclotron period, we can solve equations (11-5), (11-6)

assuming in first approximation E = constant. As a second step we will

consider the effect of the change in E. For E = constant we can intro­

duce a reference trajectory (RT) defined by

.. ec [. ()Jr = --E r' H r-s -s --s
s

We can now study small displacements around the RT) by assuming

(II-7)

r = r + B_r)-s
E=E(l+p))

S
(n-8 )

and linearizing equation (11-6) with respect to Br and p. Following

the usual procedure we introduce the derivative with respect to the arc

length, s, on the RT and consider a reference frame defined on the RT

by the orthonormal tangent) normal and binormal vectors ~(s), 2(s), Z(s),
such that

r
-s v 0:

S
('if K(S).t?
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f?' == - K( s) 0: + T( s) Z,

2/== - T(S) 2.,

UCRL-19815

where K(S) and T(s) are the curvature and torsion of the RT, and a

prime denotes a derivative with respect to s. Any vector u can be

written as

In particular, we chose

Dr == x( s)£ + z( s )Z' (Il-IO)

In the following we will only consider a planar RT so that T(s) == O.

From the definition of the RT, Eqn. (11-7), we have

( II-II)

e c H
3
(r ) == - v E K(S) .-s s s

We assume that HI is everywhere zero and that H2 and H
3

can be written,

near the RT, as

2
- K n v E z,s s

(II-12)

e c H
3

== - v E K( 1 + nKx) .s s (II-13 )

We can now write equation (11-6) in the familiar form for betatron osci­

llations:
., 2
x + K (1 - n)x == - Kp,

2
z + K nz O.

(n-14)

We can now consider equation (11-5).

p == P + oP
)' )'S )'

we obtain from (11-5)

Writing

Es
. 2
r P

s )'S
(II-15 )



- 7 -

and, to first order

. .2 2r'. . 2E P = r P p- ·or P - r 6P
S S IS -s IS s I

+ r . G
-s -s

lJCRL-19Sl5

(II-16 )

The last term is assumed to be very small so that it is evaluated directly

onthe RT.

Using the conditions

possible, one has 4

r3 = constant and assuming also i"3 := 1, whenever
s s

2 ~ 2 '2 e 4 .. 2 I (. ..)2 l
P =--1 r+-r·r fI 3 5 - 2--

c c

(II-17)

Defining

g = r . G/E ,-s ::J s

equations (11-15), (11-16) become

. LI_ 2
E C E Ks s

E3 K
2 3n-lp + C I-n

p + g
s

III. Solution of the Equations

( II-IS)

(II-19)

( II-20)

(E-21)

We assume, for the remainder of this paper, that the particles are

moving in a constant gradient magnetic field so that

From (111-1) and (11-11) we obtain (writing K as lip)

Es
ec ec ~n-l

fJ H
3

= - - H R _1\_
V v 30" n-1

s s 0
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(IU··2)

where E and R are respectively the injection energy and radius.so

From (III-2), (II-20) we obtain

.
Es

or

- C

E2/( I-n)
so E(2-4n)/(1-n)

R2 s

(~s )
o

(1II-3)

and

2.
R

1
3n-1

} (II1-4 )

In the special case 1
n == "3 one has

E Eo e (II1-5)

E 3/2

~ == (E:) (111-6 )

The solution of (11-21) is given by

t I

J aCt )dt'{ t -
pet) == e 0 Po + J

o
g(t')e

Where, for n =f 1/3,

(III-7)



Using (111-8) one has

a( t)

C 3n-l
I-n

- 9 -

3n-l Es
3

+ c--l-n -2-
p

E 3 E 3(n-l)pl-3n
so

UCHL-l98 15

( 1Ir8)

e 3n-lc-­l-n
(III-9)

so that the solution of the homogenous part of equation (11-21) is

p
3

p (1 _ c 3n-1 Eo t}-1
o 1-n R2

l-3n
(III-lO)

To find the complete solution of (11-21) we assume that the emission

of a photon is a random process and that considering the averages over the

distribution of the random variable appearing in g(t) one has

< g( t) > 0,

(III-H)

The quantity E can be obtained from the definition of g and is given

by

E =~ ~ r c ;5K3
2l~,h c e

where ~c is the electr8u Compton wavelength.

From (111-7), (111-11) we now obtain

(III-12 j

3n-l
l-n



{
2 D 1-n

Po + C 4n-l
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E 2 [
R
o 1 - (1 - C 3n-l

l-n

UCRL- 19815

where

:::
2(1-3n)~

(-e.) p 2
R 0

D
+ ­

C

loon
4n-l

E 2
o
R [

4n-1J}
1 - (~) (III-13)

D
-11

""" 1.3 x 10
(Mev)5 sec

(III-14 )

The condition

D
C

E 2
o
R

(III-15 )

is usually satisfied, and in this case it is possible to neglect the

contribution to
2< P > from quantum fluctuations. When this is the

case it follows from (111-13) that < p2 > decreases or increasEs

with time according to whether
1

n < 3 or
1

n > 3.

Equations (III-3), (III-4), and (III-13) describe hmv tIle energy,

major radius an(1 energy spread of the ring change in time under the

effect of synchrotron radiation. Let us consider the betatron oscil1a-

tions. We already noticed that it was possible to neglect the terms

proportional to and G in equation (11-6), since they are smaller

by a factor -2
Y than the corresponding terms in equation (11-5).

However, we must consider the effect of the change in the ring energy

and major radius on the betatron oscillation amplitude, a, and this can
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easily be done by introducing the adiabatic invariant

1rCRL-18915

where v is the betatron wave number,

(111-3), (111-4) and assuming that n

written as

1 )

v = (l-n)~ or v = n 2
. Using

is constant, (111-16) can also be

E
p

2
v a constant (IIT-16)

n/2
a = a (-~)

o R
( III-ln

where a
o

is the initial betatron amplitude. The relationships (111-13),
(111-17) determine the behavior of the ring minor radius during radiation

compression. It is clear that if we require that the synchrotron ampli-
1

tude be damped, we require n < 3' and in this case the betatron amplitude

changes only slightly with time.

IV. Numerical Examples

An example of how the energy, major radius and the quantity R(a+b)

change with time under the effect of synchrotron radiation, is given, for

different n values, in Fig. 1. The quantity b is defined as the ring

radial dimension and is assumed to be related to the betatron amplitude,

a, and to the synchrotron amplitude lR p, by
-n

This quantity is of interest since, for a ring with elliptical cross

section and semi-axis a,b, the holding power is inversely proportional

to a + b.
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Figure Caption

UCRL-19815

Figure 1- Energy, radius and R(a+b) ( dashed lines) versus time

for different n values and for initial values

E = 30 MeV, R :-::: 5 em, Po -= 10- 2
and a -- 0.1 em.
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