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Microorganisms form diverse communities that have a profound
impact on the environment and human health. Recent technological
advances have enabled elucidation of community diversity at high
resolution. Investigation of microbial communities has revealed that
they often contain multiple members with complementing and seem-
ingly redundant metabolic capabilities. An understanding of the
communal impacts of redundant metabolic capabilities is currently
lacking; specifically, it is not known whether metabolic redundancy
will foster competition or motivate cooperation. By investigating
methanogenic populations, we identified the multidimensional in-
terspecies interactions that define composition and dynamics within
syntrophic communities that play a key role in the global carbon
cycle. Species-specific genomes were extracted from metagenomic
data using differential coverage binning. We used metabolic model-
ing leveraging metatranscriptomic information to reveal and quantify
a complex intertwined system of syntrophic relationships. Our results
show that amino acid auxotrophies create additional interdepen-
dencies that define community composition and control carbon and
energy flux through the system while simultaneously contributing to
overall community robustness. Strategic use of antimicrobials further
reinforces this intricate interspecies network. Collectively, our study
reveals the multidimensional interactions in syntrophic communities
that promote high species richness and bolster community stability
during environmental perturbations.

microbial communities | microbiome | interspecies interactions |
methanogens | metabolic modeling

Microorganisms coexisting in nature engage in a variety of
interactions, resulting in collaboration and competition

between individual community members. Advances in microbial
ecology have revealed high levels of species diversity and complexity
in most communities (1–3). Although we can readily determine the
community composition, we currently lack a deeper understanding
of how these communities are assembled and how diversity is
maintained. Obligately syntrophic communities, the potential origin
of the eukaryotic cell (4), consist of microorganisms with metabo-
lisms that are thermodynamically linked and catabolically interde-
pendent. These communities are essential for the global carbon
cycle by decomposing organic matter to CO2 and methane.
The close interactions between anaerobic bacteria and archaea

enable degradation of carbohydrates, proteins, and lipids but also,
recalcitrant matter, such as alkanes. Syntrophic oxidation of alkanes
can occur in communities consisting of three interacting species (5,
6), whereas degradation of simple fatty acids, such as caprylate, has
been shown with three microorganisms, and butyrate has been
shown with two microorganisms. Here, we show that five members
govern hexadecane degradation in a community (Fig. 1 A–D) that
has been maintained in the laboratory for over 15 y and serially
passaged more than 40 times (6, 7). However, when transferred to
fatty acid-containing media (Fig. 1 B and C), four- and three-
member communities dominate caprylate and butyrate degrada-
tion, respectively (6, 7). Because syntrophic communities operate
near thermodynamic equilibrium, the presence of additional or-
ganisms within the communities prompted the investigation of in-
terspecies interactions and dependencies within these microbial
communities to identify the underlying factors that influence com-
munity composition. Several metabolic redundancies exist between

the individual species within these communities, but bacteria and
archaea all seem to collectively persist and thrive. The layering of
multiple types of interspecies interactions, particularly those that
extend beyond basic carbon exchange, may explain the presence of
seemingly redundant species diversity within this community.
Amino acid auxotrophy has been shown to increase the stability of
a synthetic community of Escherichia coli strains (8). Studying the
interspecies interactions and dependencies within natural microbial
communities is necessary to determine the factors that define
community composition. Here, we describe how multilevel inter-
actions that extend beyond catabolic requirements define microbial
diversity and dynamics in methanogenic communities (6, 7).

Results
Revealing Community Structure. DNA and RNA were harvested
from the three communities (Fig. 1 A–C) for metagenomic and
metatranscriptomic sequencing. The hexadecane-degrading commu-
nity served as initial inoculum for cultures that were established to
oxidize caprylic or butyric acid syntrophically. Despite numerous (over
40) serial passages into hexadecane-containing medium over the
course of 15 y, dormant members undetectable by 16S rDNA se-
quencing became dominant when provided with fatty acids within
4 mo of passing (Fig. 1E). Metagenomic datasets acquired from the
three different communities were used for differential coverage
metagenomic binning (9). In total, seven nearly complete genomes
representing the seven most dominant organisms (Fig. 1E) were ob-
tained and annotated (10) (Table 1, Fig. S1, and Dataset S1). Com-
pared with sequenced relatives, the genomes exhibited the highest
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levels of similarity to Smithella sp. ME-1, Syntrophomonas wolfei,
Desulfovibrio magneticus, Methanoculleus marisnigri, Methanosaeta
concilii, Methanocorpusculum labreanum, and Melioribacter roseus
(Fig. S1). The community propagated on hexadecane was the
source for the Smithella sp. ME-1 genome obtained previously by a
single-cell approach (7), and therefore, the high sequence similarity
between the binned Smithella genome and Smithella sp. ME-1
was expected.
Transcriptomic datasets were mapped to these genomes to

obtain species-specific gene expression profiles of community
members under each condition. These genomes also served as
the basis for genome-scale metabolic reconstructions that were
used to simulate and quantify interspecies interactions.

Quantifying Interspecies Interactions.Growth with hexadecane resulted
in five metabolically active community members: two hydro-
genotrophic methanogens Methanocalculus and Methanoculleus,
acetoclastic Methanosaeta, alkane-activating Smithella, and sulfate-
reducing Desulfovibrio (Fig. 2A). The complexity and overlap in
metabolic capability inherent to this community hindered the ability
to elucidate all interactions by genomic and transcriptomic analysis
alone. Furthermore, because sulfate is not being reduced in this
community, Desulfovibrio’s role in the hexadecane-degrading com-
munity was unclear. Thus, we quantified interactions between spe-
cies using individual genome-scale metabolic models. Unlike kinetic
models, which leverage thermodynamics and chemical concentra-
tions to describe systems, metabolic models are networks of meta-
bolic pathways that link the genome with physiology. Initial draft
models for Smithella andDesulfovibrio were generated using Model-
SEED (11), whereas the methanogen models were built off of an
existing model of Methanosarcina barkeri (12). All models were
curated (Dataset S2) using genome and physiological information.
The Smithella model, in particular, required the addition of a
hexadecane-degrading pathway as well as a functional β-oxidation
pathway. Although the exact hexadecane activation method
in Smithella is unknown and cannot be reconciled easily, these
models are phenomenological, suggesting that, even if a molecular

mechanism is not completely understood, it can be represented in
the model if we understand the basic stoichiometry.
Simulations with the model were based off of experimentally

measured hexadecane uptake and methane production rates (Fig.
1D). Because of the slow-growing, low-biomass nature of the
community, hexadecane uptake and methane evolution were used
as the objective functions for Smithella and the methanogens, re-
spectively, instead of biomass. Because Smithella is the hexadecane
degrader of this community, the hexadecane uptake rate was used
in the Smithella model to calculate the amount of syntrophic in-
termediates generated per 1 mmol hexadecane. Similarly, the
methane production rate was divided among the methanogens
based on abundance, because rates of methanogenesis have been
shown to be very closely related to growth rate (13). These pro-
duction rates were then used to backcalculate the syntrophic in-
termediate needs of each methanogen in the community. These
values were then analyzed and compared with identified discrep-
ancies in energy flow within the system to identify potential met-
abolic roles for Desulfovibrio. Integration of transcriptomic data
with these models was used to further highlight active subsystems
and pathways (Dataset S3).
Our modeling results predict that Smithella generates hydrogen,

formate, and acetate during hexadecane degradation (Fig. 2B).
The majority of 10 mmol formate is being consumed by Meth-
anocalculus. However, the models suggest that Smithella only pro-
duces 9.4 mmol hydrogen per 1 mmol hexadecane, which would be
insufficient for 14.56 mmol hydrogen, which Methanoculleus needs
to produce the observed amount of methane. We hypothesize that
Desulfovibriomay remedy this shortage by converting excess formate
into hydrogen by formate hydrogen lyase (Dataset S2). Cocultures
ofDesulfovibrio andMethanobrevibacter have been reported to couple
this reaction to energy conservation at low hydrogen partial pressures
(14). Desulfovibrio may use this mechanism under hexadecane-
degrading conditions for energy conservation, thus creating a second
layer of syntrophy within the community (Fig. 2B).
Although species abundance analysis suggests similar community

composition during caprylate and butyrate degradation (Fig. 1E),
transcriptomic profiles suggest distinct activity for each species under
each condition (Dataset S3). Syntrophomonas serves as the primary
butyrate metabolizer, with Desulfovibrio and Methanoculleus as
its syntrophic partners (Fig. 2A). Butyrate degradation creates
hydrogen/formate and acetate (Table 2) (15). The hydrogenotrophic
Methanoculleus uses hydrogen. Desulfovibrio can also metabolize
hydrogen when coupled to sulfate reduction, making it a potential
competitor against Methanoculleus. Sulfate reducers will typically
outcompete methanogens for hydrogen in the presence of sulfate
(16). However, no sulfate reduction could be measured in this
community. Instead, Desulfovibrio may again be using formate to
generate additional hydrogen for Methanoculleus by formate
hydrogen lyase. Because no acetoclastic methanogens are active
(based on read mapping and quantitative PCR), Desulfovibrio is
likely assimilating acetate and CO2 for anabolism (17). In the
caprylate community, Syntrophomonas uses caprylate and produces
hydrogen/formate for Methanoculleus and Desulfovibrio. Additional
acetate generated during caprylate degradation (Table 2) likely al-
lows the acetoclastic Methanosaeta to become active and coexist
with Desulfovibrio.

A B C

D E

Fig. 1. Growth of methanogenic communities. (A) Teflon boiling stones were
coated with hexadecane to increase the contact between cells and the hydro-
phobic substrate. The methanogenic community propagated in 300 mL mineral
medium (6) containing 20 mM hexadecane grows very slowly to low biomass
density. The hexadecane community was passed onto medium containing
(B) 2mM caprylate or (C) 5mMbutyrate. All communities grew to very low biomass
densities, despite being very metabolically active as indicated by gas (methane)
bubbles formed. (D) The methanogenic community formed a total of 1,407 mL
methane after 1,551 d of incubation (black circles). The control containing no
substrate (white circles) did not form any methane. Growth curves of the fatty
acid cultures were previously published (7). (E) Metagenomic sequencing reads
were mapped back to the newly acquired genomes to establish species abun-
dance in the community under hexadecane-, caprylate-, and butyrate-degrad-
ing conditions. Numbers of mapped reads were normalized by genome size.

Table 1. Genomes obtained by differential coverage binning

Organism Genome size (Mb) Contigs/genes

Desulfovibrio 3.32 364/3,045
Melioribacter 2.80 469/2,385
Smithella 3.23 229/3,284
Syntrophomonas 3.17 114/3,184
Methanosaeta 2.77 171/3,008
Methanocalculus 2.13 288/2,554
Methanoculleus 2.32 289/2,552
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Amino Acid Auxotrophy Heightens Dependence. Our analysis shows
that a complex, intertwined catabolic network exists between the
different species in these three communities. Energy-rich substrates
(Table 2) enabled more complex interactions to achieve optimal
transfer of reducing power (18), thus leading to greater metabolic
and species diversity. However, the benefit for these communities
operating near thermodynamic equilibrium to support multiple,

coexisting community members with seemingly similar metabolic
niches was unclear. Thus, we investigated alternate factors that
could influence community composition and robustness. Strikingly,
we found that no single species in these communities is capable
of synthesizing an entire suite of amino acids, implying that
amino acid auxotrophies also govern interspecies interactions in
syntrophic communities (Fig. 3A). Ranking of the amino acids
according to their cost of biosynthesis, with tryptophan being the
most expensive (8), revealed that the burden of amino acid bio-
synthesis is not distributed evenly among all community members
(Fig. 3B). Previous studies have shown that amino acid exchange
may complement hydrogen transfer as an interspecies electron
carrier in synthetic, syntrophic cocultures (19), prompting us to
further investigate amino acid transfer in this community.
In addition to providing the most biosynthetically expensive amino

acids, Smithella and Syntrophomonas are the sole providers of histi-
dine and tyrosine in their respective communities. Desulfovibrio for-
tifies its position within the community by being the only community
member capable of methionine biosynthesis under caprylate and
butyrate conditions. It is also the exclusive provider of proline during
hexadecane degradation. Thus, dominating an important niche of
amino acid synthesis elevates Desulfovibrio into a valuable syntrophic
partner, despite its thermodynamic disadvantage over methanogens
(15). Methanogens are significantly more auxotrophic for amino

A

B

Fig. 2. Complex interspecies interactions driving
syntrophy. (A) Metabolic interspecies interactions in
three communities as determined by transcriptomic
information. (B) Interspecies exchanges as calculated
by metabolic modeling using physiological data for
the hexadecane uptake and methane production
rates. Flux values are being reported as absolute
values (extrapolated over the time represented by
the physiological measurements) rather than rate.
Hexadecane initially degraded by Smithella results
in reducing equivalents that are passed to its syn-
trophic partners Methanoculleus, Methanocalculus,
Methanosaeta, and Desulfovibrio in various forms.
Desulfovibrio is converting formate to hydrogen and
CO2, possibly forming its own syntrophic interactions
with the methanogens.

Table 2. Gibbs free energy of key reactions involved in
syntrophic degradation of hexadecane, caprylate, and butyrate

Reaction ΔG

4H2 + HCO3
− + H+ → CH4 + 3H2O −99 kJ/rxn

Formate− + H2O → H2 + HCO3
− −35 kJ/rxn

Acetate + H2O → HCO3
− + CH4 −67 kJ/rxn

Butyrate + 2H2O → 2Acetate + H+ + 2H2 −48 kJ/rxn
Caprylate + 6H2O → 4Acetate + 3H+ + 6H2 −145 kJ/rxn
Hexadecane + 16H2O → 8Acetate + 8H+ + 17H2 −486 kJ/rxn
2Butyrate + 5H2O → 3HCO3

− + H+ + 5CH4 −136 kJ/mol
2Caprylate + 11H2O → 5HCO3

− + 3H++ 11CH4 −273 kJ/mol
4Hexadecane + 45H2O → 15HCO3

− + 15H++ 49CH4 −492 kJ/mol

rxn, reaction.
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acids than bacteria but the sole providers of serine in all three
communities. Although serine is relatively inexpensive to synthesize,

all methanogens have an additional ability to generate serine during
methanogenesis by serine hydroxymethyltransferase (Dataset S1).

A

B

Fig. 3. Amino acid auxotrophies shape community
composition. (A) Overlap of amino acid biosynthesis
capabilities between community members in commu-
nities growing with hexadecane, caprylate, or buty-
rate. Numbers in parentheses refer to the numbers of
amino acids that the particular species can produce.
(B) Specific amino acid auxotrophies present in each
species for each community. Amino acids have been
ranked according to biosynthetic cost (arrow) (8). A
colored square denotes that a species can synthesize
an amino acid. The intensity of each color (based on
the scale) represents the relative expression of the
synthesis pathways (Methods), with darker/more in-
tense color indicating higher expression. Amino acids
exclusively produced by one microorganism are high-
lighted in red.
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During growth with butyrate, we found that five amino acids are
synthesized by only one of three community members (Fig. 3B).
However, when grown on caprylate, the community includes Meth-
anosaeta as the fourth active member. Methanosaeta’s growth is
caused by the presence of additional acetate, but interestingly, it also
synthesizes two (lysine and serine) of five exclusive amino acids in the
butyrate community. This redundancy reduces essential dependencies
between species and spreads amino acid biosynthetic burden.
The Smithella genome encodes an active MazEF toxin-antitoxin

system. MazEF induces autolysis in response to low concentrations
of external amino acids. To test if autolysis is a potential source of
amino acids, liquid chromatography (LC) -MS was used to analyze
the culture media for evidence of amino acids. Trace amino acids
were undetectable in the media, suggesting that amino acids are not
provided through cell lysis alone. Because free amino acids were
undetectable by LC-MS/MS (detection limit 0.001–1 μM), we con-
firmed active amino acid biosynthesis by transcriptomics. Smithella
and Syntrophomonas generally have higher average pathway expres-
sion values (∼30% higher) than other community members capable
of synthesizing the same amino acid (Fig. 3B). This activity is most
apparent during growth with butyrate. Although Syntrophomonas and
Desulfovibrio have similar capabilities for synthesizing amino acids,
Syntrophomonas exhibits higher average expression levels for eight of
the biosynthesis pathways, whereas Desulfovibrio only has higher ex-
pression for phenylalanine, suggesting that the primary metabolizers
take the majority of the biosynthetic burden. Amino acid biosynthesis
is an energy-intensive process, and therefore, supplementation by the
bacteria may enable the methanogens to focus their metabolism on
methanogenesis and the uptake of reducing equivalents rather than
biosynthesis. The luxury of amino acid supplementation would ease
the energetic burden on the methanogens, which in turn, would allow
them to maintain the appropriate thermodynamic requirements for
syntrophy with Smithella and Syntrophomonas.

Colicin V Solidifies the Syntrophic Unit. Although amino acid auxo-
trophies reinforce interdependence and collaboration within
these communities, they are vulnerable to invading, competing
species. We found that Desulfovibrio encodes a full set of genes for
synthesis of colicin V. This type of bacteriocin enters the cell using
a Ton or Tol system, killing cells through membrane depolarization
by pore formation (20). Colicin V may be used as a defensive
mechanism in these communities. Resistance to colicin V coalesces
as a series of mutations that inactivate bacteriocin uptake. The
Syntrophomonas,Methanoculleus,Methanosaeta, andMethanocalculus
genomes do not encode any functional Ton or Tol system, ren-
dering these species immune to colicin V. Immunity to colicin V
may have allowed Syntrophomonas to outcompete Smithella dur-
ing caprylate and butyrate degradation. Similarly, Melioribacter’s
presence but apparent metabolic inactivity across all conditions
may be a consequence of a colicin V exposure, because its genome
encodes nine genes related to Tol and Ton systems (Dataset S1).
Additional investigations will be required to determine colicin V’s
impact on community structure.

Discussion
Although recent technologies have enabled the study of individual
species within natural microbial communities at a resolution pre-
viously limited to axenic cultures (6, 7), we have been unable to
decipher all underlying factors that define community composition
and dynamics. The community systems biology approach (21)
deployed here delineated the multidimensional interactions that
shape and maintain microbial communities. Species with similar
metabolic capabilities are collaborating in favor of maximizing
dissemination energy through the community in the form of elec-
trons and electron carriers (18). As substrates became more
energy-rich, the syntrophic community shifted and diversified its
composition to better accommodate the transfer of reducing
equivalents. The butyrate-degrading community had three active
members, the caprylate-degrading community had four active
members, and the community cultured on hexadecane, the most
energy-rich substrate, involved five active species. The expansion

of the active community increased the mechanisms for transfer of
reducing equivalents used by the key members, allowing the entire
community to benefit. Although reducing equivalent transfer is a
defining characteristic of a syntrophic interaction, we found that
the factors that influence community composition extend beyond
catabolism to include amino acid exchanges and potentially, bac-
teriocin use. Cumulatively, these interactions and dependencies
create stability within the community by allowing for the preser-
vation of metabolic redundancy among community members.
Although previous studies have suggested that competition and
commensalism drive community assembly (22), cooperation and
mutualism may ultimately account for maintenance of species
heterogeneity in methanogenic communities essential for the global
carbon cycle but moreover, help us understand community diversity
and evolution in different environments.
The combination of systems and molecular biology will allow

additional investigation into the specifics of species’ interactions.
Metabolic models enable us to both hypothesize and analyze the
effects of perturbations, such as the addition to free amino acids
or the introduction of another organism that supplies essential
metabolites. Similarly, we can predict metabolically the types of
organisms that may increase diversity levels or simulate possible
subpopulations that may evolve maintaining stable interactions.
Knowledge of these multidimensional interspecies relationships
will be crucial to our ability to predict and exploit the founda-
tional roles that microbial communities play in the environment,
for industrial applications, and for human health.

Methods
Media and Cultivation. The source of the original communitywas sediment from a
hydrocarbon-contaminated ditch in Bremen, Germany (6). The consortium was
propagated in the laboratory in an anoxic medium containing 0.3 g NH4Cl, 0.5 g
MgSO4•7H2O, 2.5 g NaHCO3, 0.5 g K2HPO4, 0.05 g KBr, 0.02 g H3BO3, 0.02 g KI,
0.003 g Na2WO2•2H2O, 0.002 g NiCl2•6H2O, trace elements, and trace minerals as
previously described (6). The mediumwas sparged with a mixture of N2:CO2 (80:20,
vol/vol), and the pH was adjusted to 7.0. After autoclaving, anoxic CaCl2 (final
concentration 0.25 g L−1) and filter-sterilized vitamin solution were added (6). Cells
were supplemented with anoxic hexadecane (0.5 mL equaling 1.7 mmol on Teflon
stones), 5 mM butyrate, or 2 mM caprylate and incubated at 30 °C in triplicate.
Bottles were degassed as necessary to relieve overpressure. The headspace of a
representative active culture was analyzed using GC (Shimadzu GC 2014; Supelco
30-m × 0.53-mm Carboxen Column). A thermal conductivity detector was used to
identify and quantify the production of methane accompanying cell growth.
Ultrapure N2 was used as carrier gas, and the column was run at 35 °C for 15 min
with a flow rate of 20mLmin−1. Hexadecanewas analyzed by a gas chromatograph
(Shimadzu GC 2014; SHRXI-5ms 15-m × 0.53-mm fused silica column) equipped with
a flame ionization detector. The flow rate of H2 was 1.7 mLmin−1. The temperature
program was run from 60 °C (2 min isotherm) to 120 °C at 5 °C·min−1 and then,
from 120 °C (0.1 min isotherm) to 220 °C at 10 °C·min−1 (5 min isotherm at 220 °C).
The temperatures at the injection port and the detector were 280 °C.

Metagenomic Sequencing. DNA was harvested from the communities during
hexadecane-, caprylate-, and butyrate-degrading conditions using amodified
version of the Nucleospin XS Tissue Kit. Briefly, 15 mL culture was pelleted by
centrifugation at 10,000 × g at 4 °C for 10 min. After the initial pelleting, the
supernatant was removed and centrifuged again in 1.5-mL microcentrifuge
tubes at 14,000 × g at 4 °C for an additional 20 min. After centrifugation, the
supernatant was decanted, and cell pellets were frozen at −80 °C until use.

Cell pellets were combined and resuspended in 50 μL Tris/EDTA (TE) buffer
(10 mM Tris·HCl, 1 mM EDTA, pH 8) with 23,000 U Ready-Lyse Lysozyme
Solution (Epicentre), 1 μL Proteinase K Solution (20 mg/mL; Life Technolo-
gies), and 1 μL RNase A (100 mg/mL; Qiagen) and incubated at 37 °C for
15 min. After incubation, 50 μL Buffer B3 was added to the sample and
vigorously vortexed; 50 μL 100% (vol/vol) ethanol was added to the lysate,
and the sample was loaded onto the NucleoSpin Tissue XS Column. From this
point, the standard purification protocol was followed.

Sequencing libraries were prepared using the Nextera XT Kit (Illumina). Li-
brary quality was assessedusing a Bioanalyzer High Sensitivity Chip (Agilent) and
quantified using the Qubit dsDNA HS Assay. Standard published protocols were
used for both assays. Libraries were sequenced on an Illumina Miseq using 500-
cycle kits (Illumina). Themetagenome for thehexadecane-degrading community
had 10.58 million reads, the caprylate-degrading community had 22.06 million
reads, and the butyrate-degrading community had 12.63 million reads.
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Metagenomic Binning and Genome Annotation. The reads for each condition
were quality trimmed, pooled, and assembled using Velvet (23) to create a pan
metagenome. Multiple kmers between 51 and 231 were tested to determine the
best kmer length for de novo assembly—the final genome assembly used a kmer
of 211. Individual reads were then mapped back to the pan metagenome refer-
ence, and the resulting bam files were used as input into GroopM (9). GroopMwas
run using the default parameters. The preliminary binned genomes were anno-
tated using RAST (10) to determine if any bins needed to be merged—we did not
end up merging any bins. We used RAST to check sequence similarity and identify
each bin’s closest sequenced relative. These results were then matched to species
appearing in previously determined 16S rDNA data (7).

The binned genomes’ closest relatives were determined using BLASTing
the 16S rRNA gene in each metagenomic bin as well as through the Nearest
Neighbor function in RAST. The heat maps of sequence similarity were also
generated in RAST using the sequence comparison tool.

The amino acid synthesis pathways were curated by hand to ensure accuracy.
Resources including KEGG and Metacyc were used as well as primary literature.

Metatranscriptomic Sequencing and Analysis. Metatranscriptomic reads were
previously sequenced and published and can be accessed through Gene Ex-
pression Omnibus accession no. GSE498301. However, because we did not have
accurate reference genomes for all species within the community, we were
previously unable to interpret gene expression results formost specieswithin the
community (7, 24). Here, we used genomes extracted by GroopM as reference
genomes. Reads were mapped as previously described using DESeq (7, 24). The
results of the transcriptomic mapping can be found in Dataset S3. When de-
termining whether individual species were active, we used both the number of
transcriptomic reads mapped and gffs created from the mapped data. The gffs,
in particular, were useful to identify highly transcriptionally active species.

When comparing expression values across species, particularly for amino acid
synthesis, genes were first ranked in expression from high to low and assigned
percentile values based on the total number of genes in the genome. Thepercentile
values were then compared across species to estimate relative gene expression.

Transcriptomic datasets were also used to help curate amino acid synthesis
pathways. In the event that one gene in the pathway was missing, we used
themetatranscriptomic datasets to investigate expression levels of the overall
pathway. If the overall expression was similar to (or higher than) the species
that are capable of synthesizing the amino acid, we considered the species
likely to be able to synthesize the amino acid as well.

Metabolomics. Extracellular amino acid concentrations were measured using
LC-MS. One milliliter culture from each condition was passed through a 0.22-μm
syringe filter (Millipore) and analyzed as previously described on a Synergi

2.5-μm Hydro-RP 100-Å LC Column (100 mm × 2 mm; Phenomenex) with an
UFLC XR HPLC (Shimadzu) (25).

Metabolic Modeling Analysis. COBRApywas used for all model building, curation,
and simulation efforts (26). Initial draftmodels for Smithella andDesulfovibriowere
generated using Model-SEED (11). Both models were heavily curated to better
represent the physiological functionality captured by the draft genome, and the
majority of gap-filled reactions (particularly transporters) were removed. The
Smithella model was curated to include major metabolic pathways, including
functional β-oxidation and the Wood–Ljungdahl pathway. Both pathways exist
and are functional within this organism as indicated by genomic and transcriptomic
information. Furthermore, because we do not know the exact mode of alkane
activation within this organism, a dummy reaction that converts hexadecane into
palmitic acid was added to the model to bypass this limitation. The models for the
different methanogens were built off of an existing metabolic model for
M. barkeri (12). Reactions were deleted from the M. barkeri model as appro-
priate for eachmethanogen based on the genome content found in the binned
genomes. A full list of the reactions in each model can be found in Dataset S2.

Simulations were performed using experimentally determined hexadecane up-
take rates and methane production rates. Rates of methanogenesis have been
shown to be very closely related to growth rate (13), and therefore, the proportion
of methane generated by each methanogen was determined based on its abun-
dance within the community as determined by 16S rRNA analysis (Fig. 1E). Our
models are not integrated into a single-community model. Instead, we performed
simulations on each individual model to identify discrepancies in energy flowwithin
the overall system. First, requirements for hydrogen, acetate, formate, and electrons
were backcalculated using the models of the methanogenes constraint by the
amount of methane produced (Fig. 1). Second, the Smithellamodel was fixed with
the measured hexadecane uptake rate to explore the potential solution space and
determine if Smithella is capable producing this pattern of reducing equivalents.
Because of the slow-growing nature of the community, we set hexadecane transfer
as the objective function rather than optimizing flux through the biomass function.
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