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In the United States, lung cancer is the second most common cancer in men and women 

and is the leading cause of cancer death. Lung cancer survival is lower than other leading cancers, 

and approximately half of people with lung cancer die within one year of being diagnosed. While 

small advances in treatment and interventions in tobacco cessation have improved survival in 
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recent years, persistent poor survival suggests that new approaches are needed to identify 

contextual risk factors to improve lung cancer survival.  

It has become widely accepted that where an individual lives or works is an important 

determinant of health. Place-based exposures such as neighborhood contextual factors may be 

particularly valuable for intervention in lung cancer survival as they can be intervened on using 

population-level interventions such as local or state policies. Recently, studies have observed 

associations between two potential neighborhood contextual factors and lung cancer survival: 

ambient air pollution and racial residential segregation. However, neighborhood-level exposures 

require specific methodological considerations because they have spatial and temporal 

components that need to be appropriately considered in analyses. 

The first chapter of this dissertation reviews the epidemiologic evidence regarding spatial 

heterogeneity in lung cancer survival and the relationship between both air pollution and racial 

residential segregation on lung cancer survival. The second chapter evaluates how lung cancer 

survival varies spatially in California and how these spatial patterns may change over time. The 

third chapter examines the association between air pollution and lung cancer survival and 

illustrates how a systematic error known as immortal time bias can be introduced when a time-

varying exposure such as air pollution is mishandled in the context of a time-to-event outcome. 

The fourth chapter of this dissertation describes two considerations in the measurement of 

segregation, the spatial scale of geographies and the spatial relationships of populations. This 

chapter illustrates how these considerations impact both the absolute measurement of segregation 

and subsequent conclusions about the impact on lung cancer survival. The final chapter of this 

dissertation summarizes key findings and highlights future directions to advance the study of 

neighborhood contextual factors in lung cancer survival.  
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1 Introduction 

1.1 Overview of lung cancer 

Lung cancer is a heterogeneous group of diseases characterized by uncontrolled growth of 

abnormal cells in the lungs. In the United States, lung cancer is the second most common cancer 

in men and women and is the leading cause of cancer death. By the end of 2021, lung cancer will 

account for approximately 12% of new cancer cases and 22% of cancer deaths, more deaths than 

colon, breast, and prostate cancer combined (1). Primary lung cancer can be classified into two 

histologic groups: non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC). 

NSCLC can be further categorized into adenocarcinoma, squamous cell carcinoma, and large cell 

carcinoma histologic subtypes. NSCLC accounts for approximately 85% of all lung cancers, while 

SCLC accounts for only 15%. NSCLC and SCLC (and subtypes) are distinct clinicopathological 

entities which has implications for etiology, prevention, screening, diagnosis, and treatment.  

To characterize the extent of disease in NSCLC, clinicians stage the cancer using a TNM 

staging system. This system combines features of the tumor into stage groups to describe the extent 

of the cancer that can be easily communicated to others, assist in treatment decisions, and serve as 

an indicator of prognosis. Table 1.1 shows a simplified overview of this staging process. The 

International Association for the Study of Lung Cancer publishes a complete description of TNM 

lung cancer staging (2). The staging process for SCLC is slightly different from NSCLC, where 

the cancer is generally classified as limited or extensive, with limited stage characterized by cancer 

confined to the primary tumor and regional lymph nodes. Cancer stage at diagnosis has substantial 

implications for etiology, treatment considerations, survival, and quality of life. Because of this, 

epidemiologic studies and cancer statistics often present stratified analyses by stage at diagnosis.  
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Table 1.1 NSCLC stage at diagnosis 

Stage Description 

Stage 1 (Localized) Cancer is only in the lung, has not spread to any lymph nodes 

Stage 2 (Regional) Cancer is in the lung and nearby lymph nodes 

Stage 3 (Regional) Cancer is in the lung and lymph nodes in the center of the chest 

Stage 4 (Distant) Cancer is found in the lungs, fluid in the area around the lungs, and/or another 

organ in the body 

Lung cancer incidence has declined in men since the mid-1980s and in women since the 

mid-2000s (1). This sex difference is primarily due to differences in historical patterns of smoking 

uptake and cessation (1). Similarly, lung cancer mortality has declined by about 54% since 1990 

in men and 30% since 2002 in women, largely due to reductions in smoking prevalence. This pace 

has accelerated in recent years; in the last six years, the rate has increased by 4% and 5% in women 

and men, respectively.  

Lung cancer incidence and mortality differ by geographic and demographic characteristics, 

which may be explained by smoking behaviors, population demographics, environmental 

exposures, and cancer screening prevalence. Overall, lung cancer is more common in men than 

women, Black patients than white, rural than urban populations (3), and among those with lower 

socioeconomic status (4). Age and cigarette smoking are two of the strongest risk factors for 

developing lung cancer. On average, a current smoker has approximately 20 times the risk of lung 

cancer than nonsmokers. It is estimated that 80% of all lung cancers can be attributed to cigarette 

smoking (5). Other proposed risk factors include exposure to secondhand smoke, occupational 

exposure to asbestos, arsenic, chromium, nickel, radiation exposure, family history of lung cancer, 

HIV infection, beta carotene supplements in heavy smokers, and air pollution exposure. A recent 

global analysis ranked air pollution exposure and smoking as leading risk factors for respiratory 

tract cancers (6).  
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The primary treatments for lung cancer include surgery, chemotherapy, radiotherapy, 

immunotherapy, and targeted therapies. Lung cancer treatment depends on stage of disease, tumor 

size, metastasis, and histology of the cancer. The treatment goal in early-stage lung cancer is 

curative, while it is to prolong survival and improve quality of life in late-stage disease. Surgical 

resection is the most consistent and successful option for early-stage lung cancer (7). Early-stage 

cancer can be additionally treated with chemotherapy with or without radiation for NSCLC and 

chemoradiation for SCLC. Advanced stage lung cancer is treated primarily with systemic therapies 

to relieve symptoms, improve quality of life, and increase survival time.  

1.2 Overview of lung cancer survival 

In the US, lung cancer survival is lower than other leading cancers, and more than half of 

people with lung cancer die within one year of being diagnosed. While the five-year survival rate 

for lung cancer is 59% for cases detected at localized stage, only 17% of cases are detected this 

early (1). For tumors diagnosed at distant stages, the five-year survival rate is only 5%. Over the 

past several decades, the five-year overall survival rate has increased from around 10% in 1973 to 

20% in 2017 (8). Survival is increasing steadily across all racial and ethnic groups, and all age 

groups have seen an increase in survival over time, particularly among patients 15-44 years old. 

Despite this overall improvement in survival, substantial sociodemographic and clinical 

disparities remain. A higher proportion of female patients are diagnosed with adenocarcinoma and 

at early-stage of disease than male patients. Female patients are more likely to be younger, never 

smokers, have better performance status, and have better five-year survival than male patients (9-

12) (13). Younger patients have better survival than older patients, and Black patients have 

consistently lower survival than all other racial/ethnic groups (14-16). 
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Stage at cancer diagnosis is one of the strongest prognostic factors in lung cancer survival. 

Other important prognostic factors include lifestyle factors, socioeconomic factors, access to care 

and receipt of guideline-concordant treatment, immunotherapy, comorbid conditions, tumor cell 

grade differentiation, smoking cessation, tumor molecular markers, drug metabolism, and DNA 

repair (cells with reduced DNA repair have a higher sensitivity to treatment) (14, 15). Survival 

varies between patients with the same stage at diagnosis and similar treatment modalities, 

demonstrating that other factors may influence survival. The factors that improve survival in long-

term survivors (alive at five years after diagnosis) are largely unknown (16, 17). Previous studies 

have proposed that younger age and treatment duration may be potential prognostic factors (18). 

1.3 The emerging role of contextual determinants in lung cancer survival 

Advances in lung cancer survival in recent years are primarily due to improvements in 

treatment (13). Despite the effort to increase early-stage diagnosis, interventions through screening 

have been largely unsuccessful. Low dose computed tomography screening is recommended for 

heavy current and former smokers (30 pack-years) between 55 and 80 years. However, only 4-5% 

of eligible adults are participating in screening (19). Another focused effort has been on smoking 

cessation based on evidence that continued smoking by lung cancer patients is associated with less 

effective treatment and a poorer prognosis (20). Current evidence suggests that approximately 50-

60% of lung cancer patients are current smokers at the time of diagnosis and anywhere from 13 – 

30% continue to smoke after diagnosis (21-23). Despite efforts to improve lung cancer survival 

through individual behavioral interventions (early detection, smoking cessation) and treatment 

advances, only small improvements in lung cancer survival have been made (24). Other than these 

interventions, most predictors of cancer survival are non-modifiable (tumor cell grade of 

differentiation, tumor molecular markers, drug metabolism, cellular DNA repair), resulting in 
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small survival gains over the past few decades. For this reason, contextual determinants of health 

have been targeted to identify novel risk factors to improve lung cancer survival. 

It has become widely accepted that the place where an individual lives or works is an 

important determinant of health (25). For example, factors like distance to medical facilities, 

access to green space, and availability of fresh food are all associated with adverse health outcomes 

(26-28). Similarly, residents near traffic corridors are more likely to experience adverse respiratory 

outcomes (29). Recently, spatial epidemiology has emerged as an important approach to document 

the role of the geographic environment in health outcomes and disparities. Identifying spatial 

heterogeneity in health outcomes can inform risk factor identification, local health interventions, 

and resource allocation decisions. Further, neighborhood contextual factors may be valuable for 

intervention in lung cancer survival as they do not rely on individual behavior modification or 

intervention and can be used to create targeted interventions through local health policies. In order 

to identify these potential place-based risk factors, it is necessary to evaluate how lung cancer 

survival varies across space and time. Using these patterns, it is then possible to identify risk factors 

that vary concomitantly. 

Previous studies have demonstrated that there is large-scale geographic variation in lung 

cancer survival. Richards et al. analyzed net survival by state and found sizeable geographic 

variation in lung cancer survival from 2001-2009. In the 37 states with comprehensive cancer 

registries, five-year survival ranged from 15% to 25% among whites and 7% to 22.7% among 

Black patients (30). These established geographic disparities in lung cancer survival indicate that 

there may be similar small-scale heterogeneity in survival that can be explained by neighborhood-

level factors that vary across space and time. However, few studies have focused on small-scale 

variation to identify neighborhood variation driven by spatial or temporal patterns in risk factors. 
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Therefore, this dissertation will describe spatial heterogeneity in lung cancer survival in California 

and identify clusters of exceptionally high or low survival. This will be the focus of the first aim. 

The presence of spatio-temporal variability in lung cancer survival indicates that there may 

be important modifiable contextual determinants that may contribute to this variability. Recently, 

two neighborhood-level factors have been targeted as potential modifiable factors: ambient fine 

particulate matter air pollution and racial residential segregation.  

1.4 Air pollution and lung cancer survival 

Ambient air pollution is a complex mixture of particulate matter (PM), gaseous pollutants 

(e.g., nitrogen dioxide, ozone), organic compounds, and heavy metals. Exposure to air pollution is 

the fifth leading cause of death globally and is responsible for approximately 3.3 million premature 

deaths worldwide, primarily attributed to PM2.5 (31, 32). It is hypothesized that PM is the 

component of air pollution primarily responsible for adverse health effects due to its broad range 

of toxic substances. Major components of PM include transition metals, ions, organic compounds, 

minerals, reactive gases, and biologic materials. PM is classified by aerodynamic diameter: coarse 

(< 10 µm, PM10), fine (<2.5 µm, PM2.5), and ultrafine (< 0.1 µm, PM0.1). The health effects vary 

by particle size; PM10 is primarily deposited along the upper airways and can be cleared through 

mucociliary clearance, while PM2.5 and PM0.1 are small enough to penetrate the lungs gas-

exchange region where they can then be absorbed by lung endothelial cells and transported into 

systemic circulation, causing systemic inflammation and cell damage (33-36).  

Air pollution is ubiquitous in the US, with important inequalities in exposure across the US 

and within cities. This means that all populations are exposed, and vulnerable populations are 

disproportionality exposed (37). Because of its established relationship with adverse health, PM2.5 
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is systematically monitored and regulated in the US. While air pollution was decreasing in the US 

over the last two decades, there has been a sudden increase in the last two years, partially 

attributable to climate change, economic activity, increased number of wildfires and extreme 

weather events, and decreases in clean air enforcement actions (38). As air pollution exposure 

increases, adverse health impacts attributable to air pollution are expected to increase 

concomitantly. Therefore, understanding the adverse health impacts of air pollution exposure, 

particularly among vulnerable populations, is increasingly important.  

Epidemiologic studies and animal models have established that PM2.5 exposure is 

responsible for adverse health effects, mainly through the cardiovascular and respiratory systems. 

PM comprises a complex mixture of carcinogenic and mutagenic substances that play a role in 

chronic systemic inflammation, oxidative stress, and DNA damage in human tissues, resulting in 

adverse health outcomes (39-42). These adverse health effects can be seen after short and long-

term exposure to PM2.5, even at very low exposure levels (43-45). Studies have shown an exposure-

response relationship between PM2.5 and mortality risk, where adverse health effects are dependent 

on both exposure concentration and length of exposure (46).  

The association between air pollution and lung cancer incidence is well established (47-

50). It is hypothesized that the mixture of carcinogenic and mutagenic substances present in PM2.5, 

including polycyclic aromatic hydrocarbons (PAHs) and other transition metals, can be 

metabolized in the body and cause DNA damage, genomic instability, and promote malignant 

neoplasms (51-53). Based on substantial evidence for a causal association between particulate 

matter air pollution and increased risk of lung cancer, air pollution exposure was classified as a 

carcinogen by the World Health Organization International Agency for Research on Cancer 

(IARC) in 2013 (52). 
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While the carcinogenic effects of air pollution are well established, less is known about the 

impact of air pollution on lung cancer survival. There are several plausible pathways through 

which PM2.5 exposure may influence lung cancer survival. Exposure to PM2.5 results in exposure 

to free radicals, organic chemicals, and transition metals. This exposure generates reactive oxygen 

species (ROS), resulting in genotoxicity, oxidative stress, and inflammation (54, 55). Further, 

PM2.5 can act directly on lymphocytes, monocytes, and macrophages, affecting immune and 

inflammatory responses (56). Together, these responses can then result in systemic inflammation 

(57, 58), impaired immune response (59, 60), a decline in lung function (61), vascular impairment 

(62), cardiovascular disease (39, 63), respiratory infections (60, 64) and impaired cardiometabolic 

response. Exposure to PM2.5 may impact lung cancer survival more directly by reducing treatment 

efficacy, resulting in adverse surgical outcomes, altering immune response, or promoting 

proinflammatory states (65-67). It is plausible that the established carcinogenicity of PM2.5 

contributes to lung cancer survival through the acceleration of carcinogenic processes, the 

development of secondary metastases, and secondary primary tumors (68, 69).  

The following section reviews recent epidemiologic studies that examine the relationship 

between air pollution and cancer and lung cancer survival.  

1.5 Review of epidemiologic studies on air pollution and cancer survival 

Five studies worldwide have published research on ambient air pollution after diagnosis 

and cancer survival, beginning in 2013 (70-74) (Table 1.2). Of these, only two examined lung 

cancer survival (70, 73). These studies examined this relationship using data from either California 

Cancer Registry or Surveillance, Epidemiology and End Results Program (SEER). These studies 

used time from date of cancer diagnosis to date of death or last follow-up as the primary outcome 

of interest. Cox proportional hazards models were used to estimate hazard ratios for the impact of 
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average air pollution over follow-up on survival time. Notably, all of the identified studies assigned 

air pollution exposure using an average exposure from diagnosis to date of last follow-up. All five 

studies found positive associations between increased average air pollution exposure and 

decreased survival after a cancer diagnosis. In four of the five studies, effect modification was 

identified by stage at diagnosis, where hazards increased for patients with early-stage disease (70-

72, 74). 

Table 1.2 Air pollution and cancer survival studies 

Reference Study 

Population 

Period Exposure Statistical 

method 

Main Findings 

Hu, 2013 

(72) 

Breast cancer 

cases from 

California 

SEER 

1999-

2009 

County 

monthly 

mean 

PM2.5 

Cox proportional 

hazards models, 

breast cancer-

specific hazard 

PM2.5 associated with 

decreased breast cancer 

survival, HR 1.86, 95% CI 

1.12-3.10 

Xu, 2013 

(73) 

Respiratory 

cancer cases 

from 

Honolulu and 

Los Angeles 

SEER 

1992-

2008 

County 

mean 

PM2.5 over 

follow-up 

Cox proportional 

hazards models, 

all-cause and 

respiratory 

cancer-specific 

hazard 

PM2.5 associated with 

decreased respiratory 

cancer survival, HR 1.49, 

95% CI 1.45 – 1.53 

Eckel, 2016 

(70) 

Lung cancer 

cases from 

California 

Cancer 

Registry 

1998-

2009 

Zip code 

monthly 

mean 

PM2.5 

Cox proportional 

hazards models, 

all-cause and lung 

cancer-specific 

hazards, stratified 

by stage and 

histology 

PM2.5 associated with 

decreased lung cancer 

survival particularly 

among early-stage tumors, 

HR 1.16, 95% CI 1.16-

1.17 

Deng, 2017 

(71) 

Liver cancer 

cases from 

California 

Cancer 

Registry 

2000-

2009 

Zip code 

monthly 

mean 

PM2.5 

Cox proportional 

hazards models, 

all-cause and liver 

cancer-specific 

hazards, overall 

and stratified by 

stage 

PM2.5 was associated with 

decreased liver cancer 

survival with a nonlinear 

association, HR 1.18, 95% 

CI 1.16-1.20 

Villanueva, 

2021 

(74) 

Ovarian 

cancer cases 

from 

California 

Cancer 

Registry 

1996-

2014 

Address 

mean 

PM2.5   

over 

follow-up 

Cox proportional 

hazards models, 

ovarian cancer-

specific survival, 

overall and 

stratified by stage 

PM2.5 was associated with 

decreased ovarian cancer 

survival, HR 1.45, 95% CI 

1.41-1.49 



10 

 

1.5.1 Methodological challenges and proposed solutions 

It is well known that in a time-to-event setting with time-varying exposures, it is necessary 

to account for both the time-varying nature of the exposure and differences in length of follow-up 

between censored and non-censored individuals. However, the existing literature overlooks this 

necessity and instead treats a time-varying exposure (air pollution) as time fixed by averaging 

exposure over follow-up for all individuals. This averaged exposure creates a study population 

where it is no longer possible to account for differences in follow-up lengths or ensure comparable 

exposure periods between censored and non-censored individuals. This is because the process of 

averaging an exposure over follow-up encodes follow-up duration into the exposure value itself. 

Using attained duration of follow-up to assign exposure may lead to one form of a common 

systematic error in epidemiology, immortal time bias (ITB). To date, this error has not been 

formally described in this context. Therefore, this dissertation will demonstrate how this error can 

be introduced and avoided using established methods in a case study of air pollution and lung 

cancer survival. This will be the focus of the second aim. 

1.6 Racial residential segregation and lung cancer survival 

Racial/ethnic residential segregation refers to the extent to which two or more groups live 

separately from one another in a geographic area (75). Racial segregation is not a choice made by 

residents but a consequence of generations of systemic racism and discriminatory policies (76, 77). 

Policies in the 1930s were designed to increase housing for white Americans, driving Black and 

other populations of color into urban housing projects. This segregation was strengthened with the 

introduction of policies that systematically denied these neighborhoods opportunities for 

mortgages. While these policies have since been made illegal, lasting effects have resulted in 

unequal opportunity for individuals and communities of color (78). Cities today remain deeply 
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segregated despite the introduction of policies in the 1960s which were introduced to promote 

equity and combat housing discrimination.  

Segregation is well established as a fundamental cause of racial disparities and poor health. 

Segregation concentrates poverty, perpetuates racial bias, and shapes neighborhoods' social and 

physical features (79). On average, segregated neighborhoods have lower access to quality 

affordable housing, education, quality jobs, healthy food, green space, physical activity resources, 

and quality health care (79-81). Segregated neighborhoods have fewer primary and specialty care 

physicians, resulting in decreased utilization of preventive care and higher use of emergency 

departments for routine care (82-84). This neighborhood-built environment results in concentrated 

stress and poor health outcomes.  

Beyond factors that impact communities' daily health and safety, one of the fundamental 

ways racial residential segregation can impact cancer is through access to care. In general, 

segregated neighborhoods have increased difficulty in accessing and using health care resources 

(85). Recent studies have documented that hospital-level segregation and hospital racial 

composition are associated with disparities in treatment and utilization (86-88). Safety net 

hospitals, with higher proportions of uninsured and underserved patients, are more often located 

near segregated areas and have higher rates of adverse patient safety events and lower quality of 

care (89, 90). Studies have demonstrated that patients living in segregated neighborhoods have 

decreased receipt of appropriate cancer care (91, 92).  

Capturing an inherently multidimensional and spatial process through a single index is a 

challenge that has been discussed for decades (93). To date, there is no unified conceptual or 

methodological approach that is considered “best practice” in measuring racial residential 

segregation. It was first proposed that segregation can be conceptualized in five distinct 
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dimensions: evenness, exposure, clustering, concentration, and centralization (75). Recent work 

has demonstrated that after accounting for spatial relationships, these dimensions can be reduced 

to only: evenness and exposure (94). Several indices can be used to capture these dimensions, such 

as the commonly used isolation and dissimilarity indices. Other less commonly used indices have 

been proposed, such as hyper segregation (95) and index of concentration at the extremes (ICE) 

(96). Some studies use the percent of a racial/ethnic group in an area to measure segregation. 

However, this crude measure has been widely criticized because this does not describe how two 

or more population groups are distributed across space (97).  

The following section reviews recent population studies examining the relationships 

between air pollution on cancer and lung cancer survival.  

1.7 Review of epidemiologic studies on segregation and cancer survival 

There is growing evidence that cancers are unequally distributed across geographic areas 

that differ by socioeconomic status, racial/ethnic composition, and rurality (98, 99). There are 

substantial racial and ethnic disparities in lung cancer, despite overall improvements in survival 

over the last several decades (100). In lung cancer, many factors may contribute to adverse health 

outcomes. Studies have demonstrated that patients with cancer in segregated communities are 

more likely to die from their cancer (101), be diagnosed at later stages of disease (102), and receive 

lower rates of appropriate care (103). To review the current literature on segregation and cancer 

survival, we searched Google Scholar using the terms: racial segregation, residential segregation, 

and cancer survival, cancer prognosis. Theoretical articles, commentaries, or those without explicit 

measures of segregation or cancer survival were excluded. Using this criteria, seven articles were 

identified and outlined in Table 1.3.  
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Table 1.3 Racial residential segregation and cancer survival studies 

Reference Study 

Population 

Period Segregation 

measure 

Main Findings 

Warner,  

2010 

(104) 

 

Breast cancer 

cases from the 

California 

Cancer Registry  

1996-

2004 

Hyper-segregation, 

high segregation on 

two or more 

indices  

Metropolitan segregation did not 

explain differences in survival 

between Black and white women 

Johnson, 

2016 

(103) 

Early-stage 

NSCLC patients 

from the Georgia 

Cancer Registry 

2000- 

2009 

Isolation index Black patients living in areas with 

high economic deprivation and high 

segregation were more likely to die, 

even after controlling for surgery 

1.31, (1.04-1.66) 

Zhou, 

2017 

(105) 

Colorectal cancer 

cases from 

Wisconsin 

Cancer 

Reporting 

System 

2004-

2011 

Racial bias, 

redlining, location 

quotient (local area 

segregation 

measure

Racial bias in lending was associated 

with greater hazard (1.37, 1.06-1.17) 

No associations between redlining or 

location quotient 

Poulson, 

2020 

(106) 

Colorectal 

Cancer cases 

from SEER 

2005-

2015 

Index of 

dissimilarity  

Black patients had decreased cancer-

specific survival (HR 1.43, 1.17-1.74) 

Poulson, 

2020 

(107) 

Breast Cancer 

cases from SEER 

2005-

2015 

Index of 

dissimilarity  

Black patients had an increased 

hazard of death with increasing 

segregation (RR 1.29, 1.04-1.60) 

Westrick, 

2020 

(108) 

Epithelial 

ovarian cancer 

cases from 

Florida Cancer 

Data System 

2001-

2015 

5 ICE variables: 

economic, 

race/ethnicity, 

racialized 

economic 

segregation 

Economic and racialized economic 

residential segregation influenced 

EOC survival more than race or ethnic 

segregation alone 

Harris, 

2021 

(109) 

Oral squamous 

cell carcinoma 

from SEER 

2005 - 

2015 

Index of 

dissimilarity 

Highly segregated counties, advanced 

age, advanced stage at time of 

diagnosis, and lack of surgery were 

poor prognostic factors among Black 

patients 

These studies used a variety of different segregation measures to capture their exposure of 

interest. Three of the ten papers used one of the most common measures, the index of dissimilarity, 

to capture racial residential segregation (106, 107, 109). This index measures evenness across 

space and captures the proportion of a group’s population that would need to change residence for 
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each neighborhood to have the same proportion of that group as the general geographic area. Of 

the seven identified papers, only one examined lung cancer survival (103). All four papers that 

used common segregation measures (described above) identified an association between racial 

residential segregation and decreased survival after a cancer diagnosis (103, 106, 107, 109). Of the 

three that used other measures to capture segregation impacts, only one identified that economic 

segregation played a larger role in epithelial ovarian cancer survival than racial or ethnic 

segregation (108). One study that measured hyper-segregation found that segregation did not 

explain any survival disparities between Black and white women with breast cancer (104).  

1.7.1 Methodological challenges and proposed solutions 

The current literature in segregation and cancer survival has overlooked specific 

methodological challenges in the measurement of segregation. There are two primary factors in 

measuring segregation that need to be considered: the spatial scale of geographies and spatial 

relationships of populations. First, it is necessary to consider the spatial scale of both the subareas 

and the larger geographic area used in analysis. Most common segregation measures combine 

information on two geographic scales: subareas (e.g., neighborhoods, census tracts) within larger 

geographic areas (e.g., cities, counties). These two geographic scales are required because the 

racial makeup of one neighborhood is meaningless without the context of the surrounding area.  It 

is well established that the size of these areal units can change the value of the segregation index 

(110), which can then impact the effect estimate of interest. For example, studies have 

demonstrated that segregation impacts on health are usually more substantial when segregation is 

measured in small areas (111). For this reason, it is necessary to make explicit the choice of spatial 

scale or to conduct sensitivity analyses using different spatial sizes.  
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Second, it is essential to consider the spatial relationships between populations in 

measuring segregation (94). Common segregation measures treat neighborhoods as discrete units 

with no interaction, with exogenously assigned boundaries treated as impenetrable walls (112). 

Because of this feature, these measures cannot differentiate between population distribution 

patterns, instead only evaluating population mix within a spatial unit (113). To overcome this 

limitation, spatial segregation measures have been proposed that explicitly consider this spatial 

element (94, 112, 114, 115). These measures incorporate an adjacency component to account for 

the fact that there is more interaction between closer areas, which decreases as distance increases. 

Previous studies have demonstrated that when segregation indices that account for both scale and 

spatial orientation of neighborhoods are used, the absolute estimation of segregation changes 

(116). 

All seven studies that examine segregation and lung cancer survival do not make explicit 

the choice of spatial scale for analysis, nor do they use segregation measures that account for 

spatial relationships of populations (Table 1.4). Two of the seven do not provide information for 

how the segregation measure was calculated (104, 109). A systematic comparison of different 

ways to calculate segregation that may impact an exposure's amplitude and effect size on lung 

cancer survival among different racial groups is lacking. Therefore, this dissertation will 

demonstrate how these two considerations in measuring racial residential segregation can impact 

effect estimates using a case study of segregation and lung cancer survival. This will be the focus 

of the third and final aim. 
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Table 1.4 Racial residential segregation and cancer survival studies: segregation measures 

Reference Segregation 

Measure 

Spatial scale 

(subgroups) 

Spatial scale 

(larger area) 

Discussion of 

spatial scale  

Measure that 

accounts for 

spatial 

relationships 

Warner, 

2010 

Hyper-segregation, 

high segregation on 

two or more indices 

Unknown Metropolitan 

Area 

No No 

Johnson, 

2016 

(103) 

Isolation index Census block Census tract No No 

Zhou, 

2017 

(105) 

Racial bias, 

redlining, location 

quotient (local area 

segregation measure) 

Zip code Metropolitan 

area 

No No 

Poulson, 

2020 

(106) 

Index of dissimilarity Census block County No No 

Poulson, 

2020 

(107) 

Index of dissimilarity Census block County No No 

Westrick, 

2020 

(108) 

5 ICE variables: 

economic, 

race/ethnicity, 

racialized economic 

segregation 

Neighborhood 

 

Unknown No No 

Harris, 

2021 

(109) 

Index of dissimilarity Unknown County No No 

 

1.8 Summary 

This dissertation expands on the current literature on neighborhood contextual 

determinants in lung cancer survival by addressing the outlined methodological challenges. First, 

we will describe how lung cancer varies spatially in California and examine potential clusters of 

exceptionally high or low survival. Next, we will assess the association between air pollution and 

lung cancer survival using a method that treats air pollution as time-varying and avoids systematic 
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errors. Finally, we will estimate the association between racial residential segregation and lung 

cancer survival using spatial and aspatial segregation measures across different geographic scales. 

We illustrate how both of these considerations can impact effect estimates and subsequent 

conclusions.  

1.9 Specific aims 

This dissertation examined the relationship between neighborhood contextual factors (air pollution 

and racial residential segregation) on lung cancer survival. The following aims are addressed: 

Aim 1: Describe spatial patterning in age-adjusted lung cancer survival in the three largest 

California counties 

1a: Describe the changes in spatial heterogeneity over time 

1b: Identify potential high and low clusters in age-adjusted survival over California 

Aim 2: Identify and correct the systematic bias in studies that use average air pollution as a time-

fixed exposure in a time-to-event analysis under a target trial framework 

2a: Estimate the association between air pollution after a lung cancer diagnosis on five-

year lung cancer survival using a discrete-time hazards approach to account for time-

varying air pollution 

2b: Compare the effect estimate between the naïve analysis to the proposed solution using 

discrete-time models 

Aim 3: Estimate the association between residential racial segregation and lung cancer survival 

using segregation indices calculated using different approaches  
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3a: Calculate segregation using different geographic areal unit sizes (census tract vs. census 

block, five- vs. ten-mile neighborhood), and using spatial and aspatial indices 

3b: Compare conclusions between spatial and aspatial indices and by the size of 

geographical unit concerning racial/ethnic disparities in lung cancer survival 

This research studied populations of lung cancer cases in California, United States. All 

three aims in this dissertation used lung cancer cases from the California Cancer Registry from 

2000 – 2010. California is the most populous state in the nation, with more than 39 million 

residents in 2020. California is exceptionally diverse, with no single racial/ethnic group making 

up most of California’s population. Further, Hispanic populations of any race are the largest single 

ethnic group in the state. In 2015, 16,000 individuals were diagnosed with lung cancer, and 12,000 

died of the disease in California. These aims provide valuable evidence about potential prognostic 

factors in lung cancer that vary over space and time and address methodological challenges 

prevalent in the literature.  
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2 Spatial variation in lung cancer survival across time in Southern California 

2.1 Abstract 

Background: Studies frequently examine trends in lung cancer survival over time but rarely 

examine heterogeneity over space. Identifying variability in lung cancer survival over space and 

time can be used to generate hypotheses about what place-based factors may drive variability and 

allow for targeted interventions.  

Methods: Lung cancer cases from the California Cancer Registry from 2000 – 2010 in the three 

largest counties in California (Los Angeles, Orange, San Diego) were used to calculate age-

adjusted zip code specific median survival. The ratio of observed to expected median survival was 

mapped across all zip codes. We assessed spatial autocorrelation of the age-standardized median 

survival times using the Getis-Ord Gi* statistic to identify local clusters of above and below 

expected survival in Los Angeles County.  

Results: This study included 44,995 lung cancer cases. Over the five-year follow-up period, 84% 

(n=38,058) of lung cancer cases died. The five-year median survival for lung cancers diagnosed 

during the study period was 4.95, 1.62, and 0.38 years for localized, regional, and distant stage at 

disease, respectively. There was wide geographic variation in the observed to expected ratio in all 

three California counties. The cluster analysis revealed significant hot and cold spots across Los 

Angeles County.  

Conclusions: There is important spatial and temporal heterogeneity in lung cancer survival in 

California, suggesting that there are likely prognostic factors in survival that vary in similar 

patterns. It is necessary to evaluate disparities in lung cancer survival over space and time to reveal 
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potential risk factors and design targeted interventions. Evaluating global trends alone will miss 

important small-area heterogeneity over space and time. 

2.2 Introduction 

By the end of 2021, lung cancer will account for approximately 8% of new cancer cases 

and 20% of cancer deaths, more deaths than colon, breast, and prostate cancer combined (117). 

Lung cancer survival is lower than other leading cancers, and more than half of people with lung 

cancer die within one year of being diagnosed. Small advances in lung cancer survival to date are 

primarily attributable to individual-level interventions in tobacco use, early diagnosis, and 

improved treatment (13, 24). This continued poor survival suggests that new approaches are 

needed to identify modifiable and structural risk factors. Recently, there has been growing interest 

in understanding small-area spatial variation in cancer survival as a mechanism to identify novel 

place-based risk factors and inform local policies to create targeted interventions (118). 

It has become widely accepted that the place where an individual lives or works is an 

important determinant of health. Studies have demonstrated that neighborhood social and built 

environments are independently associated with mortality (119). In the US, the place an individual 

lives can determine their access to education, income, green space, healthy food, clean air and 

water, and quality health care (120-122). In lung cancer, identifying place-based risk factors may 

be particularly valuable as they do not rely on individual interventions. Examining spatial variation 

in lung cancer survival can help identify areas with disproportionately high or low survival rates. 

Recently, studies have illustrated that identifying changes in spatial patterns of lung cancer 

survival over time can aid in the identification of risk factors that vary both spatially and temporally 

(123-126). 
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Previous work has identified geographic variation in cancer survival between counties 

(118) and within the United States (127). Richards et al. analyzed net survival by state in the US 

and found large geographic variation in lung cancer survival, with notable racial disparities. In the 

37 states with comprehensive cancer registries, the five-year survival ranged from 15% to 25% 

among white patients and 7% to 23% among Black patients (30). At the same time, few studies 

have examined spatial heterogeneity in lung cancer survival over time. Cramb et al. examined 

changes in lung cancer survival in Queensland AU and found large spatial variation in survival, 

with variation in changes over time (124). This evidence of large-scale spatial heterogeneity in 

lung cancer survival highlights the possibility that spatially and temporally varying risk factors are 

driving these geographic patterns. 

To date, no studies have described how lung cancer survival varies spatially in California 

and how these spatial patterns change over time. A recent study examined cancer survival in 

California over the past two decades and found that five-year survival improved from 18 to 29%. 

However, study authors noted that they did not assess how these trends varied spatially across the 

state (128). California has an exceptionally diverse racial and ethnic composition, with no single 

racial or ethnic group constituting most of the population. California has the largest population in 

the US (making up 12% of the US population), and 95% of its residents live in urban areas. 

Unfortunately, California is only ranked 16th in lung cancer survival rates in the nation (127). 

Understanding how lung cancer survival varies spatially across urban areas in the state is necessary 

to identify potential modifiable risk factors and influence resource allocation to improve health 

equity in the state.  

This study describes how lung cancer survival varies spatially across the three largest 

counties in California: Los Angeles, San Diego, and Orange County. To do this, we apply indirect 
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standardization to obtain age-adjusted median survival for all zip codes in these counties. To 

illustrate how spatial heterogeneity in survival may change over time, we stratify the study period 

between 2000-2005 and 2006-2010. Finally, we evaluate the presence of spatial autocorrelation in 

Los Angeles to identify potential clusters (hot or cold spots) where lung cancer survival may be 

better or worse than expected after adjusting for potential confounding by age distribution. All 

analyses are stratified by stage at diagnosis.  

2.3 Methods 

All lung cancer cases in the three largest counties in California (Los Angeles, San Diego, 

Orange) from 2000 – 2010 were obtained using the California Cancer Registry (CCR). CCR is a 

statewide population-based cancer surveillance system that collects information on all cancers 

(except for non-melanoma skin cancer) diagnosed in California. Lung cancer cases were identified 

with the International Classification of Disease of Oncology (ICD-0-3) site codes (C34.0 – C34.3, 

C34.8, C34.9). Cases were included in the study if they had a primary, histologically confirmed 

cancer of the lung or bronchus and had an address in the study area at the time of cancer diagnosis 

on record with CCR (N=49,202). Patients with in situ cancer, diagnosed at autopsy, or with an 

invalid date of diagnosis or follow-up (N=3,661) were excluded from analysis. Patients who were 

lost to follow-up before five years were excluded from analysis (N=546). The final study 

population included 44,995 patients. This study was reviewed and approved by Institutional 

Review Boards (IRBs) at San Diego State University, the University of California San Diego, and 

the California Department of Public Health Committee for the Protection of Human Subjects.  

Standardization 
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Measures of cancer prognosis most often report five or ten-year survival rates. When using 

absolute survival rates, it is necessary to account for age distribution in the target population (129). 

This is because survival varies strongly with age. In order to make comparisons of cancer survival 

between populations in different areas or across time, it is necessary to remove the influence of 

age (when there are differences in the age distribution across comparison areas). Because of this, 

comparisons between cancer survival rates are age standardized. Age-standardized survival rates 

use a weighted average of age-specific survival rates within age subgroups, equal to the proportion 

of patients in these age groups in some standard population (130).  

The outcome of interest for this study was median survival, censored at five years. We used 

an indirect standardization procedure to age-adjust zip code specific median survival for each 

county separately. Here, our standard population was the county in which the zip code resides. 

This standardization procedure used quintiles of the age distribution of all cancer cases for each 

county. We then calculated the median survival times for each age group quintile at the county 

level. We multiplied these age group specific median survival times by the number of lung cancer 

cases in each age group at the zip code level. We then summed these median survival times and 

divided them by the number of people in each zip code. This results in median survival times for 

each zip code had the zip code taken on the age distribution of the county. A ratio of observed over 

expected was used to present median survival relative to what would be expected in the county. 

This means that for values greater than one, the observed survival is greater than expected. For 

values less than one, observed survival is worse than expected, given the population's age 

distribution.  

Spatial Autocorrelation 
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We assessed spatial autocorrelation of the age-standardized survival rates using local Getis-

Ord Gi* statistic to identify local patterns and clusters of above and below expected survival. 

Getis-Ord Gi* is a type of Local Indicator of Spatial Associations, known as a LISA statistic. 

Neighbors were defined using contiguity, where common sides and points of polygons define the 

neighbor relation. The Getis-Ord Gi* statistic was then used to categorize and visualize cold and 

hotspots (blue and red) and is represented with a Z-score.   

To evaluate how these spatial patterns may change over time, the standardized median 

survival times and spatial autocorrelation analysis were stratified by year at diagnosis to create two 

time periods (2000-2005 and 2006-2010). All visualizations and the spatial autocorrelation 

analysis were stratified by stage at diagnosis, as stage is one of the strongest prognostic factors for 

survival. All data analysis was conducted using R software V 4.0.2.   

2.4 Results 

A total of 44,995 lung cancer cases were included in this analysis. The average age at 

diagnosis was 69 (SD 12), and over half of all cases were diagnosed at distant stage at disease 

(63%). The majority of the population was non-Hispanic white (65%), followed by Hispanic (12%) 

and Asian/Pacific Islander (12%). Over the five-year follow-up period, 84% (n=38,058) of lung 

cancer patients died. The five-year median survival for lung cancers diagnosed during the study 

period was 4.95, 1.62, and 0.38 years for localized, regional, and distant stage at disease, 

respectively. During the study period, overall median survival improved for all stages of disease 

and age groups (Supplementary Material Table 2.2). Study population characteristics stratified by 

county are presented in Table 2.1.  
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Table 2.1 Study population characteristics, stratified by county of residence, California 

Cancer Registry, 2000 - 2010 
 

Los Angeles Orange San Diego  

n=25,072 n=9,567 n=10,356 

Age Category 

   

   [18,59] 5280 (21.1) 1871 (19.6) 1957 (18.9) 

   (59,67] 5341 (21.3) 2036 (21.3) 2081 (20.1) 

   (67,73] 4854 (19.4) 1889 (19.7) 2021 (19.5) 

   (73,79] 4825 (19.2) 1882 (19.7) 2165 (20.9) 

   (79,101] 4772 (19.0) 1889 (19.7) 2132 (20.6) 

Male 13233 (52.8) 4834 (50.5) 5174 (50.0) 

Partnered 12675 (51.8) 5320 (57.2) 5267 (52.0) 

Race 

   

   American Indian / Alaskan Native 35 (0.1) 14 (0.1) 37 (0.4) 

   Asian/Pacific Islander 3591 (14.3) 1223 (12.8) 849 (8.2) 

   Hispanic 3657 (14.6) 771 (8.1) 1055 (10.2) 

   NH Black 3741 (14.9) 115 (1.2) 496 (4.8) 

   NH White 14022 (56.0) 7435 (77.8) 7912 (76.5) 

Stage at Diagnosis 

   

   Distant 16322 (65.1) 5792 (60.5) 6412 (61.9) 

   Localized 3612 (14.4) 1665 (17.4) 1699 (16.4) 

   Regional 5138 (20.5) 2110 (22.1) 2245 (21.7) 

Time of follow-up (Mean) 1.5 (1.7) 1.7 (1.8) 1.5 (1.8) 

 

There was wide geographic variation in the observed to expected ratio in all three 

California counties (Figures 2.1, 2.2 and 2.3). In Los Angeles, distinct spatial patterning was 

consistent across both time periods and all stages of diagnosis. In general, areas in the west 

experienced better than expected survival (observed to expected ratio greater than 1), while areas 

in the east experienced worse than expected survival (observed to expected ratio less than 1). Over 

the study period, this pattern remained broadly consistent, except for some areas where observed 
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survival increased or decreased relative to the expected. A similar pattern was observed in San 

Diego and Orange County, where areas on the coast tended to have better than expected survival, 

while areas inland tended to have worse than expected survival. This pattern remained consistent 

across both time periods and all stages of diagnosis.  
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Figure 2.1 Map of Los Angeles County: Ratio of observed to expected median survival, age-

adjusted to Los Angeles County age distribution, California Cancer Registry, 2000 - 2010 
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Figure 2.2 Map of Orange County: Ratio of observed to expected median survival, age-

adjusted to Orange County age distribution, California Cancer Registry, 2000 - 2010 
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Figure 2.3 Map of San Diego County: Ratio of observed to expected median survival, age-

adjusted to San Diego County age distribution, California Cancer Registry, 2000 - 2010 

 

In the spatial autocorrelation analysis, hot and cold spots were identified in Los Angeles 

(Figures 2.4 and 2.5). These hot and cold spots corresponded to areas where better and worse than 

expected survival tended to be clustered in Figure 2.1. There was a consistent pattern across all 
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stages and both time points, where areas in the west were consistently identified as ‘cold spots’, 

indicating better than expected survival. Similarly, in the east, there were ‘hot spots’ where 

survival was worse than expected. Over the study period, these hot and cold spots changed slightly, 

with some areas becoming stronger clusters and others becoming weaker. However, in general, 

the patterns remained largely the same. 
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Figure 2.4 Getis-Ord Gi* cluster analysis, Los Angeles, California Cancer Registry, 2000 - 

2005 
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Figure 2.5 Getis-Ord Gi* cluster analysis, Los Angeles, California Cancer Registry, 2006 – 

2010 

 

2.5 Discussion 

In the three largest counties in California, lung cancer survival varied between zip codes 

and across time. There were areas where the observed to expected ratio remained consistent across 
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time, while other areas increased or decreased. These results suggest that it is not sufficient to 

describe lung cancer survival globally (state or county-wide) without considering small-scale 

spatial variability as this may miss important areas of exceptionally low or high vulnerability. Our 

spatial autocorrelation analysis identified patterns of hot and cold spots that are consistent across 

diagnosis stages and time. Our findings highlight that there may be important drivers of lung cancer 

survival that vary geographically to create this spatial heterogeneity and clusters of exceptional 

and poor survival.  

Several factors vary across space that may contribute to spatial heterogeneity in lung cancer 

survival. Stage at diagnosis, receipt of guideline-concordant care, and treatment at high volume 

centers are important prognostic factors in lung cancer. Because of this, spatial factors that affect 

access to care are likely also to influence survival (131-133). Studies have demonstrated that 

distance to cancer centers and access to other supportive care are associated with later stage at 

diagnosis, decreased receipt of appropriate treatment, and subsequent survival in cancer (134, 

135). People living in rural areas worldwide are more often diagnosed at later stages of disease 

and have higher mortality, particularly for Black patients (3, 125, 136). One study found that the 

uptake of novel treatments for lung cancer varied across counties and regions, which may 

contribute to some spatial survival disparity (118). Lastly, studies have examined lung cancer 

survival over time and found that treatment center significantly influences survival (137).  

Other factors unrelated to access to care may also be drivers of spatial heterogeneity in 

cancer survival. Social and environmental factors have been shown to impact a patient’s cancer 

prognosis differentially (138). Socio-economic deprivation is associated with lower rates of 

treatment in lung cancer patients, which may partially explain spatial variation in survival. 

Similarly, some studies have demonstrated that racial residential segregation may adversely impact 
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cancer survival (103, 105, 107, 109). Finally, there is evidence that exposure to air pollutants and 

toxins may impact survival after a cancer diagnosis (70, 73, 74, 139-141). These contextual 

determinants are promising avenues for future research as they relate to interventions at the 

population level and may have important implications for improving health inequities.  

In California, lung cancer survival improved over the last two decades. However, there are 

disparities in survival and rates of change in survival across population subgroups. Women have 

consistently better survival than men (partially due to increased receipt of surgery) and have had 

faster increases in survival than their male counterparts (128). Black patients have had lower 

survival rates, lower surgical rates, and are more likely to be diagnosed with advanced stage 

disease (100). At the same time, Asian American and Pacific Islander patients have the highest 

survival rates compared with white patients. While many spatial factors may contribute to these 

disparities, studies have demonstrated that factors associated with access to care and stage at 

diagnosis, such as neighborhood socioeconomic status, play the largest role in racial disparities for 

Black and Hispanic patients (100).  

There are several limitations in the present work. First, we estimated absolute survival. 

While absolute survival can be beneficial to give a complete picture of health in a population across 

zip codes, it may reflect underlying factors that result in poor health across a range of outcomes. 

In this work, we age-adjusted within each county. This means that we cannot make any conclusions 

comparing survival between counties. Finally, mapping small-area variation in lung cancer is 

always constrained by small cases numbers. In this study, we have some zip codes with small 

population numbers that may cause some instability in our estimates. The main objective of this 

paper was descriptive, and we did not attempt to quantify nor identify drivers behind geographic 
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variation and changes in survival over time. Future work should consider how neighborhood-level 

factors, such as social or environmental factors, may impact this geographic heterogeneity.  

In this study, we identified important spatial and temporal heterogeneity in lung cancer 

survival in California, suggesting that there are likely prognostic factors in survival that vary in 

similar patterns. It is necessary to evaluate disparities in lung cancer survival over space and time 

to reveal potential risk factors and design targeted interventions. Evaluating global trends alone 

will miss important small-area heterogeneity. 

Supplementary Material 

Table 2.2 Median survival by age group from 2000 - 2005 & 2006 - 2010, California Cancer 

Registry 
 

Age Category 2000 - 2005 2006 - 2010 

Distant [18,59] 0.58 0.66  

(59,67] 0.45 0.54  

(67,73] 0.37 0.38  

(73,79] 0.27 0.3  

(79,101] 0.2 0.22     

Regional  [18,59] 2.09 2.88  

(59,67] 1.88 2.38  

(67,73] 1.44 1.72  

(73,79] 1.3 1.47  

(79,101] 0.87 0.94     

Localized [18,59] 4.99 4.99  

(59,67] 4.99 4.99  

(67,73] 4.91 4.99  

(73,79] 3.48 4.39  

(79,101] 1.58 2.12 
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Chapter 2, in part, is currently being prepared for submission for publication of the 

material. Sheridan, Paige; Caroline, Thompson; Benmarhnia, Tarik. The dissertation author was 

the primary investigator and author of this paper.  
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3 Immortal time bias with time-varying exposures in environmental epidemiology: a case study 

in lung cancer survival 

3.1 Abstract 

Immortal time bias is a well-recognized bias in clinical and pharmacoepidemiology but is 

rarely discussed in environmental epidemiology settings. Under the target trial framework, this 

bias is formally conceptualized as a misalignment between start of study follow-up (time zero) and 

treatment assignment. This misalignment can occur when attained duration of follow-up is 

encoded into treatment status using minimums, maximums, or averages. The bias can be further 

exacerbated in the presence of important time trends commonly found in environmental exposures. 

We replicated previous studies that average air pollution exposure over follow-up in a time-to-

event model using lung cancer cases from the California Cancer Registry (2000-2010) linked with 

PM2.5 estimates. We compared this approach to a discrete-time approach that ensures alignment 

between time zero and treatment assignment. In the former approach, the estimated hazard ratios 

for a 5 μg/m3 increase in average PM2.5 were 1.35 (95% CI: 1.30-1.41), 1.29 (95% CI: 1.25-1.33), 

and 1.17 (95% CI: 1.15-1.18) for localized, regional, and distant stage of disease, respectively. By 

contrast, under the discrete-time approach, the estimated pooled ORs were 1.01 (95% CI: 0.99-

1.01), 1.00 (95% CI: 0.98-1.01), and 1.00 (95% CI: 0.99-1.01). We identify that immortal time 

bias likely drives the differences in these effect estimates as a result of averaging exposure over 

differential follow-up periods. Our findings highlight the importance of appropriately 

conceptualizing a time-varying exposure in environmental epidemiology under the target trial 

framework to avoid introducing preventable systematic errors.  
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3.2 Introduction 

Epidemiologic studies often seek to measure the impact of time-varying environmental 

exposures on time-to-event outcomes. In this setting, it is necessary to account for the time-varying 

nature of the exposure and differences in length of follow-up between censored and non-censored 

individuals. However, studies often overlook these requirements and attempt to simplify the 

analysis by treating the exposure as time-fixed to avoid the added complexity of accounting for a 

time-varying exposure. For instance, some studies choose to average the exposure over follow-up 

for each individual (70-74). While this may initially appear to be an appropriate simplification, 

this averaged exposure unintentionally creates a study population where it is impossible to account 

for differences in length of follow-up between individuals or the time-varying nature of the 

exposure. When an averaged environmental exposure is used in this context, a well-known 

systematic error can be introduced into the study, called immortal time bias (ITB). This paper uses 

the target trial framework to identify how averaging a time-varying environmental exposure in a 

time-to-event analysis can introduce ITB into an observational study. We then illustrate an 

approachable analytic solution that prevents ITB and appropriately considers the time-varying 

nature of these exposures. The terms “exposure” and “treatment” will be used synonymously 

throughout this paper.  

The target trial framework views an observational study through the lens of a hypothetical 

randomized trial (target trial) to avoid fundamental flaws in the analysis that can result in biases, 

including ITB (142). This framework defines that the fundamental principles that guide the design 

and analysis of randomized trials must be applied in observational studies to avoid systematic 

errors. One of these central principles is the alignment of start of follow-up (time zero), eligibility 

criteria, and treatment assignment. This alignment at time zero occurs by design in a randomized 
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trial (at randomization), so systematic errors can be introduced when this principle is ignored in 

an observational study. While several errors can occur if this alignment principle is violated, we 

focus on ITB in this paper. Here, ITB occurs when the start of follow-up and eligibility criteria are 

aligned, but post-baseline information is used to assign treatment status (143) (creating a 

misalignment between treatment and time zero). For this discussion, we will refer to the “principle 

of alignment at time zero” to describe alignment between time zero and treatment assignment 

(assuming alignment of eligibility criteria).  

ITB was first described in the context of the heart transplantation studies by Gail in 1972 

(144). In this instance, heart transplantation was treated as a time-fixed exposure (transplanted or 

not) at baseline, and survival distributions were compared between those who never received a 

transplant and those who did. The principle of alignment at time zero was violated here because 

researchers retrospectively assigned individuals to the transplant group if they had received a heart 

transplant at any time over follow-up, therefore using post-baseline information to assign baseline 

treatment status. This approach ensured that patients in the transplant group had a guaranteed 

survival (“immortal time”) during the time they waited to receive the transplant. Because the 

transplanted group was guaranteed this additional follow-up time, it produced an artificial increase 

in survival time among the treated, suggesting a survival benefit from heart transplant. After 

excluding this “immortal time”, reanalysis of the same data revealed no survival benefit in the 

transplanted subjects (145). 

While ITB is most often identified when there is a well-defined period of “immortal time” 

as described above, there are other subtle ways treatment status is assigned using post-baseline 

information. One example of this occurs when treatment assignment is dependent on an 

individual’s attained duration of follow-up (146). This appears in studies that use maximums, 
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minimums, or averages of exposure during follow-up as the exposure of interest (143). This has 

been described in studies of “long-term” and “short-term” drug users, where a participant must 

have had a longer duration of follow-up to be classified as a long-term user (147, 148). For 

example, in an observational study that demonstrated a protective effect of statin use on lung 

cancer when comparing long-term statin users with non-users (149), individuals were classified 

using their observed duration of statin therapy during follow-up. This results in a study sample 

where being defined as a long-term statin user depends on having a longer length of follow-up. 

While there is no apparent period of “immortal time” here, we can identify that the principle of 

alignment at time zero is violated due to assigning treatment using attained duration of follow-up, 

resulting in ITB.  

Because ITB is most commonly discussed in clinical and pharmacoepidemiology (145, 

150, 151), its occurrence in environmental epidemiology is rarely discussed. However, we can 

identify that ITB can be introduced when environmental exposures are averaged over follow-up 

(in a time-to-event setting) using the target trial framework. Averaging an exposure over follow-

up defines the exposure value based on an individual’s observed length of follow-up, creating 

misalignment of treatment and time zero (as described above) (143). This results in a study sample 

where individuals with longer follow-up times have more exposure observations included in their 

average than individuals with shorter follow-up times. These averaged exposures (between 

individuals with different follow-up times) are no longer inherently comparable as a result of the 

different number of values included in the calculation. While this discrepancy in calculating 

averages is problematic in and of itself, the induced systematic differences between individuals 

with and without the outcome of interest can be even greater when the exposure has a strong 

temporal trend, as with air pollution (152, 153). When this is the case, the averaged exposure level 
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is associated with the length of follow-up and the temporal trend. For example, if an exposure 

decreases over calendar time, those with longer follow-up times will have lower averages than 

those with shorter follow-up times due to the temporal trend in the exposure. This results in an 

even greater discrepancy in assigned exposure values between those with longer and shorter 

follow-up times. 

To date, no studies have illustrated how averaging time-varying environmental exposures 

over follow-up time in a time-to-event analysis can introduce ITB. This study presents a case study 

examining the impact of air pollution after a lung cancer diagnosis on five-year survival. We use 

two approaches to estimate this association. First, we define air pollution exposure using an 

average over follow-up (we refer to this as the naïve approach). We then use an alternate method 

that upholds the principle of alignment at time zero, a discrete-time approach. We compare effect 

estimates between the naïve and discrete-time approach to illustrate how ITB can impact effect 

estimates.  

3.3 Methods 

Several studies have examined the impact of air pollution exposure after a cancer diagnosis 

on cancer survival in a time-to-event framework (70-74). These studies treated air pollution 

exposure as time-fixed by averaging air pollution exposure from date of diagnosis to date of last 

follow-up and use Cox proportional hazards models to estimate hazard ratios for the association 

between average air pollution and survival. These studies found strong associations between higher 

average air pollution during follow-up and decreased survival after a cancer diagnosis. In this case 

study, we will first use the approach from this previous work that creates a misalignment between 

assigned exposure at time zero, where air pollution is averaged across follow-up and treated as 

time-fixed in a Cox model (naïve approach). We then estimate this same association using the 
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proposed discrete-time hazards approach (discrete-time approach). This is an established method 

for estimating the causal effect of a time-varying exposure in a time-to-event framework that 

upholds the principle of alignment at time zero outlined by the target trial framework (154).  

Study population 

A retrospective, population-based cohort of lung cancer patients in California was created 

by linking data from the California Cancer Registry (CCR) with PM2.5 (fine particulate matter air 

pollution) estimates using patient zip code at diagnosis. CCR is a statewide population-based 

cancer surveillance system that collects information on all cancers (except for non-melanoma skin 

cancer) diagnosed in California. Lung cancer cases diagnosed between 2000 and 2010 and 

registered by CCR were identified with International Classification of Disease of Oncology (ICD-

0-3) site codes (C34.0 – C34.3, C34.8, C34.9). Cases were included in the study if they had a 

primary, histologically confirmed cancer of the lung or bronchus and had an address in California 

at the time of cancer diagnosis on record with CCR (N=123,706). Patients with in situ cancer 

(N=48), diagnosed at autopsy (N=355), or with an invalid date of diagnosis or follow-up 

(N=2,035) were excluded from analysis. For this analysis, all cancer cases that survived less than 

30 days from date of diagnosis were excluded (N=15,625). The initial study population included 

105,643 patients. This study was reviewed and approved by Institutional Review Boards (IRBs) 

at San Diego State University, the University of California San Diego, and the California 

Department of Public Health Committee for the Protection of Human Subjects. 

Exposure 

Daily zip code specific concentrations of fine air particulate matter (PM2.5) were estimated 

from 24-hour daily means sampled and reported by the US Environmental Protection Agency Air 
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Quality System (AQS) in California. Measurements from the three nearest stations within 25 km 

of each population-weighted zip code centroid were assigned to each zip code week using inverse 

distance weighting as applied previously (155). The measured concentration was weighted by the 

squared inverse distance to each zip code centroid, giving more weight to values at stations closer 

to the centroid. In this analysis, these estimated daily values were averaged as monthly zip code 

PM2.5 values for each lung cancer patient. Patients with less than two daily values in any month 

over a five-year follow-up were excluded from the analysis (N=16,605).  

Outcome 

Survival time was calculated from the date of lung cancer diagnosis to the date of death 

from any cause. All patients were censored at five years after diagnosis to avoid heterogeneity of 

effect associated with long-term survivorship (139). 

Covariates 

The following covariates were considered as potential confounders of the association 

between air pollution and lung cancer survival either directly or through unmeasured variables: 

age at diagnosis (years), sex (male/female), marital status (single, partnered), race/ethnicity (non-

Hispanic white, non-Hispanic black, Hispanic, Asian American, Native Hawaiian or Pacific 

Islander, Other/Unknown), treatment received during the first six months after diagnosis (surgery, 

radiation, chemotherapy), histology, month of diagnosis, year of diagnosis, and socioeconomic 

status quintile. Socioeconomic status was measured using a composite residential neighborhood-

level index that combined census measures of education, income, occupation, and cost of living at 

the census block group treated as quintiles (156). Standard histology groupings were created using 
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ICD-0-3 morphology codes for carcinoma, squamous cell, adenocarcinoma, small cell, large cell, 

and other carcinomas.  

Statistical Analysis 

Descriptive statistics were calculated for survival, PM2.5 exposure, and other covariates. 

Two approaches were used to estimate the impact of air pollution on survival after a lung cancer 

diagnosis. The first approach (naïve approach) emulates previous literature where PM2.5 exposure 

is averaged over follow-up to create a single value representing all exposure during the follow-up 

period. This average exposure is then treated as time-fixed in a Cox proportional hazards model to 

estimate a single hazard ratio for the effect of PM2.5 on survival over the entire follow-up period 

The second approach (discrete-time approach) treats PM2.5 as time-varying by using 

monthly averages. These monthly averages are then included in a discrete-time hazards model 

(i.e., a pooled generalized linear model with relatively short periods), where outcomes are assessed 

at each month of follow-up (157). This model estimates at each month for each person, the 

conditional probability of remaining free of the outcome given exposure, baseline covariates and 

time of follow-up. In this approach, the discrete-time hazard during each month t is defined as the 

risk of the outcome during month t among those who reached month t free of the outcome. This 

ensures that exposure is assigned at each outcome-time (month), which guarantees comparable 

lengths of exposure for those with and without the outcome at each month, ensuring alignment 

between treatment assignment and time-zero (for each case month distinct time zero in the context 

of this time varying discrete-time approach). The coefficient estimated from a generalized linear 

model with a complementary log-log link function will approximate those of a proportional 

hazards model (158). Time-varying hazards were accounted for by modeling follow-up time using 

cubic splines. Bootstrap confidence intervals were used to account for correlated observations. All 
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models for both approaches included potential confounding variables that were associated with 

both PM2.5 exposure and lung cancer survival described above and include a random intercept on 

zip code at diagnosis to account for heterogeneity in survival across space. Models were stratified 

by stage at diagnosis (local, regional, distant) due to established differences in etiology, treatment, 

and survival. Overall models included patients with unknown stage at diagnosis. 

All models for both approaches included potential confounding variables associated with 

PM2.5 exposure and lung cancer survival described above and included a random intercept on zip 

code at diagnosis to account for heterogeneity in survival across space. Models were stratified by 

stage at diagnosis (local, regional, distant) due to established differences in etiology, treatment, 

and survival. Overall models included patients with unknown stage of disease.  

To illustrate the difference in effect estimates over follow-up between both methods, we 

estimated adjusted survival curves using terciles of PM2.5 exposure. For the naïve approach, we 

used the R package “survminer”. In this package, a survival curve is plotted for each level of the 

grouping variable (PM2.5 tercile), and the distribution is adjusted to the reference population using 

inverse probability weighting as described in the package documentation. For the discrete-time 

approach, we used the method described by Hernán (154). This procedure calculates conditional 

survival by multiplying the model’s predicted values through time t to estimate conditional 

survival at t for all subjects. Survival is then predicted at time t for each subject, and conditional 

survival is averaged for all subjects under each exposure. This results in survival curves for each 

exposure level that are standardized to the distribution of the covariates in the study. All analyses 

were performed using R Version 4.0.2. 
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3.4 Results 

The final study population included 89,038 lung cancer cases diagnosed in California 

between 2000 and 2010. Baseline characteristics of the study population are presented in Table 

3.1. On average, lung cancer cases were 70.4 (SD 11.4) years old at diagnosis and predominantly 

non-Hispanic white (68%). More than half of the lung cancers were diagnosed at a late disease 

stage (55.6%). During the five-year study period (82%) of the population died, with the majority 

dying in the first year (53%). Median survival years for localized, regional, and distant stages at 

diagnosis were 4.92, 1.69, and 0.53 years, respectively. Average PM2.5 exposure was 12.4 μg/m3 

across all lung cancer cases. 
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Table 3.1 Baseline characteristics of lung cancer patients, California Cancer Registry, 2000 

- 2010 
 

Localized Regional Distant Unknown  

n=14,304 n=19,294 n=49,525 n=5,915 

PM (mean (SD)) 12.6 (3.8) 12.9 (4.2) 13.3 (4.7) 14.1 (4.8) 

Age (mean (SD)) 69.9 (11.3) 68.7 (11.0) 67.9 (11.7) 75.1 (11.7) 

Male (%) 6436 (45.0) 9740 (50.5) 25795 (52.1) 2809 (47.5) 

Years Follow Up (mean (SD)) 3.4 (1.8) 2.4 (1.9) 1.0 (1.2) 1.2 (1.4) 

Histology (%) 

    

Adenocarcinoma 6904 (49.3) 7376 (38.8) 19252 (40.0) 961 (25.7) 

Squamous Cell 3040 (21.7) 4679 (24.6) 6486 (13.5) 579 (15.5) 

Other 2438 (17.4) 3356 (17.7) 9569 (19.9) 631 (16.9) 

Large Cell 962 (6.9) 1401 (7.4) 5259 (10.9) 1140 (30.4) 

Small Cell 670 (4.8) 2183 (11.5) 7615 (15.8) 433 (11.6) 

Race/Ethnicity (%) 

    

NH White 10504 (73.6) 13495 (70.0) 32209 (65.1) 4178 (70.9) 

Asian/PI 1489 (10.4) 2205 (11.4) 6874 (13.9) 631 (10.7) 

Hispanic 1288 (9.0) 1849 (9.6) 5756 (11.6) 626 (10.6) 

NH Black 952 (6.7) 1641 (8.5) 4473 (9.0) 436 (7.4) 

American Indian 46 (0.3) 78 (0.4) 147 (0.3) 24 (0.4) 

Partnered (%) 7696 (54.8) 10455 (55.3) 26013 (53.9) 2306 (40.7) 

Radiation (%) 2222 (15.5) 8079 (41.9) 20950 (42.3) 738 (13.2) 

Surgery (%) 9649 (67.5) 8160 (42.3) 2407 (4.9) 180 (3.2) 

Chemotherapy (%) 1833 (12.9) 9405 (49.7) 26298 (54.2) 954 (18.1) 

SES Quintile (%) 

    

Low 1910 (13.4) 2891 (15.0) 8113 (16.4) 1003 (17.0) 

Low Med 2699 (18.9) 3751 (19.4) 9741 (19.7) 1373 (23.2) 

Med  3091 (21.6) 4205 (21.8) 10770 (21.7) 1346 (22.8) 

Med High 3199 (22.4) 4242 (22.0) 10878 (22.0) 1226 (20.7) 

High 3405 (23.8) 4205 (21.8) 10023 (20.2) 967 (16.3) 
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Over the study period, there were long-term downward trends in PM2.5 (Supplementary Material 

Figure 3.1). Table 3.2 shows the estimated hazard ratios for five-year survival for both the naïve 

approach and discrete-time approaches.  

Table 3.2 Estimated five-year cancer-free survival hazard ratios and odds ratios for a 5 μg/m3 

increase in PM2.5 exposure over the follow-up period, California Cancer Registry, 2000–2010 
 

Unadjusted Adjusted a 

Naïve HR 95% CI HR 95% CI 

Local 1.43 1.38 - 1.48 1.35 1.30 - 1.41 

Regional 1.35 1.32 - 1.38 1.29 1.25 - 1.33 

Distant 1.35 1.32 - 1.38 1.17 1.15 - 1.18 

Overall 1.28 1.27 - 1.3 1.35 1.33 - 1.37 
     

Discrete Timeb OR 95% CI OR 95% CI 

Local 1.03 1.01 - 1.05 1.01 0.99 - 1.03 

Regional 1.03 1.01 - 1.04 1.00 0.98 - 1.01 

Distant 1.02 1.01 - 1.03 1.00 0.99 - 1.01 

Overall 1.02 1.02 - 1.03 1.00 0.99 - 1.01 

aAdjusted for age at diagnosis (years), sex (male/female), marital status (single, partnered), race/ethnicity 

(non-Hispanic white, non-Hispanic black, Hispanic, Asian American, Native Hawaiian or Pacific 

Islander, Other/Unknown), treatment received during the first six months after diagnosis (surgery, 

radiation, chemotherapy), histology, month of diagnosis, year of diagnosis, and socioeconomic status 

quintile. Estimates for overall (all stages) additionally adjusted for stage at diagnosis (localized, regional, 

distant, unknown).  

bOdds Ratios are for a five-unit increase in monthly PM2.5 over follow-up. Confidence intervals are obtained 

using bootstrap estimation with 1000 replications using the percentile method. 

 

In the naïve approach, the HRs for all-cause mortality associated with a 5 μg/m3 increase 

in average PM2.5 were 1.35 (95% CI: 1.30-1.41), 1.29 (95% CI: 1.25-1.33), and 1.17 (95% CI: 

1.15-1.18) for localized, regional, and distant stage of disease, respectively. By contrast, under the 
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discrete-time approach, the estimated pooled ORs were 1.01 (95% CI: 0.99-1.01), 1.00 (95% CI: 

0.98-1.01), and 1.00 (95% CI: 0.99-1.01). for localized, regional, and distant stage of disease, 

respectively. Adjusted survival curves for both the naïve and discrete-time approaches are shown 

in Figures 3.1 and 3.2.  
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Figure 3.1 Adjusted survival curves from the naïve analysis using average PM2.5 exposure 

over follow-up for a) Localized, b) Regional, and C) Distant stage at disease. 
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Figure 3.2 Adjusted survival curves from the discrete-time analysis using monthly PM2.5 

exposure over follow-up for a) Localized, b) Regional, and C) Distant stage at disease. 
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3.5 Discussion 

While ITB is most often discussed in the context of clinical and pharmacoepidemiology, 

the errors that introduce systematic bias as a result of a failure to emulate a target trial correctly 

can occur in environmental epidemiology as well. In this case study, we used the target trial 

framework to identify that averaging an environmental exposure over follow-up in a time-to-event 

setting can introduce ITB into the study population and lead to substantial differences in the 

estimated effects and conclusions in the inference of interest. When an exposure is averaged over 

follow-up, treatment assignment is made using post-baseline information, which unhitches 

treatment assignment from time zero (143, 146). We illustrate that when ITB is introduced into a 

study in this way, the use of a time-to-event model does not adequately control for differences in 

follow-up lengths (a well-known function of these models). Instead, it is necessary to use 

alternative approaches that ensure alignment at time zero.  

In this paper, we proposed an analytic solution using a discrete-time hazards approach. 

This method ensures alignment between time-varying treatment and time zero at each outcome 

time because the hazard is re-assessed at each follow-up period, including updating information 

on any time-varying covariates or exposures. This guarantees that only comparable exposure 

periods (concerning time) are being used to assess the hazard at each outcome time. In a recent 

paper that outlines the use of causal diagrams for ITB, Mansournia et al. highlight how ITB can 

be considered as either misclassification or selection bias and then propose strategies to avoid ITB, 

including the discrete-time approach we use here. They make the helpful comparison of the 

discrete-time approach to a series of mini-randomized trials at monthly intervals (159). In this 

comparison, individuals have their exposure value re-assigned in each mini-randomized trial (at 

each month), preventing ITB. 
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Here we chose to illustrate the discrete-time hazard approach because it allows for time-

varying hazards and hazard ratios, avoiding common pitfalls in reporting causal effects using an 

average HR to represent risk over entire follow-up periods. Using an average HR can be 

uninformative because of time-varying HRs, which can occur due to built-in selection bias. The 

average HR ignores the distribution of events over follow-up, which guarantees that the magnitude 

of the HR will depend on the length of follow-up when it is time-varying. Hernán recommends 

using discrete-time hazards models to obtain adjusted survival curves to present HRs over time to 

overcome the misleading representation of a single HR that depends on length of follow-up (154).  

Furthermore, the discrete-time approach can be easily integrated into more advanced methods, 

including g-computation or inverse probability weighting methods (160, 161). These approaches 

could be beneficial when dealing with complex time-varying exposure and confounding settings 

that may cause exposure-confounding feedback (i.e., collider stratification bias) as described 

elsewhere (162, 163). Additionally, there are other potential analytic approaches that can be used 

to assess the impact of time-varying exposure in a time-to-event framework while maintaining 

alignment at time zero. Previous studies have appropriately treated such exposures in time-varying 

Cox proportional hazards models or by including only comparable exposure lengths (i.e. one year 

before baseline) that are consistent across all individuals, regardless of follow-up length (164-166).  

After applying this discrete-time approach to our case study with lung cancer cases in 

California, we find little evidence that PM2.5 exposure after a cancer diagnosis impacts survival. 

By contrast, in the naïve approach that uses an average exposure over follow-up, we find estimates 

in magnitude to results from the emulated studies (70, 73). In a recent study that examined the 

impacts of average air pollution exposure over follow up on survival in California, study authors 

found the HRs for all-cause mortality associated with a 5 μg/m3 increase in average PM2.5 were 
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1.38 (1.35-1.41), 1.26 (1.24 – 1.28), and 1.10 (1.09 to 1.11), for localized, regional, and distant 

stage at disease, respectively. We propose that ITB likely drives these effect estimates. Of note, 

the apparent effect modification by stage at diagnosis seen here and in other previous studies that 

use the naïve approach (74) is no longer apparent after using the discrete-time approach. We 

hypothesize that this effect heterogeneity is likely driven by the larger differences in survival time 

among those with localized stage of disease relative to those with distant stage of disease. These 

comparatively larger differences in follow-up time then exacerbate the impact of ITB.  

This case study demonstrates that ITB in this particular setting is substantial and partially 

attributable to the strong downward trend in PM2.5 over the study period (152, 153). Because of 

this temporal trend, the averaged exposure level was informed not only by the number of 

observations available (length of follow-up) but also by the decreasing trend. This means that 

individuals with longer follow-up times had systematically lower averages than those with shorter 

follow-up times, creating a noticeable difference in average exposure. Researchers in 

environmental epidemiology are aware of the strong temporal trends in most environmental 

exposures and often control for season and year in the analysis to adjust for this trend (70). 

Unfortunately, controlling for year of diagnosis using any strategies (stratification, indicator 

variable) will not control for temporal trends in the exposure or prevent ITB when done in the 

presence of an averaged exposure over follow-up.  

While we focused on a specific example in PM2.5 exposure and lung cancer survival, ITB 

can occur in any observational setting. For example, a recent paper that examined the impact of 

air pollution on mortality in a Medicare population used yearly average air pollution exposure from 

date of Medicare enrollment to date of death or last follow-up in Cox proportional hazards models 

(167). Another recent study examined the impact of air pollution and temperature on COVID-19 
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case fatality (168). They used an average exposure from date of diagnosis through date of death or 

recovery. In both of these examples, air pollution exposure was assigned using attained length of 

follow-up. Because of this, these analyses may be vulnerable to ITB through the same mechanism 

as described in this case study. Because treatment assignment is not defined at time zero inherently 

in observational studies as in RCTs, epidemiologists need to explicitly ensure this alignment to 

avoid these systematic errors. 

There are several limitations in this work worth considering. First, we did not evaluate the 

conditions under which ITB would be introduced in environmental epidemiology studies. ITB in 

environmental epidemiology may be subject to different considerations than its “classical” 

counterpart. Notably, ITB is most often identified in studies with a discrete exposure value, where 

subjects are considered either unexposed or exposed (targeting a traditional randomized trial with 

two arms and one single randomization at baseline). In air pollution and other environmental 

exposures, exposure is often measured continuously and is ubiquitous, which means no one is truly 

unexposed. In these settings, the target trial corresponds to multiple randomizations at different 

times, as in crossover or stepped wedge designs. In this case study, the bias was considerable 

because of the strong temporal trend in PM2.5 over the study period and the significant differences 

between follow-up in lung cancer cases. While this bias may be minimized in other settings where 

the temporal trend is not as strong, it is still necessary to use approaches that ensure alignment at 

(multiple) time zero under the target trial framework to avoid systematic errors.  

There are additional limitations in the case study itself. Air pollution exposure was assigned 

using interpolated estimates from ground-level fixed-site monitors, which are not evenly spaced 

across California. This may have resulted in differential precision of exposure measurement by 

region, specifically in rural areas with fewer monitors. Because air pollution was assigned using 
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zip code at diagnosis, we do not have information on individual variability in air pollution exposure 

from place of work or other factors that influence daily exposure. CCR does not include 

information on potentially important confounding variables, including smoking, alcohol use, 

access to care (although insurance status can be an appropriate proxy), or treatment received more 

than six months after diagnosis.  

In this study, we identified that averaging a time-varying environmental exposure over 

follow-up in a time-to-event context creates a misalignment between treatment assignment and 

start of study follow-up, introducing ITB. The bias resulting from this misalignment can be further 

exacerbated in the presence of important time trends commonly found in environmental exposures 

such as air pollution. In this context, we recommend treating air pollution as time-varying in a 

model that ensures alignment between the start of study follow-up and treatment assignment. 

Future studies should evaluate under what conditions ITB in this setting is minimized or 

exacerbated.  

Supplementary Material 
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Figure 3.3 Fine particulate matter trends in California, 2000 – 2015 

 

Chapter 3, in full, has been submitted for publication of the material as it may appear in 

Epidemiology. Sheridan, Paige; Chen, Chen; Thompson, Caroline; Benmarhnia, Tarik. The 

dissertation author was the primary investigator and author of this paper.  
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4 Methodological considerations for measuring racial residential segregation as a determinant 

of lung cancer survival  

4.1 Abstract 

Background: Several studies have attempted to quantify the relationship between racial 

residential segregation and cancer outcomes but are limited by methodological challenges in 

measuring segregation. There are two primary considerations for measuring segregation using an 

index: the spatial scale and spatial relationships. This study assesses how these considerations 

impact the absolute estimation of segregation and subsequent conclusions in lung cancer survival. 

Methods: Lung cancer cases from the California Cancer Registry from 2000-2010 were linked 

with segregation measures calculated using American Community Survey data. Segregation was 

captured using the dissimilarity index. The index was calculated in eight ways to examine the 

relative contribution of considering the spatial scale and spatial relationships: using census tract 

vs. census block, five vs. ten-mile regions, and using a spatial vs. aspatial measure of segregation. 

Results: Segregation among white lung cancer patients was generally associated with protective 

or null effects on survival, while segregation among Black cancer patients was generally harmful. 

Both considerations for calculating dissimilarity influenced the absolute value of segregation and 

qualitatively impacted the effect estimates for the association between segregation and five-year 

survival. 

Conclusion: Explicit consideration should be made for the impact of spatial scale and spatial 

relationships when measuring segregation. Reliable and accurate estimation of segregation is 

necessary to understand how racial residential segregation influences cancer outcomes and 

disparities. 
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4.2 Introduction 

Racial residential segregation is a well-established determinant of racial health disparities. 

Generally, racial residential segregation refers to the uneven distribution between racial and ethnic 

groups across urban space, a fundamental characteristic of cities (169, 170). Importantly, racially 

segregated neighborhoods do not occur organically or by resident choice but instead are the 

physical manifestation of individual and structural racism that has systematically (over multiple 

decades) denied equal opportunities to communities of color (78, 171). Segregation is associated 

with restricted access to quality education, employment, equal income, safe streets, clean air, and 

quality health care (100, 172-180). Racially isolated neighborhoods are more likely to have 

primary care shortages, offer fewer ambulatory facilities, and have a lower supply of surgeons (82, 

181). These factors are well-known social determinants of health that result in disparities across 

the life course (182). While policies were enacted in the 1960s to increase integration and promote 

equity, many cities in the US remain deeply segregated. 

Over the past decade, there has been growing interest in the influence of neighborhood 

environment on racial disparities in lung cancer outcomes, including racial residential segregation 

(183-185). Despite improved lung cancer survival over the last several decades, racial disparities 

in survival have remained persistent (100, 176, 186, 187). Non-Hispanic (NH) Black patients have 

the highest death rate and shortest survival of any racial/ethnic group, with only 16% surviving to 

five years, compared to 19% of white patients (1). Disparities in lung cancer outcomes may be 

explained by disparities in access to quality health care, socioeconomic factors, and physician-

patient relationships (188). For example, NH Black patients are less likely to receive recommended 

care for their cancer than their white counterparts (132, 189). Studies have demonstrated that while 

insurance status partially contributes to these disparities, it is not the only driver (176, 190).  
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Several studies have attempted to quantify the relationship between racial residential 

segregation and lung cancer outcomes (101-103, 185, 191). However, the literature has not yet 

addressed methodological inconsistencies in the measurement of segregation. Segregation is 

notoriously challenging to measure, partially because it is a complex, multidimensional and spatial 

process (93). It is generally agreed upon that segregation involves multiple groups and that 

segregation measures must capture how these different population groups are distributed across 

space (192). Because of this, segregation indices capture information on two geographic scales: 

subareas (e.g., neighborhoods, census tracts) within larger geographic areas (e.g., cities, counties). 

Similarly, segregation indices generally capture one or more dimensions of segregation: most often 

evenness (differential distribution of groups across space) and isolation (potential interaction 

between groups) (75, 193). To ensure interpretability and consistency in the literature, it is 

necessary to consider two factors in calculating a segregation index: the spatial scale of 

geographies and spatial relationships of populations. 

In order to calculate a segregation index, it is first necessary to define the spatial scale of 

both the subareas and the larger geographic area. While these geographic scales are often chosen 

arbitrarily or for convenience, the size of both spatial scales can impact the absolute measurement 

of segregation. It is well established that when administrative boundaries are used to delineate 

neighborhoods to calculate segregation, the value of the index can change depending on the size 

of the areal units chosen (110). For example, segregation levels vary between counties and 

metropolitan areas partially because of their different sizes (194). This size-dependency is known 

as the modifiable areal unit problem (MAUP) (114), which occurs when artificially delineated 

areal units (like zip codes or census tracts) are used to analyze geographically continuous 

phenomena.  
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After defining the spatial scale for analysis, it is critical to use meaningful segregation 

indices that consider spatial relationships of populations (94). Common segregation measures treat 

neighborhoods as discrete units with exogenously assigned boundaries as impenetrable walls to 

interaction (112). Because of this feature, these measures cannot differentiate between population 

distribution patterns, instead only evaluating population mix within a spatial unit (113). This is 

also known as the checkerboard landscape problem (114), where a gridded area with alternating 

exclusively white and black areas will not be evaluated as any less segregated than when the same 

areas are rearranged into larger areas. To overcome this limitation, spatial segregation measures 

that explicitly consider this spatial element have been proposed (94, 112, 114, 115). These 

measures incorporate an adjacency component to account for the fact that there is more interaction 

between areas in closer proximity, which then decreases as distance increases. Previous studies 

have demonstrated that when segregation indices that account for the spatial orientation of 

neighborhoods are used, the absolute estimation of segregation changes. (116).  

To date, there has been no comprehensive assessment of how these two factors impact the 

absolute measurement of segregation or subsequent conclusions in cancer epidemiology. In this 

study, we extend the existing literature by evaluating the impact of racial residential segregation 

on lung cancer survival in California while explicitly considering the impact of both spatial scale 

and spatial relationships. We use the dissimilarity index, which captures the evenness of population 

groups across space (75). This index is one of the most widely used, partially due to its relative 

ease of calculation and interpretation. We will compare three considerations under the two factors 

outlined above. To evaluate the impact of spatial scale, we use two different areas for subareas of 

the analysis (census tract vs. census block) and two different areas for the larger geographic area 

over which segregation is defined (five vs. ten-mile neighborhoods). To evaluate the impact of 
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using indices that consider spatial relationships, we use both an aspatial and spatial dissimilarity 

index.  

4.3 Methods 

Study Population 

A retrospective, population-based cohort of cancer patients in California was created by 

linking the California Cancer Registry (CCR) with residential segregation data from the American 

Community Survey using the zip code of the patient's residence at diagnosis. CCR is a statewide 

population-based cancer surveillance system that collects information on all cancers (except for 

non-melanoma skin cancer) diagnosed in California. Lung cancer cases were identified with the 

International Classification of Disease of Oncology (ICD-0-3) site codes (C34.0 – C34.3, C34.8, 

C34.9) diagnosed between 2000 and 2010 and registered by CCR. Cases were included if they 

have a primary, histologically confirmed cancer of the lung or bronchus and had an address in 

California at the time of cancer diagnosis on record with CCR (n=123,303). In-situ cancers, non-

carcinoma histology, and diagnoses at autopsy were not included in the study sample. Patients 

with incomplete diagnosis dates, date last follow-up, or zero days of follow-up time were excluded 

(n=2,035). Because this study aimed to examine racial disparities in lung cancer outcomes between 

Black and white populations, only NH white and NH Black lung cancer patients were included in 

the final analysis (n=95,159). While there is substantial racial segregation in Hispanic and Asian 

communities in California, these populations have a lower cancer burden and do not have 

significant survival disparities (195). This study was reviewed and approved by Institutional 

Review Boards (IRBs) at San Diego State University, the University of California San Diego, and 

the California Department of Public Health Committee for the Protection of Human Subjects. 
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Exposure 

The exposure of interest in this study was racial residential segregation measured using the 

dissimilarity index. Conceptually, the dissimilarity index measures the percentage of a group’s 

population that would have to change residence for each neighborhood to have the same 

distribution as the metropolitan area overall. As described above, this contrast is achieved by using 

information on two geographic scales: subareas within larger geographic areas. The index ranges 

from zero (complete integration) to one (complete segregation). To illustrate the impact of 

considerations for measuring segregation on lung cancer survival, we calculated a dissimilarity 

index using eight combinations of the three considerations of interest: census tract vs. census 

block, five vs. ten-mile neighborhood, and aspatial vs. spatial.  The patient’s census tract at 

residence was used to assign each lung cancer case their segregation values.  

Race and ethnicity population data at the census block and census tract level was obtained 

using the 2010 American Community Survey (ACS) five-year detailed tables (196). The R 

package ‘seg’ was used to calculate the eight dissimilarity indices. This package takes an input of 

the larger geographic area of interest (five or ten-mile neighborhood), divided into smaller 

subareas (census tract or block). In order to create this input, we first calculated the geographic 

centroid for all census tracts in the study area. We then calculated a five- and ten-mile diameter 

buffer from this centroid to create neighborhoods surrounding each census tract. We then used all 

subareas (tract or block) within this neighborhood. This created a single dissimilarity index for 

each census tract, where every tract has its own five- or ten-mile diameter neighborhood. For each 

census tract and census block, both an aspatial and spatial dissimilarity index was calculated, using 

both a five and ten-mile neighborhood, for a total of eight dissimilarity measures. A flow chart 
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describing how the dissimilarity indices were calculated is shown in Supplementary Material 

Figure 4.4. 

Outcome 

Survival time was calculated from the date of lung cancer diagnosis to the date of death 

from any cause. All non-deceased patients were censored after five years of follow-up to avoid 

heterogeneity of effect in long-term survivorship (139). 

Statistical Analysis 

Aspatial dissimilarity was calculated using the method proposed by Massey and Denton 

(75): 
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Where n represents the total number of subgroups (tracts, blocks) in a region, wi represents the 

white population size in subgroup i, WT represents the white population size in the region, bi 

represents the Black population size in subgroup i, and BT represents the Black population size in 

the region.  

The spatial dissimilarity index was calculated using the method proposed by Reardon and 

O'Sullivan (94). This method modifies the composite population counts used in the aspatial 

dissimilarity index by applying a spatial kernel centering at the reference unit. Here, the kernel 

center has a larger weight than farther locations (197). This approach accounts for spatial 

autocorrelation between adjacent spatial units by creating modified composite population counts 

that are weighted population counts of neighboring units (198).  
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Cox proportional hazards models were used to estimate the effect (summarized using 

Hazard Ratios, HR) of all eight dissimilarity measures on five-year lung cancer survival. Each 

dissimilarity index was included in the model as a quartile indicator, where the contrast of interest 

was the highest quartile of dissimilarity compared with the lowest. Models were stratified by stage 

at diagnosis (local, regional, distant) and race (NH Black and NH white) due to hypothesized effect 

heterogeneity. All models were adjusted for potential confounders, including age at diagnosis 

(years), sex (male/female), and year of diagnosis. Socioeconomic status (SES) was measured using 

a composite residential neighborhood-level index that combined census measures of education, 

income, occupation, and cost of living at the census block group treated as quintiles (156).  We 

explored whether SES was a potential effect modifier of the relationship between residential 

segregation and lung cancer survival. We included interaction terms to evaluate the presence of 

multiplicative interactions, and none were identified. All analyses were performed using R Version 

4.0.2.  

4.4 Results 

Our final study population included 95,159 lung cancer patients. Of these, less than 10% 

identified as NH Black (n=9,197), and 90% identified as NH white (n=85,962). The average age 

at diagnosis was 70, and over half of all cases were diagnosed at distant stage of disease 

(n=54,912). The median survival time among cases with localized, regional, and distant stage at 

disease was 4.3, 1.4, and 0.3 years, respectively. Table 4.1 summarizes baseline patient 

characteristics for the study population. 
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Table 4.1 Baseline characteristics of NH white and NH Black lung cancer patients, California 

Cancer Registry, 2000- 2010 
 

NH White NH Black  

n=85,962 n=9,197 

Age (mean (SD)) 70.2 (11.2) 65.8 (11.5) 

Male (%) 42180 (49.1) 4791 (52.1) 

Years Follow Up (mean (SD)) 1.5 (1.7) 1.4 (1.6) 

Stage at Diagnosis (%) 

  

   Distant 49174 (57.2) 5738 (62.4) 

   Localized 13057 (15.2) 1082 (11.8) 

   Regional 17566 (20.4) 1851 (20.1) 

   Unknown 6165 (7.2) 526 (5.7) 

SES Quintile (%) 

  

   Low 10471 (12.2) 3325 (36.2) 

   Low Med 17486 (20.3) 2454 (26.7) 

   Med 20013 (23.3) 1751 (19.0) 

   Med High 19729 (23.0) 1088 (11.8) 

   High 18263 (21.2) 579 (6.3) 

 

Figures 4.1 and 4.2 present the HRs for the association between the eight dissimilarity 

measures and five-year lung cancer survival. Models are stratified by stage at diagnosis (local, 

regional, distant) and by race. First, we found that, while “white segregation” (Figure 4.1) was 

generally associated with protective (HR<1) or null effects, the opposite pattern was observed for 

“Black segregation” (Figure 4.2). When comparing the different stages at diagnosis, most of the 

variability across effect estimates was identified for localized or regional cancers, especially 

among NH white cancer patients. Overall, we did not identify an effect of segregation on survival 

when considering distant cancer stages.  
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Figure 4.1 NH White Lung Cancer Cases: Hazard Ratios for highest quartile compared to 

the lowest quartile of segregation measured using dissimilarity index (8 ways), California 

Cancer Registry, 2000 – 2010. 
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Figure 4.2 NH Black Lung Cancer Cases: Hazard Ratios for highest quartile compared to 

the lowest quartile of segregation measured using dissimilarity index, eight ways, California 

Cancer Registry, 2000 – 2010. 

 

In general, each method of dissimilarity index calculation resulted in a different HR. 

However, some of the analysis decisions resulted in greater differences than others. When 

comparing dissimilarity indices calculated using census tract vs. census block as subareas of 

interest, we found that the HRs were varied enough that overall conclusions about the effect of 

segregation of lung cancer survival were impacted for NH white patients with localized and 
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regional stages of diagnosis. Among NH Black patients, the HRs varied most substantially between 

census tract and census block among those with localized stage at disease.  

When comparing estimates with five vs. ten-mile neighborhoods, we found some 

heterogeneity across effect sizes but did not observe a systematic pattern. In some cases, a larger 

buffer was associated with a higher HR (aspatial measures at the census block with localized stages 

for NH Black in Figure 4.2), and in other cases, the opposite pattern was observed (aspatial 

measures at the census tract with regional stages for NH Black in Figure 4.2).  

We found that aspatial vs. spatial segregation measures influenced both the amplitude and 

direction of the HRs. This spatial consideration was associated with substantial heterogeneity for 

regional and localized disease stages across NH white and NH Black patients. In some settings, 

the direction of HRs was entirely reversed when using spatial segregation measures (localized 

stages at the census block with a ten-mile buffer for NH Black patients in Figure 4.2).  

Finally, to visualize the differences in the eight dissimilarity measures across space, we 

used an example in San Diego County (Figure 4.3). In San Diego, the segregation value was 

qualitatively lower when using the spatial dissimilarity measures than the aspatial ones. In a similar 

pattern, dissimilarity estimates were lower when using census tracts as the subunit of analysis 

compared to census block. This map also identifies that more heterogeneity is captured across 

space when using a five-mile buffer to create a neighborhood than with the ten-mile buffer 

neighborhood. Similar patterns were seen in the entire study area (California), with the most 

significant differences in average segregation value between aspatial (0.51) vs. spatial estimates 

(0.42) and census tract (0.46) vs. census block (0.56).  
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Figure 4.3 Segregation in San Diego, California, measured using the dissimilarity index, eight 

ways, California Cancer Registry, 2000 – 2010. 
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4.5 Discussion 

The role of residential racial segregation as a determinant of cancer outcomes disparities 

has received specific attention in the last several years. However, this evidence has lacked 

discussion in the diversity of choices involved in measuring segregation and implications for 

epidemiological findings. This paper highlighted two essential considerations for calculating 

segregation indexes: the spatial scale of units for analysis and segregation measures that account 

for spatial relationships. We demonstrated that these factors impact the absolute value of 

segregation and qualitatively impact effect estimates for the association between segregation and 

five-year survival.  

We found that segregation measures using the spatial dissimilarity index resulted in 

different values (as compared to aspatial measures). This difference highlights that ignoring spatial 

autocorrelation when estimating segregation measures may lead to considerable biases. For this 

reason, we recommend that researchers consider spatial dissimilarity indexes when measuring 

segregation to prevent spatial confounding, as recommended by others (199, 200). We also found 

differences in effect estimates when the spatial scale of analysis (both subareas and buffer size). 

Because the choice of the spatial scale may depend on the specific question of interest and what 

level of segregation one may want to capture, we strongly suggest to 1) explicitly motivate the 

choice of the spatial scale of analysis; 2) conduct sensitivity analyses with varying choices for the 

spatial scale (for both subareas and larger geographic area).  

Previous studies, focusing on different outcomes, have similarly demonstrated that the use 

of spatial indices and the choice of spatial scale impacts effect estimates (201). Kramer et al. 

compared spatial segregation measures using population density surfaces and census tract using 

aspatial segregation measures and found that while they were highly correlated, the aspatial 
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measures may hide important differences by region and metropolitan size (202). One study 

examined income segregation to predict voter turnout and found that using a spatial measure of 

segregation (Moran’s I) results in more income segregation (197). In one study that examined 

spatial and aspatial segregation measures and the relative impact of the choice of spatial scale for 

each, they found that aspatial measures yielded higher levels of segregation when smaller areal 

units were used. This scale effect was also present among spatial measures (113). Finally, studies 

have demonstrated that when segregation is evaluated based on smaller spatial units, the level of 

segregation tends to be higher than with larger units (203). 

To date, only one study has examined the association between residential segregation and 

lung cancer treatment and survival among early-stage cancer patients (103). This study uses the 

aspatial isolation index to measure residential segregation, one of the most commonly used 

segregation measures. They found that among neighborhoods with high segregation and high 

economic deprivation, NH Black lung cancer patients with early-stage disease were more likely to 

die prematurely, even after adjusting for receipt of surgery. Among NH white patients, segregation 

had no impact on survival. In a related study, authors examined the association between 

segregation measured using the aspatial dissimilarity index and lung cancer mortality. They found 

that increasing segregation was associated with lung cancer mortality for Black patients and 

decreased mortality for white populations (101).  

There are limitations in this work worth considering. The dissimilarity index itself is 

subject to several limitations. First, this measure can only measure the evenness of two groups at 

a time. This means that when there are multiple populations of interest, their estimated segregation 

must be calculated independently. A second consideration is that this index measures deviations 

from evenness and reflects randomness across space. This means that when unit sizes or 
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populations are small, this can lead to large values for the segregation index. When a population 

group is small, it is more likely to be unevenly distributed across space by change than a larger 

population size (204). This further emphasizes the importance of conducting various sensitivity 

analyses with varying spatial scales. Importantly, measuring residential segregation using the 

dissimilarity index only captures one dimension of segregation. It is likely that segregation effects 

on health result from multiple dimensions of segregation (192). In this work, we used aggregated 

administrative data to estimate segregation. This means that while our spatial segregation measures 

decrease the influence of these administrative boundaries, there is still constraint that would not 

be present using individual-level data. Finally, it is necessary to acknowledge that segregation is 

context-specific, and effect estimates from a given study may not be transportable to other 

contexts.  

The purpose of this work was not to recommend one single way to capture segregation 

comprehensively. Instead, we highlight that the choices made for defining and measuring 

segregation can carry implications for the qualitative assessment of segregation and inference in 

epidemiologic studies. In line with previous work, we recommend that segregation studies be 

conducted with measures that consider spatial relationships and multiple scales of data to explore 

the scale robustness of the results (205). Performing an analysis at multiple scale levels can 

document the role of scale in modifying segregation. Further, we recommend that if a strong prior 

exists for the choice in the segregation measure and scale of analysis, this choice is outlined 

explicitly.  

Reliable and accurate estimation of segregation is necessary to understand how racial 

residential segregation influences cancer outcomes and disparities. However, the current literature 

is limited by a lack of consideration for these factors that can influence the estimated value of 
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segregation. Because these choices influence both the absolute estimate of segregation and 

inference about the relationship with survival, it is necessary to consider these factors explicitly.   

Supplementary Material 

 

Figure 4.4 Flow chart depicting the calculation procedure for eight dissimilarity indices. 

 

Chapter 4, in full, has been submitted for publication of the material as it may appear in 

Cancer Epidemiology Biomarkers and Prevention. The dissertation author was the primary 

investigator and author of this paper
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5 Discussion 

5.1 Summary of dissertation research 

An interplay of factors, including an individual’s physical and social environment, can 

influence health outcomes (206). Air pollution and racial residential segregation are two 

neighborhood factors that may explain heterogeneity in lung cancer survival across space and time. 

Because of this, they have received attention as potential risk factors that may contribute to adverse 

cancer outcomes (207-209). Several recent studies have examined how air pollution impacts 

cancer survival and found strong associations between air pollution and survival. Similarly, studies 

have examined the impact of racial residential segregation and cancer survival, with varying 

conclusions. While this evidence can aid in our understanding of contextual factors in lung cancer 

survival, methodological concerns have not been adequately addressed. Addressing these concerns 

will help shape our understanding of lung cancer etiology and potential interventions to improve 

cancer survival and target geographical disparities. Further, illustrating the methodological 

concerns and providing practical solutions will be valuable for applications in other research areas.  

This dissertation aimed to evaluate the role of ambient air pollution exposure and racial 

residential segregation on lung cancer survival. This dissertation expands on the current literature 

by addressing methodological challenges in epidemiologic studies that evaluate neighborhood-

level exposures. Neighborhood-level exposures are unique because they have both spatial and 

temporal components that need to be appropriately considered in an analysis. The first aim of this 

dissertation underscores the importance of evaluating patterns in lung cancer survival both 

spatially and temporally, as global assessments can miss important heterogeneity across space and 

time. This study demonstrated that there is substantial heterogeneity over space in California and 

that this heterogeneity changes across time. The spatial patterning in survival provides evidence 
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for the existence of neighborhood-level risk factors that may vary concomitantly. Further, this aim 

provides evidence that local policies may effectively improve lung cancer survival equity in 

California.  

The second aim of this dissertation examined the impact of ambient air pollution after a 

lung cancer diagnosis on survival. Several existing papers had previously examined the impact of 

air pollution on cancer survival, but these studies consistently overlooked a methodological flaw 

that results in immortal time bias (ITB). This aim expands on previous work by identifying how 

this bias is introduced in this context and providing an accessible solution to assess the relationship 

between a time-varying exposure and time-to-event outcome, such as survival while avoiding ITB. 

The association between air pollution and lung cancer survival was estimated using the naïve 

approach seen in existing studies and compared to estimates under the proposed approach using 

discrete-time models. We illustrate that after using the discrete-time approach, there is little 

evidence of an effect of air pollution on survival after a lung cancer diagnosis, in contrast with the 

results from the naïve approach. This aim demonstrates that avoidable systematic errors can be 

introduced when time-varying exposures in a time-to-event context are not handled appropriately.  

The final aim of this dissertation addressed inconsistencies in the measurement of 

segregation in the racial residential segregation and cancer outcomes literature. In this aim, the 

relationship between racial residential segregation and lung cancer survival was examined using 

the dissimilarity index, a popular segregation index that measures the evenness of two population 

groups across space. To illustrate the contribution of considering both spatial scale and spatial 

relationships in the measurement of segregation, the dissimilarity index was calculated eight ways. 

In these eight calculations, four spatial scales and both spatial and aspatial measures were used. 

These eight dissimilarity indices were then used to estimate the impact of racial residential 
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segregation on lung cancer survival. We found that spatial scale and using indices that account for 

spatial relationships impact both the absolute estimate of segregation and the effect estimate for 

the association between segregation and lung cancer survival.  

This dissertation advances the field of social and environmental epidemiology in lung 

cancer in several ways. First, Chapter 2 illustrates how spatial epidemiology can be used to 

investigate patterns in lung cancer (or other outcomes) to elucidate new potential modifiable risk 

factors and design targeted interventions to reduce geographic inequalities. Next, Chapter 3 

illustrates how time-varying exposures in time-to-event contexts require specific considerations to 

ensure that systematic error is not introduced through mishandling of these exposures. This 

illustration will increase the understanding of this error and methods that can be used to avoid it. 

Finally, Chapter 4 of the dissertation illustrates the importance of explicitly considering spatial 

relationships and spatial scale in measuring inherently spatial exposures, such as residential 

segregation. This chapter emphasizes that when exposures such as racial residential segregation 

are being used, it is necessary to explicitly define the choice of spatial scale and measures that 

account for spatial relationships. If there is no specific reason for the analytic choices for measuring 

segregation, it is necessary to conduct sensitivity analyses to ensure these decisions are not driving 

conclusions. 

5.2 Implications 

Lung cancer survival remains lower than all other leading cancers, despite improvements 

in treatment and prevention over several decades. Recently, there has been an increased interest in 

examining how place-based factors may be contributing to poor survival and may inform potential 

targeted interventions. In order to identify and explore these place-based factors, it is necessary to 

consider specific methodological considerations. Understanding the role of neighborhood 
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contextual factors in lung cancer and corresponding methodological considerations is an important 

area of research for several reasons. 

First, disease mapping is an invaluable tool in spatial epidemiology to assess geographic 

patterns and spatial anomalies. Studies in lung cancer and other cancers commonly only examine 

survival changes over time, but not over space (128, 137, 210). Examining the extent of small-area 

variation in cancer survival can aid in hypothesis-generating for risk factors that similarly vary 

over space and time, such as neighborhood factors and environmental determinants. Further, 

policymakers that make evidence-based decisions on resource allocation or intervention planning 

to address disparities in cancer survival may rely on information about small-area heterogeneity.  

Second, as the climate changes, research on the impacts of air pollutants and other 

environmental factors will increase. Air pollution is a unique risk factor in that it can be modified 

by both individual-level behavior changes and at the population level through policies (211, 212). 

Specific methodological concerns arise with air pollution or other environmental risk factors that 

vary over space and time. Often, studies simplify time-varying exposures by using maximums, 

minimums, or averages. Until now, there has been little discussion of how this simplification of a 

time-varying exposure in a time-to-event context can introduce ITB in the context of 

environmental exposures. The impact of this bias can be significant, as illustrated in this 

dissertation. As these studies increase in frequency, it is necessary to understand how to avoid 

potential bias in environmental epidemiology studies. As climate change continues, 

epidemiologists will more often seek to understand the impact of environmental exposures. It is 

necessary to elucidate these avoidable errors and provide approachable solutions. 

Finally, it is necessary to understand how racial residential segregation impacts lung cancer 

to design and implement targeted local interventions to improve equity in cancer outcomes. 
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Policies designed to improve equity in health care access and other factors related to unequal 

access to economic resources can impact lung cancer survival. As more studies seek to understand 

the impact of residential segregation and other neighborhood factors in cancer outcomes, it is 

important to illustrate potential challenges in measuring segregation or related exposures. Studies 

that use segregation measures without regard for the spatial structure of populations or the 

consideration of how spatial size impacts estimates can lead to inconsistent conclusions driven in 

part by discrepancies in how the segregation index is measured and what it is capturing.  

5.3 On the relationship between racial residential segregation and air pollution 

Although the present work and previous studies often examine the impacts of racial 

residential segregation and air pollution separately, they are interrelated factors that may have 

multiplicative impacts on adverse health and racial disparities. Black and Hispanic Americans are 

disproportionately exposed to pollutants of all kinds, which may be a partial driver of unequal 

health outcomes (213). This unequal exposure is most pronounced in metropolitan areas with high 

levels of racial residential segregation (214). This inequity is further exacerbated because air 

pollution is primarily caused by NH white populations' consumption of goods and services but is 

disproportionately experienced by Black and Hispanic populations (215). The concept of 

disproportionate exposure to pollutants is known as environmental injustice, which acknowledges 

the racial and economic disparities among communities bearing disproportionate environmental 

costs, such as increased exposure to lead, particulate air pollution, ozone, or other health hazards. 

Expanding public health research to examine the joint effects of air pollution and racial residential 

segregation on adverse health outcomes such as lung cancer would have benefits for improving 

population health and health disparities.  
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5.4 Limitations and recommendations for future work 

This dissertation has several limitations worth noting. While population-based cancer 

registries are well-recognized for containing quality information on demographics and cancer 

incidence, there is missing relevant information that may be important in lung cancer survival. 

California Cancer Registry (CCR) does not contain detailed information on treatment, diagnostics, 

comorbidities, smoking status, or functional status. Previous studies have demonstrated that 

linkages with claims or electronic health records can supplement missing information in cancer 

registries (216). Another limitation in the CCR is that information on residential mobility is not 

collected. For this reason, all analyses in this dissertation use zip code at diagnosis for longitudinal 

exposure ascertainment. This may result in misclassification of exposure status for those whose 

mobility is related to neighborhood conditions related to social or environmental exposures. 

Previous studies have demonstrated that cancer survivors have shorter housing tenure than their 

healthy counterparts (217). One study found that 65% of colorectal cancer patients remained at the 

same residence during a five-year period, while 22% changed the census tract, and 12% moved 

out of state (218). Future studies could utilize corrections to adjust for and assess the extent of 

misclassification (219).  

As the field of spatial epidemiology is growing, particularly in cancer research, current 

methods have been developed to improve small-area estimation (220). Small-area analysis can 

help describe local variations and highlight geographic disparities. This estimation can result in 

instability in estimates, especially for rare diseases. Recent studies have illustrated how Bayesian 

modeling can be well suited to employ spatial and temporal smoothing to produce more stable 

estimates (221). Two studies demonstrated how these methods are being extended to improve 

small area estimates (222) and improve modeling or rare outcomes through spatiotemporal mixture 
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modeling (123). As small-area level data is becoming more readily available, there is more 

possibility for analyses that use a geospatial perspective. Further, future work could investigate 

how other neighborhood factors that vary over space and time may contribute to lung cancer 

survival heterogeneity. Previous studies have demonstrated that factors such as green space, 

neighborhood deprivation, and distance to medical centers may be important determinants in 

cancer survival (223-225). 

In the field of lung cancer survival, little is known about potential interactions between air 

pollution or other environmental hazards and cancer treatment. No existing studies have examined 

the interaction between air pollution exposure and lung cancer treatment(s) on survival. There is 

established evidence that smoking after a lung cancer diagnosis interacts with cancer treatment to 

reduce survival through increased risk for second primary cancers, risk of recurrence, poor 

response to treatment, and increased treatment-related toxicity (226-230). Both tobacco smoke and 

air pollution consist of a complex mixture of gaseous and particulate components that vary in 

chemical composition. While PM exposure occurs at much lower exposure concentrations than 

cigarette smoke, similar biologic mechanisms are documented (231, 232). For patients receiving 

chemotherapy and other pharmacologic compounds, air pollution may result in reduced efficacy 

of chemotherapy and reduced drug metabolism (233) (234). Among patients receiving radiation 

therapy, air pollution may interact with radiation to increase second lung cancer risk, increase risk 

of complications, and decrease survival. Second lung cancer risk is higher among smokers who 

received chest irradiation, and smokers experienced an increased likelihood of complications and 

decreased survival than nonsmokers (235, 236). In patients that receive surgical resection, 

evidence has shown that smokers are at an increased risk of postoperative complications (237). 

Finally, lung cancer patients who quit smoking after diagnosis have a decreased risk of multiple 
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primary lung tumors (238). While the available evidence is specific to cigarette smokers, it is 

plausible that similar interactions may exist between air pollution and lung cancer treatment to 

affect survival.  

Racial residential segregation is one of the most commonly studied structural racism 

domains and has been demonstrated to influence health across various outcomes. However, other 

areas of structural racism extend beyond neighborhood context and can include national, state, and 

local laws. It is currently unknown how these racist laws and policies impact lung cancer incidence 

and survival. For example, voter suppression laws are known to disproportionately affect people 

of color. As a result, areas with low voter turnout may have decreased access to opportunities that 

offer equity-focused health benefits, such as Medicaid expansion. These opportunities may have a 

meaningful impact on lung cancer survival through access to primary care providers, specialty 

providers, and specialized cancer centers. Similarly, racist policies such as anti-drug legislation 

have resulted in mandatory minimum sentences and subsequent increasing numbers of Black 

Americans being incarcerated. Incarceration and other forms of disenfranchisement can lead to 

increased stress resulting in community and individual health effects (239). Future studies could 

consider how these other structural and environmental racism domains impact lung cancer survival 

and disparities.  

5.5 Concluding remarks 

In conclusion, this dissertation examines the role of neighborhood contextual determinants 

in lung cancer survival. This work expands on the current evidence by examining spatial 

heterogeneity in lung cancer survival, illuminating a systematic error in work examining the role 

of time-varying air pollution on lung cancer survival, and illustrating the considerations needed 

for measuring racial residential segregation for consistent and robust estimation of effect in lung 
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cancer survival. This body of work advances the field by addressing common methodological 

issues in epidemiologic studies of social and environmental exposures in lung cancer survival and 

provides detailed recommendations to guide future research.  
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