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Electrochemical Reduction of CO to C2+
Products on Copper Nanoparticles by
Combining Reactive Force Fields, Density
Functional Theory, and Machine Learning
Yufeng Huang,† Yalu Chen,† Tao Cheng,† Lin-Wang Wang,‡ and William A. Goddard, III*,†

†Materials Simulation Center and Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, California
91125, United States
‡Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: Recent experiments have shown that CO reduction on oxide derived Cu 
nanoparticles (NP) are highly selective toward C2+ products. However, understanding of the 
active sites on such NPs is limited, because the NPs have ∼200 000 atoms with more than 10 000 
surface sites, far too many for direct quantum mechanical calculations and experimental 
identifications. We show here how to overcome the computational limitation by combining 
multiple levels of theoretical computations with machine learning. This approach allows us to 
map the machine learned CO adsorption energies on the surface of the copper nanoparticle to
construct the active site visualization (ASV). Furthermore, we identify the structural criteria for optimizing selective
reduction by predicting the reaction energies of the potential determining step, ΔEOCCOH, for the C2+ product. Based on
this structural criterion, we design a new periodic copper structure for CO reduction with a theoretical faradaic efficiency
of 97%.

Rapid progress is being made in developing new catalysts that 
are highly active and selective to electrochemically reduce CO 
or CO2 to specific
chemical fuels and feedstocks.1,2 Improved selectivity and
activity in reducing CO2 and CO to valuable hydrocarbons and
alcohols will enable the conversion of intermittent or remote
renewable energies into complex chemical forms for storage
and delivery.3 At the same time, using sequestrated CO2 as the
feedstock would reduce the amount of excess atmospheric CO2
by completing the carbon cycle with carbon fixation via
artificial photosynthesis or other forms of renewable energy
sources.4,5

However, CO2 is quite stable, making it very challenging to
optimize catalytic efficiency due to the difficulty in activating
CO2.

6 After decades of development, copper remains the only
catalyst that can reduce CO or CO2 by more than two
electrons to generate valuable products in nontrivial amounts.
Recently, oxide derived copper nanoparticles (NP) have been
shown to greatly improve both the activity and selectivity of
CO and CO2 reduction toward C2+ products.

7 Based on early
temperature-programmed desorption (TPD) experiments, the
improved performance of the oxide derived metal NP was
hypothesized to arise from strong CO adsorption sites.8

However, later experiments have found that selectivity

correlated linearly with the grain boundary (GB) density.9,10

In this work, we focus on elucidating which local Cu structures
lead to the optimum properties for CO reduction to C2+

products.
We previously used density functional theory (DFT) with

full solvent and Grand Canonical techniques to determine the
reaction mechanisms for CO reduction to C1 and C2 products
on Cu (100) and Cu (111) surfaces, leading to an excellent
agreement with experiments (overpotentials within 0.05
V).11,12 However, the experimental 10 nm NP involves
∼200 000 atoms with ∼10 000 possible surface sites, well
beyond the capabilities of DFT. To circumvent the limitation
of the direct application of DFT, we subsequently utilized the
reactive force field (ReaxFF)13,14 to computationally grow the
10 nm nanoparticles and then used DFT to sample only 84
surface sites for ΔECO and 4 surface sites for ΔEOCCOH.

15,16 In
order to extract a quantitative understanding of the variations
of the chemistry over the whole nanoparticle, we propose here
a methodology to combine limited numbers of DFT



calculations with machine learning to train a machine learning
model that accurately predicts the binding energies for all sites.
First, we used ReaxFF to computationally synthesize a 10

nm copper nanoparticle (NP) that closely resembles the
experimental NP [S1.1 in SI]. The predicted structure leads to
XRD spectra and TEM images that match those of the
experimental NP structures. Next, we selected 400 random
surface sites and calculated their CO adsorption energies using
DFT [S1.2 in SI]. We previously found that including atoms
up to 8 Å from the surface site is sufficient to represent the
local environment.15 We integrated this local environment into
a neural network in which the surrounding atoms are
transformed into 12 two-body and 18 three-body molecular
descriptors as inputs to a 2-layer neural network with 50 nodes
in each layer, as shown in Figure 1. Further details of the
descriptor definition are in section S1.3 of the Supporting
Information. We partitioned the 400 surface sites into training
set, validation set, and test set with an 8:1:1 ratio. Here the
validation set is used to terminate the training sufficiently early
to avoid overfitting. Section S2 of the Supporting Information
shows that the root mean squared error (RMSE) of the CO
binding energy (ΔECO) on the training set is 0.111 eV while
for the validation set RMSE = 0.117 eV and for the test set
RMSE = 0.123 eV. We refer to this as the ReaxQM-Machine
Learning strategy, or RxQM-ML. This is much lower than the

RMSE = 0.2 eV for a similar study of the crystalline surface of
the NiGa binary alloy.18

After training this accurate neural network model, we use
RxQM-ML to predict the CO adsorption energies for all
10 000 surface sites. The statistical distribution of the CO
adsorption energies is shown in Figure 2a. Overall, the CO
adsorptions range from −0.55 to −1.43 eV, showing the wide
variety of surface sites on the copper NP. As expected, most
energies are clustered around the values for such low index
surfaces, as (111), (100), and (211).15 However, we find a
significant number of surface sites with much stronger CO
adsorption energies. This is shown by the distribution to the
left of the (211) line. These results are consistent with the
TPD experiments, which show a broad peak centered at 275 K
only for the copper NP, indicating that ∼7−15% of the surface
leads to stronger CO adsorptions than low index copper
surfaces.8

Furthermore, the low cost of the RxQM-ML model makes it
possible to establish the quantitative structure−activity
relationship (QSAR) such that the machine-learned CO
adsorption energies can be remapped back to the copper
nanoparticle, as shown in Figure 2b. Here red indicates low
ΔECO, white indicates moderate ΔECO, and blue indicates
unfavorable ΔECO. The (100), (111), and (110) surfaces are
all colored light blue, indicating that they are near the mean
values of the adsorption energy distributions as in Figure 2a.

Figure 1. Schematics of the machine learning model. For each surface site (red), we extract a copper cluster including all the atoms within 8
Å from a copper NP. The adsorption energy is calculated using DFT and is used as the target property for training. We use a Behler-
Parrinello17 type neural network model. In this study, we describe the copper cluster by a set of 2-body and 3-body molecular descriptors
about the surface atom. We then used these descriptors as input to a multilayer neural network for fitting.

Figure 2. (a) Distribution of CO binding energies (ΔECO) on the 10 nm copper nanoparticle. The three vertical dashed lines correspond to
the CO adsorption energies of single crystal surfaces of (211), (100), and (111).15 (b) Active site visualization (ASV) of the predicted CO
adsorption energies on the nanoparticle. As indicated by the colored bar, the red sites correspond to strong CO adsorption, the white sites
correspond to moderate CO adsorption, and the blue sites correspond to weak CO adsorption. The common surfaces of (100), (111), and
(110) are indicated in the figure.
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The sites in solid blue are not fully exposed, making them
difficult for CO to bind. The sites in red are of the greatest
interest because they correspond to more favorable adsorp-
tions of CO than the low-index surfaces. As shown in light red
in the figure, the moderately strong CO adsorption sites are
typically along the step edges, and as shown in solid red, the
strong CO adsorption sites are mostly isolated surface sites or
kink sites.
The ASV in Figure 2 shows clearly that favorable CO

adsorption sites are scattered across the whole nanoparticle
surface. This is consistent with experimental observations that
the surface areas corresponding to GBs are not sufficiently
large to account for the number of strong CO adsorption
sites.8 Using RxQM-ML, we now directly show that the strong
CO adsorption energies are not just at GBs.
Although we have demonstrated that the CO binding energy

is not necessary to correlate with GBs, there is a great deal of
experimental evidence suggesting that increasing the GB
density can significantly improve the C2+ selectivity. Another
descriptor is needed to describe selectivity of these nano-
particles. As shown experimentally19 and theoretically,20−22 the
selective step toward C2+ products involves C−C coupling in
which *OCCOH is formed. Thus, the most plausible
descriptor is the reaction energy for forming *OCCOH
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which we have shown previously to be the potential
determining step for ethanol production.
Then, we started with ∼180 randomly sampled surface sites

and calculated the formation energy for *OCCOH, ΔEOCCOH.
The distribution is shown in the blue histograms in Figure 3a.
As shown in the figure, the range of ΔEOCCOH spans by more
than 1 eV, implying that some sites are much more selective
than others. We could sample additional sites to develop a
similar machine learning model for ΔEOCCOH. However, we
examine the sites with the lowest ΔEOCCOH, and found that all
of them involve square sites, similar to those of the (100)
surface. To test this hypothesis, we further sampled 100 square
sites, leading to the distribution for ΔEOCCOH shown in orange
in Figure 3a. Comparing to the random sites on the surface of
the copper nanoparticle, we find that the square sites are

indeed more favorable, as shown by the shift in the distribution
in ΔEOCCOH in Figure 3a.
With the new distribution of just the square sites, we

extracted the common features of the most selective sites by
further examining the square sites with the lowest ΔEOCCOH.
We found that a step (111) surface is always next to these
favorable square sites, as shown in the Figure 3b. These sites
are similar to the Cu(S)[n(100) × (111)] edge step sites
where the (111) surface and the (100) surface intersect. In
fact, experiments23,24 showed that these step sites have higher
selectivity than either the (100) and (111) surface. To confirm
this theoretically, we calculated ΔEOCCOH on (100), (111),
(311), and (511) surfaces to be 0.44, 0.64, 0.52, and 0.41 eV.
The calculated trend agrees very well with the experimental
selectivity trend in which (511) > (100) > (311) > (111)
(Section S3 in SI). This comparison with experimental findings
on the Cu(S)[n(100) × (111)] surfaces confirms the validity
of using EOCCOH as the descriptor for the selectivity toward C2+
products. It is also consistent with our finding from sampling
the NP that favorable sites for ΔEOCCOH or C2+ selectivity must
involve a (111) step surface next to a (100) site where
*OCCOH is formed.
In addition, twin boundaries are associated with the square

surface sites having the lowest ΔEOCCOH. Figure 3b shows that
these twin boundaries are all next to the site where *OCCOH
is formed. This implies that the selectivity toward C2+ products
are directly related to twin boundaries which are a special type
of GBs.
Building on the idea that the above common features lead to

the best *OCCOH sites, we constructed the smallest periodic
structure possessing these features. This is shown in Figure 4.
We expect that this periodic surface will behave chemically in
the same way as these selective sites. Because it is a smallest
periodic structure containing these sites, the density of active
sites will be much higher than the randomly and sparsely
distributed active sites on a nanoparticle.
This minimal periodic structure is shown in Figure 4a. From

the ABC stacking of the FCC copper, the smallest grain size
must be at least 6 layers wide, corresponding to ABCACB
stacking, where the A layers are twin boundaries. Since the step
surfaces involving the (100) and (111) are of interest, they are
shown by double lines and dashed lines in the figure.
Based on the configurations of the adsorbed *OCCOH on

the copper clusters, there are 4 ways of placing the

Figure 3. (a) Distributions of ΔEOCCOH on the surface of the copper nanoparticle. Blue: 180 random surface sites; orange: 100 random square
sites. (b) The four square structures with the lowest ΔEOCCOH sampled randomly from the copper nanoparticle. The dashed ellipses indicate
the locations of the twin boundaries.
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intermediate on this surface, as shown in Figure 4b. The first
two structures, (a) and (b), with the *OCCOH adsorbed in
the cross-sectional plane show unfavorable energies. Thus, the
in-plane *OCCOH adsorption is not responsible for the
increased in C2+ selectivity. On the other hand, *OCCOH
adsorbed perpendicular to the page (or out-of-plane) are much
more favorable, with only 0.41 eV for the convex site and 0.35
eV for the concave site, which is better than all the single
crystal surface sites considered here. In fact, the same
configuration is also found for the copper nanoparticle. As
shown again in Figure 3b, *OCCOH are all adsorbed
perpendicular to the page. Thus, we predict that the (100)-
like square sites next to a (111)-like step surface and on-top of
a twin boundary that binds *OCCOH parallel to the twin
boundary will have the most favorable ΔEOCCOH, which
corresponds to the most selective sites.

For the most favorable structure, the faradaic efficiency
toward C2+ product is predicted to be 97% using experimental
data in which the current density for C2+ production increases
linearly as the density of GBs, and the current for hydrogen
production remains the same.10 The prediction is shown in
Figure 5, which also includes a prediction for an experimental
copper structure in which a high density of twin boundaries is
synthesized,25 assuming that the structure is exposing the twin
boundaries in the preferable configuration. Details of this
prediction is summarized in section S4 of the Supporting
Information.
In conclusion, we used machine learning to fit the

structure−activity relationship between the local structures of
the copper nanoparticle and the theoretical CO adsorption
energies. By extrapolating the energies back to the nano-
particle, we found that strong CO adsorption energies are not
just on GBs, implying that CO adsorption energies are not an

Figure 4. (a) The shaded area is the minimal periodic structure of FCC copper containing the (100) planes, (111) planes, and twin
boundaries. Terminating this structure to expose the (100) and (111) surfaces leads to sites that are concave or convex with respect to the
(100) planes. (b) The four types of sites for adsorbed *OCCOH on the surface of the minimal periodic structure. The structure that is
concave with respect to the (100) planes has the most favorable ΔEOCCOH for C2+ selectivity. The top and side views of this structure are
shown on the right column of (b). More details on these sites are shown in section S4 of the Supporting Information. Note that for
structures (c) and (d), the other carbon and oxygen atoms are not shown since they overlap with the foreground atoms in the side view. The
full *OCCOH structure for (c) is revealed in the top view, as shown on the right column.

http://pubs.acs.org/doi/suppl/10.1021/acsenergylett.8b01933/suppl_file/nz8b01933_si_001.pdf
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appropriate descriptor for C2+ selectivity. Rather, we show that
ΔEOCCOH, the transition state for forming ethanol of C2+
products in C−C coupling, is the appropriate descriptor.
This explains the selectivity on Cu(S)[n(100) × (111)]
surfaces and the twin-related step square sites on the
nanoparticle. To illustrate how to use this information, we
designed the minimal periodic structure. This minimal periodic
structure has a super high density of selective sites that we
expect will lead to near unity selectivity based on
extrapolations of theoretical and experimental data.
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