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Introduction

In machine learning (ML) we learn broad trends and patterns from vast sums of data.

What type of data is collected and how it is used introduces different kinds of privacy risks.

Medical data allows us to link characteristics like genetic markers to adverse health conditions

like cancer. However it suffers from unique correlation risks, since one’s information can reliably

be correlated from their familys’. Document embeddings—useful vector representations of text

documents—are tremendously useful for inferring general document characteristics like topic,

but can expose detailed personal information at the sentence level. Generative vision models

can sample novel images, but also tend to copy and expose their training images in clever and

inexact ways.

The privacy risks and utility requirements of each of these settings and applications

warrant different approaches to privacy-preserving ML. This dissertation proposes a variety

of solutions to situations like those above. In doing so, I hope to illuminate the advantage of

taking an application-specific approach to both measuring privacy risks and engineering private

algorithms. The following five chapters are roughly organized into two parts: the first two

chapters cover empirical privacy methods, and the remaining three cover formal privacy methods.

The former includes statistical tests to quantify privacy risks of large ML models. The latter

proposes provably private algorithms to satisfy different privacy definitions chosen for different

ML tasks.

Empirical methods. The first two chapters explore empirically measuring privacy risks

in the domain of vision modeling. In both chapters, we analyze to what extent large vision

models memorize their training images, and thereby risk exposing them. In contrast with the
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following three chapters, we are not proposing a provably privacy-preserving algorithm. Instead

we are designing methodical empirical tests to quantify memorization.

Provably private algorithms. The final three chapters propose algorithms that allow

us to share our data in a provably private way. We explore privacy preserving algorithms in the

text, location, and interpersonal-correlated domains (e.g. social networks or genetically linked

medical data). For each of these, we study different ML tasks and privacy risks to motivate

different privacy definitions and provably private algorithms.

Taken together, this document offers a mindset towards practicable privacy methods. By

directly considering the data domain and the task at hand, it is possible to efficiently measure

privacy risks and propose provably private algorithms while still completing the learning task at

hand .
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Chapter 1

Do SSL Models Have Déjà Vu? A Case of
Unintended Memorization in Self-supervised
Learning

1.1 Introduction

Self-supervised learning (SSL) [43, 44, 181, 14, 36, 90] aims to learn general represen-

tations of content-rich data without explicit labels by solving a pretext task. In many recent

works, such pretext tasks rely on joint-embedding architectures whereby randomized image

augmentations are applied to create multiple views of a training sample, and the model is trained

to produce similar representations for those views. When using cropping as random image

augmentation, the model learns to associate objects or parts (including the background scenery)

that co-occur in an image. However, doing so also arguably exposes the training data to higher

privacy risk as objects in training images can be explicitly memorized by the SSL model. For

example, if the training data contains the photos of individuals, the SSL model may learn to

associate the face of a person with their activity or physical location in the photo. This may allow

an adversary to extract such information from the trained model for targeted individuals.

In this work, we aim to evaluate to what extent SSL models memorize the association of

specific objects in training images or the association of objects and their specific backgrounds,

and whether this memorization signal can be used to reconstruct the model’s training samples.
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Figure 1.1. Left: Reconstruction of an SSL training image from a crop containing only the
background. The SSL model memorizes the association of this specific patch of water (pink
square) to this specific foreground object (a black swan) in its embedding, which we decode
to visualize the full training image. Right: The reconstruction technique fails on a public test
image that the SSL model has not seen before.

Our results demonstrate that SSL models memorize such associations beyond simple correlation.

For instance, in Figure 1.1 (left), we use the SSL representation of a training image crop

containing only water and this enables us to reconstruct the object in the foreground with

remarkable specificity—in this case a black swan. By contrast, in Figure 1.1 (right), when using

the crop from the background of a test set image that the SSL model has not seen before, its

representation only contains enough information to infer, through correlation, that the foreground

object was likely some kind of waterbird — but not the specific one in the image.

Figure 1.1 shows that SSL models suffer from the unintended memorization of images in

their training data—a phenomenon we refer to as déjà vu memorization 1 Beyond visualizing

déjà vu memorization through data reconstruction, we also design a series of experiments to

quantify the degree of memorization for different SSL algorithms, model architectures, training

set size, etc. We observe that déjà vu memorization is exacerbated by the atypically large number

of training epochs often recommended in SSL training, as well as certain hyperparameters in

the SSL training objective. Perhaps surprisingly, we show that déjà vu memorization occurs

even when the training set is large—as large as half of ImageNet [50]—and can continually

1The French loanword déjà vu means ‘already-seen’, just as an image is seen and memorized in training.
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worsen even when standard techniques for evaluating learned representation quality (such as

linear probing) do not suggest increased overfitting. Our work serves as the first systematic study

of unintended memorization in SSL models and motivates future work on understanding and

preventing this behavior. Specifically, we:

• Elucidate how SSL representations memorize aspects of individual training images, what

we call déjà vu memorization;

• Design a novel training data reconstruction pipeline for non-generative vision models.

This is in contrast to many prominent reconstruction algorithms like [34, 32], which rely

on the model itself to generate its own memorized samples and is not possible for SSL

models or classifiers;

• Propose metrics to quantify the degree of déjà vu memorization committed by an SSL

model. This allows us to observe how déjà vu changes with training epochs, dataset size,

training criteria, model architecture and more.

1.2 Preliminaries and Related Work

Self-supervised learning (SSL) is a machine learning paradigm that leverages unlabeled

data to learn representations. Many SSL algorithms rely on joint-embedding architectures

(e.g., SimCLR [43], Barlow Twins [181], VICReg [14] and Dino [37]), which are trained to

associate different augmented views of a given image. For example, in SimCLR, given a set of

images A = {A1, . . . ,An} and a randomized augmentation function aug, the model is trained to

maximize the cosine similarity of draws of SSL(aug(Ai)) with each other and minimize their

similarity with SSL(aug(A j)) for i ̸= j. The augmentation function aug typically consists of

operations such as cropping, horizontal flipping, and color transformations to create different

views that preserve an image’s semantic properties.
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SSL representations.

Once an SSL model is trained, its learned representation can be transferred to different

downstream tasks. This is often done by extracting the representation of an image from the

backbone model2 and either training a linear probe on top of this representation or finetuning

the backbone model with a task-specific head [24]. It has been shown that SSL representations

encode richer visual details about input images than supervised models do [25]. However, from

a privacy perspective, this may be a cause for concern as the model also has more potential to

overfit and memorize precise details about the training data compared to supervised learning.

We show concretely that this privacy risk can indeed be realized by defining and measuring déjà

vu memorization.

Privacy risks in ML.

When a model is overfit on privacy-sensitive data, it memorizes specific information

about its training examples, allowing an adversary with access to the model to learn private

information [176, 71]. Privacy attacks in ML range from the simplest and best-studied mem-

bership inference attacks [143, 141, 139] to attribute inference [76, 127, 95] and data recon-

struction [34, 13, 88] attacks. In the former, the adversary only infers whether an individual

participated in the training set. Our study of déjà vu memorization is most similar to the latter:

we leverage SSL representations of the training image background to infer and reconstruct

the foreground object. Our approach reflects similar work in the NLP domain [33, 34]: when

prompted with a context string present in the training data, a large language model is shown to

generate the remainder of string at test time, revealing sensitive text like home addresses. This

method was recently extended to extract memorized images from Stable Diffusion [32]. We

exploit memorization in a similar manner: given partial information about a training sample, the

model is prompted to reveal the rest of the sample. In our case, however, since the SSL model is

not generative, extraction is significantly harder and requires careful design.

2SSL methods often use a trick called guillotine regularization [24], which decomposes the model into two parts:
a backbone model and a projector consisting of a few fully-connected layers. Such trick is needed to handle the
misalignment between the pretext SSL task and the downstream task.
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1.3 Defining Déjà Vu Memorization

What is déjà vu memorization?

At a high level, the objective of SSL is to learn general representations of objects that

occur in nature. This is often accomplished by associating different parts of an image with one

another in the learned embedding. Returning to our example in Figure 1.1, given an image whose

background contains a patch of water, the model may learn that the foreground object is a water

animal such as duck, pelican, otter, etc., by observing different images that contain water from

the training set. We refer to this type of learning as correlation: the association of objects that

tend to co-occur in images from the training data distribution.

A natural question to ask is “Can the reconstruction of the black swan in Figure 1.1

be reasoned as correlation?” The intuitive answer may be no, since the reconstructed image

is qualitatively very similar to the original image. However, this reasoning implicitly assumes

that for a random image from the training data distribution containing a patch of water, the

foreground object is unlikely to be a black swan. Mathematically, if we denote by P the training

data distribution and A the image, then

pcorr := PA∼P(object(A) = black swan | crop(A) = water)

is the probability of inferring that the foreground object is a black swan through correlation.

This probability may be naturally high due to biases in the distribution P , e.g., if P contains no

other water animal except for black swans. In fact, such correlations are often exploited to learn

a model for image inpainting with great success [178, 155].

Despite this, we argue that reconstruction of the black swan in Figure 1.1 is not due to

correlation, but rather due to unintended memorization: the association of objects unique to a

single training image. As we will show in the following sections, the example in Figure 1.1 is

not a rare success case and can be replicated across many training samples. More importantly,
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failure to reconstruct the foreground object in Figure 1.1 (right) on test images hints at inferring

through correlation is unlikely to succeed—a fact that we verify quantitatively in Section 1.4.1.

Motivated by this discussion, we give a verbal definition of déjà vu memorization below, and

design a testing methodology to quantify déjà vu memorization in Section 1.3.1.

Definition: A model exhibits déjà vu memorization when it retains information so specific to

an individual training image, that it enables recovery of aspects particular to that image given

a part that does not contain them. The recovered aspect must be beyond what can be inferred

using only correlations in the data distribution.

We intentionally kept the above definition broad enough to encompass different types of

information that can be inferred about the training image, including but not restricted to object

category, shape, color and position. For example, if one can infer that the foreground object is

red given the background patch with accuracy significantly beyond correlation, we consider this

an instance of déjà vu memorization as well. We mainly focus on object category to quantify

déjà vu memorization in Section 1.4 since the ground truth label can be easily obtained. We

consider other types of information more qualitatively in the visual reconstruction experiments

in Section 1.5.

Privacy implications of déjà vu memorization.

Déjà vu memorization can be a cause for concern when the training data contains privacy-

sensitive information. As a motivating example, consider an SSL model trained on photos of

individuals. If the model exhibits déjà vu memorization then, given the face of an individual,

it may be possible to infer where the individual was or even visually reconstruct their location

in the training image. Such information leakage raises privacy concerns, especially if there

was no prior agreement that the trained model may reveal such information to third parties.

This hypothetical scenario serves as a motivation that déjà vu memorization should be carefully

examined to avoid unintended disclosure of private information in practical applications.
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Figure 1.2. Overview of testing methodology. Left: Data is split into target set A , reference
set B and public set X that are pairwise disjoint. A and B are used to train two SSL models
SSLA and SSLB in the same manner. X is used for KNN decoding or for training an RCDM to
reconstruct the input at test time. Right: Given a training image Ai ∈A , we use SSLA to embed
crop(Ai) containing only the background, as well as the entire set X and find the k-nearest
neighbors of crop(Ai) in X in the embedding space. These KNN samples can be used directly
to infer the foreground object (i.e., class label) in Ai using a KNN classifier, or their embeddings
can be averaged as input to the trained RCDM to visually reconstruct the image Ai. For instance,
the RCDM reconstruction results in Figure 1.1 (left) when given SSLA(crop(Ai)) and results in
Figure 1.1 (right) when given SSLA(crop(Bi)) for an image Bi ∈B.

Distinguishing memorization from correlation. When measuring déjà vu memoriza-

tion, it is crucial to differentiate what the model associates through memorization and what it

associates through correlation. Our testing methodology is based on the following intuitive

definition.

Definition: If an SSL model associates two parts in a training image, we say that it is due

to correlation if other SSL models trained on a similar dataset from P without this image

would likely make the same association. Otherwise, we say that it is due to memorization.

Notably, such intuition forms the basis for differential privacy (DP; [58, 61])—the most

widely accepted notion of privacy in ML.

9



1.3.1 Testing Methodology for Measuring Déjà Vu Memorization

In this section, we use the above intuition to measure the extent of déjà vu memorization

in SSL. Figure 1.2 gives an overview of our testing methodology.

Dataset splitting.

We focus on testing déjà vu memorization for SSL models trained on the ImageNet-1K

dataset [50]. Our test first splits the ImageNet training set into three independent and disjoint

subsets A , B and X . The dataset A is called the target set and B is called the reference

set. The two datasets are used to train two separate SSL models, SSLA and SSLB, called the

target model and the reference model. Finally, the dataset set X is used as an auxiliary public

dataset to extract information from SSLA and SSLB. Our dataset splitting serves the purpose

of distinguishing memorization from correlation in the following manner. Given a sample

Ai ∈A , if our test returns the same result on SSLA and SSLB then it is likely due to correlation

because Ai is not a training sample for SSLB. Otherwise, because A and B are drawn from the

same underlying distribution, our test must have inferred some information unique to Ai due to

memorization. Thus, by comparing the difference in the test results for SSLA and SSLB, we can

measure the degree of déjà vu memorization3.

Extracting foreground and background crops.

Our testing methodology aims at measuring what can be inferred about the foreground

object in an ImageNet sample given a background crop. This is made possible because ImageNet

provides bounding box annotations for a subset of its training images—around 150K out of 1.3M

samples. We split these annotated images equally between A and B. Given an annotated image

Ai, we treat everything inside the bounding box as the foreground object associated with the

image label, denoted object(Ai). We take the largest possible crop that does not intersect with

any bounding box as the background crop (or periphery crop), denoted crop(Ai)
4

3See Appendix A.0.2 for details on how the dataset splits are generated.
4We also present another heuristic in Appendix A.0.5 which takes a corner crop as the background crop, allowing

our test to be run without bounding box annotations.
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KNN-based test design.

Joint-embedding SSL approaches encourage the embeddings of random crops of a

training image Ai ∈A to be similar. Intuitively, if the model exhibits déjà vu memorization, it is

reasonable to expect that the embedding of crop(Ai) is similar to that of object(Ai) since both

crops are from the same training image. In other words, SSLA(crop(Ai)) encodes information

about object(Ai) that cannot be inferred through correlation. However, decoding such information

is challenging as these approaches do not learn a decoder associated with the encoder SSLA.

Here, we leverage the public set X to decode the information contained in crop(Ai)

about object(Ai). More specifically, we map images in X to their embeddings using SSLA and

extract the k-nearest-neighbor (KNN) subset of SSLA(crop(Ai)) in X . We can then decode the

information contained in crop(Ai) in one of two ways:

• Label inference: Since X is a subset of ImageNet, each embedding in the KNN subset

is associated with a class label. If crop(Ai) encodes information about the foreground

object, its embedding will be close to samples in X that have the same class label (i.e.,

foreground object category). We can then use a KNN classifier to infer the foreground

object in Ai given crop(Ai).

• Visual reconstruction: Following Bordes u. a. [25], we train an RCDM—a conditional

generative model—on X to decode SSLA embeddings into images. The RCDM recon-

struction can recover qualitative aspects of an image remarkably well, such as recovering

object color or spatial orientation using its SSL embedding. Given the KNN subset, we

average their SSL embeddings and use the trained RCDM model to visually reconstruct

Ai.

In Section 1.4, we focus on quantitatively measuring déjà vu memorization with label inference,

and then use the RCDM reconstruction to visualize déjà vu memorization in Section 1.5.
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1.4 Quantifying Déjà Vu Memorization

We apply our testing methodology to quantify a specific form of déjà vu memorization:

inferring the foreground object (class label) given a crop of the background.

Extracting model embeddings.

We test déjà vu memorization on a variety of popular SSL algorithms, with a focus on

VICReg [14]. These algorithms produce two embeddings given an input image: a backbone

embedding and a projector embedding that is derived by applying a small fully-connected

network on top of the backbone embedding. Unless otherwise noted, all SSL embeddings refer

to the projector embedding. To understand whether déjà vu memorization is particular to SSL,

we also evaluate embeddings produced by a supervised model CLFA trained on A . We apply the

same set of image augmentations as those used in SSL and train CLFA using the cross-entropy

loss to predict ground truth labels.

Identifying the most memorized samples.

Prior works have shown that certain training samples can be identified as more prone

to memorization than others [71, 161, 174]. Similarly, we provide a heuristic to identify the

most memorized samples in our label inference test using confidence of the KNN prediction.

Given a periphery crop, crop(Ai), let KNNA
(
crop(Ai)

)
⊆X denote its k-nearest neighbors in

the embedding space of SSLA. From this KNN subset we can obtain: (1) KNNprob
A

(
crop(Ai)

)
,

the vector of class probabilities (normalized counts) induced by the KNN subset, and (2)

KNNconf
A
(
crop(Ai)

)
, the negative entropy of the probability vector KNNprob

A

(
crop(Ai)

)
, as

confidence of the KNN prediction. When entropy is low, the neighbors agree on the class of

Ai and hence confidence is high. We can sort the confidence score KNNconf
A
(
crop(Ai)

)
across

samples Ai in decreasing order to identify the most confidently predicted samples, which likely

correspond to the most memorized samples when Ai ∈A .

1.4.1 Population-level Memorization
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Figure 1.3. Accuracy of label infer-
ence using the target model (trained on
A ) vs. the reference model (trained on
B) on the top % most confident exam-
ples Ai ∈A using only crop(Ai). For
VICReg, there is a large accuracy gap
between the two models, indicating a
significant degree of déjà vu memoriza-
tion.

Our first measure of déjà vu memorization is

population-level label inference accuracy: What is the

average label inference accuracy over a subset of SSL

training images given their periphery crops? To under-

stand how much of this accuracy is due to SSLA’s déjà

vu memorization, we compare with a correlation base-

line using the reference model: KNNB’s label inference

accuracy on images Ai ∈ A . In principle, this infer-

ence accuracy should be significantly above chance level

(1/1000 for ImageNet) because the periphery crop may

be highly indicative of the foreground object through

correlation, e.g., if the periphery crop is a basketball

player then the foreground object is likely a basketball.

Figure 1.3 compares the accuracy of KNNA to that of KNNB when inferring the labels

of images in Ai ∈ A 5 using crop(Ai). Results are shown for VICReg and the supervised

model; trends for other models are shown in Appendix A.0.3. For both VICReg and supervised

models, inferring the class of crop(Ai) using KNNB (dashed line) through correlation achieves a

reasonable accuracy that is significantly above chance level. However, for VICReg, the inference

accuracy using KNNA (solid red line) is significantly higher, and the accuracy gap between

KNNA and KNNB indicates the degree of déjà vu memorization. We highlight two observations:

• The accuracy gap of VICReg is significantly larger than that of the supervised model. This

is especially notable when accounting for the fact that the supervised model is trained to

associate randomly augmented crops of images with their ground truth labels. In contrast,

VICReg has no label access during training but the embedding of a periphery crop can still

encode the image label.

5The sets A and B are exchangeable, and in practice we repeat this test on images from B using SSLB as the
target model and SSLA as the reference model, and average the two sets of results.
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• For VICReg, inference accuracy on the 1% most confident examples is nearly 95%, which

shows that our simple confidence heuristic can effectively identify the most memorized

samples. This result suggests that an adversary can use this heuristic to identify vulnerable

training samples to launch a more focused privacy attack.

The déjà vu score.

The curves of Figure 1.3 show memorization across confidence values for a single training

scenario. To study how memorization changes with different hyperparamters, we extract a single

value from these curves: the déjà vu score at confidence level p. In Figure 1.3, this is the gap

between the solid red (or gray) and dashed red (or gray) where confidence (x-axis) equal p%. In

other words, given the periphery crops of set A , KNNA and KNNB separately select and label

their top p% most confident examples, and we report the difference in their accuracy. The déjà

vu score captures both the degree of memorization by the accuracy gap and the ability to identify

memorized examples by the confidence level. If the score is 10% for p = 33%, KNNA has 10%

higher accuracy on its most confident third of A than KNNB does on its most confident third. In

the following, we set p = 20%, approximately the largest gap for VICReg (red lines) in Figure

1.3.

Comparison with the linear probe train-test gap.

A standard method for measuring SSL performance is to train a linear classifier—what

we call a ‘linear probe’—on its embeddings and compute its performance on a held out test set.

From a learning theory standpoint, one might expect the linear probe’s train-test accuracy gap to

be indicative of memorization: the more a model overfits, the larger is the difference between

train set and test set accuracy. However, as seen in Figure 1.4, the linear probe gap (dark blue)

fails to reveal memorization captured by the déjà vu score (red) 6.

6See section 1.6 for further discussion of the déjà vu score trends of Figure 1.4.
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(a) déjà vu vs. epochs (b) déjà vu vs. train set size

Figure 1.4. Effect of training epochs and train
set size with VICReg on déjà vu score (red) in
comparison with linear probe accuracy train-
test gap (dark blue). Left: déjà vu score in-
creases with training epochs, indicating grow-
ing memorization while the linear probe base-
line decreases significantly. Right: déjà vu
score stays roughly constant with training set
size suggesting that memorization may be prob-
lematic even for large datasets.

(a) déjà vu vs. epochs (b) déjà vu vs. train set size

Figure 1.5. Partition of samples Ai ∈ A
into the four categories: unassociated (not
shown), memorized, misrepresented and cor-
related for VICReg. The memorized samples—
those whose labels are predicted by KNNA but
not by KNNB—occupy a significantly larger
share of the training set than the misrepresented
samples—those predicted by KNNB but not
KNNA by chance.

1.4.2 Sample-level Memorization

The déjà vu score shows, on average, how much better an adversary can select and

classify images when using the target model trained on them. This average score does not tell us

how many individual images have their label successfully recovered by KNNA but not by KNNB.

In other words, how many images are exposed by virtue of being in training set A : a risk notion

foundational to differential privacy. To better quantify what fraction of the dataset is at risk, we

perform a sample-level analysis by fixing a sample Ai ∈A and observing the label inference

result of KNNA vs. KNNB. To this end, we partition samples Ai ∈ A based on the result of

label inference into four distinct categories: Unassociated - label inferred with neither KNN;

Memorized - label inferred only with KNNA; Misrepresented - label inferred only with KNNB;

Correlated - label inferred with both KNNs. Intuitively, unassociated samples are ones where the

embedding of crop(Ai) does not encode information about the label. Correlated samples are ones

where the label can be inferred from crop(Ai) using correlation, e.g., inferring the foreground

object is basketball given a crop showing a basketball player. Ideally, the misrepresented set

should be empty but contains a small portion of examples due to chance. Déjà vu memorization

occurs for memorized samples where the embedding of SSLB does not encode the label but the
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embedding of SSLA does. To measure the pervasiveness of déjà vu memorization, we compare

the size of the memorized and misrepresented sets. Figure 1.5 shows how the four categories of

examples change with number of training epochs and training set size. The unassociated set is

not shown since the total share adds up to one. The misrepresented set remains under 5% and

roughly unchanged across all settings, consistent with our explanation that it is due to chance. In

comparison, VICReg’s memorized set surpasses 15% at 1000 epochs. Considering that up to 5%

of these memorized examples could also be due to chance, we conclude that at least 10% of

VICReg’s training set is déjà vu memorized.

1.5 Visualizing Déjà Vu Memorization

Beyond enabling label inference using a periphery crop, we show that déjà vu memoriza-

tion allows the SSL model to encode other forms of information about a training image. Namely,

we train an RCDM [25] on the public dataset X and use it to visually reconstruct training

images given their periphery crop. We aim to answer the following two questions: (1) Can we

visualize the distinction between correlation and déjà vu memorization? (2) What foreground

object details can be extracted from the SSL model beyond class label?

Reconstruction pipeline.

RCDM is a conditional generative model that is trained on the backbone embedding

of images Xi ∈X to generate an image that resembles Xi. All training images are first face-

blurred for privacy purposes. Bordes u. a. [25] showed that the backbone embedding of SSL

models contains more low-level information about the image, making them better suited for

conditioning the RCDM. At test time, following the pipeline in Figure 1.2, we first use the

projector embedding to find the KNN subset for the periphery crop, crop(Ai), and then average

their backbone embeddimemorizedngs as input to the RCDM model. Ideally, when the public set

contains enough representative images, the average representation of the KNN subset encodes

objects present in Ai, and the RCDM model decodes this representation to visualize these objects.
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(a) A correlated dam example (b) A memorized dam example

Figure 1.6. Correlated and Memorized examples from the dam class. Both SSLA and SSLB
are SimCLR models. Left: The periphery crop (pink square) contains a concrete structure
that is often present in images of dams. Consequently, the trained RCDM can reconstruct the
foreground object using representations from both SSLA and SSLB through this correlation.
Right: The periphery crop only contains a patch of water. The embedding produced by SSLB
only contains enough information to infer that the foreground object is related to water, as
reflected by its KNN set and RCDM reconstruction. In contrast, the embedding produced by
SSLA memorizes the association of this patch of water with dam and the RCDM can visualize
the embedding to produce images of dams.

(a) memorized European badgers (b) memorized American badgers

Figure 1.7. Visualization of déjà vu memorization beyond class label. Both SSLA and SSLB
are VICReg models. The four images shown belong to the memorized set of SSLA from the
badger class. RCDM reconstruction using embeddings from SSLA can reveal not only the
correct class label, but also the specific badger species: European (left) and American (right).
Such information does not appear to be memorized by the reference model SSLB.

Visualizing Correlation vs. Memorization.

Figure 1.6 shows examples of dams from the correlated set (left) and the memorized set

(right) as defined in Section 1.4.2, along with the associated KNN set and RCDM reconstruction.

Both SSLA and SSLB are SimCLR models. In Figure 1.6a, the periphery crop is represented

by the pink square, which contains concrete structure attached to the dam’s main structure.
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As a result, both SSLA and SSLB produce embeddings of crop(Ai) whose KNN set in X

consist of dams, i.e., there is a correlation between the concrete structure in crop(Ai) and the

foreground dam. The RCDM reconstructions also consist of dams or structures that closely

resemble dams. In Figure 1.6b, the periphery crop only contains a patch of water, which does not

strongly correlate with dams in the ImageNet distribution. Evidently, the reference model SSLB

embeds crop(Ai) close to that of other objects commonly found in water, such as sea turtle and

submarine. In contrast, the KNN set according to SSLA all contain dams despite the vast number

of alternative possibilities within the ImageNet classes, and the RCDM reconstruction outputs

dams as well which highlight memorization in SSLA between this specific patch of water and

the dam.

Visualizing Memorization Beyond Class Label.

We now use our reconstruction algorithm to show that déjà vu memorization can be

exploited to reveal detailed information beyond class label. Figure 1.7 shows four examples of

badgers from the memorized set. In all four images, the periphery crop (pink square) does not

contain any indication that the foreground object is a badger. Despite this, the KNN set and the

RCDM reconstruction using SSLA consistently produce images of badgers, while the same does

not hold for SSLB. More interestingly, reconstructions using SSLA in Figure 1.7a all contain

European badgers, while reconstructions in Figure 1.7b all contain American badgers, accurately

reflecting the species of badger present in the respective training images. Since ImageNet-1K

does not differentiate between these two species of badgers, our reconstructions show that SSL

models can memorize information that is highly specific to a training sample beyond its class

label7.

1.6 Mitigation of déjà vu memorization

We cannot yet make claims on why déjà vu occurs so strongly for some SSL training

settings and not for others. To gain some intuition for future work, we present additional

7See Appendix A.0.4 for additional visualization experiments.
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(a) Loss hyper-parameter (b) Guillotine regularization

Figure 1.8. Effect of two kinds of hyper-
parameters on VICReg memorization. Left:
déjà vu score (red) versus the invariance loss pa-
rameter, λ , used in the VICReg criterion (100k
dataset). Larger λ significantly reduces déjà vu
, with minimal effect on linear probe validation
performance (green). λ = 25 (near maximum
déjà vu ) is recommended in the original paper
Right: déjà vu score versus projector layer—
guillotine regularization [24]—from projector to
backbone. Removing the projector can signifi-
cantly reduce déjà vu . Appendix A.0.3 shows
that the backbone still can memorize, however;
we demonstrate reconstructions using the Sim-
CLR backbone.

(a) déjà vu vs. capacity

Criteria DV Acc P/B
Supervised 8.9 55.3/61.1
Byol[85] 8.0 54.3/59.4

SimCLR[43] 10.0 44.2/54.1
Dino[37] 14.5 26.3/55.7

Barlow T.[181] 30.5 33.7/54.4
VICReg[14] 33.2 40.3/55.2

(b) déjà vu (DV) vs. Criterion

Figure 1.9. Effect of model architecture and
criterion on déjà vu memorization. Left: déjà
vu score with VICReg for resnet (purple) and
vision transformer (green) architectures versus
number of model parameters. As expected,
memorization grows with larger model capac-
ity. This trend is more pronounced for convo-
lutional (resnet) than transformer (ViT) archi-
tectures. Right: Comparison of déjà vu score
20% conf. and ImageNet linear probe valida-
tion accuracy (P: using projector embeddings,
B: using backbone embeddings) for various
SSL criteria.

observations that shed light on which parameters have the most salient impact on déjà vu

memorization.

Déjà vu memorization worsens by increasing number of training epochs.

Figure 1.4a shows how déjà vu memorization changes with number of training epochs

for VICReg. The training set size is fixed to 300K samples. From 250 to 1000 epochs, the déjà

vu score (red curve) grows threefold: from under 10% to over 30%. Remarkably, this trend in

memorization is not reflected by the linear probe gap (dark blue), which only changes by a few

percent beyond 250 epochs.

Training set size has minimal effect on déjà vu memorization.

Figure 1.4b shows how déjà vu memorization responds to the model’s training set size.

The number of training epochs is fixed to 1000. Interestingly, training set size appears to have

almost no influence on the déjà vu score (red line), indicating that memorization is equally
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prevalent with a 100K dataset and a 500K dataset. This result suggests that déjà vu memorization

may be detectable even for large datasets. Meanwhile, the standard linear probe train-test

accuracy gap declines by more than half as the dataset size grows, failing to represent the

memorization quantified by our test.

Training loss hyper-parameter has a strong effect.

Loss hyper-parameters, like VICReg’s invariance coefficient (Figure 1.8a) or SimCLR’s

temperature parameter (Appendix Figure A.8a) significantly impact déjà vu with minimal impact

on the linear probe validation accuracy.

Some SSL criteria promote stronger déjà vu memorization.

Table 1.9b demonstrates that the degree of memorization varies widely for different

training criteria. VICReg and Barlow Twins have the highest déjà vu scores while SimCLR

and Byol have the lowest. With the exception of Byol, all SSL models have more déjà vu

memorization than the supervised model. Interestingly, different criteria can lead to similar

linear probe validation accuracy and very different degrees of déjà vu as seen with SimCLR and

Barlow Twins. Note that low degrees of déjà vu can still risk training image reconstruction, as

exemplified by the SimCLR reconstructions in Figures 1.6 and ??.

Larger models have increased déjà vu memorization.

Figure 1.9a validates the common intuition that lower capacity architectures (Resnet18/34)

result in less memorization than their high capacity counterparts (Resnet50/101). We see the

same trend for vision transformers as well.

Guillotine regularization can help reduce déjà vu memorization.

Previous experiments were done using the projector embedding. In Figure 1.8b, we

present how Guillotine regularization[24] (removing final layers in a trained SSL model) impacts

déjà vu with VICReg8. Using the backbone embedding instead of the projector embedding seems

to be the most straightforward way to mitigate déjà vu memorization. However, as demonstrated

8Further experiments are available in Appendix A.0.3.
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in Appendix A.0.4, backbone representation with low déjà vu score can still be leveraged to

reconstruct some of the training images.

1.7 Conclusion

We defined and analyzed déjà vu memorization, a notion of unintended memorization of

partial information in image data. As shown in Sections 1.4 and 1.5, SSL models can largely

exhibit déjà vu memorization on their training data, and this memorization signal can be extracted

to infer or visualize image-specific information. Since SSL models are becoming increasingly

widespread as foundation models for image data, negative consequences of déjà vu memorization

can have profound downstream impact and thus deserves further attention. Future work should

focus on understanding how déjà vu emerges in the training of SSL models and why methods

like Byol are much more robust to déjà vu than VICReg and Barlow Twins. In addition, trying

to characterize which data points are the most at risk of déjà vu could be crucial to get a better

understanding on this phenomenon.
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Chapter 2

A Non-Parametric Test to Detect Data-
Copying in Generative Models

2.1 Introduction

Overfitting is a basic stumbling block of any learning process. While it has been studied

in great detail in the context of supervised learning, it has received much less attention in the

unsupervised setting, despite being just as much of a problem.

To start with a simple example, consider a classical kernel density estimator (KDE),

which given data x1, . . . ,xn ∈ Rd , constructs a distribution over Rd by placing a Gaussian of

width σ > 0 at each of these points, yielding the density

qσ (x) =
1

(2π)d/2σdn

n

∑
i=1

exp
(
−∥x− xi∥2

2σ2

)
. (2.1)

The only parameter is the scalar σ . Setting it too small makes q(x) too concentrated

around the given points: a clear case of overfitting (see Appendix Figure B.1). This cannot be

avoided by choosing the σ that maximizes the log likelihood on the training data, since in the

limit σ → 0, this likelihood goes to ∞.

The classical solution is to find a parameter σ that has a low generalization gap – that is,

a low gap between the training log-likelihood and the log-likelihood on a held-out validation

set. This method however often does not apply to the more complex generative models that
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(a) Illustration of
over-/under-representation

Training sample: ×, Generated sample: •
(b) Illustration of data-copying/underfitting
Training sample: ×, Generated sample: •

(c) VAE copying/underfitting on MNIST
top: ZU =−8.54, bottom: ZU =+3.30

Figure 2.1. Comparison of data-copying with over/under representation. Each image depicts a
single instance space partitioned into two regions. Illustration (a) depicts an over-represented
region (top) and under-represented region (bottom). This is the kind of overfitting evaluated by
methods like FID score and Precision and Recall. Illustration (b) depicts a data-copied region
(top) and underfit region (bottom). This is the type of overfitting focused on in this work. Figure
(c) shows VAE-generated and training samples from a data-copied (top) and underfit (bottom)
region of the MNIST instance space. In each 10-image strip, the bottom row provides random
generated samples from the region and the top row shows their training nearest neighbors.
Samples in the bottom region are on average further to their training nearest neighbor than
held-out test samples in the region, and samples in the top region are closer, and thus ‘copying’
(computed in embedded space, see Experiments section).
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have emerged over the past decade or so, such as Variational Auto Encoders (VAEs) [107]

and Generative Adversarial Networks (GANs) [83]. These models easily involve millions of

parameters, and hence overfitting is a serious concern. Yet, a major challenge in evaluating

overfitting is that these models do not offer exact, tractable likelihoods. VAEs can tractably

provide a log-likelihood lower bound, while GANs have no accompanying density estimate at

all. Thus any method that can assess these generative models must be based only on the samples

produced.

A body of prior work has provided tests for evaluating generative models based on

samples drawn from them [142, 140, 164, 92]; however, the vast majority of these tests focus on

‘mode dropping’ and ‘mode collapse’: the tendency for a generative model to either merge or

delete high-density modes of the true distribution. A generative model that simply reproduces

the training set or minor variations thereof will pass most of these tests.

In contrast, this work formalizes and investigates a type of overfitting that we call ‘data-

copying’: the propensity of a generative model to recreate minute variations of a subset of

training examples it has seen, rather than represent the true diversity of the data distribution. An

example is shown in Figure 2.1b; in the top region of the instance space, the generative model

data-copies, or creates samples that are very close to the training samples; meanwhile, in the

bottom region, it underfits. To detect this, we introduce a test that relies on three independent

samples: the original training sample used to produce the generative model; a separate (held-out)

test sample from the underlying distribution; and a synthetic sample drawn from the generator.

Our key insight is that an overfit generative model would produce samples that are too

close to the training samples – closer on average than an independently drawn test sample from

the same distribution. Thus, if a suitable distance function is available, then we can test for

data-copying by testing whether the distances to the closest point in the training sample are on

average smaller for the generated sample than for the test sample.

A further complication is that modern generative models tend to behave differently in

different regions of space; a configuration as in Figure 2.1b for example could cause a global test
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to fail. To address this, we use ideas from the design of non-parametric methods. We divide the

instance space into cells, conduct our test separately in each cell, and then combine the results to

get a sense of the average degree of data-copying.

Finally, we explore our test experimentally on a variety of illustrative data sets and

generative models. Our results demonstrate that given enough samples, our test can successfully

detect data-copying in a broad range of settings.

2.1.1 Related work

There has been a large body of prior work on the evaluation of generative models

[142, 121, 136, 140, 169, 164] . Most are geared to detect some form of mode-collapse or

mode-dropping: the tendency to either merge or delete high-density regions of the training data.

Consequently, they fail to detect even the simplest case of extreme data-copying – where a

generative model memorizes and exactly reproduces a bootstrap sample from the training set.

We discuss below a few such canonical tests.

To-date there is a wealth of techniques for evaluating whether a model mode-drops or

-collapses. Tests like the popular Inception Score (IS), Frechét Inception Distance (FID) [92],

Precision and Recall test [140], and extensions thereof [108, 40] all work by embedding samples

using the features of a discriminative network such as ‘InceptionV3’ and checking whether

the training and generated samples are similar in aggregate. The hypothesis-testing binning

method proposed by [136] also compares aggregate training and generated samples, but without

the embedding step. The parametric Kernel MMD method proposed by [148] uses a carefully

selected kernel to estimate the distribution of both the generated and training samples and reports

the maximum mean discrepancy between the two. All these tests, however, reward a generative

model that only produces slight variations of the training set, and do not successfully detect even

the most egregious forms of data-copying.

A test that can detect some forms of data-copying is the Two-Sample Nearest Neighbor,

a non-parametric test proposed by [121]. Their method groups a training and generated sample
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of equal cardinality together, with training points labeled ‘1’ and generated points labeled ‘0’,

and then reports the Leave-One-Out (LOO) Nearest-Neighbor (NN) accuracy of predicting ‘1’s

and ‘0’s. Two values are then reported as discussed by [169] – the leave-one-out accuracy of

the training points, and the leave-one-out accuracy of the generated points. An ideal generative

model should produce an accuracy of 0.5 for each. More often, a mode-collapsing generative

model will leave the training accuracy low and generated accuracy high, while a generative

model that exactly reproduces the entire training set should produce zero accuracy for both.

Unlike this method, our test not only detects exact data-copying, which is unlikely, but estimates

whether a given model generates samples closer to the training set than it should, as determined

by a held-out test set.

The concept of data-copying has also been explored by [169] (where it is called ‘memo-

rization’) for a variety of generative models and several of the above two-sample evaluation tests.

Their results indicate that out of a variety of popular tests, only the two-sample nearest neighbor

test is able to capture instances of extreme data-copying.

[27] explores three-sample testing, but for comparing the performance of different models,

not for detecting overfitting. [67] uses the three-sample test proposed by [27] for detecting data-

copying; unlike ours, their test is global in nature.

Finally, other works concurrent with ours have explored parametric approaches to rooting

out data-copying. A recent work by [87] suggests that, given a large enough sample from the

model, Neural Network Divergences are sensitive to data-copying. In a slightly different vein, a

recent work by [162] investigates whether latent-parameter models memorize training data by

learning the reverse mapping from image to latent code. The present work departs from those by

offering a probabilistically motivated non-parametric test that is entirely model agnostic.
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2.2 Preliminaries

We begin by introducing some notation and formalizing the definitions of overfitting. Let

X denote an instance space in which data points lie, and P an unknown underlying distribution

on this space. A training set T is drawn from P and is used to build a generative model Q. We

then wish to assess whether Q is the result of overfitting: that is, whether Q produces samples

that are too close to the training data. To help ascertain this, we are able to draw two additional

samples:

• A fresh sample of n points from P; call this Pn.

• A sample of m points from Q; call this Qm.

As illustrated in Figures 2.1a, 2.1b, a generative model can overfit locally in a region C ⊆X .

To characterize this, for any distribution D on X , we use D|C denote its restriction to the region

C , that is,

D|C (A ) =
D(A ∩C )

D(C )
for any A ⊆X .

2.2.1 Definitions of Overfitting

We now formalize the notion of data-copying, and illustrate its distinction from other

types of overfitting.

Intuitively, data-copying refers to situations where Q is “too close” to the training set

T ; that is, closer to T than the target distribution P happens to be. We make this quantitative

by choosing a distance function d : X → R from points in X to the training set, for instance,

d(x) = mint∈T ∥x− t∥2, if X is a subset of Euclidean space.

Ideally, we desire that Q’s expected distance to the training set is the same as that of P’s,

namely EX∼P[d(X)] = EY∼Q[d(Y )]. We may rewrite this as follows: given any distribution D

over X , define L(D) to be the one-dimensional distribution of d(X) for X ∼ D. We consider
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data-copying to have occurred if random draws from L(P) are systematically larger than from

L(Q). The above equalized expected distance condition can be rewritten as

EY∼Q[d(Y )]−EX∼P[d(X)] = EA∼L(P)
B∼L(Q)

[B−A] = 0 (2.2)

However, we are less interested in how large the difference is, and more in how often B is larger

than A. Let

∆T (P,Q) = Pr
(
B > A

∣∣ B∼ L(Q),A∼ L(P)
)

where 0≤ ∆T (P,Q)≤ 1 represents how ‘far’ Q is from training sample T as compared to true

distribution P. A more interpretable yet equally meaningful condition is which guarantees (2.2)

if densities L(P) and L(Q) have the same shape, but could plausibly be mean-shifted.

If ∆T (P,Q)≪ 1
2 , Q is data-copying training set T , since samples from Q are system-

atically closer to T than are samples from P. However, even if ∆T (P,Q) ≥ 1
2 , Q may still be

data-copying. As exhibited in Figures 2.1b and 2.1c, a model Q may data-copy in one region

and underfit in others. In this case, Q may be further from T than is P globally, but much closer

to T locally. As such, we consider Q to be data-copying if it is overfit in a subset C ⊆X :

Definition 2.2.1 (Data-Copying). A generative model Q is data-copying training set T if, in

some region C ⊆X , it is systematically closer to T by distance metric d : X → R than are

samples from P . Specifically, if

∆T (P|C ,Q|C )<
1
2

Observe that data-copying is orthogonal to the type of overfitting addressed by many

previous works [92, 140], which we call ‘over-representation’. There, Q overemphasizes some

region of the instance space C ⊆X , often a region of high density in the training set T . For the
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sake of completeness, we provide a formal definition below.

Definition 2.2.2 (Over-Representation). A generative model Q is over-representing P in some

region C ⊆X , if the probability of drawing Y ∼ Q is much greater than it is of drawing X ∼ P.

Specifically, if

Q(C )−P(C )≫ 0

Observe that it is possible to over-represent without data-copying and vice versa. For

example, if P is an equally weighted mixture of two Gaussians, and Q perfectly models one

of them, then Q is over-representing without data-copying. On the other hand, if Q outputs a

bootstrap sample of the training set T , then it is data-copying without over-representing. The

focus of the rest of this work is on data-copying.

2.3 A Test For Data-Copying

Having provided a formal definition, we next propose a hypothesis test to detect data-

copying.

2.3.1 A Global Test

We introduce our data-copying test in the global setting, when C = X . Our null

hypothesis H0 suggests that Q may equal P:

H0 : ∆T (P,Q) =
1
2

(2.3)

There are well-established non-parametric tests for this hypothesis, such as the Mann-Whitney

U test [125]. Let Ai ∼ L(Pn),B j ∼ L(Qm) be samples of L(P),L(Q) given by Pn,Qm and their

distances d(X) to training set T . The U statistic estimates the probability in Equation 2.3 by

measuring the number of all mn pairwise comparisons in which B j > Ai. An efficient and simple
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method to gather and interpret this test is as follows:

1. Sort the n+m values L(Pn)∪L(Qm) such that each instance li ∈ L(Pn), l j ∈ L(Qm) has

rank R(li),R(l j), starting from rank 1, and ending with rank n+m. L(Pn),L(Qm) have no

tied ranks with probability 1 assuming their distributions are continuous.

2. Calculate the rank-sum for L(Qm) denoted RQm , and its U score denoted UQm:

RQm = ∑
l j∈L(Qm)

R(l j), UQm = RQm−
m(m+1)

2

Consequently, UQm = ∑i j1B j>Ai .

3. Under H0, UQm is approximately normally distributed with > 20 samples in both L(Qm)

and L(Pn), allowing for the following z-scored statistic

ZU
(
L(Pn),L(Qm);T

)
=

UQm−µU

σU
,

µU =
mn
2
, σU =

√
mn(m+n+1)

12

ZU provides us a data-copying statistic with normalized expectation and variance under H0.

ZU ≪ 0 implies data-copying, ZU ≫ 0 implies underfitting. ZU <−5 implies that if H0 holds,

ZU is as likely as sampling a value <−5 from a standard normal.

Observe that this test is completely model agnostic and uses no estimate of likelihood. It

only requires a meaningful distance metric, which is becoming common practice in the evaluation

of mode-collapse and -dropping [92, 140] as well.

2.3.2 Handling Heterogeneity

As described in Section 2.2.1, the above global test can be fooled by generators Q which

are very close to the training data in some regions of the instance space (overfitting) but very far

from the training data in others (poor modeling).
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We handle this by introducing a local version of our test. Let Π denote any partition

of the instance space X , which can be constructed in any manner. In our experiments, for

instance, we run the k-means algorithm on T , so that |Π|= k. As the number of training and test

samples grows, we may increase k and thus the instance-space resolution of our test. Letting

Lπ(D) = L(D|π) be the distribution of distances-to-training-set within cell π ∈Π, we probe each

cell of the partition Π individually.

Data Copying.

To offer a summary statistic for data copying, we collect the z-scored Mann-Whitney

U statistic, ZU , described in Section 2.3.1 in each cell π . Let Pn(π) = |{x : x ∈ Pn,x ∈ π}|/n

denote the fraction of Pn points lying in cell π , and similarly for Qm(π). The ZU test for cell

π and training set T will then be denoted as ZU
(
Lπ(Pn),Lπ(Qm);T

)
, where Lπ(Pn) = {d(x) :

x ∈ Pn,x ∈ π} and similarly for Lπ(Qm). See Figure 2.1c for examples of these in-cell scores.

For stability, we only measure data-copying for those cells significantly represented by Q, as

determined by a threshold τ . Let Πτ be the set of all cells in the partition Π for which Qm(π)≥ τ .

Then, our summary statistic for data copying averages across all cells represented by Q:

CT (Pn,Qm) :=
∑π∈Πτ

Pn(π)ZU
(
Lπ(Pn),Lπ(Qm);T

)
∑π∈Πτ

Pn(π)

Over-Representation.

The above test will not catch a model that heavily over- or under-represents cells. For

completeness, we next provide a simple representation test that is essentially used by [136], now

with an independent test set instead of the training set.

With n,m≥ 20 in cell π , we may treat Qm(π),Pn(π) as Gaussian random variables. We

then check the null hypothesis H0 : 0 = P(π)−Q(π). Assuming this null hypothesis, a simple

31



z-test is:

Zπ =
Qm(π)−Pn(π)√
p̂
(
1− p̂

)(1
n +

1
m

)
where p̂ = nPn(π)+mQm(π)

n+m . We then report two values for a significance level s = 0.05: the number

of significantly different cells (‘bins’) with Zπ > s (NDB over-representing), and the number

with Zπ <−s (NDB under-representing).

Together, these summary statistics — CT , NDB-over, NDB-under — detect the ways in

which Q broadly represents P without directly copying the training set T .

2.3.3 Performance Guarantees

We next provide some simple guarantees on the performance of the global test statistic

U(Qm). Guarantees for the average test is more complicated, and is left as a direction for future

work.

We begin by showing that when the null hypothesis H0 does not hold, UQm has some

desirable properties – 1
mnUQm is a consistent estimator of the quantity of interest, ∆T (P,Q):

Theorem 1. For true distribution P, model distribution Q, and distance metric d : X → R, the

estimator 1
mnUQm →P ∆(P,Q) according to the concentration inequality

Pr
( ∣∣ 1

mn
UQm−∆(P,Q)

∣∣≥ t
)
≤ exp

(
− 2t2mn

m+n

)

Furthermore, when the model distribution Q actually matches the true distribution P,

under modest assumptions we can expect 1
mnUQm to be near 1

2 :

Theorem 2. If Q = P, and the corresponding distance distribution L(Q) = L(P) is non-atomic,

then

E
[ 1

mn
UQm

]
=

1
2

and E[ZU ] = 0

32



Proofs are provided in Appendices B.0.1 and B.0.2.

Additionally, we show that for a Gaussian Kernel Density Estimator, the parameter σ that

satisfies the condition in Equation 2.2 is the σ corresponding to a maximum likelihood Gaussian

KDE model. Recall that a KDE model is described by

qσ (x) =
1

(2π)k/2|T |σ k ∑
t∈T

exp
(
−∥x− t∥2

2σ2

)
, (2.4)

where the posterior probability that a random draw x∼ qσ (x) comes from the Gaussian compo-

nent centered at training point t is

Qσ (t|x) =
exp(−∥x− t∥2/(2σ2))

∑t ′∈T exp(−∥x− t ′∥2/(2σ2))

Lemma 3. For the kernel density estimator (2.4), the maximum-likehood choice of σ , namely

the maximizer of EX∼P[logqσ (X)], satisfies

EX∼P

[
∑
t∈T

Qσ (t|X)∥X− t∥2
]
=

EY∼Qσ

[
∑
t∈T

Qσ (t|Y )∥Y − t∥2
]

See Appendix B.0.3 for proof. Unless σ is large, we know that for any given x ∈X ,

∑t∈T Qσ (t|x)∥x− t∥2 ≈ d(x) = mint∈T ∥x− t∥2. So, enforcing that EX∼P[d(X)] = EY∼Q[d(Y )],

and more loosely that EA∼L(P)
B∼L(Q)

[1B>A] =
1
2 provides an excellent non-parametric approach to

selecting a Gaussian KDE, and ought to be enforced for any Q attempting to emulate P; after all,

Theorem 2 points out that effectively any model with Q = P also yields this condition.
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(a) (b) (c) (d)

Figure 2.2. Response of four baseline test methods to data-copying of a Gaussian KDE on
‘moons’ dataset. Only the two-sample NN test (c) is able to detect data-copying KDE models
as σ moves below σMLE (depicted as a red dot). The gray trace is proportional to the KDE’s
log-likelihood measured on a held-out validation set.

2.4 Experiments

Having clarified what we mean by data-copying in theory, we turn our attention to data

copying by generative models in practice. We leave representation test results for the appendix,

since this behavior has been well studied in previous works. Specifically, we aim to answer the

two following questions:

1. Are the existing tests that measure generative model overfitting able to capture data-

copying?

2. As popular generative models range from over- to underfitting, does our test indicate

data-copying, and if so, to what degree?

Training, Generated and Test Sets.

In all of the following experiments, we select a training dataset T with test split Pn, and a

generative model Q producing a sample Qm. We perform k-means on T to determine partition

Π, with the objective having a reasonable population of both T and Pn in each π ∈Π. We set

threshold τ , such that we are guaranteed to have at least 20 samples in each cell in order to

validate the gaussian assumption of Zπ ,ZU .

2.4.1 Detecting data-copying

First, we investigate which of the existing generative model tests can detect explicit

data-copying.
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Baselines and Dataset

Here, we probe the four of the methods described in our Related Work section, to see how

they react to data-copying: two-sample NN [121], FID [92], Binning-Based Evaluation [136],

and Precision & Recall [140], which are described in detail in Appendix B.0.4. We run this

test on the two-dimensional ‘moons’ dataset, as it affords us limitless training and test samples

and requires no feature embedding (see Appendix B.0.4 for an example). Note that, without an

embedding, FID is simply the Frechét distance between two MLE normal distributions fit to T

and Qm. We use the same size generated and training sample for all methods, when m < |T |

(especially for large datasets and computationally burdensome samplers) we are forced to use

an m-size training subsample T̃ for running the two-sample NN test due to its constraint that

m = |T |.

The canonical method of measuring the generalization gap (difference between training

and test set likelihoods under the model) is not one of our primary baselines due to the fact that

it cannot scale to contemporary models with intractable likelihoods (e.g. GANs / VAEs). It is,

however, included for reference in Figure 2.3. While this method naturally exposes data-copying,

it is generally insensitive to underfitting: ∆(P,Q)> 1
2 .

We make Q a Gaussian KDE since, as described in Section 2.3.3, it allows us to force

explicit data-copying by setting σ very low. As σ → 0, Q becomes a bootstrap sampler of the

original training set. If a given test method can detect the level of data-copying by Q on T , it

will provide a different response to a heavily over-fit KDE Q (σ ≪ σMLE), a well-fit KDE Q

(σ ≈ σMLE), and an underfit KDE Q (σ ≫ σMLE).

Figure 2.2 depicts how each baseline method responds to KDE Q models of varying

degrees of data-copying, as Q ranges from data-copying (σ = 0.001) up to heavily underfit

(σ = 10). The Frechét and Binning methods report effectively the same value for all σ ≤ σMLE,

indicating inability to detect data-copying. Similarly, the PR curves for different σ values are

high variance and show no meaningful order with respect to σ .

The two-sample NN test does show a mild change in response as σ decreases below
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(a) (b) (c)

(d) (e) (f)

Figure 2.3. CT (Pn,Qm) vs. NN baseline and generalization gap on moons and MNIST digits
datasets. (a,b,c) compare the three methods on the moons dataset. (d,e,f) compare the three
methods on MNIST. In both data settings, the CT statistic is far more sensitive to the data-copying
regime σ ≪ σMLE than the NN baseline. It is more sensitive to underfitting σ ≫ σMLE than
the generalization gap test. The red dot denotes σMLE, and the gray trace is proportional to the
KDE’s log-likelihood measured on a held-out validation set.

σMLE. This makes sense; as points in Qm become closer to points in T , the two-sample NN

accuracy should steadily drop to zero. The reason it does not drop to zero is due to the m

subsampled training points, T̃ ⊂ T , needed to perform this test. As such, each training point

t ∈ T being copied by generated point q ∈ Qm is unlikely to be present in T̃ during the test. This

phenomenon is especially pronounced in some of the following settings.

The reason most of these tests fail to detect data-copying is because most existing methods

focus on another type of overfitting: mode-collapse and -dropping, wherein entire modes of P are

either forgotten or averaged together. However, if a model begins to data-copy, it is definitively

overfitting without mode-collapsing.

Next, we will demonstrate our method on a variety of datasets, models, and embeddings.

We will compare our method to the two-sample NN method in each setting, as it is the only

baseline that responds to explicit data-copying.
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2.4.2 Measuring degree of data-copying

We now aim to answer the second question raised at the beginning of this section: does

CT (Pn,Qm) detect and quantify data-copying? We focus on two types of generative model:

Gaussian KDEs, and neural models.

KDE-based tests

While KDEs do not provide a reliable likelihood in high dimension [151], they do provide

an informative first benchmark of the CT statistic. KDEs allow us to directly force data-copying,

and confirm the theoretical connection between the MLE KDE and CT ≈ 0 described in Lemma

3.

KDEs: ‘moons’ dataset

Here, we repeat the experiment performed in Section 2.4.1, now including the CT statistic

for comparison. Refer to Appendix B.0.4 for experimental details, and examples of the dataset.

For reference, Figure 2.3a depicts how the generalization gap dwindles as KDE σ increases.

While this test is capable of capturing data-copying, it is insensitive to underfitting and relies on

a tractable likelihood.

Figures 2.3b and 2.3c give a side-by-side depiction of CT and the two-sample NN test

accuracies across a range of KDE σ values. Think of CT values as z-score standard deviations.

We see that the CT statistic in Figure 2.3b precisely identifies the MLE model when CT ≈ 0,

and responds sharply to σ values above and below σMLE. The baseline in Figure 2.3c similarly

identifies the MLE Q model when training accuracy ≈ 0.5, but is higher variance and less

sensitive to changes in σ , especially for over-fit σ ≪ σMLE. We will see in the next experiment,

that this test breaks down for more complex datasets when m≪ |T |.

KDEs: MNIST Handwritten Digits

We now extend the KDE test performed on the moons dataset to the significantly more

complex MNIST handwritten digit dataset [111].
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While it would be convenient to directly apply the KDE σ -sweeping tests discussed in

the previous section, there are two primary barriers. The first is that KDE model relies on L2

norms being perceptually meaningful, which is well understood not to be true in pixel space.

The second problem is that of dimensionality: the 784-dimensional space of digits is far too high

for a KDE to be even remotely efficient at interpolating the space.

To handle these issues, we first embed each image, x ∈X , to a perceptually meaningful

64-dimensional latent code, z ∈Z . We achieve this by training a convolutional autoencoder with

a VGGnet perceptual loss produced by [183] (see Appendix B.0.4 for more detail). Surely, even

in the lower 64-dimensional space, the KDE will suffer some from the curse of dimensionality.

We are not promoting this method as a powerful generative model, but rather as an instructive

tool for probing a test’s response to data-copying in the image domain.

Again, the likelihood generalization gap is depicted in Figure 2.3d repeating the trend

seen with the ‘moons’ dataset. Here, we run all tests in the compressed latent space. See

Appendix B.0.4 for experimental details.

Figure 2.3e shows how CT (Pn,Qm) reacts decisively to over- and underfitting. It falsely

determines the MLE σ value as slightly over-fit. However, the region of where CT transitions

from over- to underfit (say −13≤CT ≤ 13) is relatively tight and includes the MLE σ .

Meanwhile, Figure 2.3f shows how — with the generated sample smaller than the

training sample, m≪ |T |— the two-sample NN baseline provides no meaningful estimate of

data-copying. In fact, the most data-copying models with low σ achieve the best scores closest

to 0.5. Again, we are forced to use the m-subsampled T̃ ⊂ T , and most instances of data copying

are completely missed. CT has no such restriction.

These results are promising, and demonstrate the reliability of this hypothesis testing

approach to probing for data-copying across different data domains. In the next section, we

explore how these tests perform on more sophisticated, non-KDE models.
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2.4.3 Neural Model Tests

Gaussian KDE’s may have nice theoretical properties, but are relatively ineffective in

high-dimensional settings, precluding domains like images. As such, we also demonstrate our

experiments on more practical neural models trained on higher dimensional image datasets

(MNIST and ImageNet), with the goal of observing whether the CT statistic indicates data-

copying as these models range from over- to underfit.

MNIST VAE

(a) (b) (c)

(d) (e)

Figure 2.4. Neural model data-copying: figures (b) and (d) demonstrate the CT statistic identify-
ing data-copying in an MNIST VAE and ImageNet GAN as they range from heavily over-fit to
underfit. (c) and (e) demonstrate the relative insensitivity of the NN baseline to this overfitting,
as does figure (a) of the generalization (ELBO) gap method for VAEs. (Note, the markers for (d)
apply to the traces of (e))

Here, we employ our data-copying test, CT (Pn,Qm), on a range of VAEs of varying

complexity trained on the MNIST handwritten digit dataset. Experimental and theoretical

findings have suggested that VAE samplers — under certain assumptions — simply produce

convex combinations of training set samples [28]. In generating an out-of-distribution sample,

an overly complex VAE effectively reproduces nearest-neighbor training samples. Our findings

appear to corroborate this. We vary model complexity by increasing the width (neurons per

layer) in a three-layer VAE (see Appendix B.0.4 for details). As an embedding, we pass all
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(a) Data-copied cells; top: ZU =−1.46, bottom: ZU =−1.00 (b) Underfit cells; top: ZU =+1.40, bottom: ZU =+0.71

Figure 2.5. Data-copied and underfit cells of ImageNet12 ‘coffee’ and ‘soap bubble’ instance
spaces (trunc. threshold = 2). In each 14-figure strip, the top row provides a random series of
training samples from the cell, and the bottom row provides a random series of generated samples
from the cell. (a) Data-copied cells. (a), top: Random training and generated samples from
a ZU =−1.46 cell of the coffee instance space. (a), bottom: Random training and generated
samples from a ZU = −1.00 cell of the bubble instance space. (b) Underfit cells. (b), top:
Random training and generated samples from a ZU =+1.40 cell of the coffee instance space.
(b), bottom: Random training and generated samples from a ZU = +0.71 cell of the bubble
instance space.

samples through the the convolutional autoencoder of Section 2.4.2, and collect statistics in this

64-dimensional space.

Figures 2.4b and 2.4c compare the CT statistic to the NN accuracy baseline . CT behaves

as it did in the previous sections: more complex models over-fit, forcing CT ≪ 0, and less

complex models underfit forcing it≫ 0. We note that the range of CT values is far less dramatic,

which is to be expected since the KDEs were forced to explicitly data-copy. As likelihood is not

available for VAEs, we compute each model’s ELBO on a 10,000 sample held out validation set,

and plot it in gray. We observe that the ELBO spikes for models with CT near 0. Figure 2.4a

shows the ELBO approximation of the generalization gap as the latent dimension (and number of

units in each layer) is decreased. This method is entirely insensitive to over- and underfit models.

This may be because the ELBO is only a lower bound, not the actual likelihood.

The NN baseline in Figure 2.4c is less interpretable, and fails to capture the overfitting

trend as CT does. While all three test accuracies still follow the upward-sloping trend of Figure
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2.3c, they do not indicate where the highest validation set ELBO is. Furthermore, the NN

accuracy statistics are shifted upward when compared to the results of the previous section: all

NN accuracies are above 0.5 for all latent dimensions. This is problematic. A test statistic’s

absolute score ought to bear significance between very different data and model domains like

KDEs and VAEs.

ImageNet GAN

Finally, we scale our experiments up to a more practical image domain. We gather our

test statistics on a state of the art conditional GAN, ‘BigGan’ [29], trained on the Imagenet 12

dataset [138]. Conditioning on an input code, this GAN will generate one of 1000 different

Imagenet classes. We run our experiments separately on three classes: ‘coffee’, ‘soap bubble’,

and ‘schooner’. All generated, test, and training images are embedded to a 64-dimensional space

by first gathering the 2048-dimensional features of an InceptionV3 network ‘Pool3’ layer, and

then projecting them onto the 64 principal components of the training embeddings. Appendix

B.0.4 has more details.

Being limited to one pre-trained model, we increase model variance (‘truncation thresh-

old’) instead of decreasing model complexity. As proposed by BigGan’s authors, all standard

normal input samples outside of this truncation threshold are resampled. The authors suggest

that lower truncation thresholds, by only producing samples at the mode of the input, output

higher quality samples at the cost of variety, as determined by Inception Score (IS). Similarly,

the FID score finds suitable variety until truncation approaches zero.

As depicted in Figure 2.4d, the CT statistic remains well below zero until the truncation

threshold is nearly maximized, indicating that Q produces samples closer to the training set than

real samples tend to be. While FID finds that in aggregate the distributions are roughly similar, a

closer look suggests that Q allocates too much probability mass near the training samples.

Meanwhile, the two-sample NN baseline in Figure 2.4e hardly reacts to changes in

truncation, even though the generated and training sets are the same size, m = |T |. Across all
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truncation values, the training sample NN accuracy remains around 0.5, not quite implying over-

or underfitting.

A useful feature of the CT statistic is that one can examine the ZU scores it is composed

of to see which of the cells π ∈Πτ are or are not copying. Figure 2.5 shows the samples of

over- and underfit clusters for two of the three classes. For both ‘coffee’ and ‘bubble’ classes,

the underfit cells are more diverse than the data-copied cells. While it might seem reasonable

that these generated samples are further from nearest neighbors in more diverse clusters, keep in

mind that the ZU > 0 statistic indicates that they are further from training neighbors than test set

samples are. For instance, the people depicted in underfit ‘bubbles’ cell are highly distorted.

2.5 Conclusion

In this work, we have formalized data-copying: an under-explored failure mode of

generative model overfitting. We have provided preliminary tests for measuring data-copying

and experiments indicating its presence in a broad class of generative models. In future work, we

plan to establish more theoretical properties of data-copying, convergence guarantees of these

tests, and experiments with different model parameters.
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Chapter 3

Sentence-level Privacy for Document Em-
beddings

3.1 Introduction

Language models have now become ubiquitous in NLP [51, 120, 6], pushing the state of

the art in a variety of tasks [147, 119, 129]. While language models capture meaning and various

linguistic properties of text [94, 175], an individual’s written text can include highly sensitive

information. Even if such details are not needed or used, sensitive information has been found

to be vulnerable and detectable to attacks [132, 5, 35]. Reconstruction attacks [167] have even

successfully broken through private learning schemes that rely on encryption-type methods [93].

As of now, there is no broad agreement on what constitutes good privacy for natural

language [96]. Huang u. a. [93] argue that different applications and models require different

privacy definitions. Several emerging works propose to apply Metric Differential Privacy [7]

at the word level [73, 74, 38, 134, 179, 168] . They propose to add noise to word embeddings,

such that they are indistinguishable from their nearest neighbours.

At the document level, however, the above definition has two areas for improvement.

First, it may not offer the level of privacy desired. Having each word indistinguishable with

similar words may not hide higher level concepts in the document, and may not be satisfactory

for many users. Second, it may not be very interpretable or easy to communicate to end-users,

since the privacy definition relies fundamentally on the choice of embedding model to determine
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Figure 3.1. x and x′ yield z ∈ Rd with similar probability.

which words are indistinguishable with a given word. This may not be clear and precise enough

for end-users to grasp.

In this work, we propose a new privacy definition for documents: sentence privacy. This

guarantee is both strong and interpretable: any sentence in a document must be indistinguishable

with any other sentence. A document embedding is sentence-private if we can replace any single

sentence in the document and have a similar probability of producing the same embedding.

As such, the embedding only stores limited information unique to any given sentence. This

definition is easy to communicate and strictly stronger than word-level definitions, as modifying

a sentence can be changing one word.

Although this definition is strong, we are able to produce unsupervised, general em-

beddings of documents that are useful for downstream tasks like sentiment analysis and topic

classification. To achieve this we propose a novel privacy mechanism, DeepCandidate, which

privately samples a high-dimensional embedding from a preselected set of candidate embeddings

derived from public, non-private data. DeepCandidate works by first pre-tuning a sentence

encoder on public data such that semantically different document embeddings are far apart from

each other. Then, we approximate each candidate’s Tukey Depth within the private documents’
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Figure 3.2. DeepCandidate generates a private embedding z of document x by selecting from a
set F of public, non-private document embeddings. Sentences from x are encoded by G′. The
privacy mechanism MTD, then privately samples from F , with a preference for candidates with
high Tukey Depth, ‘deep candidates’. G′ is trained beforehand to ensure that deep candidates are
likely to exist and are relevant to x.

sentence embeddings. Deeper candidates are the most likely to be sampled to represent the

private document. We evaluate DeepCandidate on three illustrative datasets, and show that these

unsupervised private embeddings are useful for both sentiment analysis and topic classification

as compared to baselines.

In summary, this work makes the following contributions to the language privacy litera-

ture:

1. A new, strong, and interpretable privacy definition that offers complete indistinguishability

to each sentence in a document.

2. A novel, unsupervised embedding technique, DeepCandidate, to generate sentence-private

document embeddings.

3. An empirical assessment of DeepCandidate, demonstrating its advantage over baselines,

delivering strong privacy and utility.

3.2 Background and Related Work

Setting.

We denote a ‘document’ as a sequence of sentences. Let s ∈S be any finite-length

sentence. Then, the space of all documents is X = S ∗ and document x ∈X is written as
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x = (s1,s2, . . . ,sk) for any non-negative integer k of sentences. In this work, we focus on cohesive

documents of sentences written together like reviews or emails, but our methods and guarantees

apply to any sequence of sentences, such as a collection of messages written by an individual

over some period of time.

Our task is to produce an embedding z ∈ Rd of any document x ∈X such that any

single sentence si ∈ x is indistinguishable with every other sentence s′i ∈S \si. That is, if one

were to replace any single sentence in the document si ∈ x with any other sentence s′i ∈S \si,

the probability of producing a given embedding z is similar. To achieve this, we propose a

randomized embedding function (the embedding mechanism) M : X → Rd , that generates a

private embedding z = M (x) that is useful for downstream tasks.

3.2.1 Differential Privacy

The above privacy notion is inspired by Differential Privacy (DP) [56]. It guarantees that

— whether an individual participates (dataset D) or not (dataset D′) — the probability of any

output only chances by a constant factor.

Definition 3.2.1 (Differential Privacy). Given any pair of datasets D,D′ ∈D that differ only in

the information of a single individual, we say that the mechanism A : D → O , satisfies ε-DP if

Pr[A (D) ∈ O]≤ eε Pr[A (D′) ∈ O]

for any event O⊆ O .

Note that we take probability over the randomness of the mechanism A only, not the

data distribution. DP has several nice properties that make it easy to work with including closure

under post-processing, an additive privacy budget (composition), and closure under group privacy

guarantees (guarantees to a subset of multiple participants). See Dwork u. a. 63 for more details.

The exponential mechanism [126] allows us to make a DP selection from an arbitrary

output space O based on private dataset D. A utility function over input/output pairs, u :
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D×O→R determines which outputs are the best selection given dataset D. The log probability

of choosing output o ∈ O when the input is dataset D ∈ D is then proportional to its utility

u(D,o). The sensitivity of u(·, ·) is the worst-case change in utility over pairs of neighboring

datasets (D,D′) that change in one entry, ∆u = maxD,D′,o |u(D,o)−u(D′,o)|.

Definition 3.2.2. The exponential mechanism AExp : D → O is a randomized algorithm with

output distribution

Pr[AExp(D) = o] ∝ exp
(εu(D,o)

2∆u

)
.

3.2.2 Related Work

Natural Language Privacy.

Previous work has demonstrated that NLP models and embeddings are vulnerable to

reconstruction attacks [35, 5, 132]. In response there have been various efforts to design privacy-

preserving techniques and definitions across NLP tasks. A line of work focuses on how to make

NLP model training satisfy DP [101, 9]. This is distinct from our work in that it satisfies central

DP – where data is first aggregated non-privately and then privacy preserving algorithms (i.e.

training) are run on that data. We model this work of the local version of DP [57], wherein

each individual’s data is made private before centralizing. Our definition guarantees privacy to a

single document as opposed to a single individual.

A line of work more comparable to our approach makes documents locally private by

generating a randomized version of a document that satisfies some formal privacy definition. As

with the private embedding of our work, this generates locally private representation of a given

document x. The overwhelming majority of these methods satisfy an instance of Metric-DP [7]

at the word level [73, 74, 38, 134, 179, 168]. As discussed in the introduction, this guarantees

that a document x is indistinguishable with any other document x′ produced by swapping a single

word in x with a similar word. Two words are ‘similar’ if they are close in the word embeddings

space (e.g. GloVe). This guarantee is strictly weaker than our proposed definition, SentDP, which
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offers indistinguishability to any two documents that differ in an entire sentence.

Privacy-preserving embeddings.

There is a large body of work on non-NLP privacy-preserving embeddings, as these

embeddings have been shown to be vulnerable to attacks [144]. Li und Clifton [114] attempt to

generate locally private embeddings by bounding the embedding space, and we compare with

this method in our experiments. Kamath u. a. [97] propose a method for privately publishing

the average of embeddings, but their algorithm is not suited to operate on the small number of

samples (sentences) a given document offers. Finally, Beimel u. a. [16] propose a method for

privately learning halfspaces in Rd , which is relevant to private Tukey Medians, but their method

would restrict input examples (sentence embeddings) to a finite discrete set in Rd , a restriction

we cannot tolerate.

3.3 Sentence-level Privacy

We now introduce our simple, strong privacy definition, along with concepts we use to

satisfy it.

3.3.1 Definition

In this work, we adopt the local notion of DP [57], wherein each individual’s data is guar-

anteed privacy locally before being reported and centralized. Our mechanism M receives a single

document from a single individual, x ∈X . We require that M provides indistinguishability

between documents x,x′ differing in one sentence.

Definition 3.3.1 (Sentence Privacy, SentDP). Given any pair of documents x,x′ ∈X that differ

only in one sentence, we say that a mechanism

M : X → O satisfies ε-SentDP if

Pr[M (x) ∈ O]≤ eε Pr[M (x′) ∈ O]
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for any event O⊆ O .

We focus on producing an embedding of the given document x, thus the output space

is O = Rd . For instance, consider the neighboring documents x = (s1,s2, . . . ,sk) and x′ =

(s1,s′2, . . . ,sk) that differ in the second sentence, i.e. s2,s′2 can be any pair of sentences in

S 2. This is a strong notion of privacy in comparison to existing definitions across NLP tasks.

However, we show that we can guarantee SentDP while still providing embeddings that are

useful for downstream tasks like sentiment analysis and classification. In theory, a SentDP

private embedding z should be able to encode any information from the document that is not

unique to a small subset of sentences. For instance, z can reliably encode the sentiment of x as

long as multiple sentences reflect the sentiment. By the group privacy property of DP, which

SentDP maintains, two documents differing in a sentences are aε indistinguishable. So, if more

sentences reflect the sentiment, the more M can encode this into z without compromising on

privacy.

3.3.2 Sentence Mean Embeddings

Our approach is to produce a private version of the average of general-purpose sentence

embeddings. By the post-processing property of DP, this embedding can be used repeatedly in

any fashion desired without degrading the privacy guarantee. Our method makes use of existing

pre-trained sentence encoding models. We denote this general sentence encoder as G : S → Rd .

We show in our experiments that the mean of sentence embeddings,

g(x) =
1
k ∑

si∈x
G(si) , (3.1)

maintains significant information unique to the document and is useful for downstream tasks like

classification and sentiment analysis.

We call g(x) the document embedding since it summarizes the information in document

x. While there exist other definitions of document embeddings [173, 152, 18], we decide to use
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averaging as it is a simple and established embedding technique [23, 89, 113].

3.3.3 Tukey Depth

Depth is a concept in robust statistics used to describe how central a point is to a

distribution. We borrow the definition proposed by Tukey [154]:

Definition 3.3.2. Given a distribution P over Rd , the Tukey Depth of a point y ∈ Rd is

TDP(y) = inf
w∈Rd

P{y′ : w · (y′− y)≥ 0} .

In other words, take the hyperplane orthogonal to vector w, hw, that passes through

point y. Let Pw
1 be the probability under P that a point lands on one side of hw and let Pw

2 be

the probability that a point lands on the other side, so Pw
1 +Pw

2 = 1. y is considered deep if

min(Pw
1 ,P

w
2 ) is close to a half for all vectors w (and thus all h passing through y). The Tukey

Median of distribution P, TMED(P), is the set of all points with maximal Tukey Depth,

TMED(P) = argmaxy ∈ RdTDP(y) . (3.2)

We only access the distribution P through a finite sample of i.i.d. points, Y = {y1,y2, . . . ,yn}.

The Tukey Depth w.r.t. Y is given by

TDY (y) = inf
w∈Rd

|{y′ ∈ Y : w · (y′− y)≥ 0}| ,

and the median, TMED(Y ), maximizes the depth and is at most half the size of our sample
⌊n

2

⌋
.

Generally, finding a point in TMED(Y ) is hard; SOTA algorithms have an exponential

dependency in dimension [39], which is a non-starter when working with high-dimensional

embeddings. However, there are efficient approximations which we will take advantage of.
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3.4 DeepCandidate

While useful and general, the document embedding g(x) does not satisfy SentDP. We now

turn to describing our privacy-preserving technique, DeepCandidate, which generates general,

ε-SentDP document embeddings that preserve relevant information in g(x), and are useful for

downstream tasks. To understand the nontrivial nature of this problem, we first analyze why the

simplest, straightfoward approaches are insufficient.

Motivation.

Preserving privacy for high dimensional objects is known to be challenging [97, 74, 186]

. For instance, adding Laplace noise directly to g(x), as done to satisfy some privacy definitions

[73, 7], does not guarantee SentDP for any ε . Recall that the embedding space is all of Rd .

A change in one sentence can lead to an unbounded change in g(x), since we do not put any

restrictions on the general encoder G. Thus, no matter how much noise we add to g(x) we cannot

satisfy SentDP.

A straightforward workaround might be to simply truncate embeddings such that they

all lie in a limited set such as a sphere or hypercube as done in prior work [114, 4]. In doing

so, we bound how far apart embeddings can be for any two sentences, ∥G(si)−G(s′i)∥1, thus

allowing us to satisfy SentDP by adding finite variance noise. However, such schemes offer poor

utility due to the high dimensional nature of useful document embeddings (we confirm this in

our experiments). We must add noise with standard deviation proportional to the dimension of

the embedding, thus requiring an untenable degree of noise for complex encoders like BERT

which embed into R768.

Our method has three pillars: (1) sampling from a candidate set of public, non-private

document embeddings to represent the private document, (2) using the Tukey median to approxi-

mate the document embedding, and (3) pre-training the sentence encoder, G, to produce relevant

candidates with high Tukey depth for private document x.
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3.4.1 Taking advantage of public data: sampling from candidates

Instead of having our mechanism select a private embedding z from the entire space of

Rd , we focus the mechanism to select from a set of m candidate embeddings, F , generated by m

public, non-private documents. We assume the document x is drawn from some distribution µ

over documents X . For example, if we know x is a restaurant review, µ may be the distribution

over all restaurant reviews. F is then a collection of document embeddings over m publicly

accessible documents xi ∼ µ ,

F = { fi = g(xi) : x1, . . . ,xm
iid∼ µ} ,

and denote the corresponding distribution over fi as g(µ). By selecting candidate documents that

are similar in nature to the private document x, we inject an advantageous inductive bias into our

mechanism, which is critical to satisfy strong privacy while preserving information relevant to x.

3.4.2 Approximating the document embedding:
The Tukey Median

We now propose a novel mechanism MTD, which approximates g(x) by sampling a

candidate embedding from F . MTD works by concentrating probability on candidates with high

Tukey Depth w.r.t. the set of sentence embeddings Sx = {G(si) : si ∈ x}. We model sentences

si from document x as i.i.d. draws from distribution νx. Then, Sx is k draws from g(νx), the

distribution of sentences from νx passing through G. Deep points are a good approximation of the

mean under light assumptions. If g(νx) belongs to the set of halfspace-symmetric distributions

(including all elliptic distributions e.g. Gaussians), we know that its mean lies in the Tukey

Median [187].

Formally, MTD is an instance of the exponential mechanism (Definition 3.2.2), and is

defined by its utility function. We set the utility of a candidate document embedding fi ∈ F to be
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an approximation of its depth w.r.t. sentence embeddings Sx,

u(x, fi) = T̂DSx( fi) . (3.3)

The approximation T̂DSx , which we detail in the Appendix, is necessary for computational

efficiency. If the utility of fi is high, we call it a ‘deep candidate’ for sentence embeddings Sx.

The more candidates sampled (higher m), the higher the probability that at least one has

high depth. Without privacy, we could report the deepest candidate, z = argmax fi ∈ FT̂DSx( fi).

However, when preserving privacy with MTD, increasing m has diminishing returns. To see this,

fix a set of sentence embeddings Sx for document x and the i.i.d. distribution over candidate

embeddings fi ∼ g(µ). This induces a multinomial distribution over depth,

u j(x) = Pr[u(x, fi) = j],
⌊ k

2⌋

∑
j=0

u j(x) = 1 ,

where randomness is taken over draws of fi.

For candidate set F and sentence embeddings Sx, the probability of MTD’s selected

candidate, z, having (approximated) depth j∗ is given by

Pr[u(x,z) = j∗] =
a j∗(x)eε j∗/2

∑
⌊ k

2⌋
j=0 a j(x)eε j/2

(3.4)

where a j(x) is the fraction of candidates in F with depth j w.r.t. the sentence embeddings of

document x, Sx. For m sufficiently large, a j(x) concentrates around u j(x), so further increasing

m does not increase the probability of MTD sampling a deep candidate.

Table 3.1. Conditions for deep candidates

ε b j∗

3 55 5
6 25 3
10 5 2
23 1 1
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Figure 3.3. G′ is trained to encourage similar documents to embed close together and different
documents to embed far apart. We first compute embeddings of all (public, non-private) training
set documents T with pretrained encoder G, TG = {ti = g(xi) : xi ∈ T} (blue dots). We run
k-means to define nc clusters, and label each training document embedding ti ∈ TG with its cluster
c. We then train H to recode sentences to S′x such that their mean g′(x) can be used by a linear
model L to predict cluster c. Our training objective is the cross-entropy loss of the linear model
L in predicting c.

For numerical intuition, suppose m = 5000 (as in our experiments), ≥ b candidates have

depth≥ j∗, and all other candidates have depth 0, MTD will sample one of these deep candidates

w.p. ≥ 0.95 under the settings in Table 3.1.

For low ε < 10 (high privacy), about 1% of candidates need to have high depth (≥ 3) in

order to be reliably sampled. Note that this is only possible for documents with ≥ 6 sentences.

For higher ε ≥ 10, MTD will reliably sample low depth candidates even if there are only a few.

From these remarks we draw two insights on how DeepCandidate can achieve high utility.

(1) More sentences A higher k enables greater depth, and thus a higher probability of sampling
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deep candidates with privacy. We explore this effect in our experiments.

(2) Tuned encoder By tuning the sentence encoder G for a given domain, we can modify the

distribution over document embeddings g(µ) and sentence embeddings g(νx) to encourage deep

candidates (high probability u j for deep j) that are relevant to document x.

(a) 20 News: Sweep ε (b) GoodReads: Sweep ε (c) IMDB: Sweep ε

(d) 20 News: Sweep k (e) GoodReads: Sweep k (f) IMDB: Sweep k

Figure 3.4. Comparison of our mechanism with two baselines: truncation [114] and word-level
Metric DP [73] for both sentiment analysis (IMDB) and topic classification (GoodReads, 20News)
on private, unsupervised embeddings. All plots show test-set macro F1 scores. The top row
shows performance vs. privacy parameter ε (lower is better privacy). The bottom row shows
performance vs. number of sentences k with ε = 10. DeepCandidate outperforms both baselines
across datasets and tasks. Note that at a given ε , word-level Metric-DP is a significantly weaker
privacy guarantee.

3.4.3 Taking advantage of structure: cluster-preserving embeddings

So far, we have identified that deep candidates from F can approximate g(x). To produce

a good approximation, we need to ensure that 1) there reliably exist deep candidates for any

given set of sentence embeddings Sx, and 2) that these deep candidates are good representatives

of document x. The general sentence encoder G used may not satisfy this ‘out of the box’.

If the distribution on document embeddings g(µ) is very scattered around the instance space

R768, it can be exceedingly unlikely to have a deep candidate fi among sentence embeddings
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Sx. On the other hand, if distribution g(µ) is tightly concentrated in one region (e.g. ‘before

training’ in Figure 3.3), then we may reliably have many deep candidates, but several will be

poor representatives of the document embedding g(x).

To prevent this, we propose an unsupervised, efficient, and intuitive modification to the

(pretrained) sentence encoder G. We freeze the weights of G and add additional perceptron

layers mapping into the same embeddings space H : Rd → Rd , producing the extended encoder

G′ = H ◦G. Broadly, we train H to place similar document embeddings close together, and

different embeddings far part. To do so, we leverage the assumption that a given domain’s

distribution over document embeddings g(µ) can be parameterized by nc clusters, visualized as

the black circles in Figure 3.3. H’s aim is to recode sentence embeddings such that document

embedding clusters are preserved, but spaced apart from each other. By preserving clusters, we

are more likely to have deep candidates (increased probability u j for high depth j). By spacing

clusters apart, these deep candidates are more likely to come from the same or a nearby cluster as

document x, and thus be good representatives. Note that H is domain-specific: we train separate

H encoders for each dataset.

3.4.4 Sampling Algorithm

The final component of DeepCandidate is computing the approximate depth of a candidate

for use as utility in the exponential mechanism as in Eq. (3.3). We use a version of the approx-

imation algorithm proposed in [82]. Intuitively, our algorithm computes the one-dimensional

depth of each fi among x’s sentence embeddings Sx on each of p random projections. The

approximate depth of fi is then its lowest depth across the p projections. We are guaranteed

that T̂DSx( fi) ≥ TDSx( fi). Due to space constraints, we leave the detailed description of the

algorithm for the Appendix.

Theorem 3.4.1. MTD satisfies ε-Sentence Privacy

Proof follows from the fact that T̂DSx( fi) has bounded sensitivity (changing one sentence

57



can only change depth of fi by one). We expand on this, too, in the Appendix.

3.5 Experiments

3.5.1 Datasets

We produce private, general embeddings of documents from three English-language

datasets:

Good Reads [159] 60k book reviews from four categories: fantasy, history, romance, and

childrens literature. Train-48k — Val-8k — Test-4k

20 News Groups [110] 11239 correspondences from 20 different affinity groups. Due to

similarity between several groups (e.g. comp.os.ms-windows.misc and comp.sys.ibm.pc.hardware),

the dataset is partitioned into nine categories. Train-6743k — Val-2247k — Test-2249k

IMDB [122] 29k movie reviews from the IMDB database, each labeled as a positive or

negative review. Train-23k — Val-2k — Test-4k

To evaluate utility of these unsupervised, private embeddings, we check if they are

predictive of document properties. For the Good Reads and 20 News Groups datasets, we

evaluate how useful the embeddings are for topic classification. For IMDB we evaluate how

useful the embeddings are for sentiment analysis (positive or negative review). Our metric for

performance is test-set macro F1 score.

3.5.2 Training Details & Setup

For the general encoder, G : S → R768, we use SBERT [135], a version of BERT fine-

tuned for sentence encoding. Sentence embeddings are generated by mean-pooling output tokens.

In all tasks, we freeze the weights of SBERT. The cluster-preserving recoder, H, as well as every

classifier is implemented as an instance of a 4-layer MLP taking 768-dimension inputs and only

differing on output dimension. We denote an instance of this MLP with output dimension o as

MLPo. We run 5 trials of each experiment with randomness taken over the privacy mechanisms,
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and plot the mean along with a ± 1 standard deviation envelope.

DeepCandidate:

The candidate set F consists of 5k document embeddings from the training set, each

containing at least 8 sentences. To train G′, we find nc = 50 clusters with k-means. We train a

classifier Cdc = MLPr on document embeddings g′(x) to predict class, where r is the number of

classes (topics or sentiments).

3.5.3 Baselines

We compare the performance of DeepCandidate with 4 baselines: Non-private, Trunca-

tion, Word-level Metric-DP, and Random Guesser.

Non-private: This demonstrates the usefulness of non-private sentence-mean document

embeddings g(x). We generate g(x) for every document using SBERT, and then train a classifier

Cnonpriv = MLPr to predict x’s label from g(x).

Truncation: We adopt the method from Li und Clifton 114 to truncate (clip) sentence

embeddings within a box in R768, thereby bounding sensitivity as described at the beginning of

Section 3.4. Laplace noise is then added to each dimension. Documents with more sentences

have proportionally less noise added due to the averaging operation reducing sensitivity.

Word Metric-DP (MDP): The method from Feyisetan u. a. 73 satisfies ε-word-level

metric DP by randomizing words. We implement MDP to produce a randomized document x′,

compute g(x′) with SBERT, and predict class using Cnonpriv.

Random Guess: To set a bottom-line, we show the theoretical performance of a random

guesser only knowing the distribution of labels.

3.5.4 Results & Discussion

How does performance change with privacy parameter ε?

This is addressed in Figures 3.4a to 3.4c. Here, we observe how the test set macro F1 score

changes with privacy parameter ε (a lower ε offers stronger privacy). Generally speaking, for
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local differential privacy, ε < 10 is taken to be a strong privacy regime, 10≤ ε < 20 is moderate

privacy, and ε ≥ 25 is weak privacy. The truncation baseline mechanism does increase accuracy

with increasing ε , but never performs much better than the random guesser. This is to be expected

with high dimension embeddings, since the standard deviation of noise added increases linearly

with dimension.

The word-level MDP mechanism performs significantly better than truncation, achieving

relatively good performance for ε ≥ 30. There are two significant caveats, however. First, is the

privacy definition: as discussed in the Introduction, for the same ε , word-level MDP is strictly

weaker than SentDP. The second caveat is the level of ε at which privacy is achieved. Despite a

weaker privacy definition, the MDP mechanism does not achieve competitive performance until

the weak-privacy regime of ε . We suspect this is due to two reasons. First, is the fact that the MDP

mechanism does not take advantage of contextual information in each sentence as our technique

does; randomizing each word independently does not use higher level linguistic information.

Second, is the fact that the MDP mechanism does not use domain-specific knowledge as our

mechanism does with use of relevant candidates and domain specific sentence encodings.

In comparison, DeepCandidate offers strong utility across tasks and datasets for relatively

low values of ε , even into the strong privacy regime. Beyond ε = 25, the performance of

DeepCandidate tends to max out, approximately 10-15% below the non-private approach. This is

due to the fact that DeepCandidate offers a noisy version of an approximation of the document

embedding g(x) – it cannot perform any better than deterministically selecting the deepest

candidate, and even this candidate may be a poor representative of x. We consider this room for

improvement, since there are potentially many other ways to tune G′ and select the candidate

pool F such that deep candidates are nearly always good representatives of a given document x.

How does performance change with the number of sentences k?

This is addressed in Figures 3.4d to 3.4f. We limit the test set to those documents with k in the

listed range on the x-axis. We set ε = 10, the limit of the strong privacy regime. Neither baseline

offers performance above that of the random guesser at this value of ε . DeepCandidate produces
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precisely the performance we expect to see: documents with more sentences result in sampling

higher quality candidates, confirming the insights of Section 3.4.2. Across datasets and tasks,

documents with more than 10-15 sentences tend to have high quality embeddings.

3.6 Conclusions and Future Work

We introduce a strong and interpretable local privacy guarantee for documents, SentDP,

along with DeepCandidate, a technique that combines principles from NLP and robust statistics

to generate general ε-SentDP embeddings. Our experiments confirm that such methods can

outperform existing approaches even with with more relaxed privacy guarantees. Previous

methods have argued that it is “virtually impossible” to satisfy pure local DP [73, 74] at the word

level while capturing linguistic semantics. Our work appears to refute this notion at least at the

document level.

To follow up, we plan to explore other approaches (apart from k-means) of capturing

the structure of the embedding distribution g(µ) to encourage better candidate selection. We

also plan to experiment with decoding private embeddings back to documents by using novel

candidates produced by a generative model trained on F .
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Chapter 4

Privacy Implications of Shuffling

4.1 Introduction

Differential Privacy (DP) and its local variant (LDP) are the most commonly accepted

notions of data privacy. LDP has the significant advantage of not requiring a trusted centralized

aggregator, and has become a popular model for commercial deployments, such as those of

Microsoft [52], Apple [84], and Google [66, 70, 21]. Its formal guarantee asserts that an

adversary cannot infer the value of an individual’s private input by observing the noisy output.

However in practice, a vast amount of public auxiliary information, such as address, social

media connections, court records, property records, income and birth dates [109], is available for

every individual. An adversary, with access to such auxiliary information, can learn about an

individual’s private data from several other participants’ noisy responses. We illustrate this as

follows.

Problem. An analyst runs a medical survey in Alice’s community to investigate how the

prevalence of a highly contagious disease changes from neighborhood to neighborhood.

Community members report a binary value indicating whether they have the disease.

Next, consider the following two data reporting strategies.
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Strategy 1. Each data owner passes their data through an appropriate randomizer (that

flips the input bit with some probability) in their local devices and reports the noisy output

to the untrusted data analyst.

Strategy 2. The noisy responses from the local devices of each of the data owners are

collected by an intermediary trusted shuffler which dissociates the device IDs (metadata)

from the responses and uniformly randomly shuffles them before sending them to the

analyst.

Strategy 1 corresponds to the standard LDP deployment model (for example, Apple and

Microsoft’s deployments). Here the order of the noisy responses is informative of the identity

of the data owners – the noisy response at index 1 corresponds to the first data owner and so

on. Thus, the noisy responses can be directly linked with its associated device/account ID and

subsequently, auxiliary information. This puts Alice’s data under the threat of inference attacks.

For instance, an adversary1 may know the home addresses of the participants and use this to

identify the responses of all the individuals from Alice’s household. Being highly infectious,

all or most of them will have the same true value (0 or 1). Hence, the adversary can reliably

infer Alice’s value by taking a simple majority vote of her and her household’s noisy responses.

Note that this does not violate the LDP guarantee since the inputs are appropriately randomized

when observed in isolation. Additionally, on account of being public, the auxiliary information

is known to the adversary (and analyst) a priori – no mechanism can prevent their disclosure.

For instance, any attempts to include Alice’s address as an additional feature of the data and

then report via LDP is futile – the adversary would simply discard the reported noisy address

and use the auxiliary information about the exact addresses to identify the responses of her

household members. We call such threats inference attacks – recovering an individual’s private

input using all or a subset of other participants’ noisy responses. It is well known that protecting

against inference attacks that rely on underlying data correlations is beyond the purview of

1The analyst and the adversary could be same, we refer to them separately for the ease of understanding.
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(a) Original Data

(b) LDP (c) Our scheme: ra (d) Our scheme: rb (e) Uniform shuffle

(f) Attack: LDP (g) Attack: ra (h) Attack: rb (i) Attack: unif. shuff.

Figure 4.1. Demonstration of how our proposed scheme thwarts inference attacks at different
granularities. Fig. 4.1a depicts the original sensitive data (such as income bracket) with eight
color-coded labels. The position of the points represents public information (such as home
address) used to correlate them. There are three levels of granularity: warm vs. cool clusters,
blue vs. green and red vs. orange crescents, and light vs. dark within each crescent. Fig. 4.1b
depicts ε = 2.55 LDP. Fig. 4.1c and 4.1d correspond to our scheme, each with α = 1 (privacy
parameter, Def. 4.4.3). The former uses a smaller distance threshold (r1, used to delineate
the granularity of grouping – see Sec. 4.4.2) that mostly shuffles in each crescent. The latter
uses a larger distance threshold (r2) that shuffles within each cluster. Figures in the bottom
row demonstrate an inference attack (uses Gaussian process correlation) on all four cases. We
see that LDP reveals almost the entire dataset (Fig. 4.1f) while uniform shuffling prevents all
classification (4.1i). However, the granularity can be controlled with our scheme (Figs. 4.1g,
4.1h).

DP [105, 153].

Strategy 2 corresponds to the recently introduced shuffle DP model, such as Google’s

Prochlo [21]. Here, the noisy responses are completely anonymized – the adversary cannot

identify which LDP responses correspond to Alice and her household. Under such a model, only

information that is completely order agnostic (i.e., symmetric functions that can be computed

over just the bag of values, such as aggregate statistics) can be extracted. Consequently, the

analyst also fails to accomplish their original goal as all the underlying data correlation is

destroyed.

Thus, we see that the two models of deployment for LDP present a trade-off between

vulnerability to inference attacks and scope of data learnability. In fact, as demonstrated in

[103], it is impossible to defend against all inference attacks while simultaneously maintaining

utility for learning. In the extreme case that the adversary knows everyone in Alice’s community
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has the same true value (but not which one), no mechanism can prevent revelation of Alice’s

datapoint short of destroying all utility of the dataset. This then begs the question: Can we

formally suppress specific inference attacks targeting each data owner while maintaining

some meaningful learnability of the private data? Referring back to our example, can we thwart

attacks inferring Alice’s data using specifically her households’ responses and still allow the

medical analyst to learn its target trends? Can we offer this to every data owner participating?

In this paper, we strike a balance and propose a generalized shuffle framework that

meets the utility requirements of the above analyst while formally protecting data owners

against inference attacks. Our solution is based on the key insight: the order of the data acts

as the proxy for the identity of data owners as illustrated above. The granularity at which the

ordering is maintained formalizes resistance to inference attacks while retaining some meaningful

learnability of the private data. Specifically, we guarantee each data owner that their data is

shuffled together with a carefully chosen group of other data owners. Revisiting our example,

consider uniformly shuffling the responses from Alice’s household and her immediate neighbors.

Now an adversary cannot use her household’s responses to predict her value any better than they

could with a random sample of responses from this group. In the same way that LDP prevents

reconstruction of her datapoint using specifically her noisy response, this scheme prevents

reconstruction of her datapoint using specifically her households’ responses. The real challenge

is offering such guarantees equally to every data owner. Bob, Alice’s neighbor, needs his

households’ responses shuffled in with his neighbors, as does Luis who is a neighbor of Bob

but not of Alice. Thus, we have n data owners with n distinct, overlapping groups. Our scheme

supports arbitrary groupings (overlapping or not), introducing a diverse and tunable class of

privacy/utility trade-offs which is not attainable with either LDP or uniform shuffling alone. For

the above example, our scheme can formally protect each data owner from inference attacks

using specifically their household, while still learning how disease prevalence changes across the

neighborhoods of Alice’s community.

This work offers two key contributions to the machine learning privacy literature:
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• Novel privacy guarantee. We propose a novel privacy definition, dσ -privacy that captures

the privacy of the order of a data sequence (Sec. 4.4.2) and formalizes the degree of resistance

against inference attacks (Sec. 4.4.3). dσ -privacy allows assigning an arbitrary group, Gi,

to each data owner, DOi, i ∈ [n]. For instance, the groups can represent individuals in the

same age bracket, ‘friends’ on social media, or individuals living in each other’s vicinity (as

in case of Alice in our example). Recall that the order is informative of the data owner’s

identity. Intuitively, dσ -privacy protects DOi from inference attacks that arise from knowing

the identity of the members of their group Gi (Sec. 4.4.3). Additionally, this grouping

determines a threshold of learnability – any learning that is order agnostic within a group

(disease prevalence in a neighborhood – the data analyst’s goal in our example) is utilitarian

and allowed; whereas analysis that involves identifying the values of individuals within a

group (disease prevalence within specific households – the adversary’s goal) is regarded as a

privacy threat and protected against. See Fig. 4.1 for a toy demonstration of how our guarantee

allows tuning the granularity at which trends can be learned.

• Novel shuffle framework. We propose a novel mechanism that shuffles the data systematically

and achieves dσ -privacy. This provides a generalized shuffle framework that interpolates be-

tween no shuffling (LDP) and uniform random shuffling (shuffle model) in terms of protection

against inference attacks and data learnability.

4.2 Related Work
The shuffle model of DP [22, 45, 65] differs from our scheme as follows. These works

(1) study DP benefits of shuffling whereas we study the inferential privacy benefits, and (2) only

study uniformly random shuffling where ours generalizes this to tunable, non-uniform shuffling

(see App. D.1.15).

A steady line of work has studied inferential privacy [98, 103, 81, 47, 60, 153]. Our work departs

from those in that we focus on local inferential privacy and do so via the new angle of shuffling.

Older works such as k-anonymity [149], l-diversity [123], Anatomy [165] and others [163,
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150, 170, 46, 54] have studied the privacy risk of non-sensitive auxiliary information or ‘quasi

identifiers’. These works (1) focus on the setting of dataset release, whereas we focus on dataset

collection, and (2) do not offer each data owner formal inferential guarantees, whereas we do.

The De Finetti attack [102] shows how shuffling schemes are vulnerable to inference attacks that

correlate records to recover the original permutation of sensitive attributes. A strict instance of

our privacy guarantee can thwart such attacks (at the cost of no utility, App. D.1.3).

4.3 Background

Notations. Boldface (such as x = ⟨x1, · · · ,xn⟩) denotes a data sequence (ordered list);

normal font (such as x1) denotes individual values and {·} represents a multiset or bag of values.

4.3.1 Local Differential Privacy

The local model consists of a set of data owners and an untrusted data aggregator (analyst);

each individual perturbs their data using a LDP algorithm (randomizers) and sends it to the

analyst. The LDP guarantee is formally defined as

Definition 4.3.1. [Local Differential Privacy, LDP [160, 68, 99]] A randomized algorithm

M : X → Y is ε-locally differentially private (or ε-LDP ), if for any pair of private values

x,x′ ∈X and any subset of output,

Pr
[
M (x) ∈W

]
≤ eε ·Pr

[
M (x′) ∈W

]
(4.1)

The shuffle model is an extension of the local model where the data owners first ran-

domize their inputs. Additionally, an intermediate trusted shuffler applies a uniformly random

permutation to all the noisy responses before the analyst can view them. The anonymity provided

by the shuffler requires less noise than the local model for achieving the same privacy.
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4.3.2 Mallows Model

A permutation of a set S is a bijection S 7→ S. The set of permutations of [n],n ∈ N forms

a symmetric group Sn. As a shorthand, we use σ(x) to denote applying permutation σ ∈ Sn to

a data sequence x of length n. Additionally, σ(i), i ∈ [n],σ ∈ Sn denotes the value at index i in

σ and σ−1 denotes its inverse. For example, if σ = (1 3 5 4 2) and x = ⟨21,33,45,65,67⟩, then

σ(x) = ⟨21,45,67,65,33⟩, σ(2) = 3,σ(3) = 5 and σ−1 = (1 5 2 4 3).

Mallows model is a popular probabilistic model for permutations [124]. The mode of the

distribution is given by the reference permutation σ0 – the probability of a permutation increases

as we move ‘closer’ to σ0 as measured by rank distance metrics, such as the Kendall’s tau

distance (Def. D.1.2). The dispersion parameter θ controls how fast this increase happens.

Definition 4.3.2. For a dispersion parameter θ , a reference permutation σo ∈ Sn, and a rank

distance measure d : Sn×Sn 7→ R, PΘ,d(σ : σ0) =
1

ψ(θ ,d)e
−θd(σ ,σ0) is the Mallows model where

ψ(θ ,d) = ∑σ∈Sn e−θd(σ ,σ0) is a normalization term and σ ∈ Sn.

4.4 Data Privacy and Shuffling

Figure 4.2. Trusted shuffler mediates on y

In this section, we present dσ -privacy and a

shuffling mechanism capable of achieving the dσ -

privacy guarantee.

4.4.1 Problem Setting

In our problem setting, we have n data own-

ers DOi, i ∈ [n] each with a private input xi ∈X (Fig. 4.2). The data owners first randomize

their inputs via a ε-LDP mechanism to generate yi = M (xi). Additionally, just like in the shuffle

model, we have a trusted shuffler. It mediates upon the noisy responses y = ⟨y1, · · · ,yn⟩ to obtain

the final output sequence z = A (y) (A corresponds to Alg. 1) which is sent to the untrusted

data analyst. The shuffler can be implemented via trusted execution environments (TEE) just

like Google’s Prochlo. Next, we formally discuss the notion of order and its implications.
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Definition 4.4.1. (Order) The order of a sequence x = ⟨x1, · · · ,xn⟩ refers to the indices of its set

of values {xi} and is represented by permutations from Sn.

When the noisy response sequence y = ⟨y1, · · · ,yn⟩ is represented by the identity permu-

tation σI = (12 · · · n), the value at index 1 corresponds to DO1 and so on. Standard LDP releases

the identity permutation w.p. 1. The output of the shuffler, z, is some permutation of the sequence

y, i.e.,

z = σ(y) = ⟨yσ(1), · · · ,yσ(n)⟩

where σ is determined via A (·). For example, for σ = (4 5 2 3 1), we have z = ⟨y4,y5,y2,y3,y1⟩

which means that the value at index 1 (DO1) now corresponds to that of DO4 and so on.

4.4.2 Definition of dσ -privacy

Figure 4.3. An exam-
ple social media connectivity
graph te.g

Inferential risk captures the threat of an adversary who

infers DOi’s private xi using all or a subset of other data own-

ers’ released y j’s. Since we cannot prevent all such attacks and

maintain utility, our aim is to formally limit which data owners

can be leveraged in inferring DOi’s private xi. To make this precise, each DOi may choose a

corresponding group, Gi ⊆ [n], of data owners. dσ -privacy guarantees that y j values originating

from a data owner’s group Gi are shuffled together. In doing so, the LDP values corresponding

to subsets of DOi’s group I ⊂ Gi cannot be reliably identified, and thus cannot be singled out to

make inferences about DOi’s xi. If Alice’s group includes her whole neighborhood, LDP data

originating from her household cannot be singled out to recover her private xi.

Any choice of grouping G = {G1,G2, . . . ,Gn} can be accommodated under dσ -privacy. Each

data owner may choose a group large enough to hide anyone they feel sufficient risk from. We

outline two systematic approaches to assigning groups as follows:

• Let t = ⟨t1, · · · , tn⟩, ti ∈ T denote some public auxiliary information about each individual.

DOi’s group, Gi, could consist of all those DO j’s who are similar to DOi w.r.t. the public
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auxiliary information ti, t j according to some distance measure d : T ×T → R. Here,

we define ‘similar’ as being under a threshold2 r ∈ R such that Gi = { j ∈ [n]
∣∣d(ti, t j) ≤

r},∀i ∈ [n]. For example, d(·) can be Euclidean distance if T corresponds to geographical

locations, thwarting inference attacks leveraging one’s household or immediate neighbors. If

T represents a social media connectivity graph, d(·) can measure the path length between

two nodes, thwarting inference attacks using specifically one’s close friends. For the example

social media connectivity graph depicted in Fig. 4.3, assuming distance metric path length

and r = 2, the groups are defined as G1 = {1,7,8,2,5,6},G2 = {2,1,7,5,6,3} and so on.

• Alternatively, the data owners might opt for a group of a specific size r < n. Collecting private

data from a social media network, we may set r = 50, where each Gi is encouraged to include

the 50 data owners DOi interacts with most frequently.

Intuitively, dσ -privacy protects DOi against inference attacks that leverages correlations at a finer

granularity than Gi. In other words, under dσ -privacy, one subset of k data owners ⊂ Gi (e.g.

household) is no more useful for targeting xi than any other subset of k data owners ⊂ Gi (e.g.

some combination of neighbors). This leads to the following key insight for the formal privacy

definition.

Key Insight. Formally, our privacy goal is to prevent the leakage of ordinal information

from within a group. We achieve this by systematically bounding the dependence of the mecha-

nism’s output on the relative ordering (of data values corresponding to the data owners) within

each group.

First, we introduce the notion of neighboring permutations.

Definition 4.4.2. (Neighboring Permutations) Given a group assignment G , two permutations

σ ,σ ′ ∈ Sn are defined to be neighboring w.r.t. a group Gi ∈ G (denoted as σ≈Giσ
′) if σ( j) =

σ ′( j) ∀ j /∈ Gi.

Neighboring permutations differ only in the indices of its corresponding group Gi. For

example, σ = (1 2 4 5 7 6 10 3 8 9) and σ ′ = (7 3 4 5 6 2 1 10 8 9) are neighboring w.r.t G1 (Fig. 4.3)
2We could also have different thresholds, ri, for every data owner, DOi.
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since they differ only in σ(1),σ(2),σ(5),σ(6),σ(7) and σ(8). We denote the set of all neighboring

permutations as

NG = {(σ ,σ ′)|σ ≈Gi σ
′,∃Gi ∈ G } (4.2)

Now, we formally define dσ -privacy as follows.

Definition 4.4.3 (dσ -privacy). For a given group assignment G on a set of n entities and a

privacy parameter α ∈ R≥0, a randomized mechanism A : Y n 7→ V is (α,G )-dσ private if for

all y ∈ Y n and neighboring permutations σ ,σ ′ ∈ NG and any subset of output O⊆ V , we have

Pr[A
(
σ(y)

)
∈ O]≤ eα ·Pr

[
A
(
σ
′(y)
)
∈ O

]
(4.3)

σ(y) and σ ′(y) are defined to be neighboring sequences.

dσ -privacy states that, for any group Gi, the mechanism is (almost) agnostic of the

order of the data within the group. Even after observing the output, an adversary cannot learn

about the relative ordering of the data within any group. Thus, two neighboring sequences are

indistinguishable to an adversary. An important property of dσ -privacy is that post-processing

computations does not degrade privacy. Additionally, when applied multiple times, the privacy

guarantee degrades gracefully. Both the properties are analogous to DP and are presented in App.

D.1.4.

Note. Any data sequence x = ⟨x1, · · · ,xn⟩ can be viewed as a two-tuple,
(
{x},σ

)
, where

{x} denotes the bag of values and σ ∈ Sn denotes the corresponding indices of the values

which represents the order of the data. The ε-LDP protects the bag of data values, {x}, while

dσ -privacy protects the order, σ . Thus, the two privacy guarantees cater to orthogonal parts of a

data sequence (see Thm. 5 ). Also, α = ∞ (0),r = 0 (n) represents the standard LDP (shuffle

DP) setting.
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4.4.3 Privacy Implications

The group assignment G delineates a threshold of learnability which determines the

privacy/utility tradeoff as follows.

• Learning allowed (Analyst’s goal). dσ -privacy can answer queries that are order agnostic

within groups, such as aggregate statistics of a group. In Alice’s case, the analyst can estimate

the disease prevalence in her neighborhood.

• Learning disallowed (Adversary’s goal). Adversaries cannot identify (noisy) values of

individuals within any group. While they may learn the disease prevalence in Alice’s neigh-

borhood, they cannot determine the prevalence within her household and use that to recover

her value xi.

To make this precise, we first formalize the privacy implications of the dσ guarantee

in the standard Bayesian framework, typically used for studying inferential privacy. Next, we

formalize the privacy provided by the combination of LDP and dσ guarantees by way of a

decision theoretic adversary.

Bayesian Adversary. Consider a Bayesian adversary with any prior P on the joint distribution

of noisy responses, PrP [y], which models their beliefs on the correlation between the participants

(such as the correlation between Alice and her households’ disease status). Their goal is to infer

DOi’s private input xi. As with early DP works [59], we consider an informed adversary. Here,

the adversary knows (1) the sequence (assignment) of noisy values outside Gi, yGi
, and (2) the

(unordered) bag of noisy values in Gi, {yGi}. dσ -privacy bounds the prior-posterior odds gap on

xi for such as informed adversary as follows:

Theorem 4. For a given group assignment G on a set of n data owners, if a shuffling mechanism

A : Y n 7→ Y n is (α,G )-dσ private, then for each data owner DOi, i ∈ [n],

max
i∈[n]

a,b∈X

∣∣∣∣ log
PrP [xi = a|z,{yGi},yGi

]

PrP [xi = b|z,{yGi},yGi
]
− log

PrP [xi = a|{yGi},yGi
]

PrP [xi = b|{yGi},yGi
]

∣∣∣∣≤ α

for a prior distribution P , where z = A (y) and yGi
is the noisy sequence for data owners outside
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Gi.

See App D.1.5 for the proof and further discussion on the semantic meaning of the above

guarantee.

Decision Theoretic Adversary. Here, we analyse the privacy provided by the combina-

tion of LDP and dσ guarantees. Consider a decision theoretic adversary who aims to identify

the noisy responses, {zI}, that originated from a specific subset of data owners, I ⊂ Gi (such

as the members of Alice’s household). We denote the adversary by a (possibly randomized)

function mapping from the output z sequence to a set of k indices, DAdv : Y n→ [n]k, where

k = |I|. These k indices, H ∈ [n]k, represent the elements of z that DAdv believes originated

from the data owners in I. DAdv wins if > k/2 of the chosen indices indeed originated from

I, i.e, |σ(H)∩ I| > k/2, where zi = yσ(i) and σ(H) = {σ(i) : i ∈ H}. DAdv loses if most of H

did not originate from I, i.e., |σ(H)∩ I| ≤ k/2. We choose the above adversary because this

re-identification is a key step in carrying out inference attacks – in failing to reliably re-identify

the noisy values originating from I, one cannot make inferences on xi specifically from the subset

I ⊂ Gi.

Theorem 5. For A (M (x)) = z where M (·) is ε-LDP and A (·) is α - dσ private, we have

Pr[DAdv loses]≥
⌊r− k

k

⌋
e−(2kε+α) ·Pr[DAdv wins]

for any input subgroup I ⊂ Gi,r = |Gi| and k < r/2.

The adversary’s ability to re-identify the {zI} values comes partially from the bag of

values (quantified by ε) and partially from the order (quantified by α). We highlight two

implications of this fact.
• When ε is small (≪ 1), an adversary’s ability to re-identify the noisy values {zI} originating

from I may very well be dominated by α . For instance, if ε = 0.2 and k = 5, the adversary’s

advantage is dominated by α for any α > 2. When using LDP alone (no shuffling), α = ∞ and

the adversary can exactly recover which values came from Alice’s household. As such, even a
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moderate α value (obtained via dσ -privacy) significantly reduces the ability to re-identify the

values.

• When the loss is dominated by ε (2kε ≫ α), the above expression allows us to disentangle

the source of privacy loss. In this regime, adversaries get most of their advantage from the

bag of values released, not from the order of the release. That is, even if α = 0 (uniform

random shuffling), participants still suffer a large risk of re-identification simply due to the

noisy values being reported. Thus, no shuffling mechanism can prevent re-identification in

this regime.

Discussion. In spirit, DP does not guarantee protection against recovering DOi’s private xi

value. It guarantees that – had a user not participated (or equivalently submitted a false value

x′i) – the adversary would have about the same ability to learn their true value, potentially from

the responses of other data owners. In other words, the choice to participate is unlikely to be

responsible for the disclosure of xi. Similarly, dσ -privacy does not prevent disclosure of xi. By

requiring indistinguishability of neighboring permutations, it guarantees that – had the data

owners of any group Gi completely swapped identities – the adversary would have about the same

ability to learn xi. So most likely, Alice’s household is not uniquely responsible for a disclosure

of her xi: had her household swapped identities with any of her neighbors, the adversary would

probably draw the same conclusion on xi. Or, as detailed in Thm.5, an adversary cannot reliably

resolve which {z} values originated from Alice’s household, so they cannot draw conclusions

based on her household’s responses. In a nutshell,

• Inference attacks can recover a data owner DOi’s private data xi from the responses of other

data owners. The order of the data acts as the proxy for the data owner’s identity which can aid

an adversary in corralling the subset of other data owners who correlate with DOi (required to

make a reliable inference of xi).

• DP alleviates concerns that DOi’s choice to share data (yi) will result in disclosure of xi, and

dσ -privacy alleviates concerns that DOi’s group’s (Gi) choice to share their identity will result
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in disclosure of xi.

4.4.4 dσ -private Shuffling Mechanism

We now describe our novel shuffling mechanism that can achieve dσ -privacy. In a

nutshell, our mechanism samples a permutation from a suitable Mallows model and shuffles the

data sequence accordingly. We can characterize the dσ -privacy guarantee of our mechanism

in the same way as that of the DP guarantee of classic mechanisms [62] – with variance and

sensitivity. Intuitively, a larger dispersion parameter θ ∈ R (Def. 4.3.2) reduces randomness

over permutations, increasing utility and increasing (worsening) the privacy parameter α . The

maximum value of θ for a given α guarantee depends on the sensitivity of the rank distance

measure d(·) over all neighboring permutations NG . Formally, we define the sensitivity as

∆(σ0 : d,G ) = max
(σ ,σ ′)∈NG

|d(σ0σ ,σ0)− d(σ0σ
′,σ0)| ,

the maximum change in distance d(·) from the reference permutation σ0 for any pair of neigh-

boring permutations (σ ,σ ′) ∈ NG permuted by σ0. The privacy parameter of the mechanism is

then proportional to its sensitivity α = θ ·∆(σ0 : d,G ).

Given G and a reference permutation σ0, the sensitivity of a rank distance measure d(·)

depends on the width, ωσ

G , which measures how ‘spread apart’ the members of any group of G

are in σ0:

ω
σ
Gi

= max
( j,k)∈Gi×Gi

∣∣∣σ−1( j)−σ
−1(k)

∣∣∣, i ∈ [n]; ω
σ

G = max
Gi∈G

ω
σ
Gi

For example, for σ = (1 3 7 8 6 4 5 2 9 10) and G1 = {1,7,8,2,5,6}, ωσ
G1

= |σ−1(1)−σ−1(2)|= 7. The

sensitivity is an increasing function of the width. For instance, for Kendall’s τ distance dτ(·) we

have ∆(σ0 : dτ ,G ) = ω
σ0
G (ωσ0

G +1)/2.

If a reference permutation clusters the members of each group closely together (low width), then

the groups are more likely to permute within themselves. This has two benefits. First, for the
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same θ (θ is an indicator of utility as it determines the dispersion of the sampled permutation), a

lower value of width gives lower α (better privacy). Second, if a group is likely to shuffle within

itself, it will have better (η ,δ )-preservation – a novel utility metric, we propose, for a shuffling

mechanism. Intuitively, a mechanism is (η ,δ )-preserving w.r.t a subset of indices S⊂ [n] if at

least η% of its indices are shuffled within itself with probability (1−δ ). The rationale behind

this metric is that it captures the utility of the learning allowed by dσ -privacy – if S is equal to

some group G ∈ G , high (η ,δ )-preservation allows overall statistics of G to be captured since

η% of the correct data values remain preserved. We present the formal discussion in App. D.1.7.

Unfortunately, minimizing ωσ

G is an NP-hard problem (Thm. 16 in App. D.1.9). Instead,

we estimate the optimal σ0 using the following heuristic3 approach based on a graph breadth

first search.

Algorithm Description. Alg. 1 above proceeds as follows. We first compute the group

assignment, G , based on the public auxiliary information and desired threshold r following

discussion in Sec. 4.4.2 (Step 1). Then we construct σ0 with a breadth first search (BFS) graph

traversal.

We translate G into an undirected graph (V,E), where the vertices are indices V = [n] and two

indices i, j are connected by an edge if they are both in some group (Step 2). Next, σ0 is

computed via a breadth first search traversal (Step 4) – if the k-th node in the traversal is i,

then σ0(k) = i. The rationale is that neighbors of i (members of Gi) would be traversed in close

succession. Hence, a neighboring node j is likely to be traversed at some step h near k which

means |σ−1
0 (i)−σ

−1
0 ( j)|= |h− k| would be small (resulting in low width). Additionally, starting

from the node with the highest degree (Steps 3-4) which corresponds to the largest group in G

(lower bound for ωσ

G for any σ ) helps to curtail the maximum width in σ0. See App. D.1.16 for

evaluations of this heuristic’s approximation.

This is followed by the computation of the dispersion parameter, θ , for our Mallows model

(Steps 5-6). Next, we sample a permutation from the Mallows model (Step 7) jσ ∼ Pθ (σ : σ0) and

3The heuristics only affect σ0 (and utility). Once σ0 is fixed, ∆ is computed exactly as discussed above.
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we apply the inverse reference permutation to it, σ∗ = σ
−1
0

jσ to obtain the desired permutation

for shuffling. Recall that jσ is (most likely) close to σ0, which is unrelated to the original order

of the data. σ
−1
0 therefore brings σ∗ back to a shuffled version of the original sequence (identity

permutation σI). Note that since Alg. 1 is publicly known, the adversary/analyst knows σ0.

Hence, even in the absence of this step from our algorithm, the adversary/analyst could perform

this anyway. Finally, we permute y according to σ∗ and output the result z = jσ(y) (Steps 9-10).

Theorem 6. Alg. 1 is (α,G )-dσ private where α = θ ·∆(σ0 : d,G ).

The proof is in App. D.1.11. Note that Alg. 1 provides the same level of pri-

vacy (α) for any two group assignment G ,G ′ as long as they have the same sensitivity, i.e,

∆(σ0 : dτ ,G ) = ∆(σ0 : dτ ,G ′). This leads to the following theorem which generalizes the privacy

guarantee for any group assignment.

Theorem 7. Alg. 1 satisfies (α ′,G ′)-dσ privacy for any group assignment G ′ with α ′ =

α
∆(σ0:d,G ′)
∆(σ0:d,G ) (proof in App. D.1.12.)

Note. Producing σ∗ is completely data (y) independent. It only requires access to the

public auxiliary information t. Hence, Steps 1−6 can be performed in a pre-processing phase

and do not contribute to the actual running time. See App. D.1.10 for an illustration of Alg. 1

and runtime analysis.

4.5 Evaluation
The previous sections describe how our shuffling framework interpolates between stan-

dard LDP and uniform random shuffling. We now experimentally evaluate this asking the

following two questions –

Q1. Does the Alg. 1 mechanism protect against realistic inference attacks?

Q2. How well can Alg. 1 tune a model’s ability to learn trends within the shuffled data, i.e., tune

data learnability?
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(a) PUDF: Attack (b) Twitch: Attack (c) PUDF: Learnability (d) Twitch: Learnability

Figure 4.4. Our scheme interpolates between standard LDP (orange line) and uniform shuffling
(blue line) in both privacy and data learnability. All plots increase group size along x-axis (except
(d)). (a)→ (b): The fraction of participants vulnerable to an inferential attack. (c)→ (d): The
accuracy of a calibration model trained on z predicting the distribution of LDP outputs at any
point t ∈T , such as the distribution of medical insurance types used specifically in the Houston
area (not possible when uniformly shuffling across Texas).

Algorithm 1: dσ -private

Shuffling Mech.
Input: LDP sequence

y = ⟨y1, · · · ,yn⟩;
Public aux. info.

t = ⟨t1, · · · tn⟩;
Dist. threshold r; Priv.

param. α;

Output: z - Shuffled output

sequence;

22 G = ComputeGroupAssignment

(t,r);
44 Construct graph G with

5 a) vertices V = {1,2, · · · ,n}
6 b) edges

E = {(i, j) : j ∈ Gi,Gi ∈ G }
88 root = argmaxi∈[n] |Gi|;

1010 σ0 = BFS(G,root);

1212 ∆= ComputeSensitivity(σ0,G )

1414 θ = α/∆;

1616 jσ ∼ Pθ ,d(σ0) ;

1818 σ∗ = σ
−1
0

jσ ;

2020 z = ⟨yσ∗(1), · · ·yσ∗(n)⟩;
2222 Return z;

We evaluate on four datasets. We are not

aware of any prior work that provides compara-

ble local inferential privacy. Hence, we baseline

our mechanism with the two extremes: standard

LDP and uniform random shuffling. For concrete-

ness, we detail our procedure with the PUDF

dataset [3] (license), which comprises n ≈ 29k

psychiatric patient records from Texas. Each data

owner’s sensitive value xi is their medical pay-

ment method, which is reflective of socioeco-

nomic class (such as medicaid or charity). Pub-

lic auxiliary information t ∈T is the hospital’s

geolocation. Such information is used for under-

standing how payment methods (and payment

amounts) vary from town to town for insurances

in practice [64]. Uniform shuffling across Texas

precludes such analyses. Standard LDP risks in-

ference attacks, since patients attending hospitals
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in the same neighborhood have similar socioeco-

nomic standing and use similar payment methods, allowing an adversary to correlate their noisy

yi’s. To trade these off, we apply Alg. 1 with d(·) being distance (km) between hospitals, α = 4

and Kendall’s τ rank distance measure for permutations.

Our inference attack predicts DOi’s xi by taking a majority vote of the z j values of the

25 data owners within r∗ of ti and who are most similar to DOi w.r.t some additional privileged

auxiliary information t p
j ∈Tp. For PUDF, this includes the 25 data owners who attended hospitals

that are within r∗ km of DOi’s hospital, and are most similar in payment amount t p
j . Using an

ε = 2.5 randomized response mechanism, we resample the LDP sequence y 50 times, and apply

Alg. 1’s chosen permutation to each, producing 50 z’s. We then mount the majority vote attack

on each xi for each z. If the attack on a given xi is successful across ≥ 90% of these LDP trials,

we mark that data owner as vulnerable – although they randomize with LDP, there is a ≥ 90%

chance that a simple inference attack can recover their true value. We record the fraction of

vulnerable data owners as ρ . We report 1-standard deviation error bars over 10 trials.

Additionally, we evaluate data learnability – how well the underlying statistics of the

dataset are preserved across T . For PUDF, this means training a model on the shuffled z to

predict the distribution of payment methods used near, for instance, ti = Houston for DOi. For

this, we train a calibrated model, Cal : T →Dx, on the shuffled outputs where Dx is the set

of all distributions on the domain of sensitive attributes X . We implement Cal as a gradient

boosted decision tree (GBDT) model [77] calibrated with Platt scaling [131]. For each location

ti, we treat the empirical distribution of xi values within r∗ as the ground truth distribution at

ti, denoted by E (ti) ∈Dx. Then, for each ti, we measure the Total Variation error between the

predicted and ground truth distributions TV
(
E (ti),Calr(ti)

)
. We then report λ (r) – the average

TV error for distributions predicted at each ti ∈ t normalized by the TV error of naively guessing

the uniform distribution at each ti. With standard LDP, this task can be performed relatively

well at the risk of inference attacks. With uniformly shuffled data, it is impossible to make

geographically localized predictions unless the distribution of payment methods is identical in
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every Texas locale.

We additionally perform the above experiments on the following three datasets

• Twitch [137]. This dataset, gathered from the Twitch social media platform, includes a graph

of ≈ 9K edges (mutual friendships) along with node features. The user’s history of explicit

language is private X = {0,1}. T is a user’s mutual friendships, i.e. ti is the i’th row of the

graph’s adjacency matrix. We do not have any TP here and select the 25 neighbors randomly.

• Syn. This is a synthetic dataset of size 20K which can be classified at three granularities –

8-way, 4-way and 2-way (Fig. 4.1a shows a scaled down version of the dataset). The eight

color labels are private X = [8]; the 2D-positions are public T = R2. For learnability, we

measure the accuracy of 8-way, 4-way and 2-way GBDT models trained on z on an equal

sized test set at each r.

• Adult [55]. This dataset is derived from the 1994 Census and has ≈ 33K records. Whether

DOi’s annual income is ≥ 50k is considered private, X = {≥ 50k,< 50k}. T = [17,90] is

age and TP is the individual’s marriage status. Due to lack of space figures are in App. D.1.14.

Experimental Results.

Q1. Our formal guarantee on the inferential privacy loss (Thm. 4) is described w.r.t to a

‘strong’ adversary (with access to {yGi},yGi
). Here, we test how well does our proposed scheme

(Alg. 1) protect against inference attacks on real-world datasets without any such assumptions.

Additionally, to make our attack more realistic, the adversary has access to extra privileged

auxiliary information TP which is not used by Alg. 22. Fig. 4.4a→ 4.4b show that our scheme

significantly reduces the attack efficacy. For instance, ρ is reduced by 2.7X at the attack distance

threshold r∗ for PUDF.

Additionally, ρ for our scheme varies from that of LDP4 (minimum privacy) to uni-

form shuffle (maximum privacy) with increasing r (equivalently group size as in Fig. 4.4b)

4Our scheme gives lower ρ than LDP at r = 0 because the resulting groups are non-singletons. For instance, for
PUDF, Gi includes all individuals with the same zipcode as DOi.
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thereby spanning the entire privacy spectrum. As expected, ρ decreases with decreasing privacy

parameter α (Fig. D.3b).

Figure 4.5. Syn: Learnabil-
ity

Q2. Fig.4.4c → 4.4d show that λ varies from that of

LDP (maximum learnability) to that of uniform shuffle (minimum

learnability) with increasing r (equivalently, group size), thereby

providing tunability. Interestingly, for Adult our scheme reduces

ρ by 1.7X at the same λ as that of LDP for r = 1 (Fig. D.3c). Fig.

4.5 shows that the distance threshold r defines the granularity at

which the data can be classified. LDP allows 8-way classification

while uniform shuffling allows none. The granularity of classification can be tuned by our scheme

– r8, r4 and r2 mark the thresholds for 8-way, 4-way and 2-way classifications, respectively.

4.6 Conclusion

We have proposed a new privacy definition, dσ -privacy that casts new light on the

inferential privacy benefits of shuffling and a novel shuffling mechanism to achieve the same.
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Chapter 5

Location Trace Privacy

5.1 Introduction

Location data is acutely sensitive information, detailing where we live, work, eat, shop,

worship, and often when, too. Yet increasingly, location data is being uploaded for smartphone

services such as ride hailing and weather forecasting and then being brokered in a thriving user

location aftermarket to advertisers and even investors [156]. Users share location ‘traces’ when

they release a sequence of locations, often across a short period of time. These traces are then

used by central servers to monitor traffic trends, track individual fitness, target marketing, and

even to study the effectiveness of social-distancing ordinances [75]. Here, we aim to provide a

local privacy guarantee, wherein traces are sanitized at the user level before being transmitted

to a centralized service. Note that this requires different guarantees and mechanisms than in

aggregate applications making queries on large location trace databases.

Specifically, we guarantee a radius r of privacy at any sensitive time point or combination

of time points within a given trace. This is challenging due to the fact that the locations within

traces are highly inter-dependent. Informally, traces tend to follow relatively smooth trajectories

in time. If not sanitized carefully, that knowledge alone may be exploited to infer actual locations

from the released version of the trace. This work centers on designing meaningful privacy

definitions and corresponding mechanisms that takes this dependence into account.

Broadly speaking, the vast majority of prior work on rigorous data privacy can be divided
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into two classes that differ by the kind of guarantee offered: differential and inferential privacy.

Differential privacy (DP) guarantees that the participation of a single person in a dataset does

not change the probability of any outcome by much. In contrast, inferential privacy guarantees

that an adversary who has a certain degree of prior knowledge cannot make certain sensitive

inferences.

DP for releasing aggregate statistics of a spatio-temporal dataset has been well studied

[69, 31, 171, 1]. There, the idea is to add enough noise to released statistics such that the effect of

any user’s participation is obscured, even if their locations are highly correlated to each other or

to those of other users. Here, such a guarantee does not apply since we aim to release a sanitized

version of a single user’s trace.

In this local case we cannot rule out the possibility that the data curator knows who each

individual is and who participated. Instead, we want to guarantee that event level information

about each trace remains private. In this work, at any sensitive time t we mask whether the user

visited location A or location B for any A,B less than r apart. Without ad hoc modifications,

standard DP tools are insufficient for achieving this for the primary reasons that 1) the domain

of location is virtually unbounded and 2) locations are highly dependent across a short period

of time. To see this, consider the following instinctual approaches to achieving location trace

privacy.

Approach A:

apply Local Differential Privacy (LDP) to each trace. Imagine a dataset of traces, each

from a separate individual. Applying LDP implies that every trace has nearly the same probability

of releasing the same sanitized version. This would be robust to arbitrary side information about

dependence between locations in any one trace. Unfortunately, the amount of additive noise

needed to achieve this would destroy nearly all utility: sanitized traces from California would

have almost the same probability of showing up in Connecticut as do those from New York.

Even if we constrained the domain to just Manhattan, this definition would not permit enough
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utility to perform e.g. traffic monitoring.

Approach B:

apply LDP to each location within a trace. To preserve some utility, imagine a single

trace as a dataset of n locations, each of which enjoys ε-LDP guarantees. This alone is not

robust to arbitrary dependence between locations. By the logic of group LDP, it does satisfy

kε-LDP regardless of the dependence between any k locations. This approach has two setbacks.

First, how to set k is unclear. Technically, all points in the trace are correlated, so to ward off

worst-case correlations one might set it to the length of the trace, which is identical to Approach

A. Second, even if location is bounded to a single city or county, satisfying this definition would

still destroy nearly all utility. We cannot use sanitized traces for traffic monitoring if locations

from either side of town have about same probability of being sanitized to the same value.

Approach C:

apply LDP guarantees to each location within a trace, but only within any region less than

width r. This definition is known as Geo-Indistinguishability (GI) [8]. GI provides a substitute

for restricting the domain of location allowing us to salvage some utility. Here, only locations

within r of each other are required to have ε-LDP guarantees. In DP parlance, we might say that

‘neighboring traces’ have one location altered by ≤ r and are identical everywhere else. This

gives us the guarantee we want for a trace with one location, but not with more than one location.

To see why, compare with Approach B. Analogously, (ε,r)-GI along a trace provides (kε,r)-GI

to any subset of k locations. Like Approach B, setting k is unclear. Yet unlike Approach B, GI is

not resistant to arbitrary dependence between any k locations. Any dependence where a change

in one or more location(s) by r implies a change in some other location(s) by ≥ r breaks the GI

guarantee. Even with the simplest models of dependence (e.g. if we know the true trace ought to

move in a straight line) this is a problem.

To reiterate, applying LDP to traces or to locations within traces (Approaches A & B)

does not provide a principled method for meaningful privacy with reasonable utility. GI adapts
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LDP by giving guarantees only within a radius r. But in relaxing LDP, GI compromises the

standard DP tools for handling obvious dependences between data-points like group DP. In our

eyes, this warrants an inferentially private approach. Here, we continue to provide privacy within

a radius r, thus allowing for utility. Yet instead of providing resistance to arbitrary dependence

across any k locations, we aim to provide resistance to natural models of dependence between all

locations. One may view such models as an adversary’s prior beliefs about what traces are likely,

like the straight-line prior mentioned earlier.

In contrast with differential privacy, providing inferential privacy guarantees is more

complex, and has been less studied. It is however appropriate for applications such as ours,

where information must be released based on a single person’s data, the features of which are

private and dependent. [? ] provide a formal inferential privacy framework called Pufferfish,

and design mechanisms for specific Pufferfish instances. As these instances do not apply to our

setting, we adapt the Pufferfish framework to location privacy and more broadly to releasing any

sequence of real-valued private information.

X1

Z1

X2

Z2

X3

Z3

X4

Z4

(a)

XIS

ZIS

XIU

ZIU

(b)

Figure 5.1. (a) An example graphical model of a four point trace X . (b) The more general
grouped version of the model in (a), with the secret set XIS = {X1,X2} and the remaining set
XIU = {X3,X4}.

Contributions:

In this work, we propose an inferentially private approach to guaranteeing a radius r of

privacy for sensitive points in location traces in three parts:

• First, we propose an adaptable privacy framework tailored to sequences of highly dependent

datapoints that adapts Pufferfish privacy [105] to use Rényi Differential Privacy (RDP)
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[128]. Given a model of dependence between points, this framework more appropriately

estimates the risk of inference within radius r on points of interest than do vanilla LDP

approaches.

• We then demonstrate how to implement our framework for the highly flexible and ex-

pressive setting of Gaussian process (GP) priors. These nonparametric models capture

the spatiotemporal aspect of location data [115, 118, 41]. GPs have a natural synergy

with Rényi privacy enabling an interpretable upper bound on privacy loss for additive

Gaussian privacy mechanisms (that add Gaussian noise to each point). Using this, we

design a semidefinite program (SDP) that optimizes the correlation of such mechanisms

to minimize privacy loss without destroying utility, efficiently thwarting the inference of

sensitive locations.

• Finally, we provide experiments on both location trace and home temperature data to

demonstrate the advantage of these techniques over Approach C mechanisms like GI. We

find that our mechanisms successfully obscure sensitive locations while respecting utility

constraints, even when the prior model is misspecified.

Ultimately, by resisting only reasonable kinds of dependence in the data we are able to of-

fer both meaningful privacy and utility. We show that our framework is robust to misspecification

of this reasonable dependence and offers a privacy loss that is both tractable and interpretable.

5.2 Preliminaries and Problem Setting

A user transmits a sequence of N 2-dimensional locations along with their corresponding

timestamps, collectively forming a ‘trace’. We ‘unroll’ the trace into n real-valued random

variables X = {X1,X2, . . . ,Xn}. A trace of 10 2d locations has n = 2×10 = 20 random variables

Xi. Instead of releasing the raw trace X , the user releases a private version Z = {Z1,Z2, . . . ,Zn},

by way of an additive noise mechanism Z = X +G, where G = {G1,G2, . . . ,Gn} is random noise

produced by a privacy mechanism.
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An adversary, receiving the obscured trace Z, then reasons about the true locations at

some sensitive time(s). To reference the sensitive times, we use index set IS. If the sensitive

indices are IS = {1,2}, the corresponding location values are XIS = {X1,X2} (e.g. referring to

the two coordinates of one location). When inferring the true value of XIS , the adversary makes

use of the remaining points in the trace at indices IU = [n]\IS, denoted XIU , with obscured values

ZIU . This separation of points into XIS and XIU is represented in Figure 5.1.

We use location as a guiding example, but such inter-dependent traces X could take the

form of home temperature time series data or spatial data like 3D facial maps used for identifica-

tion. Going forward, we will continue to denote X = {X1,X2, . . . ,Xn} with the understanding that

any subsequence of d points e.g. XIS = {X2,X6, . . .} could represent a d-dimensional sensitive

value, or Nd points could represent N d-dimensional sensitive values.

For the real-valued distributions considered here, P×(•) refers to a density of distribution

× on r.v. • and P×(•|∗) is its regular conditional density given ∗.

5.2.1 Background

GI limits what can be inferred about the sensitive XIS from its corresponding ZIS , but

not from the remaining locations ZIU . To do so we need a privacy definition that specifies what

events of random variable XIS we wish to obscure, which realistic priors of inter-dependence to

protect against, and a privacy loss.

5.2.2 Basic and Compound Secrets

We borrow heavily from the Pufferfish framework [? ], and specialize it for the setting of

location traces. We define our own set of secrets — the collection of events we wish to obscure —

and discriminative pairs, the pairs of secret events we do not want an adversary to tell between.

Basic Secrets & Pairs

After releasing Z, we do not want an adversary with a reasonable prior on X , P ∈ Θ,

to have sharp posterior beliefs about the user’s location at some sensitive time (e.g. one of the
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sensitive times in Figure E.1 of Appendix E.1.1). As such, the adversary cannot distinguish

whether the user visited location A or some nearby location B at that time. Let xs ∈ R2 represent

a possible assignments to XIS , hypothesizing the true sensitive location. Any such assignment

is secret, S = {XIS = xs : xs ∈ R2}. Specifically, we want the posterior probability of any two

assignments to XIS within a radius r to be close: Spairs = {(xs,x′s) : ∥xs−x′s∥2 ≤ r}. This protects

a single time within a trace of locations. More generally, in the context of spatiotemporal data of

any dimension, we call this a basic secret.

Compound Secrets & Pairs

Suppose we have three sensitive times (again as in Figure E.1). A mechanism that blocks

inference on each of these separately does not prevent inference on the combination of them

simultaneously. To obscure hypotheses on all three of these, we modify our set of secrets to any

combination of assignments to each secret location:

S =
{
{XIS 1 = xs1}∩{XIS 2 = xs2}∩{XIS 3 = xs3}

: xsi ∈ R2, i ∈ [3]
}
.

Now, the set of discriminative pairs is any two assignments to all three secret locations:

Spairs =
{(
{xs1,xs2,xs3},{x′s1,x

′
s2,x

′
s3}
)

: ∥xsi− x′si∥2 ≤ r, i ∈ [3]
}

This protects against compound hypotheses: if daycare and work are within r of each other,

this keeps an adversary from inferring XIS 1 = ‘daycare’ and XIS 2 = ‘work’ versus XIS 1 = ‘work’

and XIS 2 = ‘daycare’. More generally, in the context of spatiotemporal data of any dimension,

we call this a compound secret. Intuitively, a mechanism that protects a compound secret of

locations close together in time prevents a Bayesian adversary from leveraging the remainder of

the trace to infer direction of motion at those sensitive times. Note that bounding the privacy loss

88



of a compound secret does not bound the privacy loss of its constituent basic secrets.

Going forward, we refer to IS as the ‘secret set’.

Gaussian Processes

For the purpose of location privacy, it is important to choose a prior class Θ such that

the conditional distribution PP(XIU |XIS) is simple to compute for any secret set IS and any prior

P ∈ Θ. Of course, it is also critical that the prior class naturally models the data, and thus

consists of ‘reasonable assumptions’ for adversaries. GPs satisfy both these requirements. We

model a full d-dimensional trace sampled at N times by ‘unrolling’ it into a n = dN dimensional

GP.

Definition 5.2.1. Gaussian process A trace X is a Gaussian process if XIM has a multivariate

normal distribution for any set of indices IM ⊂ [n]. If X is a gaussian process, then the function

i→ E[Xi] is called the mean function and the function (i, j)→ Cov(Xi,X j) is called the kernel

function.

In this work, the kernel uses locations’ time stamps to compute their covariance (ti, t j)→

Cov(Xi,X j), but generally could use any side information provided with each location.

GPs have simple, closed form conditional distributions. Let X ∼ N (µ,Σ), where

µ ∈ Rn and Σ ∈ Rn×n. Then, the random variable XIU |{XIS = xs} ∼ N (µu|s,Σu|s), where

µu|s = µu +ΣusΣ
−1
ss (xs−µs) and Σu|s = Σuu−ΣusΣ

−1
ss Σsu. Here, µs denotes the mean vector µ

accessed at indices IS and Σsu denotes the covariance matrix Σ accessed at rows IS and columns

IU .

For GP priors, we will use additive noise G ∼N (0,Σ(g)). Thus Z = X +G, too, is

multivariate normal. Furthermore, the distribution of any set of variables conditioned on any

other set of variables in Figure 5.1 belongs to some multivariate normal distribution.

GPs have been shown to successfully model mobility [41, 115, 118], even in the domain

of surveillance video [106]. Furthermore, although these non-parametric models are charac-

terized by second order statistics, GPs are capable of complexity rivaling that of deep neural
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networks [112], allowing for scalability to more complex models and domains. Our proposed

results and algorithms may be applied regardless of the complexity of the chosen GP.

Rényi Differential Privacy

In the following section, we propose a privacy definition that adapts Rényi Differential

Privacy (RDP) [128] to the Pufferfish framework. RDP resembles Differential Privacy [56],

except instead of bounding the maximum probability ratio or max divergence of the distribution

on outputs for two neighboring databases, it bounds the Rényi divergence of order λ , defined

in Equation (5.1) for distributions P1 and P2. The Rényi divergence bears a nice synergy

with Gaussian processes. If P1 = N (µ1,Σ) and P2 = N (µ2,Σ) — two mean-shifted normal

distributions — the Rényi divergence takes on a simple closed form shown in Equation (5.2).

Dλ

(
P1

P2

)
=

1
λ −1

logEx∼P2

(PP1(X = x)
PP2(X = x)

)λ

(5.1)

=
λ

2
(µ1−µ2)

⊺
Σ
−1(µ1−µ2) (5.2)

We will make use of this in defining and bounding privacy loss in the next section.

5.3 Conditional Inferential Privacy

We now propose a privacy framework that is tailored to sequences of correlated data,

Conditional Inferential Privacy (CIP). CIP guarantees a radius r of indistinguishability for the

basic or compound secrets associated with any secret set IS. Specifically, CIP protects against

any adversary with a specific prior on the shape of the trace, and is agnostic to their prior on

the absolute location of the trace. We call the set of such prior distributions a Conditional Prior

Class.

Definition 5.3.1. Conditional Prior Class For X = {X1, . . . ,Xn}, prior distributions Pi,P j on

X are said to belong to the same conditional prior class Θ if a constant shift in the conditioned
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xs results in a constant shift on the distribution of XIU . Formally, if conditional distributions

PPi(XIU |XIS = xs) = PP j(XIU + cu
i jIS
|XIS = xs + cs

i jIS
) for all xs.

For instance, prior PPi may concentrate probability on traces passing through Los

Angeles, while PP j concentrates on traces passing through London. Conditioning on each secret

in the pair (xs,x′s) in L.A. is analogous to conditioning on each secret in the pair (xs + cs
i jIS

,x′s +

cs
i jIS

) in London. The corresponding pair of conditional distributions on XIU in London (PP j)

are copies of those in L.A. (PPi) shifted by cu
i jIS

. What matters is that the set of all pairs of

conditional distributions under PPi induced by secret pairs (xs,x′s) is identical to those under

PP j up to a mean shift. See Appendix E.1.5 for a more detailed discussion of conditional prior

classes.

Definition 5.3.2. (ε,λ )-Conditional Inferential Privacy (Spairs,r,Θ) Given compound or basic

discriminative pairs Spairs associated with IS, a radius of privacy r, a conditional prior class, Θ,

and a privacy parameter, ε > 0, a privacy mechanism Z =A (X) satisfies (ε,λ )-CIP(Spairs,r,Θ)

if for all (si,s j) ∈Spairs, and all prior distributions P ∈Θ, where PP(si),PP(s j)> 0,

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
≤ ε (5.3)

CIP departs from DP type notions of privacy like Approaches A→C primarily by resisting

only a restricted class of inter-dependence — the conditional prior class — as opposed to arbitrary

dependence of any k locations. Unlike approaches A and B, we are able to preserve utility for

tasks like traffic monitoring. Unlike approach C, CIP is still resistant to realistic models of

location inter-dependence.

While this definition borrows heavily from the Pufferfish framework, it has a few key

modifications. Pufferfish is generally described from a central, not local model. We specialize the

kinds of secrets and discriminative pairs for the case of local location trace privacy. Additionally,

we specialize the type of prior distribution class needed for this local setting: the conditional

prior class. Finally, we relax the strict max divergence (max log odds) criterion of the Pufferfish

91



definition to a Rényi divergence. This guarantees that — with high probability on draws of

realistic traces Z|XIS — the log odds will be bounded by ε . As λ → ∞, the log odds are bounded

for all traces, i.e. the max divergence is bounded. We formalize this in Theorem 5.3.1.

The Rényi criterion of CIP greatly improves its flexibility. Unlike the standard DP

Approaches A→C which only take probabilities over the mechanism, we do not have full control

over the randomness at play: it is partially from A defined by us and from P intrinsic to the

data. Unlike max divergence, Rényi divergence is available in closed form for many distributions,

allowing for a more flexible privacy framework. The λ parameter helps us tune how strict a CIP

definition is and how much noise we need to add. This allows us to design mechanisms that are

resistant to natural models of dependence while preserving utility.

5.3.1 Properties

We now identify key properties that make the CIP guarantee interpretable and robust.

Interpretability:

CIP guarantees that a Bayesian adversary with any prior distribution on traces P in the

conditional prior class Θ does not learn much about basic or compound secrets from the released

trace Z. For basic secrets, this means that the adversary’s posterior beliefs regarding sensitive

location XIS are not much sharper than their prior beliefs before witnessing Z.

Theorem 5.3.1. Prior-Posterior Gap: An (ε,λ )-CIP mechanism with conditional prior class Θ

guarantees that for any event O on sanitized trace Z

∣∣∣∣ log
PP,A (si|Z ∈ O)

PP,A (s j|Z ∈ O)
− log

PP(si)

PP(s j)

∣∣∣∣≤ ε
′

for any P ∈Θ with probability ≥ 1−δ over draws of Z|XIS = si or Z|XIS = s j, where ε ′ and δ
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are related by

ε
′ = ε +

log 1/δ

λ −1
.

This holds under the condition that Z|XIS = si and Z|XIS = s j have identical support.

A CIP mechanism depends only on the conditional prior describing the data, not the data

itself. Suppose an adversary’s prior beliefs on XIS are uniform over some region. For λ = 5 and

ε = 0.1, there is only a ≈ 1% chance that their posterior odds on si,s j will be more than 3.5, and

a ≈ 10% chance that they will be more than 2. This ‘chance’ is over draws of likely remaining

locations XIU and the additive noise G. Proofs of all results are in Appendix E.1.2.

For additive noise mechanisms like A (X) = X +G = Z, the CIP loss can be split into

two terms: one accounting for the direct privacy loss of ZIS on XIS and a second accounting for

the inferential privacy loss of ZIU on XIS via XIU .

Lemma 8. Conditional Independence For an additive noise mechanism, a fully dependent trace

as in Figure 5.1a, and any prior P on X the CIP loss may be expressed as

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
(5.4)

= ∑
i∈IS

[
Dλ

(
PA (Zi|Xi = si)

PA (Zi|Xi = s j)

)]
+Dλ

(
PA ,P(ZIU |XIS = si)

PA ,P(ZIU |XIS = s j)

)

One interpretation of GI is that it assumes all locations Xi are independent. In this case,

the second term vanishes and the privacy loss only depends on randomness of the mechanism,

not the prior.

Robustness:

[104] show that it is impossible to achieve both utility and privacy resistant to all priors.

CIP provides resistance to a reasonable class of priors P ∈ Θ, but it is possible that the true

distribution Q /∈ Θ. In this case, the privacy guarantees degrade gracefully as the divergence
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between Q and P ∈Θ grows.

Theorem 5.3.2. Robustness to Prior Misspecification Mechanism A satisfies ε(λ )-CIP for

prior class Θ. Suppose the finite mean true distribution Q is not in Θ. The CIP loss of A against

prior Q is bounded by

Dλ

(
PA ,Q(Z|XIS = si)

PA ,Q(Z|XIS = s j)

)
≤ ε

′(λ )

where

ε
′(λ ) =

λ − 1
2

λ −1
∆(2λ )+∆(4λ −3)+

2λ − 3
2

2λ −2
ε(4λ −2)

and where ∆(λ ) is

inf
P∈Θ

sup
si∈S

max
{

Dλ

(
PP(XIU |XIS = si)

PQ(XIU |XIS = si)

)
,Dλ

(
PQ(XIU |XIS = si)

PP(XIU |XIS = si)

)}

As long as the conditional distribution on XIU |XIS = si of prior Q is close to that of some

P ∈Θ, the privacy guarantees should change only marginally. This bound is tightest when ε(λ )

does not grow quickly with order λ .

5.3.2 CIP for Gaussian Process Priors

A GP conditional prior class is the set of all GP prior distributions with the same kernel

function (i, j)→ Cov(Xi,X j) and any mean function i→ E[Xi]. With an additive Gaussian mech-

anism G∼N (0,Σ(g)), the CIP loss of Equation (5.4) can be bounded for any GP conditional

prior class. See Appendix E.1.5 for further discussion of the GP conditional prior class.

Theorem 5.3.3. CIP loss bound for GP conditional priors: Let Θ be a GP conditional prior

class. Let Σ be the covariance matrix for X produced by its kernel function. Let S be the basic or

compound secret associated with IS, and S be the number of unique times in IS. The mechanism
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A (X) = X +G = Z, where G∼N (0,Σ(g)), then satisfies (ε,λ )-Conditional Inferential Privacy

(Spairs,r,Θ), where

ε ≤ λ

2
Sr2
( 1

σ2
s
+α

∗
)

(5.5)

where σ2
s is the variance of each Gi ∈ GIS (diagonal entries of Σ

(g)
ss ) and α∗ is the maximum

eigenvalue of Σeff =
(
ΣusΣ

−1
ss
)⊺(

Σu|s +Σ
(g)
uu
)−1(

ΣusΣ
−1
ss
)
.

The above bound is tight for basic secrets (S = 1). The two terms of Equation (5.5)

represent the direct ( 1
σ2

s
) and inferential (α∗) loss terms of Equation (5.4). We assume that each

diagonal entry of Σ
(g)
ss equals some σ2

s , so that each Xi ∈ XIS experiences identical direct privacy

loss, which is optimal under utility constraints.

The above bound composes gracefully when multiple traces of an individual are released.

Corollary 5.3.3.1. Graceful Composition in Time Suppose a user releases two traces X and jX

with additive noise G∼N (0,Σ(g)) and jG∼N (0, j
Σ(g)), respectively. Then basic or compound

secret XIS of X enjoys (ε̄,λ )-CIP, where

ε̄ ≤ λ

2
Sr2
( 1

σ2
s
+ ᾱ

∗
)

and where ᾱ∗ is the maximum eigenvalue of Σ̄eff =
(
ΣusΣ

−1
ss
)⊺(

Σu|s + Σ̄
(g)
uu
)−1(

ΣusΣ
−1
ss
)
. Σ is the

covariance matrix of the joint distribution on X , jX and

Σ̄
(g) =

Σ(g) 0

0 j
Σ(g) .



This bound is identical to that of Theorem 5.3.3, only using the joint distribution over X , jX and
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G, jG. This provides some insight to the fact that, unlike DP, even parallel composition guarantees

are not automatic. Composition depends on the conditional prior. In the GP setting, if the chosen

kernel function decays over time, we can expect composition to have minimal effects on privacy

for traces separated by long durations.

To reduce the upper bound of Theorem 5.3.3, we optimize the correlation (off-diagonal)

of Σ(g) to minimize α∗, and optimize its variance (diagonal) to balance a noise budget between

lowering inferential (α∗) and direct ( 1
σ2

s
) loss.

5.4 Optimized Privacy Mechanisms

Theorem 5.3.3 characterizes the privacy loss for GP conditional priors. We next show

how to use this Theorem to design mechanisms that can strategically reduce CIP loss given a

utility constraint. We measure ‘utility loss’ as the total mean squared error (MSE) between the

released (Z) and true (X) traces: MSE(Σ(g)) = ∑
n
i=1E[Zi−Xi] = tr(Σ(g)). We bound the utility

loss by tr(Σ(g))≤ not , where ot is the average per-point utility loss.

It can be shown that optimizing the privacy loss under this utility constraint can be

described by a semidefinite program (SDP) (formalization/derivation of SDPs in Appendix

E.1.3). For a given trace X , define its covariance matrix Σ using the the kernel of the GP

conditional prior Σi j = k(i, j). Then pass Σ, the secret set IS, and the utility constraint ot to

our first program, SDPA, which returns noise covariance Σ(g). This defines an additive noise

mechanism G∼N (0,Σ(g)) that minimizes CIP loss to IS.

Σ
(g) = SDPA(Σ,IS,ot)

We can thus use a SDP to minimize the CIP loss to any single compound or basic secret. However,

a trace may contain multiple locations or combinations thereof that one wishes to protect. It

remains to produce a single mechanism Σ(g) that bounds the CIP loss to multiple basic and/or

compound secrets in a single trace.
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For this we propose SDPB, which uses the fact that if Σ(g)′ ≻ Σ(g) it will have lower CIP

loss (see Appendix E.1.3). SDPB takes in a set of covariance matrices F = {Σ(g)
1 , . . . ,Σ

(g)
m },

each designed to minimize CIP loss for a single compound or basic secret ISi. It then returns

a single covariance matrix Σ(g) ⪰ Σ
(g)
i , i ∈ [m] that maintains the privacy guarantee each Σ

(g)
i

offered its corresponding ISi, while minimizing utility loss.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5.2. 1Posterior uncertainty interval (higher=better privacy) on XIS of a GP Bayesian
adversary. A larger leff corresponds to greater inter-dependence and reduces posterior uncertainty.
The gray interval depicts the middle 50% of the MLE leff among traces in each dataset, and the
black dotted line the median leff. (a)→(c), (e)→(g) show SDP mechanisms (blue) maintaining
relatively high uncertainty compared to two GI (Approach C) baselines of equal utility (MSE).
(d), (h) show the (minor) change in posterior uncertainty when the prior covariance Σ used in
SDPA is misspecified: when it is identical to the true covariance Σ∗ known to the adversary
(blue), is more correlated (orange), or is less correlated (green).

In our experiments, we use Algorithm 2 to design a single mechanism that protects all

locations in the trace — all basic secrets — while minimizing utility loss.

5.5 Experiments

Here, we aim to empirically answer: 1) Do our SDP mechanisms maintain high posterior

uncertainty of sensitive locations? How do they compare to Approach C baselines of equal MSE?

2) How robust is the SDPA mechanism when the prior covariance Σ is misspecified?
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Algorithm 2: Multiple Secrets
Input: IS1, . . . ,ISm,ot ,Σ
Output: Σ(g)

1 F = /0;
2 for i ∈ [m] do
3 Σ

(g)
i = SDPA(Σ,ISi,ot);

4 F = F ∪Σ
(g)
i ;

5 end for
6 Σ(g) = SDPB(F );
7 return Σ(g);

Methods

To answer these questions, we look at the range of conditional prior classes that fit

real-world data. For location trace data, we use the GeoLife GPS Trajectories dataset [185]

containing 10k human mobility traces after preprocessing (see Appendix E.1.4 for details). We

also consider the privacy risk of room temperature data [130], using the SML2010 dataset [180],

which contains approximately 40 days of room temperature data sampled every 15 minutes.

For the location data, having observed that the correlation between latitude and longitude

is low (≈ 0.06) we treat each dimension as independent. By way of Corollary E.1.0.1, this allows

us to bound privacy loss and design mechanisms for each dimension separately. Furthermore,

having observed that each dimension fits nearly the same conditional prior, we treat our dataset

of 10k 2-dimensional traces as a dataset of 20k 1-dimensional traces, where each trace represents

one dimension of a 2d location trajectory.

We model the location trace data with a Radial Basis Function (RBF) kernel GP and the

temperature series data with a periodic kernel GP:

kRBF(ti, t j) = σ
2
x exp

(
−

(ti− t j)
2

2l2

)
kPER(ti, t j) = σ

2
x exp

(−2sin2(π|ti− t j|/p)
l2

)
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In both kernels, the intrinsic degree of dependence between points is captured by the lengthscale

l. However, the fact that sampling rates vary significantly between traces means that traces with

equal length scales can have very different degrees of correlation. To encapsulate both of these

effects, we study the empirical distribution of effective length scale of each trace

leff,x =
lx
P

leff,y =
ly
P

where P is the trace’s sampling period and lx, ly are the its optimal length scales for each

dimension.

leff,x, leff,y tell us the average number of neighboring locations that are highly correlated,

instead of time period. For instance, a given trace with an optimal leff,x = 8 tells us that every

eight neighboring location samples in the x dimension have correlation > 0.8. The empirical

distribution of effective length scales across all traces describes – over a range of logging devices

(sampling rates), users, and movement patterns – how many neighboring points are highly

correlated in location trace data. After this preprocessing, we are able to use the kernels that take

indices (not time) as arguments:

kRBF(i, j) = exp
(
− (i− j)2

2l2
eff

)
kPER(i, j) = exp

(−2sin2(π|i− j|/p)
l2
eff

)

See Appendix E.1.4 for a more detailed discussion of how the empirical distribution of leff across

traces is measured.

To impart the range of realistic conditional priors the gray interval of each plot depicts the

middle 50% of the empirical leff among traces in each dataset. The dashed vertical line reports

the median leff.

Each figure increases the degree of dependence, leff, used by the kernel to compute the

prior covariance Σ(leff). Σ(leff) is then used in one of the SDP routines of Section 5.4 to produce
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a mechanism Σ(g)(leff) that protects a basic secret (SDPA), a compound secret (SDPA), or the

union of all basic secrets (Multiple Secrets). We then observe the 68% confidence interval of the

Gaussian posterior on sensitive points XIS (blue line). This is the 2σ uncertainty of a Bayesian

adversary with a GP prior represented by Σ(leff) (see Appendix E.1.4 for how this is computed).

As leff increases, their posterior uncertainty will reduce. Our aim is to mitigate this as much

as possible with the given utility constraint. For scale, recall that prior variance diag(Σ) is

normalized to one. In the case of all basic secrets, we report the average posterior uncertainty

over locations.

We compare the SDP mechanisms with two mechanisms using the logic of Approach C

(all three of equal MSE utility loss): independent/uniform and independent/concentrated. The

uniform approach adds independent Gaussian noise evenly along the whole trace regardless of

IS, Σ(g) = otI. The concentrated approach allocates the entire noise budget to the sensitive set IS.

Results

For our first question, see Figures 5.2a→5.2c, 5.2e→5.2g. For both location and

temperature data, our SDP mechanisms maintain higher posterior uncertainty than the baselines

with identical utility cost for a single basic secret, a compound secret, and all basic secrets.

By actively considering the conditional prior class parametrized by Σ, the SDP mechanisms

can strategize to both correlate noise samples and concentrate noise power such that posterior

inference is thwarted at the sensitive set IS. For an intuitive illustration of the chosen Σ(g)’s, see

Appendix E.1.1.

To answer our second question, see Figures 5.2d and 5.2h. When the prior covariance

Σ does not represent the true data distribution known to the adversary, a smaller posterior

uncertainty may be achieved. The orange line indicates the uncertainty interval of an adversary

who knows the data is less correlated than we believe i.e. the true Σ∗ = Σ(0.5leff). The blue

line represents an adversary who knows the data is more correlated than we believe i.e. the true

Σ∗ = Σ(1.5leff). Both plots confirm the robustness of our privacy guarantees stated by Theorem
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5.3.2. Particularly around the median leff we see that the change in posterior uncertainty with

this change in prior is indeed marginal.

5.6 Discussion

Related Work

Few works have proposed solutions to the local guarantee when releasing individual

traces. A mechanism offered in [19] releases synthesized traces satisfying the notion of plausible

deniability [20], but this is distinctly different from providing a radius of privacy to sensitive

locations. Meanwhile, the frameworks proposed in [166] and [30] nicely characterize the risk of

inference in location traces, but use only first-order Markov models of correlation between points,

do not offer a radius of indistinguishability as in this work, and are not suited to continuous-valued

spatiotemporal traces.

Perhaps more technically similar to this work, [145] provide a general mechanism that

applies to any Pufferfish framework, as well as a more computationally efficient mechanism that

applies when the joint distribution of an individual’s features can be described by a graphical

model. The first is too computationally intensive. The second is for discrete settings, and cannot

accommodate spatiotemporal effects.

Conclusion

This work proposes a framework for both identifying and quantifying the inferential

privacy risk for highly dependent sequences of spatiotemporal data. As a starting point, we have

provided a simple bound on the privacy loss for Gaussian process priors, and an SDP-based

privacy mechanism for minimizing this bound without destroying utility. We hope to extend this

work to other data domains with different conditional priors, and different sets of secrets.
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Concluding Remarks

The above chapters provide a diverse set of examples of how privacy risks can be

measured or mitigated in different scenarios. While highly different from each other, these

examples all highlight the following three guiding principles for data privacy.

No privacy definition is a ‘gold standard’

Differential privacy (DP) is often touted as the ‘gold standard’ of data privacy. The cases

studied in Chapters 3-5 challenge this by proposing entirely different privacy definitions for

entirely different settings and risks. Chapter 3 proposes sentence privacy, which is DP-like but

uses a different neighboring notion. Chapter 4, on the other hand, proposes a shuffling-based

privacy definition that is almost orthogonal to DP. That is because the correlation adversary

considered in that setting cannot be thwarted by DP alone. However, the broad population trends

that we wish to learn are still accessible under our semi-random shuffling approach. Similarly,

Chapter 5 analyzes the threat of correlation adversaries in the domain of location traces. Here,

we see that a DP-based definition has to add more noise in order to thwart these adversaries.

Taken together, we see that sometimes DP definitions are effective, and other times they

require one to choose between meaningful privacy and utility. If one ‘gold standard’ definition

were effective in all of these settings, we would not need to propose so many contrasting privacy

definitions and methods.
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No Free Lunch

The goal of data privacy is to allow the release of high-level information (e.g. data

distribution) while obscuring low-level information (e.g. individuals’ data features). It is natural

to wonder whether it is possible to design a privacy definition under which we can release highly

level information and defend against any adversary. The answer is unequivocally, no. This fact is

known as the No-Free-Lunch theorem, made precise in [103]. The Theorem shows that releasing

any information about a dataset that is useful to one person can be leveraged by an adversary to

learn fine-grained information. The No-Free-Lunch theorem is instructive, because it shifts our

attention from the question of whether we can provide air-tight privacy (impossible) to whether

the adversaries our definition allows are realistic in our setting.

The No-Free-Lunch principle is fundamental to the approaches of Chapters 4 and 5 in

particular. Here, we propose novel privacy definitions that are adversary-focused. Note that in

both of these papers, we consider limited classes of adversaries. As stated above, it is impossible

to block the inferences of all adversaries while still sharing useful information derived from the

sensitive data. By practically evaluating what prior knowledge an adversary might have, like a

correlation prior, we can formalize a privacy definition that gives strong guarantees in realistic

settings.

Perfect is the enemy of good

Chapters 1 and 2 offer no formal privacy definition or provably private mechanism.

Instead, they offer statistical tests to empirically evaluate a model’s memorization of its training

data, and thereby risk of exposing that data. In both chapters, we examine how model selection

can effect the degree of memorization as detected by our tests. While our proposed test statistics

do not confer any formal privacy guarantees, they guide practitioners towards models that

memorize less. In many cases, our tests showed that it is possible to find models which have

significantly less memorization at little to no cost in utility.
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While formal privacy definitions are a valuable goal they make up only a small part of an

ML practitioners privacy toolkit. To preserve privacy, we as researchers ought to put equal effort

into methodical empirical privacy tests as we do formally private algorithms. These tests tend to

be far more accessible to practitioners and allow them to significantly improve model privacy.

Although empirical privacy tests are imperfect, the practical benefits to be gained by proposing

them are undoubtedly a positive good. Do not let perfect privacy be the enemy of good privacy.
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Appendix A

A.0.1 Limitations and societal impact

Limitations.

Our work sets out to define, quantify, and visualize data memorization in SSL. Our

tests guide us towards potential mitigation strategies. However, note that these strategies are

distinct from provable privacy (e.g. DP), and do not guarantee that data is not memorized. It is

possible that — even if our tests detect no memorization — data is being memorized in some

other fashion, and could be detected with a different test. Furthermore, we focus on detecting

image memorization with a curated, de-duplicated dataset (ImageNet-1k), which may over-

or underestimate data memorization in practice. We chose this in order to claim the learning

algorithm as the cause for memorization as opposed to the dataset itself. It is possible that

models exhibit different memorization behavior on larger, less curated datasets. With orders of

magnitude more data it is possible that memorization is reduced, but with more data duplication

it also may be exacerbated.

Societal Impact.

Our work’s findings have a critical societal impact from a privacy perspective. We show

that it is possible for SSL—an increasingly popular learning paradigm—to memorize training

images, which could have significant privacy implications. This direction of research is important

if we want to understand how we can train such models without exposing user data. Additionally,
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our proposed mitigation strategies point to the possibility of having strong privacy without

significant loss in utility. Ultimately, we open a promising direction towards making SSL vision

models more secure.

A.0.2 Experimental details

Details on dataset splits

Imagenet1k provides bounding box annotations of foreground objects to a subset of

examples in each class. Private sets A and B contain shared examples, A ∩B, without bounding

box annotations, and unique examples with bounding box annotations. Denote the unique

examples in each set as A = A \(A ∩B) and B = B\(A ∩B). To identify memorization,

our tests only attempt to infer the labels of the unique examples A and B that differentiate the

two private sets. The periphery crop, crop(Ai), is computed as the largest possible crop that does

not intersect with the foreground object bounding box. In some instances the largest periphery

crop is small, and not high enough resolution to get a meaningful embedding. To circumvent this,

we only run the test on bounding box examples where the periphery crop is at least 100×100

pixels.

Each size of training set, 100k to 500k, includes an equal number of examples per class

in both sets A and B. The total bounding box annotated examples of each class are evenly

divided between A and B. The remaining examples in each class are the shared examples

A ∩B. Shared examples are necessary due to a limit number of bounding box examples and a

limited number of total images. However, we reiterate that the bounding box examples in set A

are unique to set A , and thus can only be memorized by SSLA.

The disjoint public set, X , contains ground truth labels but no bounding-box annotations.

The size and content of X remains fixed for all tests.
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Details on the training setup

Model Training:

We use PyTorch [133] with FFCV-SSL [26]. All models are trained for 1000 epochs

with model checkpoints taken at 50, 100, 250, 500, 750, and 1000 epochs. We note that 1000

epochs is used in the original papers of both VICReg and SimCLR. All sweeps of epochs use

the 300k dataset. All sweeps of datasets use the final, 1000 epoch checkpoint. We use a batch

size of 1024, and LARS optimizer [177] for all SSL models. All models use Resnet101 for the

backbone. As seen in Appendix A.0.3, a Resnet50 backbone results in déjà vu consistent with

that of Resnet101.

VICReg Training:

VICReg is trained with the 3-layer fully connected projector used in the original paper

with layer dimensions 8192-8192-8192. The invariance, variance, and covariance parameters are

set to λ = 25,µ = 25,ν = 1, respectively, which are used in the original paper [14]. The LARS

base learning rate is set to 0.2, and weight decay is set to 1e-6.

SimCLR Training:

SimCLR is trained with the 2-layer fully connected projector used in the original paper

with layer dimensions 2048-256. The temperature parameter is set to τ = 0.15. The LARS base

learning rate is set to 0.3, and weight decay is set to 1e-6.

Supervised Training:

Unlike the SSL models, the supervised model is trained with label access using cross-

entropy loss. To keep architectures as similar as possible, the supervised model also uses a

Resnet101 backbone and the same projector as VICReg. A final batchnorm, ReLU, and linear

layer is added to bring the 8192 dimension projector output to 1000-way classification activations.

We use these activations as the supervised model’s projector embedding. The supervised model

uses the LARS optimizer with learning rate 0.2.
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Details on the evaluation setup

KNN:

For each test, we build two KNN’s: one using the target model, SSLA (or CLFA), and

one using the reference model SSLB (or CLFB). As depicted in Figure 1.2, each KNN is built

using the projector embeddings of all images in the public set X as the neighbor set. When

testing for memorization on an image Ai ∈A , we first embed crop(Ai) using SSLA, and find

its K = 100 L2 nearest neighbors within the SSLA embeddings of X . See section A.0.3 for a

discussion on selection of K. We then take the majority vote of the neighbors’ labels to determine

the class of Ai. This entire pipleline is repeated using reference model SSLB and its KNN to

compute reference model accuracy.

In practice, all of our quantitative tests are repeated once with SSLA as the target model

(recovering labels of images in set A ) and again with SSLB as the target model (recovering

labels of images in set B). All results shown are the average of these two tests. Throughout

the paper, we describe SSLA as the target model and SSLB as the reference model for ease of

exposition.

RCDM:

The RCDM is trained on a face-blurred version of ImageNet [50] and is used to decode

the SSL backbone embedding of an image back into an approximation of the original image. All

RCDMs are trained on the public set of images X used for the KNN. A separate RCDM must

be trained for each SSL model, since each model has a unique mapping from image space to

embedding space.

At inference time, the RCDM is used to reconstruct the foreground object given only the

periphery cropping. To produce this reconstruciton, the RCDM needs an approximation of the

backbone embedding of the original image. The backbone of image Ai is approximated by 1)

computing crop embedding SSLproj
A (crop(Ai)), 2) finding the five public set nearest neighbors

of the crop embedding, and 3) averaging the five nearest neighbors’ backbone embeddings. In
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practice, these public set nearest neighbors are often a very good approximation of the original

image, capturing aspects like object class, position, subspecies, etc..
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A.0.3 Additional quantitative experiments

Sample-level memorization

(a) Categories of training samples vs. number of epochs (b) Categories of training samples vs. training set size

Figure A.1. Partition of samples Ai ∈A into the four categories: unassociated (not shown),
memorized, misrepresented and correlated. The memorized samples—ones whose labels are
predicted by KNNA but not by KNNB—occupy a significantly larger share for VICReg compared
to the supervised model, indicating that sample-level déjà vu memorization is more prevalent in
VICReg.
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Figure A.2. Effect of SSL hyperparameter on déjà vu memorization. The left plot of Figures
A.8a and A.8b show the size of the memorized set as a function of the temperature parameter for
SimCLR and invariance parameter for VICReg, respectively. Déjà vu memorization is the highest
within a narrow band of hyperparameters, and one can mitigate against déjà vu memorization by
selecting hyperparameters outside of this band. Doing so has negligible effect on the quality of
SSL embeddings as indicated by the linear probe accuracy on ImageNet validation set.

Many SSL algorithms contain hyperparameters that control how similar the embeddings

of different views should be in the training objective. We show that these hyperparameters

directly affect déjà vu memorization. Figure A.8 shows the size of the memorized set for

SimCLR (left) and VICReg (right) as a function of their respective hyperparameters, τ and λ .
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We observe that the memorized set is largest within a relatively narrow band of hyperparameter

values, indicating strong déjà vu memorization. By selecting hyperparameters outside this band,

déjà vu memorization sharply decreases while the linear probe validation accuracy on ImageNet

remains roughly the same.

Selection of K for KNN

In this section, we describe the impact of K on the KNN label inference accuracy.
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Figure A.3. Impact of K on label inference accuracy for target and reference models. Left: the
population-level label inference accuracy experiment of Section 1.4.1 on VICReg vs. K. Right:
the individualized memorization test of Section 1.4.2 on VICReg vs. K. In both cases, we see
that our tests are relatively robust to choice of K beyond K = 50.

Figure A.3 above shows how the tests of Section 1.4 change with number of public set

nearest neighbors K used to make label inferences. Both tests are relatively robust to any choice

of K. Results are shown on VICReg trained for 1k epochs on the 300k dataset. We see that

any choice of K greater than 50 and less than the number of examples per class (300, in this

case) appears to have good performance. Since our smallest dataset has 100 images per class, we

chose to set K = 100 for all experiments.
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Effect of SSL criteria

We repeat the quantitative memorization tests of Section 1.4 on different models:

VICReg[14], Barlow-Twins[181], Dino[37], Byol[85], SimCLR[182] and a supervised model

in Figure A.4. We observe differences between SSL training criteria with respect to Dejavu

memorization. The easy ones to attack are VICReg and Barlow Twins whereas SimCLR and

Byol are more robust to these attacks. While the degree of memorization appears to be reduced

for SimCLR compared with VICReg, it is still stronger than the supervised baseline.

Figure A.4. Comparison of déjà vu memorization for VICReg, Barlow Twins, Dino, Byol,
SimCLR, and a supervised model. All tests are described in Section 1.4. We are showing déjà
vu vs. number of training epochs. We see that SimCLR (center row) shows less déjà vu than
VICReg, yet marginally more than the supervised model. Even with this reduced degree of
memorization, we are able to produce detailed reconstructions of training set images, as shown
in Figures 1.6 and ??.
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Effect of Model Architecture and Complexity

Results shown in the main paper use Resnet101 for the model backbone. To under-

stand the relationship between déjà vu and overparameterization, we compare with the smaller

Resnet50 and Resnet18 in Figure A.5. Overall, we find that increasing the number of parameters

of the model leads to higher degree of déjà vu memorization. The same trend holds when using

Vision Transformers (VIT-Tiny, -Small, -Base, and -Large with patch size of 16) of various sizes

as the SSL backbone, instead of a Resnet. This highlights that déjà vu memorization is not

unique to convolution architectures.

Figure A.5. Comparison of VICReg déjà vu memorization for different architectures and model
sizes. On the left, we present deja vu memorization using VIT architectures (from vit-tiny in
the first row to vit-base in the last row). On the right, we use Resnet based architectures (from
resnet18 in the first row to resnet101 in the last row). All tests are described in Section 1.4, with
the plots showing déjà vu vs. number of training epochs. Reducing model complexity from
Resnet101 to Resnet18 or from Vit-Large to Vit-tiny has a significant impact on the degree of
memorization.
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The impact of Guillotine Regularization on Deja Vu

In our experiments, we show déjà vu using the projector representation. The SSL loss

directly incentivizes the projector representation to be invariant to random crops of a particular

image. As such, we expect the projector to be the most overfit and produce the strongest déjà

vu . Here, we study whether earlier representations between the projector and backbone exhibit

less déjà vu memorization. This phenomenon – ‘guillotine regularization’ – has recently been

studied from the perspective of generalization in Bordes u. a. [24]. Here, we study it from the

perspective of memorization.

To show how guillotine regularization impacts déjà vu , we repeat the tests of Section

1.4 on each layer of the VICReg projector: the 2048-dimension backbone (layer 0) up to the

projector output (layer 3). We evaluate whether memorization is indeed reduced for the more

regularized layers between the projector output and the backbone.
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Figure A.6. déjà vu memorization versus layer from backbone (0) to projector output (3). The
memorization tests of Section 1.4 are evaluated at each level of the VICReg projector. We
see that déjà vu is significantly stronger closer to the projector output and nearly zero near the
backbone. Interestingly, most memorization appears to occur in the final two layers of VICReg.

Figure A.6 shows how guillotine regularization significantly reduces the degree of

memorization in VICReg. The vast majority of VICReg’s déjà vu appears to occur in the final

two layers of the projector (2,3): in earlier layers (0,1), the label inference accuracy of the target

model and reference model are comparable. This suggests that – like the hyperparameter selection
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of Section 1.7 – guillotine regularization can also significantly mitigate déjà vu memorization. In

the following, we extend this result to SimCLR and supervised models by measuring the degree

of déjà vu in the backbone (layer 0) versus training epochs and dataset size.

116



Comparison of déjà vu in projector and backbone vs. epochs and dataset size

Since the backbone is mostly used at inference time, we now evaluate how much déjà vu

exists in the backbone representation for VICReg and SimCLR. We repeat the tests of Section

1.4 versus training epochs and train set size.

Figure A.7 shows that, indeed, déjà vu is significantly reduced in the backbone represen-

tation. For SimCLR, however, we see that backbone memorization is comparable with projector

memorization. In light of the Guillotine regularization results above, this makes some sense

since SimCLR uses fewer layers in its projector. Given that we were able to generate accurate

reconstructions with the SimCLR projector (see Figures ?? and 1.6), we now evaluate whether

we can produce accurate reconstructions of training examples using the SimCLR backbone

alone.
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(a) VICReg

(b) SimCLR

Figure A.7. Accuracy of label inference on VICReg and SimCLR using projector and back-
bone representations. First two columns: Effect of training epochs on memorization for each
representation. Last two columns: Effect of training set size on memorization for each repre-
sentation. In contrast with VICReg, the déjà vu memorization detected in SimCLR’s projector
and backbone representations is quite similar. While SimCLR’s projector memorization appears
weaker than that of VICReg, its backbone memorization is markedly stronger. This kind be
easily explained as a byproduct of Guillotine Regularization [24], i.e. removing layers close to
the objective reduce the bias of the network with respect to the training task. Since SimCLR’s
projector has fewer layers than VICReg’s, the impact of Guillotine Regularization is less salient.
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A.0.4 Additional reconstruction examples

The two reconstruction experiments of Section 1.5 are each exemplified within one class.

However, we see strong reconstructions using SSLA in several classes, and similar experimental

results. To demonstrate this, we repeat the experiments 1.5 using the yellow garden spider class

and the and the aircraft carrier class.
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Figure A.8. Effect of SSL hyperparameter on déjà vu memorization. The left plot of Figures
A.8a and A.8b show the size of the memorized set as a function of the temperature parameter for
SimCLR and invariance parameter for VICReg, respectively. Déjà vu memorization is the highest
within a narrow band of hyperparameters, and one can mitigate against déjà vu memorization by
selecting hyperparameters outside of this band. Doing so has negligible effect on the quality of
SSL embeddings as indicated by the linear probe accuracy on ImageNet validation set.

Selection of Memorized and Correlated Images:

The images of Figure 1.6 and ?? were chosen methodically as follows.

Image selection:

The 20 images of Figures 1.6 and ?? are selected deterministically using label inference

accuracy and KNN confidence score. The 10 most correlated images are those images in the

correlated set (both models infer label correctly) of A with the highest confidence agreement

between models SSLA and SSLB. To measure confidence agreement we take the minimum

confidence of the two models. The 10 most memorized images are those images in the memorized

set (only target model infers the label correctly) of A with the highest confidence difference

between models SSLA and SSLB.
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Class selection:

To find classes with a high degree of déjà vu , classes were sorted by the label inference

accuracy gap between the target and reference model. We selected the class based on a handful

of criteria. First, we prioritized classes without images of human faces, thereby removing classes

like ‘basketball’, ‘bobsled’, ‘train station’, and even ‘tench’ which is a fish often depicted in

the hands of a fisherman. Second, we prioritized classes that include at least ten images with a

high confidence difference between the target and reference models (‘most memorized’ images

described above) and at least ten images with high confidence agreement (‘most correlated’

images described above). This led us to the dam and yellow garden spider classes.
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Selection of Beyond-Label-Inference Images:

The images of Figure 1.7 and ?? were chosen methodically as follows.

Image selection:

The four images of Figures 1.7 and ?? are selected using KNN confidence score, and,

necessarily, hand picked selection for unlabeled features. Within a given class, we look at the top

40 images with highest target model KNN confidence scores. We then filter through these images

to identify a distinguishable feature like different species within the same class or different object

positions within the same class. This step is necessary because we are looking for features that

are not labeled by ImageNet. We then choose two of these top 40 with one feature (e.g. American

badger) and two with the alternative feature (e.g. European badger).

Class selection:

To find classes with a high degree of déjà vu , classes were sorted by the target model’s

top-40 KNN confidence values within each class. As in the memorization vs. correlation

experiment, we prioritized classes without images of human faces.

Reconstructions using SimCLR Backbone

The label inference results in Appendix A.0.3 show that the SimCLR backbone exhibits

a similar degree of déjà vu memorization as the projector does. To evaluate the risk of such

memorization, we repeat the reconstruction experiment of Section 1.5 on the dam class using the

SimCLR backbone instead of its projector.

Figure A.9 demonstrates that we are able to reconstruct training set images using the

SimCLR backbone alone. This indicates that déjà vu memorization can be leveraged to make

detailed inferences about training set images without any access to the projector. As such,

withholding the projector for model release may not be a strong enough mitigation against déjà

vu memorization.
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(a) First memorized dam example

(b) Second memorized dam example

Figure A.9. Instances of déjà vu memorization by the SimCLR backbone representation. Here,
the backbone embedding of the crop is used instead of the projector embedding on the same
training images used in Figure 1.6. Interestingly, we see that déjà vu memorization is still present
in the SimCLR backbone representation. Here, the nearest neighbor set recovers dam given
an uninformative crop of still or running water. Even without projector access, we are able to
reconstruct images in set A using SSLA, and are unable using SSLB.

122



A.0.5 Detecting Déjà vu without Bounding Box Annotations

The memorization tests presented critically depend on bounding box annotations in order

to separate the foreground object from the periphery crop. Since such annotations are often

not available, we propose a heuristic test that simply uses the lower left corner of an image as

a surrogate for the periphery crop. Since foreground objects tend to be near the center of the

image, the corner crop usually excludes the foreground object and does not require a bounding

box annotation.

Figure A.10 demonstrates that this heuristic test can successfully capture the trends of

the original tests (seen in Figure A.4) without access to bounding box annotations. However, as

compared to Figure A.4, the heuristic tends to slightly underestimate the degree of memorization.

This is likely due to the fact that some corner crops partially include the foreground object, thus

enabling the KNN to successfully recover the label with the reference model where it would

have failed with a proper periphery crop that excludes the foreground object.
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Figure A.10. Deja Vu Memorization using a simple corner crop instead of the periphery crop
extracted using bounding box annotations. While the heuristic overall underestimates the degree
of déjà vu , it roughly follows the same trends versus dataset size and training epochs. This is
crucial, since it allows us to estimate déjà vu without access to bounding box annotations.
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Appendix B

B.0.1 Proof of Theorem 1

A restatement of the theorem:

For true distribution P, model distribution Q, and distance metric d : X → R, the

estimator 1
mnUQm →P ∆(P,Q) according to the concentration inequality

Pr
( ∣∣ 1

mn
UQm−∆(P,Q)

∣∣≥ t
)
≤ exp

(
− 2t2mn

m+n

)

Proof. We establish consistency using the following nifty lemma

Lemma 9. (Bounded Differences Inequality) Suppose X1, . . . ,Xn ∈X are independent, and

f : X n→ R. Let c1, . . . ,cn satisfy

sup
x1,...,xn,x′i

∣∣ f (x1, . . . ,xi, . . . ,xn)− f (x1, . . . ,x′i, . . . ,xn)
∣∣

≤ ci

for i = 1, . . . ,n. Then we have for any t > 0

Pr
(∣∣ f −E[ f ]

∣∣≥ t
)
≤ exp

(
−2t2

∑
n
i=1 c2

i

)
(B.1)
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This directly equips us to prove the Theorem.

It is relatively straightforward to apply Lemma 9 to the normalized U = 1
mnUQm . First,

think of it as a function of m independent samples of X ∼Q and n independent samples of Y ∼ P,

U(X1, . . . ,Xm,Y1, . . . ,Yn) =
1

mn ∑i j1d(Xi)>d(Y j)

U : (Rd)mn→ R

Let bi bound the change in U after substituting any Xi with X ′i , and c j bound the change in U

after substituting any Y j with Y ′j . Specifically

sup
x1,...,xm,y1,...,yn, x′i

∣∣U(x1, . . . ,xi, . . . ,xm,y1, . . . ,yn)

−U(x1, . . . ,x′i, . . . ,xm,y1, . . . ,yn)
∣∣

≤ bi

sup
x1,...,xm,y1,...,yn, y′j

∣∣U(x1, . . . ,xm,y1, . . . ,y j, . . .yn)

−U(x1, . . . ,xm,y1, . . . ,y′j, . . .yn)
∣∣

≤ ci

We then know that bi =
n

mn = 1
m for all i, with equality when d(x′i)< d(y j)< d(xi) for all j ∈ [n].

In this case, substituting xi with x′i flips n of the indicator comparisons in U from 1 to 0, and is

then normalized by mn. By a similar argument, c j =
m

nm = 1
n for all j.

Equipped with bi and c j, we may simply substitute into Equation B.1 of the Bounded
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Differences Inequality, giving us

Pr
(∣∣U−E[U ]

∣∣≥ t
)
= Pr

(∣∣ 1
mn

UQm−∆(µp,µq)
∣∣≥ t

)
≤ exp

(
−2t2

∑
m
i=1 b2

i +∑
n
j=1 c2

j

)
= exp

(
−2t2

∑
m
i=1

1
m2 +∑

n
j=1

1
n2

)
= exp

(
−2t2

1
m + 1

n

)
= exp

(
−2t2mn
m+n

)

B.0.2 Proof of Theorem 2

A restatement of the theorem:

When Q = P, and the corresponding distance distribution L(Q) = L(P) is non-atomic,

E
[ 1

mn
U
]
=

1
2

Proof. For random variables A∼ L(P) and B∼ L(P), we can partition the event space of A×B

into three disjoint events:

Pr(A > B)+Pr(A < B)

+Pr(A = B) = 1

Since Q = P, the first two events have equal probability, Pr(A > B) = Pr(A < B), so

2Pr(A > B)+Pr(A = B) = 1

And since the distributions of A and B are non-atomic (i.e. Pr
(
B = b

)
= 0, ∀ b ∈ R) we have
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that Pr(A = B) = 0, and thus

2Pr(A > B) = 1

Pr(A > B) = ∆(P,Q) =
1
2

B.0.3 Proof of Lemma 3

Lemma 3 For the kernel density estimator (2.1), the maximum-likehood choice of σ ,

namely the maximizer of EX∼P[logqσ (X)], satisfies

EX∼P

[
∑
t∈T

Qσ (t|X)∥X− t∥2
]
=

EY∼Qσ

[
∑
t∈T

Qσ (t|Y )∥Y − t∥2
]

Proof. We have

EX∼P [lnqσ (X)]

= EX∼P

[
− ln((2π)k/2|T |σ k)+ ln ∑

t∈T
exp
(
−∥x− t∥2

2σ2

)]

= constant− k lnσ +EX∼P

[
ln ∑

t∈T
exp
(
−∥x− t∥2

2σ2

)]

Setting the derivative of this to zero and simplifying, we find that the maximum-likelihood σ

satisfies

σ
2 =

1
k
EX∼P

[
∑
t∈T

Qσ (t|X)∥X− t∥2

]
. (B.2)

Now, interpreting Qσ as a mixture of |T | Gaussians, and using the notation t ∈R T to mean that t
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is chosen uniformly at random from T , we have

EY∼Qσ

[
∑
t∈T

Qσ (t|Y )∥Y − t∥2

]

= Et∈RTEY∼N(t,σ2Ik)

[
∥Y − t∥2]= kσ

2.

Combining this with (B.2) yields the lemma.

B.0.4 Procedural Details of Experiments

Moons Dataset, and Gaussian KDE

(a) (b) (c) (d)

Figure B.1. Contour plots of KDE fit on T : a) training T sample, b) over-fit ‘data copying’ KDE,
c) max likelihood KDE, d) underfit KDE

moons dataset

‘Moons’ is a synthetic dataset consisting of two curved interlocking manifolds with

added configurable noise. We chose to use this dataset as a proof of concept because it is low

dimensional, and thus KDE friendly and easy to visualize, and we may have unlimited train, test,

and validation samples.

Gaussian KDE

We use a Gaussian KDE as our preliminary generative model Q because its likelihood is

theoretically related to our non-parametric test. Perhaps more importantly, it is trivial to control

the degree of data-copying with the bandwidth parameter σ . Figures B.1b, B.1c, B.1d provide

contour plots of of a Gaussian KDE Q trained on the moons dataset with progressively larger σ .
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With σ = 0.01, Q will effectively resample the training set. σ = 0.13 is nearly the MLE model.

With σ = 0.5, the KDE struggles to capture the unique definition of T .

Moons Experiments

Our experiments that examined whether several baseline tests could detect data-copying

(Section 2.4.1), and our first test of our own metric (Section 2.4.2) use the moons dataset. In

both of these, we fix a training sample, T of 2000 points, a test sample Pn of 1000 points, and a

generated sample Qm of 1000 points. We regenerate Qm 10 times, and report the average statistic

across these trials along with a single standard deviation. If the standard deviation buffer along

the line is not visible, it is because the standard deviation is relatively small. We artificially set

the constraint that m,n≪ |T |, as is true for big natural datasets, and more elaborate models that

are computationally burdensome to sample from.

Section 2.4.1 Methods

Here are the routines we used for the four baseline tests:

• Frechét Inception Distance (FID) [92]: Normally, this test is run on two samples of

images (T and Qm) that are first embedded into a perceptually meaningful latent space

using a discriminative neural net, like the Inception Network. By ‘meaningful’ we mean

points that are closer together are more perceptually alike to the human eye. Unlike images

in pixel space, the samples of the moons dataset require no embedding, so we run the

Frechét test directly on the samples.

First, we fit two MLE Gaussians: N (µT ,ΣT ) to T , and N (µQ,ΣQ) to Qm, by collecting

their respective MLE mean and covariance parameters. The statistic reported is the Frechét

distance between these two Gaussians, denoted Fr(•,•), which for Gaussians has a closed
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form:

Fr
(
N (µT ,ΣT ),N (µQ,ΣQ)

)
=

∥µT −µQ∥+Tr
(
ΣT −ΣQ−2(ΣT ΣQ)

1/2
)

Naturally, if Q is data-copying T , its MLE mean and covariance will be nearly identical,

rendering this test ineffective for capturing this kind of overfitting.

• Binning Based Evaluation [136]: This test, takes a hypothesis testing approach for

evaluating mode collapse and deletion. The test bears much similarity to the test described

in Section 2.3.2. The basic idea is as follows. Split the training set into partition Π using

k-means; the number of samples falling into each bin is approximately normally distributed

if it has ¿20 samples. Check the null hypothesis that the normal distribution of the fraction

of the training set in bin π , T (π), equals the normal distribution of the fraction of the

generated set in bin π , Qm(π). Specifically:

Zπ =
Qm(π)−T (π)√
p̂
(
1− p̂

)( 1
|T | +

1
m

)
where p̂ = |T |T (π)+mQm(π)

|T |+m . We then perform a one-sided hypothesis test, and compute

the number of positive Zπ values that are greater than the significance level of 0.05. We

call this the number of statistically different bins or NDB. The NDB/k ought to equal the

significance level if P = Q.

• Two-Sample Nearest-Neighbor [121]: In this test — our primary baseline — we report

the three LOO NN values discussed in [169]. The generated sample Qm and training

sample (subsampled to have equal size, m), T̃ ⊆ T , are joined together create sample

S = T̃ ∪Qm of size 2m, with training samples labeled ‘1’ and test samples labeled ‘0’. One

then fits a 1-Nearest-Neighbor classifier to S, and reports the accuracy in predicting the
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training samples (‘1’s), the accuracy in predicting the generated samples (‘0’s), and the

average.

One can expect that — when Q collapses to a few mode centers of T — the training

accuracy is low, and the generated accuracy is high, thus indicating over-representation.

Additionally, one could imagine that when the training and generated accuracies are near

0, we have extreme data-copying. However, as explained in Experiments section, when we

are forced to subsample T , it is unlikely that a given copied training point t ∈ T is used in

the test, thus making the test result unclear.

• Precision and Recall [140]: This method offers a clever technique for scaling classical

precision and recall statistics to high dimensional, complex spaces. First, all samples are

embedded to Inception Network Pool3 features. Then, the author’s use the following

insight: for distribution’s Q and P, the precision and recall curve is approximately given

by the set of points:

P̂RD(Q,P) = {(α(λ ),β (λ )|λ ∈ Λ}

where

Λ = {tan
( i

r+1
π

2
)
|i ∈ [r]}

α(λ ) = ∑
π∈Π

min
(
λP(π),Q(π)

)
β (λ ) = ∑

π∈Π

min
(
P(π),

Q(π)

λ

)
and where r is the ‘resolution’ of the curve, the set Π is a partition of the instance space

and P(π),Q(π) are the fraction of samples falling in cell π . Π is determined by running

k-means on the combination of the training and generated sets. In our tests here, we set

k = 5, and report the average PRD curve measured over 10 k-means clusterings (and then
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re-run 10 times for 10 separate trials of Qm).

MNIST Experiments

Figure B.2. Interpolating between two points in the latent space to demonstrate L2 perceptual
significance

(a) (b) (c)

Figure B.3. Number of statistically different bins, both those over and under the significance
level of 0.05. The black dotted line indicates the total number of cells or ‘bins’. (a,b) KDEs
tend to start misrepresenting with σ ≫ σMLE, which makes sense as they become less and
less dependent on training set. (c) it makes sense that the VAE over- and under-represents
across all latent dimensions due to its reverse KL loss. There is slightly worse over- and under-
representation for simple models with low latent dimension.

The experiments of Sections 2.4.2 and 2.4.3 use the MNIST digit dataset [111]. We use

a training sample, T , of size |T | = 50,000, a test sample Pn of size n = 10,000, a validation

sample Vl of l = 10,000, and create generated samples of size m = 10,000.

Here, for a meaningful distance metric, we create a custom embedding using a convolu-

tional autoencoder trained using a VGG perceptual loss proposed by [183]. The encoder and

decoder each have four convolutional layers using batch normalization, two linear layers using

dropout, and two max pool layers. The autoencoder is trained for 100 epochs with a batch size

of 128 and Adam optimizer with learning rate 0.001. For each training sample t ∈ R784, the
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(a) (b) (c)

Figure B.4. This GAN model produces relatively equal representation according to our clustering
for all three classes. It makes sense that a low truncation level tends to over-represent for one
class, as a lower truncation threshold causes less variance. Even though it places samples into all
cells, some cells are data-copying much more aggressively than others.

encoder compresses to z ∈ R64, and decoder expands back up to t̂ ∈ R784. Our loss is then

L(t, t̂) = γ(t, t̂)+λ max{∥z∥2
2−1,0}

where γ(•,•) is the VGG perceptual loss, and λ max{∥z∥2
2−1,0} provides a linear hinge loss

outside of a unit L2 ball. The hinge loss encourages the encoder to learn a latent representation

within a bounded domain, hopefully augmenting its ability to interpolate between samples. It

is worth noting that the perceptual loss is not trained on MNIST, and hopefully uses agnostic

features that help keep us from overfitting. We opt to use a standard autoencoder instead of a

stochastic autoencoder like a VAE, because we want to be able to exactly data-copy the training

set T . Thus, we want the encoder to create a near-exact encoding and decoding of the training

samples specifically. Figure B.2 provides an example of linearly spaced steps between two

training samples. While not perfect, we observe that half-way between the ‘2’ and the ‘0’ is a

sample that appears perceptually to be almost almost a ‘2’ and almost a ‘0’. As such, we consider

the distance metric d(x) on this space used in our experiments to be meaningful.

KDE tests:

In the MNIST KDE experiments, we fit each KDE Q on the 64-d latent representations

of the training set T for several values of σ ; we gather all statistical tests in this space, and

effectively only decode to visaully inspect samples. We gather the average and standard deviation
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(a) ZU =−1.05 (b) ZU =+1.32

Figure B.5. Example of data-copied and underfit cell of ImageNet ‘schooner’ instance space,
from ‘BigGan’ with trunc. threshold = 2. We note here, that — limited to only 50 training
samples — the insufficient k = 3 clustering is perhaps not fine grain enough for this class. Notice
that the generated samples falling into the underfit cell (mostly training images of either masts or
fronts of boats) are hardly any different from those of the over-fit cell. They are likely on the
boundary of the two cells. With that said, the samples of the data-copied cell (a) are certainly
close to the training samples in this region.

of each data point across 5 trials of generating Qm. For the Two-Sample Nearest-Neighbor test,

it is computationally intense to compute the nearesnt neighbor in a 64-dimensional dataset of

20,000 points T̃ ∪Qm 20,000 times. To limit this, we average each of the training and generated

NN accuracy over 500 training and generated samples. We find this acceptable, since the test

results depicted in Figure 2.3f are relatively low variance.

VAE experiments:

In the MNIST VAE experiments, we only use the 64-d autoencoder latent representation

in computing the CT and 1-NN test scores, and not at all in training. Here, we experiment

with twenty standard, fully connected, VAEs using binary cross entropy reconstruction loss.

The twenty models have three hidden layers and latent dimensions ranging from d = 5 to

d = 100 in steps of 5. The number of neurons in intermediate layers is approximately twice

the number of the layer beneath it, so for a latent space of 50-d, the encoder architecture is

784→ 400→ 200→ 100→ 50, and the decoder architecture is the opposite.

To sample from a trained VAE, we sample from a standard normal with dimensionality

equivalent to the VAEs latent dimension, and pass them through the VAE decoder to the 784-d

image space. We then encode these generated images to the agnostic 64-d latent space of the

perceptual autoencoder described at the beginning of the section, where L2 distance is meaningful.
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We also encode the training sample T and test sample Pn to this space, and then run the CT and

two-sample NN tests. We again compute the nearest neighbor accuracies for 500 of the training

and generated samples (the 1-NN classifier is fit on the 20,000 sample set T̃ ∪Qm), which appears

to be acceptable due to low test variance.

ImageNet Experiments

Here, we have chosen three of the one thousand ImageNet12 classes that ‘BigGan’ pro-

duces. To reiterate, a conditional GAN can output samples from a specific class by conditioning

on a class code input. We acknowledge that conditional GANs combine features from many

classes in ways not yet well understood, but treat the GAN of each class as a uniquely different

generative model trained on the training samples from that class. So, for the ‘coffee’ class, we

treat the GAN as a coffee generator Q, trained on the 1300 ‘coffee’ class samples. For each class,

we have 1300 training samples |T |, 2000 generated samples m, and 50 test samples n. Being

atypically training sample starved (m > |T |), we subsample Qm (not T !), to produce equal size

samples for the two-sample NN test. As such, all training samples used are in the combined set

S. We also note that the 50 test samples provided in each class is highly limiting, only allowing

us to split the instance space into about three cells and keep a reasonable number of test samples

in each cell. As the number of test samples grows, so can the number of cells and the resolution

of the partition. Figure B.5 provides an example of where this clustering might be limited; the

generated samples of the underfit cell seem hardly any different from those of the over-fit cell. A

finer-grain partition is likely needed here. However, the data-copied cell to the left does appear

to be very close to the training set, potentially too close according to ZU .

In performing these experiments, we gather the CT (Pn,Qm) statistic for a given class

of images. In an attempt to embed the images into a lower dimensional latent space with

L2 significance, we pass each image through an InceptionV3 network and gather the 2048-

dimension feature embeddings after the final average pooling layer (Pool3). We then project

all inception-space images (T,Pn,Qm) onto the 64 principal components of the training set
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embeddings. Finally, we use k-means to partition the points of each sample into one of k = 3

cells. The number of cells is limited by the 50 test images available per class. Any more cells

would strain the Central Limit Theorem assumption in computing ZU . Finally, we gather the CT

and two-sample NN baseline statistics on this 64-d space.

(a) CT (Pn,Qm) (b) kernel MMD

Figure B.6. Comparison of the CT (Pn,Qm) test presented in this paper alongside the three sample
kMMD test.

B.0.5 Comparison with three-sample Kernel-MMD:

Another three-sample test not shown in the main body of this work is the three-sample

kernel MMD test introduced by [27] intended more for model comparison than for checking

model overfitting. For samples X ∼ P and Y ∼ Q, we can estimate the squared kernel MMD

between P and Q under kernel k by empirically estimating

MMD2(P,Q)

= Ex,x′∼P[k(x,x
′)]−2Ex∼P,y∼Q[k(x,y)]+Ey,y′∼Q[k(y,y

′)]

More recent works such as [67] have repurposed this test for measuring generative model

overfitting. Intuitively, if the model is overfitting its training set, the empirical kMMD between

training and generated data may be smaller than that between training and test sets. This may be

triggered by the data-copying variety of overfitting.
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This test provides an interesting benchmark to consider in addition to those in the

main body. Figure B.6 demonstrates some preliminary experimental results repeating the

MNIST VAE experiment Figure 2.4b. To implement the kMMD, we used code posted by

[27] https://github.com/eugenium/MMD, and ran the three sample RBF-kMMD test on twenty

MNIST VAEs with decreasing complexity (latent dimension). Figure B.6b attached plots the

kMMD distance to training set for both the generated (orange) and test samples (blue). We

observe that this test does not appear sensitive to over-parametrized VAEs (d > 50) in the same

way our proposed test (Figure 1a attached) is. It is sensitive to underfitting (d << 50), however.

The p-values of that work’s corresponding hypothesis test (figure not shown) similarly did not

respond to data-copying. We suspect that this insensitivity to data-copying is due to the global

nature of this test, incapable of capturing data-copying at smaller scales.
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Appendix C

C.0.1 Privacy Mechanism

We now describe in detail our instance of the exponential mechanism MTD. Recall from

Definition 3.2.2 that the exponential mechanism samples candidate fi ∈ F with probability

Pr[M (x) = fi] ∝ exp
(εu(x, fi)

2∆u

)
.

Thus, MTD is fully defined by its utility function, which, as listed in Equation (3.3), is approxi-

mate Tukey Depth,

u(x, fi) = T̂DSx( fi) .

We now describe our approximation algorithm of Tukey Depth T̂DSx( fi), which is an adaptation

of the general median hypothesis algorithm proposed by Gilad-Bachrach und Burges [82].

Note that we can precompute the projections on line 10. The runtime is O(mkp): for

each of m candidates and on each of p projections, we need to compute the scalar difference

with k sentence embeddings. Sampling from the multinomial distribution defined by PF then

takes O(m) time.

Additionally note from lines 13 and 15 that utility has a maximum of 0 and a minimum of

− k
2 , which is a semantic change from the main paper where maximum utility is k

2 and minimum
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Algorithm 3: MTD compute probabilities
Input :m candidates F ,

sentence embs. Sx = (s1, . . . ,sk),
number of projections p

Output :probability of sampling each candidate PF = [Pf1 , . . . ,Pfm ]
1 v1, . . . ,vp← random vecs. on unit sphere
2 // Project all embeddings

3 for i ∈ [k] do
4 for j ∈ [p] do
5 s j

i ← s⊺i v j
6 end for
7 end for
8 for i ∈ [m] do
9 for j ∈ [p] do

10 f j
i ← f ⊺i v j

11 /* Compute depth of fi on projection v j */

12 h j(x, fi)← #{s j
l : s j

l ≥ f j
i , l ∈ [k]}

13 u j(x, fi)←−
∣∣h j(x, fi)− k

2

∣∣
14 end for
15 u(x, fi)←max j∈[p] u j(x, fi)

jPfi ← exp(εu(x, fi)/2)
16 end for
17 Ψ← ∑

m
i=1

jPfi
18 for i ∈ [m] do
19 Pfi ← 1

Ψ

jPfi
20 end for
21 return PF
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is 0.

C.0.2 Proof of Privacy

Theorem 3.4.1 MTD satisfies ε-Sentence Privacy

Proof. It is sufficient to show that the sensitivity,

∆u = max
x,x′, fi
|u(x, fi)−u(x′, fi)| ≤ 1 .

Let us expand the above expression using the terms in Algorithm 3.

∆u = max
x,x′, fi
|max

j∈[p]
u j(x, fi)−max

j′∈[p]
u j′(x

′, fi)|

= max
x,x′, fi
|min

j∈[p]

∣∣h j(x, fi)−
k
2

∣∣
− min

j′∈[p]

∣∣h j′(x
′, fi)−

k
2

∣∣|
≤max

fi
|min

j∈[p]

∣∣h j(x, fi)−
k
2

∣∣
−
(

min
j′∈[p]

∣∣h j′(x, fi)−
k
2

∣∣−1
)
|

≤ 1

The last step follows from the fact that |h j(x, fi)−h j(x′, fi)| ≤ 1 for all j ∈ [p]. In other words,

by modifying a single sentence embedding, we can only change the number of embeddings

greater than f j
i on projection j by 1. So, the distance of h j(x, fi) from k

2 can only change by 1 on

each projection. In the ‘worst case’, the distance
∣∣h j(x, fi)− k

2

∣∣ reduces by 1 on every projection

v j. Even then, the minimum distance from k
2 across projections (the worst case depth) can only

change by 1, giving us a sensitivity of 1.

C.0.3 Experimental Details

Here, we provide an extended, detailed version of section 3.5.
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For the general encoder, G : S → R768, we use SBERT [135], a version of BERT fine-

tuned for sentence encoding. Sentence embeddings are generated by mean-pooling output tokens.

In all tasks, we freeze the weights of SBERT. The cluster-preserving recoder, H, as well as every

classifier is implemented as an instance of a 4-layer MLP taking 768-dimension inputs and only

differing on output dimension. We denote an instance of this MLP with output dimension o as

MLPo. We run 5 trials of each experiment with randomness taken over the privacy mechanisms,

and plot the mean along with a ± 1 standard deviation envelope.

Non-private:

For our non-private baseline, we demonstrate the usefulness of sentence-mean document

embeddings. First, we generate the document embeddings g(xi) for each training, validation,

and test set document using SBERT, G. We then train a classifier Cnonpriv = MLPr to predict

each document’s topic or sentiment, where r is the number of classes. The number of training

epochs is determined with the validation set.

DeepCandidate:

We first collect the candidate set F by sampling 5k document embeddings from the subset

of the training set containing at least 8 sentences. We run k-means with nc = 50 cluster centers,

and label each training set document embedding ti ∈ TG with its cluster. The sentence recoder,

H = MLP768 is trained on the training set along with the linear model L with the Adam optimizer

and cross-entropy loss. For a given document x, its sentence embeddings Sx are passed through

H, averaged together, and then passed to L to predict x’s cluster. L’s loss is then back-propagated

through H. A classifier Cdc = MLPr is trained in parallel using a separate instance of the Adam

optimizer to predict class from the recoded embeddings, where r is the number of classes (topics

or sentiments). The number of training epochs is determined using the validation set. At test time,

(generating private embeddings using MTD), the optimal number of projections p is empirically

chosen for each ε using the validation set.
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Truncation:

The truncation baseline [114] requires first constraining the embedding instance space.

We do so by computing the 75% median interval on each of the 768 dimensions of training

document embeddings TG. Sentence embeddings are truncated at each dimension to lie in this

box. In order to account for this distribution shift, a new classifier Ctrunc = MLPr is trained

on truncated mean embeddings to predict class. The number of epochs is determined with the

validation set. At test time, a document’s sentence embeddings Sx are truncated and averaged.

We then add Laplace noise to each dimension with scale factor 768w
kε

, where w is the width of

the box on that dimension (sensitivity in DP terms). Note that the standard deviation of noise

added is inversely proportional to the number of sentences in the document, due to the averaging

operation reducing sensitivity.

Word Metric-DP:

Our next baseline satisfies ε-word-level metric DP and is adopted from [73]. The

corresponding mechanism MDP : X →X takes as input a document x and returns a private

version, x′, by randomizing each word individually. For comparison, we generate document

embeddings by first randomizing the document x′ = MDP(x) as prescribed by [73], and then

computing its document embedding g(x′) using SBERT. At test time, we classify the word-private

document embedding using Cnonpriv.

Random Guess:

To set a bottom-line, we show the theoretical performance of a random guesser. The

guesser chooses class i with probability qi equal to the fraction of i labels in the training set. The

performance is then given by ∑
r
i=1 q2

i .

C.0.4 Reproducability Details

We plan to publish a repo of code used to generate the exact figures in this paper (random

seeds have been set) with the final version. Since we do not train the BERT base model G, our
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algorithms and training require relatively little computational resouces. Our system includes a

single Nvidia GeForce RTX 2080 GPU and a single Intel i9 core. All of our models complete

an epoch training on all datasets in less than one minute. We never do more than 20 epochs of

training. All of our classifier models train (including linear model) have less than 11 million

parameters. The relatively low amount of parameters is due to the fact that we freeze the

underlying language model. The primary hyperparameter tuned is the number of projections p.

We take the argmax value on the validation set between 10 and 100 projections. We repeat this

for each value of ε .

Dataset preprocessing:

For all datasets, we limit ourselves to documents with at least 2 sentences.

IMDB: This dataset has pre-defined train/test splits. We use the entire training set and

form the test set by randomly sampling 4,000 from the test set provided. We do this for efficiency

in computing the Metric-DP baseline, which is the slowest of all algorithms performed. Since the

Metric-DP baseline randomizes first, we cannot precompute the sentence embeddings G(si) – we

need to compute the sentence embeddings every single time we randomize. Since we randomize

for each sentence of each document at each ε and each k over 5 trials – this takes a considerable

amount of time.

Good Reads: This dataset as provided is quite large. We randomly sample 15000

documents from each of 4 classes, and split them into 12K training examples, 2K validation

examples, and 1K test examples per class.

20 News Groups: We preprocess this dataset to remove all header information, which

may more directly tell information about document class, and only provide the model with the

sentences from the main body. We use the entire dataset, and form the Train/Val/Test splits by

random sampling.
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Appendix D

D.1 Appendix

D.1.1 Background Cntd.

D.1.2 Local Inferential Privacy

Local inferential privacy captures what information a Bayesian adversary [105], with

some prior, can learn in the LDP setting. Specifically, it measures the largest possible ratio

between the adversary’s posterior and prior beliefs about an individual’s data after observing a

mechanism’s output .

Definition D.1.1. (Local Inferential Privacy Loss [105]) Let x = ⟨x1, · · · ,xn⟩ and let y =

⟨y1, · · · ,yn⟩ denote the input (private) and output sequences (observable to the adversary) in the

LDP setting. Additionally, the adversary’s auxiliary knowledge is modeled by a prior distribution

P on x. The inferential privacy loss for the input sequence x is given by

LP(x) = max
i∈[n]

a,b∈X

(
log

PrP [y|xi = a]
PrP [y|xi = b]

)
= max

i∈[n]
a,b∈X

(∣∣∣∣ log
PrP [xi = a|y]
PrP [xi = b|y]

− log
PrP [xi = a]
PrP [xi = b]

∣∣∣∣
)

(D.1)

Bounding LP(x) would imply that the adversary’s belief about the value of any xi does

not change by much even after observing the output sequence y. This means that an informed

adversary does not learn much about the individual i’s private input upon observation of the

entire private dataset y.
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Here we define two rank distance measures

Definition D.1.2 (Kendall’s τ Distance). For any two permutations, σ ,π ∈ Sn, the Kendall’s

τ distance dτ(σ ,π) counts the number of pairwise disagreements between σ and π , i.e., the

number of item pairs that have a relative order in one permutation and a different order in the

other. Formally,

dτ(σ ,π) =
∣∣∣ {(i, j) : i< j,

[
σ(i)> σ( j)∧π(i)< π( j)

]
∨
[
σ(i)< σ( j)∧π(i)> π( j)

]} ∣∣∣ (D.2)

For example, if σ = (1 2 3 4 5 6 7 8910) and π = (12365478910), then dτ(σ ,π) = 3.

Next, Hamming distance measure is defined as follows.

Definition D.1.3 (Hamming Distance). For any two permutations, σ ,π ∈ Sn, the Hamming

distance dH(σ ,π) counts the number of positions in which the two permutations disagree.

Formally,

dH(σ ,π) =
∣∣∣{i ∈ [n] : σ(i) ̸= π(i)

}∣∣∣
Repeating the above example, if σ = (1 2 3 4 5 6 7 8 9 10) and π = (1 2 3 6 5 4 7 8 9 10), then

dH(σ ,π) = 2.

D.1.3 dσ -privacy and the De Finetti attack

We now show that a strict instance of dσ privacy is sufficient for thwarting any de Finetti

attack [102] on individuals. The de Finetti attack involves a Bayesian adversary, who, assuming

some degree of correlation between data owners, attempts to recover the true permutation from

the shuffled data. As written, the de Finetti attack assumes the sequence of sensitive attributes

and side information (x1, t1), . . . ,(xn, tn) are exchangeable: any ordering of them is equally likely.

By the de Finetti theorem, this implies that they are i.i.d. conditioned on some latent measure
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θ . To balance privacy with utility, the x sequence is non-uniformly randomly shuffled w.r.t.

the t sequence producing a shuffled sequence z, which the adversary observes. Conditioning

on z the adversary updates their posterior on θ (i.e. posterior on a model predicting xi|ti), and

thereby their posterior predictive on the true x. The definition of privacy in [102] holds that the

adversary’s posterior beliefs are close to their prior beliefs by some metric on distributions in X ,

δ (·, ·):

δ

(
Pr[xi],Pr[xi|z]

)
≤ α

We now translate the de Finetti attack to our setting. First, to align notation with the rest

of the paper we provide privacy to the sequence of LDP values y since we shuffle those instead

of the x values as in [102]. We use max divergence (multiplicative bound on events used in DP )

for δ :

Pr[yi ∈ O]≤ eα Pr[yi ∈ O|z]

Pr[yi ∈ O|z]≤ eα Pr[yi ∈ O]

which, for compactness, we write as

Pr[yi ∈ O]≈α Pr[yi ∈ O|z] . (D.3)

We restrict ourselves to shuffling mechanisms, where we only randomize the order of sensitive

values. By learning the unordered values {y} alone, an adversary may have arbitrarily large

updates to its posterior (e.g. if all values are identical), breaking the privacy requirement above.

With this in mind, we assume the adversary already knows the unordered sequence of values

{y} (which they will learn anyway), and has a prior on permutations σ allocating values from

that sequence to individuals. We then generalize the de Finetti problem to an adversary with an
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arbitrary prior on the true permutation σ , and observes a randomize permutation σ ′ from the

shuffling mechanism. We require that the adversary’s prior belief that σ(i) = j is close to their

posterior belief for all i, j ∈ [n]:

Pr[σ ∈ Σi, j]≈α Pr[σ ∈ Σi, j|σ ′] ∀i, j ∈ [n],∀σ ′ ∈ Sn , (D.4)

where Σi, j = {σ ∈ Sn : σ(i) = j}, the set of permutations assigning element j to DOi. Condition-

ing on any unordered sequence {y} with all unique values, the above condition is necessary to

satisfy Eq. (D.3) for events of the form O = {yi = a}, since {yi = a}= {Σi, j} for some j ∈ [n].

For any {y} with repeat values, it is sufficient since Pr[yi = a] is the sum of probabilities of

disjoint events of the form Pr[σ ∈ Σi,k] for various k ∈ [n] values.

We now show that a strict instance of dσ -privacy satisfies Eq. (D.4). Let Ĝ be any group

assignment such that at least one Gi ∈ Ĝ includes all data owners, Gi = {1,2, . . . ,n}.

Property 1. A (Ĝ ,α)-dσ -private shuffling mechanism σ ′ ∼A satisfies

Pr[σ ∈ Σi, j]≈α Pr[σ ∈ Σi, j|σ ′]

for all i, j ∈ [n] and all priors on permutations Pr[σ ].

Proof.

Lemma 10. For any prior Pr[σ ], Eq. (D.4) is equivalent to the condition

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

≈α

∑ jσ∈Σi, j
Pr[ jσ ]

∑ jσ∈Σi, j
Pr[ jσ ]

(D.5)

where the set Σi, j is the complement of Σi, j.

Under grouping jG , every permutation σa ∈ Σi, j neighbors every permutation σb ∈ Σi, j,

σa ≈ jG
σb, for any i, j. By the definition of dσ -privacy, we have that for any observed permutation
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σ ′ output by the mechanism:

Pr[σ ′|σ = σa]≈α Pr[σ ′|σ = σb] ∀σa ∈ Σi, j,σb ∈ Σi, j,σ
′ ∈ Sn .

This implies Eq. D.5. Thus, (Ĝ ,α)-dσ -privacy implies Eq. D.5, which implies Eq. D.4, thus

proving the property.

Using Lemma 10, we may also show that this strict instance of dσ -privacy is necessary

to block all de Finetti attacks:

Property 2. A (Ĝ ,α)-dσ -private shuffling mechanism σ ′ ∼A is necessary to satisfy

Pr[σ ∈ Σi, j]≈α Pr[σ ∈ Σi, j|σ ′]

for all i, j ∈ [n] and all priors on permutations Pr[σ ].

Proof. If our mechanism A is not (Ĝ ,α)-dσ -private, then for some pair of true (input) permuta-

tions σa ̸= σb and some released permutation σ ′ ∼A , we have that

Pr[σ ′|σb]≥ eα Pr[σ ′|σa] .

Under jG , all permutations neighbor each other, so σa ≈ jG
σb. Since σa ̸= σb, then for some

i, j ∈ [n], σa ∈ Σi, j and σb ∈ Σi, j: one of the two permutations assigns some j to some DOi and

the other does not. Given this, we may construct a bimodal prior on the true σ that assigns half

its probability mass to σa and the rest to σb,

Pr[σa] = Pr[σb] =
1
2

.
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Therefore, for released permutation σ ′, the RHS of Eq. D.5 is 1, and the LHS is

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

=
1/2 Pr[σ ′|σb]
1/2 Pr[σ ′|σa]

≥ eα ,

violating Eq. D.5, thus violating Eq. D.4, and failing to prevent de Finetti attacks against this

bimodal prior.

Ultimately, unless we satisfy dσ -privacy shuffling the entire dataset, there exists some

prior on the true permutation Pr[σ ] such that after observing the shuffled z permuted by σ ′, the

adversary’s posterior belief on one permutation is larger than their prior belief by a factor ≥ eα .

If we suppose that the set of values {y} are all distinct, this means that for some a ∈ {y}, the

adversary’s belief that yi = a is signficantly larger after observing z than it was before.

Now to prove Lemma 10:

Proof.

Pr[σ ∈ Σi, j]≈α Pr[σ ∈ Σi, j|σ ′]

Pr[σ ∈ Σi, j]≈α

Pr[σ ′|σ ∈ Σi, j]Pr[σ ∈ Σi, j]

∑ jσ∈Sn
Pr[ jσ ]Pr[σ ′| jσ ]

∑
jσ∈Sn

Pr[ jσ ]Pr[σ ′| jσ ]≈α Pr[σ ′|σ ∈ Σi, j]

∑
jσ∈Sn

Pr[ jσ ]Pr[σ ′| jσ ]≈α Pr[σ ∈ Σi, j]
−1

∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]

∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]+ ∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]≈α Pr[σ ∈ Σi, j]
−1

∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]

∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]≈α ∑
jσ∈Σi, j

Pr[ jσ ]Pr[σ ′| jσ ]
( 1

Pr[σ ∈ Σi, j]
−1
)

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

∑ jσ∈Σi, j
Pr[ jσ ]Pr[σ ′| jσ ]

≈α

∑ jσ∈Σi, j
Pr[ jσ ]

∑ jσ∈Σi, j
Pr[ jσ ]
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As such, a strict instance of dσ -privacy can defend against any de Finetti attack (i.e. for

any prior Pr[σ ] on permutations), wherein at least one group Gi ∈ G includes all data owners.

Furthermore, it is necessary. This makes sense. In order to defend against any prior, we need to

significantly shuffle the entire dataset. Without a restriction of priors as in Pufferfish [105], the

de Finetti attack (i.e. uninformed Bayesian adversaries) is an indelicate metric for evaluating the

privacy of shuffling mechanisms: to achieve significant privacy, we must sacrifice all utility. This

in many regards is reminiscent of the no free lunch for privacy theorem established in [103]. As

such, there is a need for more flexible privacy definitions for shuffling mechanisms.

D.1.4 Additional Properties of dσ -privacy

Lemma 11 (Convexity). Let A1, . . .Ak : Y n 7→ V be a collection of k (α,G )-dσ private mech-

anisms for a given group assignment G on a set of n entities. Let A : Y n 7→ V be a convex

combination of these k mechanisms, where the probability of releasing the output of mechanism

Ai is pi, and ∑
k
i=1 pi = 1. A is also (α,G )-dσ private w.r.t. G .

Proof. For any (σ ,σ ′) ∈ NG and y ∈ Y :

Pr[A
(
σ(y)

)
∈ O] =

k

∑
i=1

piPr[Ai
(
σ(y)

)
∈ O]

≤ eα
k

∑
i=1

piPr[Ai
(
σ
′(y)
)
∈ O]

= Pr[A
(
σ
′(y)
)
∈ O]

Theorem 12 (Post-processing). Let A : Y n 7→ V be (α,G )-dσ private for a given group as-

signment G on a set of n entities. Let f : V 7→ V ′ be an arbitrary randomized mapping. Then

f ◦A : Y n 7→ V ′ is also (α,G )-dσ private.
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Proof. Let g : V → V ′ be a deterministic, measurable function. For any output event Z ⊂ V ′,

let W be its preimage:

W = {v ∈ V |g(v) ∈Z }. Then, for any (σ ,σ ′) ∈ NG ,

Pr
[
g
(
A
(
σ(y)

))
∈Z

]
= Pr

[
A
(
σ(y)

)
∈W

]
≤ eα ·Pr

[
A
(
σ
′(y)
)
∈W

]
= eα ·Pr

[
g
(
A
(
σ
′(y)
))
∈Z

]

This concludes our proof because any randomized mapping can be decomposed into a convex

combination of measurable, deterministic functions [62], and as Lemma 11 shows, a convex

combination of (α,G )-dσ private mechanisms is also (α,G )-dσ private.

Theorem 13 (Sequential Composition). If A1 and A2 are (α1,G )- and (α2,G )-dσ private mecha-

nisms, respectively, that use independent randomness, then releasing the outputs
(
A1(y),A2(y)

)
satisfies (α1 +α2,G )-dσ privacy.

Proof. We have that A1 : Y n→ V ′ and A1 : Y n→ V ′′ each satisfy dσ -privacy for different

α values. Let A : Y n→ (V ′×V ′′) output
(
A1(y),A2(y)

)
. Then, we may write any event

Z ∈ (V ′×V ′′) as Z ′×Z ′′, where Z ′ ∈ V ′ and Z ′′ ∈ V ′′. We have for any (σ ,σ ′) ∈ NG ,

Pr
[
A
(
σ(y)

)
∈Z

]
= Pr

[(
A1
(
σ(y)

)
,A2

(
σ(y)

))
∈Z

]
= Pr

[
{A1

(
σ(y)

)
∈Z ′}∩{A2

(
σ(y)

)
∈Z ′′}

]
= Pr

[
{A1

(
σ(y)

)
∈Z ′}

]
Pr
[
{A2

(
σ(y)

)
∈Z ′′}

]
≤ eα1+α2Pr

[
{A1

(
σ
′(y)
)
∈Z ′}

]
Pr
[
{A2

(
σ
′(y)
)
∈Z ′′}

]
= eα1+α2 ·Pr

[
A
(
σ
′(y)
)
∈Z

]
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D.1.5 Proof for Thm. 4

Theorem 4 For a given group assignment G on a set of n data owners, if a shuffling

mechanism A : Y n 7→ Y n is (α,G )-dσ private, then for each data owner DOi, i ∈ [n],

max
i∈[n]

a,b∈X

∣∣∣∣ log
PrP [xi = a|z,{yGi},yGi

]

PrP [xi = b|z,{yGi},yGi
]
− log

PrP [xi = a|{yGi},yGi
]

PrP [xi = b|{yGi},yGi
]

∣∣∣∣≤ α

for a prior distribution P , where z = A (y) and yGi
is the noisy sequence for data owners outside

Gi.

Proof. We prove the above by bounding the following equivalent expression for any i ∈ [n] and

a,b ∈X .

PrP [z|xi = a,{yGi},yGi
]

PrP [z|xi = b,{yGi},yGi
]

=

∫
PrP [y|xi = a,{yGi},yGi

]PrA [z|y]dy∫
PrP [y|xi = b,{yGi},yGi

]PrA [z|y]dy

=
∑σ∈Sr PrP [σ(y∗Gi

)|xi = a,yGi
]PrA [z|σ(y∗Gi

),yGi
]

∑σ∈Sr PrP [σ(y∗Gi
)|xi = b,yGi

]PrA [z|σ(y∗Gi
),yGi

]

≤ max
{σ ,σ ′∈Sr}

PrA [z|σ(y∗Gi
),yGi

]

PrA [z|σ ′(y∗Gi
),yGi

]

≤ max
{σ ,σ ′∈NGi}

PrA [z|σ(y)]
PrA [z|σ ′(y)]

≤ eα

The second line simply marginalizes out the full noisy sequence y. The third line reduces this

to a sum over permutations of of yGi , where r = |Gi| and y∗Gi
is any fixed permutation of values

{yGi}. This is possible since we are given the values outside the group, yGi
, and the unordered

set of values inside the group, {yGi}. Note that the permutations σ written here are possible

permutations of the LDP input, not permutations output by the mechanism applied to the input

as sometimes written in other parts of this document.
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The fourth line uses the fact that the numerator and denominator are both convex combi-

nations of PrA [z|σ(y∗Gi
),yGi

] over all σ ∈ Sr.

The fifth line uses the fact that for any yGi
,

(σ(y∗Gi
),yGi

)≈Gi (σ
′(y∗Gi

),yGi
) .

This allows a further upper bound over all neighboring sequences w.r.t. Gi, and thus over any

permutation of yGi
, as long as it is the same in the numerator and denominator.

Discussion

The above Bayesian analysis measures what can be learned about DOi’s xi from observing

the private release z relative to some other known information (the conditioned information).

Under dσ -privacy, we condition on the bag of LDP values in Alice’s group {yGi} as well

as the sequence (order and value) of LDP values outside her group yGi
. This implies that

releasing the shuffled sequence z cannot provide much more information about Alice’s xi than

would releasing the LDP values outside her neighborhood (her group) and the unordered bag of

LDP values inside her neighborhood, regardless of the adversary’s prior knowledge P . This

is a communicable guarantee: if Alice feels comfortable with the data collection knowing that

her entire neighborhood’s responses will be uniformly shuffled together (including those of her

household), then she ought to be comfortable with dσ -privacy. Now, we have to provide this

guarantee to Bob, a neighbor of Alice, as well as Luis, a neighbor of Bob but not of Alice. Thus,

Bob, Alice and Luis have distinct and overlapping groups (neighborhoods). Hence, the trivial

solution of uniformly shuffling the noisy responses of every group separately does not work

in this case. dσ -privacy, however, offers the above guarantee to each user (knowing that their

entire neighborhood is nearly uniformly shuffled) while still maintaining utility (estimate disease

prevalence within neighborhoods). Semantically, this is very powerful, since it implies that the

noisy responses specific to one’s household cannot be leveraged to infer one’s disease state xi.
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D.1.6 Proof of Theorem 5

Theorem 5

For A (M (x)) = z where M (·) is ε-LDP and A (·) is α - dσ private, we have

Pr[DAdv loses]≥ ⌊r− k
k
⌋e−(2kε+α) ·Pr[DAdv wins]

for any input subgroup I ⊂ Gi,r = |Gi| and k < r/2.

Proof. We first focus on deterministic adversaries and then expand to randomized adversaries

afterwards using the fact that randomized adversaries are mixtures of deterministic ones.

Our adversary DAdv is then defined by a deterministic decision function η : Y n→ [n]k.

Upon observing z, η(z) selects k elements in z which it believes originated from I ⊂ Gi.

In the following, let Prz be the probability of events conditioned on the shuffled output

sequence z, where randomness is over the ε-LDP mechanism M and the α-dσ -private shuffling

mechanism A . 1

The adversary wins if it reidentifies > k
2 of the LDP values originating from I. Let

H = η(z) be the indices of elements in z selected by η . Let W = {σ ∈ Sn : |σ(H)∩ I|> k
2} be

the set of permutations where the adversary wins and let L = {σ ∈ Sn : σ(H)∩ I| ≤ k
2} be the

set of permutations where the adversary loses.

Pr
z
[η(z) wins] = Pr

z
[σ ∈W ]

Pr
z
[η(z) loses] = Pr

z
[σ ∈ L]

where σ is the shuffling permutation produced by A , z = σ(y) i.e. zi = yσ(i). Concretely, this is

equivalent to DOi releasing DOσ(i)’s LDP response. Since the permutation and LDP outputs are

1As an abuse of notation, we assume the output space of the LDP randomizers, Y , have outcomes with non-zero
measure e.g. randomized response. The following analysis can be expanded to continuous outputs (with outcomes
of zero measure) by simply replacing the output sequence z ∈ Y n with an output event Z⊆ Y n.
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randomized, many subgroups of size k in Gi could have produced the LDP values (zH1 , . . . ,zHk)

and then been mapped to H by a permutation. Concretely, there is a reasonable probability that

Alice’s household output the LDP values of another k-member household in her neighborhood

and they output her household’s LDP values. In the worst case, this is e−2kε less likely than

without swapping values, by group DP guarantees. Since both households are part of the same

group Gi, the permutation that maps her household to elements H in the output is close in

probability to that which maps the other household to elements H in the output. As such, we have

in the worst case a e−(2kε+α) reduction in probability of the other household having swapped

LDP values with Alice’s and permuting to subset H.

The above provides intuition on how we could get the same output z many different ways,

and how Alice’s household could or could not contribute to elements H. It does not, however,

explain why an adversary who is given output z has limited advantage in choosing a subset H

such that they recover most of Alice’s household’s values. We formalize this fact as follows.

We may rewrite the probabilities of winning or losing by marginalizing out all possible

LDP sequences y. Conditioning on the output sequence z, the only possible LDP sequences y

are permutations of z. Note that the probability of any sequence y is determined by the input x

and the LDP mechanism M :

Pr
z
[η(z) loses] = Pr

z
[σ ∈W ]

= ∑
σ∈W

Pr[A (x) = y = σ
−1(z)]Pr[σ |y]/Pr[z]

Note that Prz[σ |y] = Prz[σ ] for the mallows mechanism, which chooses its permutations inde-

pendently of y. Now consider when η(z) loses. By similar arguments as above:

Pr
z
[η(z) loses] = Pr

z
[σ ∈ L]

= ∑
σ∈L

Pr[A (x) = y = σ
−1(z)]Pr[σ |y]/Pr[z]
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The odds of losing versus winning is given by

Prz[η(z) loses]
Prz[η(z) wins]

=
∑σ ′∈L Pr[A (x) = y = σ

′−1(z)]Pr[σ ′|y]
∑σ∈W Pr[A (x) = y = σ−1(z)]Pr[σ |y]

We now show that for each σ in the denominator, we may construct m = ⌊ r−k
k ⌋ distinct permuta-

tions σ ′ in the numerator that are close in probability to it.

Lemma 14. For every σ ∈W there exists a set of m = ⌊ r−k
k ⌋ permutations, E(σ), such that

1. E(σ)⊆ L

2. σ−1 ≈Gi σ
′−1

3. E(σa)∩E(σb) = /0 for any pair σa,σb ∈W

4. Pr[A (x) = y = σ−1(z)]≤ e2kε Pr[A (x) = y = σ
′−1(z)] for any x ∈X n and any z ∈ Y n

Proof. Given σ ∈W , we construct E(σ) by first taking the inverse σ−1. Recall that, since

σ ∈W , we have that |σ−1(I)∩H| > k
2 . (σ−1(i) = j could be interpreted as data owner i’s

LDP value will be output at position j). We then divide the remainder of the group Gi\I into

m disjoint subsets of size k each, J1,J2, . . . ,Jm. These represent the other distinct subsets of

size k that Alice’s household could swap LDP values with. We then produce m permutations,

σ
′−1
1 , . . . ,σ

′−1
m , by making σ

′−1
i (I) = σ−1(Ji) and σ

′−1
i (Ji) = σ−1(I) (preserving order within

those subsets) and σ
′−1 = σ−1 everywhere else.

On the first point, we know that every σ ′ ∈ E(σ) is also in L. We know this because

σ
′−1
i (I) = σ−1(Ji). Since σ ∈W , we have that |σ−1(Ji)∩H|< k

2 since |σ−1(I)∩H| ≥ k
2 and

I∩ Ji = /0 by definition. Thus, |σ ′−1
i (I)∩H|< k

2 , so |σ ′i (H)∩ I|< k
2 and σ ′i ∈ L.

On the second point, we know that the inverse permutations are neighboring σ−1 ≈Gi

σ
′−1 simply by construction – they only differ on elements in Gi.
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On the third point, we know that the sets E(σa) and E(σb) are distinct since we can

map any permutation σ ′ ∈ E(σa) uniquely back to σa for any σa ∈W . We do so by taking

its inverse σ
′−1, finding which subset Ji has majority elements from H i.e. |σ ′−1(Ji)∩H|> k

2 .

Swap elements back: σ
′−1(Ji) with σ

′−1(I). Invert back to σa.

On the fourth point, we know that σ−1(z) and σ
′−1(z) differ on at most 2k indices. As

such, by group DP guarantees, we know that their probabilities must be close to a factor of e−2kε

regardless of z and x.

Using the above Lemma we may bound the odds of losing vs. winning.

Prz[η(z) loses]
Prz[η(z) wins]

=
∑σ ′∈L Pr[A (x) = y = σ

′−1(z)]Pr[σ ′|y]
∑σ∈W Pr[A (x) = y = σ−1(z)]Pr[σ |y]

≥
∑σ∈W ∑σ ′∈E(σ)Pr[A (x) = y = σ

′−1(z)]Pr[σ ′|y]
∑σ∈W Pr[A (x) = y = σ−1(z)]Pr[σ |y]

≥ min
σ∈W

∑σ ′∈E(σ)Pr[A (x) = y = σ
′−1(z)]Pr[σ ′|y]

Pr[A (x) = y = σ−1(z)]Pr[σ |y]

≥ ⌊r− k
k
⌋e−(2kε+α)

where the last line follows from the fourth point of the above Lemma (for the 2kε term) and

the fact that the inverse permutations σ ′−1,σ−1 are neighboring (second point of the Lemma)

so the probabilities of the mechanism to produce σ vs. σ ′ to reach z from these neighboring

permutations must be close by a factor of eα .

Since the above holds for any z and x, the bound holds on average across all outcomes z,

thus

Pr[η loses]≥ ⌊r− k
k
⌋e−(2kε+α) ·Pr[η wins]

for any deterministic adversary with decision function η . Finally, we may write any probabilistic

adversary as mixture of decision functions. By convexity (same argument used in Lemma 11),
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the above bound still holds. As such,

Pr[DAdv loses]≥ ⌊r− k
k
⌋e−(2kε+α) ·Pr[DAdv wins]

D.1.7 Utility of Shuffling Mechanism

We now introduce a novel metric, (η ,δ )-preservation, for assessing the utility of any

shuffling mechanism. Let S ⊆ [n] correspond to a set of indices in y. The metric is defined as

follows.

Definition D.1.4. ((η ,δ )-preservation) A shuffling mechanism A : Y n 7→ Y n is defined to be

(η ,δ )-preserving (η ,δ ∈ [0,1]) w.r.t to a given subset S⊆ [n], if

Pr
[
|Sσ ∩S| ≥ η · |S|

]
≥ 1−δ ,σ ∈ Sn (D.6)

where z = A (y) = σ(y) and Sσ = {σ(i)|i ∈ S}.

For example, consider S = {1,4,5,7,8}. If A (·) permutes the output according to σ = (5 3 2 6 7 9 8 1 4 10),

then Sσ = {5,6,7,8,1} which preserves 4 or 80% of its original indices. This means that for any

data sequence y, at least η fraction of its data values corresponding to the subset S overlaps

with that of shuffled sequence z with high probability (1−δ ). Assuming, {yS}= {yi|i ∈ S} and

{zS}= {zi|i ∈ S}= {yσ(i)|i ∈ S} denotes the set of data values corresponding to S in data sequences

y and z respectively, we have Pr
[
|{yS}∩{zS}| ≥ η · |S|

]
≥ 1−δ , ∀y. For example, let S be the set

of individuals from Nevada. Then, for a shuffling mechanism that provides (η = 0.8,δ = 0.1)-

preservation to S, with probability ≥ 0.9, ≥ 80% of the values that are reported to be from Nevada

in z are genuinely from Nevada. The rationale behind this metric is that it captures the utility

of the learning allowed by dσ -privacy – if S is equal to some group G ∈ G , (η ,δ ) preservation
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allows overall statistics of G to be captured. Note that this utility metric is agnostic of both the

data distribution and the analyst’s query. Hence, it is a conservative analysis of utility which

serves as a lower bound for learning from {zS}. We suspect that with the knowledge of the data

distribution and/or the query, a tighter utility analysis is possible.

A formal utility analysis of Alg. 22 is presented in App. D.1.13. Empirical evaluation of (η ,δ ) -

preservation is presented in App. D.1.14.

D.1.8 Discussion on Properties of Mallows Mechanism

Property 3. For group assignment G , a mechanism A (·) that shuffles according to a permutation

sampled from the Mallows model Pθ ,d(·), satisfies (α,G )-dσ privacy where

∆(σ0 : d,G ) = max
(σ ,σ ′)∈NG

|d(σ0σ ,σ0)− d(σ0σ
′,σ0)|

and

α = θ ·∆(σ0 : d,G )

We refer to ∆(σ0 : d,G ) as the sensitivity of the rank-distance measure d(·)

Proof. Consider two permutations of the initial sequence y, σ1(y),σ2(y) that are neighboring

w.r.t. some group Gi ∈ G , σ1 ≈Gi σ2. Additionally consider any fixed released shuffled sequence

z. Let Σ1,Σ2 be the set of permutations that turn σ1(y),σ2(y) into z, respectively:

Σ1 = {σ ∈ Sn : σσ1(y) = z}

Σ2 = {σ ∈ Sn : σσ2(y) = z} .

In the case that {y} consists entirely of unique values, Σ1,Σ2 will each contain exactly one

permutation, since only one permutation can map σi(y) to z.
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Lemma 15. For each permutation σ ′1 ∈ Σ1 there exists a permutation in σ ′2 ∈ Σ2 such that

σ
′
1 ≈Gi σ

′
2 .

Proof follows from the fact that — since only the elements j ∈ Gi differ in σ1(y) and

σ2(y) — only those elements need to differ to achieve the same output permutation. In other

words, we may define σ ′1,σ
′
2 at all inputs i /∈ Gi identically, and then define all inputs i ∈ Gi

differently as needed. As such, they are neighboring w.r.t. Gi.

Recalling that Alg. 1 applies σ
−1
0 to the sampled permutation, we must sample σ0σ ′1 (for

some σ ′1 ∈ Σ1) for the mechanism to produce z from σ1(y). Formally, since σ ′1σ1(y) = z we

must sample σ0σ ′1 to get z since we are going to apply σ
−1
0 to the sampled permutation.

Pr
[
A
(
σ1(y)

)
= z
]
= Pθ ,d

(
σ0σ

′,σ ′ ∈ Σ1 : σ0
)

Pr
[
A
(
σ2(y)

)
= z
]
= Pθ ,d

(
σ0σ

′,σ ′ ∈ Σ2 : σ0
)

Taking the odds, we have

Pθ ,d
(
σ0σ ′,σ ′ ∈ Σ1 : σ0

)
Pθ ,d

(
σ0σ ′′,σ ′′ ∈ Σ2 : σ0

) = ∑σ ′∈Σ1 PΘ,d(σ0σ ′ : σ0)

∑σ ′′∈Σ2 PΘ,d(σ0σ ′′ : σ0)

=
∑σ ′∈Σ1 e−θd(σ0σ ′,σ0)

∑σ ′′∈Σ2 e−θd(σ0σ ′′,σ0)

≤ e−θd(σ0σa,σ0)

e−θd(σ0σb,σ0)

≤ eθ |d(σ0σa,σ0)−d(σ0σb,σ0)|

≤ eθ∆
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where

σa = arg max
σ ′∈Σ1

e−θd(σ0σ ′,σ0) and

σa = arg min
σ ′′∈Σ2

e−θd(σ0σ ′′,σ0) .

Therefore, setting α = θ ·∆, we achieve (α,G )-dσ privacy.

Property 4. The sensitivity of a rank-distance is an increasing function of the width ω
σ0
G . For

instance, for Kendall’s τ distance dτ(·), we have ∆(σ0 : dτ ,G ) =
ω

σ0
G (ω

σ0
G +1)

2 .

To show the sensitivity of Kendall’s τ , we make use of its triangle inequality.

Proof. Recall from the proof of the previous property that the expression d(σ ,σ0) = d
(
σ0σ ,σ0

)
,

where d is the actual rank distance measure e.g. Kendall’s τ . As such, we require that

∣∣d(σ0σa,σ0)− d(σ0σb,σ0)
∣∣≤ ω

σ0
G (ωσ0

G +1)
2

for any pair of permutations (σa,σb) ∈ NG .

For any group Gi ∈ G , let Wi ⊆ n represent the smallest contiguous subsequence of

indices in σ0 that contains all of Gi.

For instance, if σ0 = [2,4,6,8,1,3,5,7] and Gi = {2,6,8}, then Wi = {2,4,6,8}. Then

the group width width is ωi = |Wi|−1 = 3. Now consider two permutations neighboring w.r.t.

Gi, σa ≈Gi σb, so only the elements of Gi are shuffled between them. We want to bound

∣∣d(σ0σa,σ0)− d(σ0σb,σ0)
∣∣

162



For this, we use a pair of triangle inequalities:

d(σ0σa,σ0σb)≥ d(σ0σa,σ0)− d(σ0σb,σ0) & d(σ0σa,σ0σb) ≥ d(σ0σb,σ0)− d(σ0σa,σ0)

so,

∣∣d(σ0σa,σ0)− d(σ0σb,σ0)
∣∣≤ d(σ0σa,σ0σb)

Since σ0σa and σ0σb only differ in the contiguous subset Wi, the largest number of

discordant pairs between them is given by the maximum Kendall’s τ distance between two

permutations of size ωi +1:

|d(σ0σa,σ0σb)| ≤
ωi(ωi +1)

2

Since ω
σ0
G ≥ ωi for all Gi ∈ G , we have that

∆(σ0 : d,G )≤
ω

σ0
G (ωσ0

G +1)
2

D.1.9 Hardness of Computing The Optimum Reference Permutation

Theorem 16. The problem of finding the optimum reference permutation, i.e., σ∗0 = argminσ∈Sn ωσ

G

is NP-hard.

Proof. We start with the formal representation of the problem as follows.

Optimum Reference Permutation Problem. Given n subsets G = {Gi ∈ 2[n], i ∈ [n]}, find

the permutation σ∗0 = argminσ∈Sn ωσ

G .

Now, consider the following job-shop scheduling problem.

163



Job Shop Scheduling. There is one job J with n operations oi, i ∈ [n] and n machines

such that oi needs to run on machine Mi. Additionally, each machine has a sequence dependent

processing time pi. Let S be the sequence till There are n subsets Si ⊆ [n], each corresponding to

a set of operations that need to occur in contiguous machines, else the processing times incur

penalty as follows. Let pi denote the processing time for the machine running the i-th operation

scheduled. Let Si be the prefix sequence with i schedulings. For instance, if the final scheduling

is 1 3 4 5 9 8 10 6 7 2 then S4 = 1345. Additionally, let P j
Si

be the shortest subsequence such of Si

such that it contains all the elements in S j∩{Si}. For example for S1 = {3,5,7}, P1
S4

= 345.

pi = max
i∈[n]

(|P j
Si
|− |S j∩{Si}|) (D.7)

The objective is to find a scheduling for J such that it minimizes the makespan, i.e., the completion

time of the job. Note that pn = maxi pi, hence the problem reduces to minimizing pn.

Lemma 17. The aforementioned job shop scheduling problem with sequence-dependent process-

ing time is NP-hard.

Proof. Consider the following instantiation of the sequence-dependent job shop scheduling

problem where the processing time is given by pi=pi−1+wkl, p1 = 0 where Si[i−1] = k, Si[i] = l

and wi j, j ∈ Si represents some associated weight. This problem is equivalent to the travelling

salesman problem (TSP) [10] and is therefore, NP-hard. Thus, our aforementioned job shop

scheduling problem is also clearly NP-hard.

Reduction: Let the n subsets Si correspond to the groups in G . Clearly, minimizing ωσ

G

minimizes pn. Hence, the optimal reference permutation gives the solution to the scheduling

problem as well.
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(a) Group graph

(b) BFS reference permutation σ0

Figure D.1. Illustration of Alg. 1

D.1.10 Illustration of Alg. 1

We now provide a small-scale step-by-step example of how Alg. 1 operates.

Fig. D.1a is an example of a grouping G on a dataset of n= 8 elements. The group of DOi

includes i and its neighbors. For instance, G8 = {8,3,5}. To build a reference permutation, Alg.

1 starts at the index with the largest group, i = 5 (highlighted in purple), with G5 = {5,2,3,8,4}.

As shown in Figure D.1b, the σ0 is then constructed by following a BFS traversal from i = 5.

Each j ∈ G5 is visited, queuing up the neighbors of each j ∈ G5 that haven’t been visited along

the way, and so on. The algorithm completes after the entire graph has been visited.
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The goal is to produce a reference permutation in which the width of each group in the

reference permutation ωi is small. In this case, the width of the largest group G5 is as small as

it can be ω5 = 5−1 = 4. However, the width of G4 = {4,5,7} is the maximum possible since

σ−1(5) = 1 and σ−1(7) = 8, so ω4 = 7. This is difficult to avoid when the maximum group size

is large as compared to the full dataset size n. Realistically, we expect n to be significantly larger,

leading to relatively smaller groups.

With the reference permutation in place, we compute the sensitivity:

∆(σ0 : d,G ) =
ω4(ω4 +1)

2

= 28

Which lets us set θ = α

28 for any given α privacy value. To reiterate, lower θ results in more

randomness in the mechanism.

We then sample the permutation jσ = Pθ ,d(σ0). Suppose

jσ = [3 2 5 4 8 1 7 6]

Then, the released z is given as

z = σ
∗ = σ

−1 jσ(y)

= [y1 y2 y5 y8 y3 y7 y6 y4]

One can think of the above operation as follows. What was 5 in the reference permutation

(σ0(1) = 5) is 3 in the sampled permutation ( jσ(1) = 3). So, index 5 corresponding to DO5 now

holds DO3’s noisy data y3. As such, we shuffle mostly between members of the same group, and

minimally between groups.

The runtime of this mechanism is dominated by the Repeated Insertion Model sampler

166



[53], which takes O(n2) time. It is very possible that there are more efficient samplers available,

but RIM is a standard and simple to implement for this first proposed mechanism. Additionally,

the majority of this is spent computing sampling parameters which can be stored in advanced with

O(n2) memory. Furthermore, sampling from a Mallows model with some reference permutation

σ0 is equivalent to sampling from a Mallows model with the identity permutation and applying

it to σ0. As such, permutations may be sampled in advanced, and the runtime is dominated

by computation of σ0 which takes O(|V |+ |E|) time (the number of vertices and edges in the

graph).

A future direction could be exploring even better heuristics for computing σ0. One

possibility could be based on ranked enumeration of the permutations [49, 48].

D.1.11 Proof of Thm. 6

Theorem 6 Alg. 1 is (α,G )-dσ private.

Proof. The proof follows from Prop. 3. Having computed the sensitivity of the reference

permutation σ0, ∆, and set θ = α/∆, we are guaranteed by Property 3 that shuffling according to

the permutation jσ guarantees (α,G )-dσ privacy.

.

D.1.12 Proof of Thm. 7

Theorem 7 Alg. 1 satisfies (α ′,G ′)-dσ privacy for any group assignment G ′ where

α ′ = α
∆(σ0:d,G ′)
∆(σ0:d,G )

Proof. Recall from Property 3 that we satisfy (α,G ) dσ -privacy by setting θ = α/∆(σ0 : d,G ).
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Given alternative grouping G ′ with sensitivity ∆(σ0 : d,G ′), this same mechanism provides

α
′ =

θ

∆(σ0 : d,G ′)

=
α/∆(σ0 : d,G )

∆(σ0 : d,G ′)

= α
∆(σ0 : d,G ′)
∆(σ0 : d,G )

D.1.13 Formal Utility Analysis of Alg. 1

Theorem 18. For a given set S ⊂ [n] and Hamming distance metric, dH(·), Alg. 1 is (η ,δ )-

preserving for δ = 1
ψ(θ ,dH)

∑
n
h=2k+1(e

−θ ·h · ch) where k = ⌈(1−η) · |S|⌉ and ch is the number of

permutations with hamming distance h from the reference permutation that do not preserve η%

of S and is given by

ch =
max(ls,⌊h/2⌋)

∑
j=k+1

(
ls
j

)
·
(

n− ls
j

)
·

[
min(ls− j,h−2 j)

∑
i=0

(
ls− j

i

)

·
(

i+ j
j

)
· f (i, j) ·

(
n− ls− j
h−2 j− i

)
· f (h−2 j− i, j)!

]

f (i,0) =!i, f (0,q) = q!

f (i, j) =
min(i, j)

∑
q=0

[(
i
q

)
·
(

j
j−q

)
· j! · f (i−q,q)

]

ls = |S|,k = (1−η) · ls, !n = ⌊n!
e
+

1
2
⌋

Proof. Let ls = |S| denote the size of the set S and k = ⌈(1−η) · lS⌉ denote the maximum number

of correct values that can be missing from S. Now, for a given permutation σ ∈ Sn, let h denote

its Hamming distance from the reference permutation σ0, i.e, h = dH(σ ,σ0). This means that σ
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and σ0 differ in h indices. Now, h can be analysed in the the following two cases,

Case I. h≤ 2k+1

For (1−η) fraction of indices to be removed from S, we need at least k+1 indices from

S to be replaced by k+ 1 values from outside S. This is clearly not possible for h ≤ 2k+ 1.

Hence, here ch = 0.

Case II. h > 2k

For the following analysis we consider we treat the permutations as strings (multi-digit

numbers are treated as a single string character). Now, Let Sσ0 denote the non-contiguous

substring of σ0 such that it consists of all the elements of S, i.e.,

|S|= lS (D.8)

∀i ∈ [lS],Sσ0[i] ∈ S (D.9)

Let Sσ denote the substring corresponding to the positions occupied by Sσ0 in σ . Formally,

|Sσ |= lS (D.10)

∀i ∈ [lS],Sσ0[i] = σ(σ−1
0 (Sσ0[i])) (D.11)

For example, for σ0 = (1 2 3 5 4 7 8 10 9 6),σ = (1 3 2 7 8 5 4 6 10 9) and S = {2,4,5,8}, we

have Sσ0 = 2548 and Sσ = 3784 where h = dH(σ ,σ0) = 9. Let {Sσ} denote the set of the

elements of string Sσ . Let A be the set of characters in Sσ such that they do not belong to S, i.e,

A = {Sσ [i]|Sσ [i] ̸∈ S, i∈ [lS]}. Let B be the set of characters in Sσ that belong to S but differ from

Sσ0 in position, i.e., B = {Sσ [i]|Sσ [i] ∈ S,Sσ [i] ̸= Sσ0[i], i ∈ [lS]}. Additionally, let C = S−{Sσ}.

For instance, in the above example, A = {3,7},B = {4,8},C = {2,5}. Now consider an initial

arrangement of p+m distinct objects that are subdivided into two types – p objects of Type A

and m objects of Type B. Let f (p,m) denote the number of permutations of these p+m objects

such that the m Type B objects can occupy any position but no object of Type A can occupy its
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original position. For example, for f (p,0) this becomes the number of derangements [2] denoted

as !p = ⌊ p!
e + 1

2⌋. Therefore, f (|B|, |A|) denotes the number of permutations of Sσ such that

dH(Sσ0,Sσ ) = |A|+ |B|. This is because if elements of B are allowed to occupy their original

position then this will reduce the Hamming distance.

Now, let S̄σ (S̄σ0) denote the substring left out after extracting from Sσ (Sσ0) from

σ (σ0). For example, S̄σ = 1256109 and S̄σ0 = 1371096 in the above example. Let D be

the set of elements outside of S and A that occupy different positions in S̄σ and S̄σ0 (thereby

contributing to the hamming distance), i.e., D = {S̄σ0[i]|S̄σ0[i] ̸∈ S, S̄σ0[i] ̸= S̄σ [i], i ∈ [n− lS]}. For

instance, in the above example D = {9,6,10}. Hence, h = dH(σ ,σ0) = |A|+ |B|+ |C|+ |D| and

clearly f (|D|, |C|) represents the number of permutations of S̄σ such that dH(S̄σ , S̄σ0) = |C|+ |D|.

Finally, we have

ch =
max(ls,⌊h/2⌋)

∑
j=k+1

(
ls
j

)
︸︷︷ ︸

# ways of selecting set C

·
(

n− ls
j

)
︸ ︷︷ ︸

# ways of selecting set A

·

[

min(ls− j,h−2 j)

∑
i=0

(
ls− j

i

)
︸ ︷︷ ︸

# ways of selecting set B

· f (i, j)

·
(

n− ls− j
h−2 j− i

)
︸ ︷︷ ︸

# ways of selecting set D

· f (h−2 j− i, j)

]

Now, for f (i, j) let E be the set of original positions of Type A that are occupied by Type B

objects in the resulting permutation. Additionally, let F be the set of the original positions

of Type B objects that are still occupied by some Type B object. Clearly, Type B objects can

occupy these |E|+ |F |= m in any way they like. However, the type A objects can only result in
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f (p−q,q) permutations. Therefore, f (p,m) is given by the following recursive function

f (p,0) =!p

f (0,m) = m!

f (p,m) =
min p,m

∑
q=0

( (
p
q

)
︸︷︷︸

# ways of selecting set E

·
(

m
m−q

)
︸ ︷︷ ︸

# ways of selecting set F

·m! · f (p−q,q)

)

Thus, the total probability of failure is given by

δ =
1

ψ(θ ,dH)

n

∑
h=2k+2

(e−θ ·h · ch) (D.12)

D.1.14 Additional Experimental Details

Evaluation of (η ,δ )-preservation

(a) Variation with α (b) Variation with ω; α = 3 (c) Variation with lS; α = 3

Figure D.2. (η ,δ )-Preservation Analysis

In this section, we evaluate the characteristics of the (η ,δ )-preservation for Kendall’s τ

distance dτ(·, ·).

Each sweep of Fig. D.2 fixes δ = 0.01, and observes η . We consider a dataset of size

n = 10K and a subset S of size lS corresponding to the indices in the middle of the reference
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permutation σ0 (the actual value of the reference permutation is not significant for measuring

preservation). For the rest of the discussion, we denote the width of a permutation by ω for

notational brevity. For each value of the independent axis, we generate 50 trials of the permutation

σ from a Mallows model with the appropriate θ (given the ω and α parameters). We then report

the largest η (fraction of subset preserved) that at least 99% of trials satisfy.

In Fig. D.2a, we see that preservation is highest for higher α and increases gradually

with declining width ω and increasing subset size ls.

Fig. D.2b demonstrates that preservation declines with increasing width. ∆ increases

quadratically with width ω for dτ , resulting in declining θ and increasing randomness. We also

see that larger subset sizes result in a more gradual decline in η . This is due to the fact that the

worst-case preservation (uniform random shuffling) is better for larger subsets. i.e. we cannot do

worse than 80% preservation for a subset that is 80% of indices.

Finally, Fig. D.2c demonstrates how preservation grows rapidly with increasing subset

size. For large widths, we are nearly uniformly randomly permuting, so preservation will equal

the size of the subset relative to the dataset size. For smaller widths, we see that preservation

offers diminishing returns as we grow subset size past some critical ls. For ω = 30, we see that

subset sizes much larger than a quarter of the dataset gain little in preservation.

Adult Dataset

(a) Adult: Attack (b) Adult: Attack (α) (c) Adult: Learnability

Figure D.3. Adult dataset experiments
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D.1.15 Additional Related Work

In this section, we discuss the relevant existing work.

The anonymization of noisy responses to improve differential privacy was first proposed

by Bittau et al. [22] who proposed a principled system architecture for shuffling. This model

was formally studied later in [65, 45]. Erlingsson et al. [65] showed that for arbitrary ε-

LDP randomizers, random shuffling results in privacy amplification. Cheu et al. [45] formally

defined the shuffle DP model and analyzed the privacy guarantees of the binary randomized

response in this model. The shuffle DP model differs from our approach in two ways. First, it

focuses completely on the DP guarantee. The privacy amplification is manifested in the from

of a lower ε (roughly a factor of
√

n) when viewed in an alternative DP model known as the

central DP model. [65, 45, 12, 72, 22, 11]. However, our result caters to local inferential privacy.

Second, the shuffle model involves an uniform random shuffling of the entire dataset. In contrast,

our approach the granularity at which the data is shuffled is tunable which delineates a threshold

for the learnability of the data.

A steady line of work has sudied the inferential privacy setting [98, 103, 81, 47, 60, 153].

Kifer et al. [103] formally studied privacy degradation in the face of data correlations and

later proposed a privacy framework, Pufferfish [105, 146, 91], for analyzing inferential privacy.

Subsequently, several other privacy definitions have also been proposed for the inferential privacy

setting [117, 172, 42, 188, 15]. For instance, Gehrke et al. proposed a zero-knowledge privacy

[79, 78] which is based on simulation semantics. Bhaskar et al. proposed noiseless privacy

[17, 86] by restricting the set of prior distributions that the adversary may have access to. A

recent work by Zhang et al. proposes attribute privacy [184] which focuses on the sensitive

properties of a whole dataset. In another recent work, Ligett et al. study a relaxation of DP that

accounts for mechanisms that leak some additional, bounded information about the database

[116]. Some early work in local inferential privacy include profile-based privacy [80] by Gehmke

et al. where the problem setting comes with a graph of data generating distributions, whose edges
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encode sensitive pairs of distributions that should be made indistinguishable. In another work by

Kawamoto et al., the authors propose distribution privacy [100] – local differential privacy for

probability distributions. The major difference between our work and prior research is that we

provide local inferential privacy through a new angle – data shuffling.

Finally, older works such as k-anonymity [149], l-diversity [123], and Anatomy [165] and

other [163, 150, 170, 46, 54] have studied the privacy risk of non-sensitive auxiliary information,

or ‘quasi identifiers’ (QIs). In practice, these works focus on the setting of dataset release, where

we focus on dataset collection. As such, QIs can be manipulated and controlled, whereas we

place no restriction on the amount or type of auxiliary information accessible to the adversary,

nor do we control it. Additionally, our work offers each individual formal inferential guarantees

against informed adversaries, whereas those works do not. We emphasize this last point since

formalized guarantees are critical for providing meaningful privacy definitions. As established by

Kifer and Lin in An Axiomatic View of Statistical Privacy and Utility (2012), privacy definitions

ought to at least satisfy post-processing and convexity properties which our formal definition

does.
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D.1.16 Evaluation of Heuristic

Figure D.4. Comparison of our heuristic’s performance with that of an optimal reference
permutation σ∗0 . An optimal σ∗0 is generated with every group having size w. A graph is
generated from this optimal σ∗0 from which our heuristic (blue) attempts to reconstruct the
optimal permutation. For baselining, the performance of a random σ0 selection is plotted
(orange). We observe that at worst, our heuristic picks a reference permutation with width 2.5×
that of the optimal reference permutation (green). See Section 4.4.4 for definition of terms.

Algorithm 22 is designed to find a reference permutation σ0 with low width ωσ

G w.r.t. the

given grouping G . A low width is desirable, since it leads to low sensitivity ∆(σ0 : d,G ), which in

turn leads to higher dispersion parameter θ = α/∆, and thus less randomness over permutations

(higher utility). Theorem 16 proves that computing the optimal reference permutation (minimum

width) is NP-hard. As such, we propose a BFS-based heuristic.

Comparison with optimal reference permutation

To demonstrate the value of the heuristic used in Alg. 22, we provide two evaluations of its

performance. For our first evaluation, we compare the performance of our heuristic BFS reference
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permutation selection (σ0) with that of the optimal reference permutation and that of a random

reference permutation. As identified by Theorem 16, finding the optimal reference permutation

for a given grouping G is NP-hard. For these experiments, we first create an optimal reference

permutation, where each group Gi ∈ G is equally sized w and maximally compact. The optimal

width, ωσ

G , is then min(n,w). We then generate a graph from this optimal reference permutation.

Finally, we run the BFS reference permutation computation described in Alg. 22 attempting to

approximate the optimal σ∗0 , and compute its width.

To compare with a naive approach, we also plot the performance of a randomly chosen

reference permutation. We expect the maximum width across groups ωσ

G to be large for this

technique. If one of the n groups has a single entry low (near 0) in σ0 and a single entry high

(near n) in σ0, the width will be near n. The random baseline is averaged over 10 trials with a 1

standard deviation envelope plotted (but difficult to see, since the variance is low).

Figure D.4 depicts our findings. Each plot has a different group size w, listed at the top,

used in the optimal reference permutation. We find that the random baseline (orange) consistently

chooses a reference permutation such that ωσ

G is near n, as expected. Our method (blue), on

the other hand, closely tracks the optimal solution (green). We find that in the worst case, our

algorithm’s solution has a width ≤ 2.5× larger than the optimal. Note that for r = 0 (upper left),

all methods trivially have a width of one, since the corresponding graph has no edges. While

there may be room for improvement, we find this to be sufficient for the present work.

Performance on randomly generated graphs

For our second evaluation, we observe how well our BFS heuristic (in Algorithm 22) performs

on randomly generated graphs. Here, we sample n points uniformly on the unit interval. We then

say that the ith point’s group, Gi, consists of all other points within r of it. As r increases, so

does the groups size. Since computing the optimal reference permutation is NP-hard (Theorem

16), we do not show the optimal width. Instead, we show a loose lower bound of the optimal

width (green) by plotting the average group size for a given r (recall that the width is greater

than or equal to the largest group size, so we expect this to be a loose lower bound, solely for
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Figure D.5. example of our heuristic’s performance on randomly generated graphs. As r
increases, so does the connectivity of the random graphs and the average group size (green).
As shown by Theorem 16, computing the optimal ωσ

G is NP-hard. The average group size
(green) in G is a loose lower bound on the optimal ωσ

G . The performance of a random σ0
assignment (orange) is also plotted for reference. Our heuristic BFS algorithm (blue) consistently
outperforms the random baseline.

reference). For comparison, we evaluate the performance of a random σ0 choice as well. For

both of these methods, we run 10 trials of generating a random graph (and picking a random

σ0) at each value of n and plot the mean along with a 1 standard deviation envelope, which is

difficult to see due to low variance.

Figure D.5 depicts our findings. We find that — across values of n and r — our heuristic

(blue) significantly outperforms the random baseline (orange). Additionally, we observe the

trends we expect. For a low r values, our heuristic BFS algorithm chooses a σ0 with width

close to the lower bound (green) of the optimal width ωσ

G . As r increases, the graph become

significantly more connected. Both the lower bound and our heuristic move closer to the width
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of the random baseline. Note that for r = 0 (upper left), all methods trivially have a width of one,

since the corresponding graph has no edges. Ultimately, these findings indicate that our heuristic

for computing σ0 significantly outperforms a naive random choice, and follows the same trend

as the lower bound of the optimal.
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Appendix E

E.1 Appendix

For documented code demonstrating our SDP mechanisms used to generate the plots of

Figure 5.2 please visit our repo: https://github.com/casey-meehan/location trace privacy

The following sections will include proofs of results, derivations of algorithms, and

explanations of experimental procedures.

E.1.1 Illustrations

NYC Mayoral Staff Member Location Trace

Juxtaposition of Mechanisms’ Covariance Matrices

The following figures aim to illustrate the difference between the covariance matrices

used in the experimental baselines (indep./uniform and indep./concentrated) and those chosen by

our SDP algorithms for both the RBF and periodic prior. Note that here we presume the different

dimensions of location to be independent and — by Corollary E.1.0.1 — are able to treat a 2d

location trace as two 1d traces. As such, the following examples are demonstrating mechanism

covariance matrices and additive noise samples used for either a single dimension of location

data (for RBF kernel) or for the one dimension of temperature data (for periodic kernel).

The first figure (a) shows the covariance of the Approach C baselines used in the

experiments. The second figure (b) shows the covariance of our SDP mechanisms for the RBF
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(a) (b) (c)

Figure E.1. Example of sensitive location trace of NYC mayoral staff member exposed by [156].
(b) and (c) depict the posterior uncertainty (green) PA ,P(Xi|Z) for each 2d location. (a) depicts
three sensitive times (red with blue outline): Gracie Mansion (Mayor’s home), an event on Staten
Island that the mayor attended, and finally the staff member’s home on long island. (b) provides
an example of Approach C: adding independent Gaussian noise to each location (red dotted line).
A GP posterior still maintains high confidence within a small radius along the trace, including
at the sensitive times. (c) provides an example of the optimized noise of Multiple Secrets of
identical aggregate MSE as (b). By focusing correlated noise around the three sensitive times,
there is high uncertainty at sensitive times and high confidence elsewhere.

kernel used on location data. The third figure (c) shows the covariance of our SDP mechanisms

for the periodic kernel used for temperature data.

In each figure the covariance matrix is depicted as a heat map with warmer colors

indicating higher values (normalized to largest and smallest value in the covariance matrix).

The drawn noise samples G are plotted against their time index. So, the sequence of plotted

(x,y) values is
[
(1,G1),(2,G2), . . . ,(n,Gn)

]
, where n = 50 for the RBF case and n = 48 for the

periodic case.
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(a) Covariance matrices and mechanism samples for the baselines used in experiments.

The first figure demonstrates the uniform approach that distributes the independent Gaussian noise budget along the entire trace, regardless of IS.

The second and third show the concentrated approach that allocates the entire noise budget to only the sensitive locations in IS: first for a basic
secret (one location) and then for a compound secret of 3 evenly spaced locations.
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(b) Covariance matrices and mechanism samples for the median RBF prior (leff ≈ 6).

The first noise mechanism (Mech. basic) demonstrates the covariance matrix chosen by SDPA for a basic secret of a single location Xi in the
middle of the trace. The uncorrelated dot in the middle of the covariance matrix, Σ

(g)
ii , represents the independent noise Gi added at the sensitive

location to mitigate direct loss. To mitigate inferential loss, the SDP optimizes the remainder of the matrix to be positively correlated with
maximum variance allocated to locations near Xi in time. This thwarts GP inference of the true location at time ti.

The second mechanism (Mech. comp.) depicts the covariance chosen by SDPA to protect a compound secret of two adjacent locations in the
trace (visible as the uncorrelated ‘+’ through the middle consuming 2 rows/columns). Recall that a compound secret ought to protect directional
information: did the user visit B first and then A, or A and then B? That is precisely what this mechanism does by randomizing the angle of
approach to the two locations in the middle with positively and negatively correlated noise. Also note that the SDP does not allocate a large share
of noise budget to the actual locations themselves. This highlights the fact that protecting a compound secret does not protect its constituent
basic secrets.

The third and final mechanism (Mech. all basic) is the noise covariance chosen by SDPB in the Multiple Secrets algorithm. To protect all basic
secrets with a utility constraint, the SDP converges to a mechanism that looks similar to the uniform baseline. However, this mechanism adds a
subtle degree of off-diagonal correlation along with greater noise power towards the beginning and end of the trace. The off-diagonal correlation
is noticeable when the samples are compared to those of the uniform baseline in the previous figure. While this change appears to be minor, it
makes a significant change in the posterior confidence of a GP adversary (as seen in Figure 5.2c).
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(c) Covariance matrices and mechanism samples for the median periodic prior (leff ≈ 1.1), and a period of half the trace length.

The first noise mechanism (Mech. Basic) shows the covariance chosen by SDPA to protect a single location (temperature) in the middle of the
trace. As in the RBF case, significant noise power is allocated to the sensitive location itself, Xi, to limit direct privacy loss. However, the noise
added to the remainder of the trace is significantly different. It is tailored to thwart inference by a periodic prior, wherein the location one period
away has correlation 1.

The second noise mechanism (Mech. comp.) shows the covariance chosen by SDPA to protect a compound secret of two locations, Xi,X j , 16
timesteps apart (not quite a full period). Here, we see the SDP randomize the phase of the additive noise such that periodic inference cannot tell
directional information like Xi > X j or vice versa.

The third noise mechanism (Mech. all basic) is identical to the all basic secrets mechanism chosen for the RBF case above, except using a
periodic prior Σ. The mechanism chosen looks similar to the uniform baseline, except with slightly periodic off-diagonal correlation imitating
the prior covariance. Additionally, noise power is mitigated towards the middle and ends of the trace. Again, Figure 5.2g indicates that this
subtle change makes a significant difference in thwarting Bayesian adversaries.
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E.1.2 Proof of results

Proof of Theorem 5.3.2

Theorem 5.3.2 Prior-Posterior Gap: An (ε,λ )-CIP mechanism with conditional prior

class Θ guarantees that for any event O on sanitized trace Z

∣∣∣∣ log
PP,A (si|Z ∈ O)

PP,A (s j|Z ∈ O)
− log

PP(si)

PP(s j)

∣∣∣∣≤ ε
′

for any P ∈Θ with probability ≥ 1−δ over draws of Z|XIS = si or Z|XIS = s j, where ε ′ and δ

are related by

ε
′ = ε +

log 1/δ

λ −1
.

This holds under the condition that Z|XIS = si and Z|XIS = s j have identical support.

Proof. This result makes use of a Rényi divergence property identified in [128]:

Lemma 19. Let P,Q be two distributions on X of identical support such that

max
{

Dλ

(
PP(X)

PQ(X)

)
,Dλ

(
PQ(X)

PP(X)

)}
≤ ε

Then for any event O,

PP(X ∈ O)≤max
{

eε ′PQ(X ∈ S),δ
}

and

PQ(X ∈ O)≤max
{

eε ′PP(X ∈ S),δ
}
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where

ε
′ = ε +

log 1/δ

λ −1

CIP guarantees that for all P ∈ Θ and all discriminative pairs (si,s j) ∈Spairs (which

also includes (s j,si))

Dλ

(
PP,A (Z|XIS = si)

PP,A (Z|XIS = s j)

)
≤ ε

and thus by Lemma 19 we have for any event O on Z

PP,A (Z ∈ O|XIS = si)≤max
{

eε ′PP,A (Z ∈ O|XIS = s j),δ
}

and

PP,A (Z ∈ O|XIS = s j)≤max
{

eε ′PP,A (Z ∈ O|XIS = si),δ
}

As such, given that XIS = si the probability of some event {Z ∈W} such that

PP,A (Z ∈W |XIS = si)≥ eε ′PP,A (Z ∈W |XIS = s j)

is no more than δ . The same is true swapping s j for si. So, over draws of Z|XIS = si or Z|XIS = s j

we have that

PP,A (Z ∈ O|XIS = si)

PP,A (Z ∈ O|XIS = s j)
≤ eε ′ and

PP,A (Z ∈ O|XIS = s j)

PP,A (Z ∈ O|XIS = si)
≤ eε ′
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with probability ≥ 1−δ , which is equivalent to the statement that

−ε
′ ≤ log

PP,A (Z ∈ O|XIS = si)

PP,A (Z ∈ O|XIS = s j)
≤ ε

′∣∣∣∣ log
PP,A (si|Z ∈ O)

PP,A (s j|Z ∈ O)
− log

PP(si)

PP(s j)

∣∣∣∣≤ ε
′

Proof of Lemma 8

Lemma 8 (CIP loss for additive mechanisms) For an additive noise mechanism, a fully

dependent trace as in Figure 5.1b, and any prior P on X the CIP loss may be expressed as

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
= ∑

i∈IS

[
Dλ

(
PA (Zi|Xi = si)

PA (Zi|Xi = s j)

)]
+Dλ

(
PA ,P(ZIU |XIS = si)

PA ,P(ZIU |XIS = s j)

)

Proof.

Dλ

(
PA ,P(Z|XIS = xs)

PA ,P(Z|XIS = x′s)

)
= Dλ

(
PA (ZIS |XIS = xs)PA ,P(ZIU |XIS = xs)

PA (ZIS |XIS = x′s)PA ,P(ZIU |XIS = x′s)

)
(1)

= Dλ

(
PA (ZIS |XIS = xs)

PA (ZIS |XIS = x′s)

)
+Dλ

(
PA ,P(ZIU |XIS = xs)

PA ,P(ZIU |XIS = x′s)

)
(2)

= Dλ

(
∏i∈IS

PA (Zi|Xi = xi)

∏i∈IS
PA (Zi|Xi = x′i)

)
+Dλ

(
PA ,P(ZIU |XIS = xs)

PA ,P(ZIU |XIS = x′s)

)
(3)

= ∑
i∈IS

[
Dλ

(
PA (Zi|Xi = xi)

PA (Zi|Xi = x′i)

)]
+Dλ

(
PA ,P(ZIU |XIS = xs)

PA ,P(ZIU |XIS = x′s)

)
(4)

Where line (1) uses the conditional independence seen in the graphical model of Figure 5.1.

Line (2) is due to the fact that the two terms in line (1) are conditionally independent, allowing

for separating into the sum of two separate divergences (which is an easily verifiable property

of Rényi divergence evident from its definition in Equation 5.1). Line (3) is again from the

conditional independence between the Zi for each i ∈ IS when conditioned on XIS . Line (4) uses

the same property of Rényi divergence used in Line (2): the terms in the product are conditionally
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independent allowing for the separation into the sum of multiple divergences.

Proof of Theorem 5.3.2

Thoerem 5.3.2 Robustness to Prior Misspecification Mechanism A satisfies ε(λ )-CIP

for prior class Θ. Suppose the finite mean true distribution Q is not in Θ. The CIP loss of A

against prior Q is bounded by

Dλ

(
PA ,Q(Z|XIS = si)

PA ,Q(Z|XIS = s j)

)
≤ ε

′(λ )

where

ε
′(λ ) =

λ − 1
2

λ −1
∆(2λ )+∆(4λ −3)+

2λ − 3
2

2λ −2
ε(4λ −2)

and where ∆(λ ) is

inf
P∈Θ

sup
si∈S

max
{

Dλ

(
PP(XIU |XIS = si)

PQ(XIU |XIS = si)

)
,Dλ

(
PQ(XIU |XIS = si)

PP(XIU |XIS = si)

)}

Proof. By ‘finite mean’ distribution Q, we mean that all conditionals of Q given some XIS have

finite mean. Since a conditional prior class contains conditionals of one distribution with any

offset (any mean value), this guarantees that ∆(λ ) is achieved for some P ∈ Θ. Intuitively,

this prevents the pathological case of infP∈Θ being a limit as the mean of P → ∞, only

asymptotically approaching ∆(λ ). If the mean of Q is finite, then the closest P ∈Θ (in Rényi

divergence) must also have finite mean, since any mean is attainable in a conditional prior class

Θ.

With this in mind, we make use of the following triangle inequality provided in [128]:
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Lemma 20. For distributions P , Q, R on X with common support we have

Dλ

(
PP(X)

PQ(X)

)
≤

λ − 1
2

λ −1
D2λ

(
PP(X)

PR(X)

)
+D2λ−1

(
PR(X)

PQ(X)

)

In our case, we assume that the mechanism A gives Z|XIS = xs identical support for all

IS,xs. Using this, we have

Dλ

(
PA ,Q(ZIU |XIS = xs)

PA ,Q(ZIU |XIS = x′s)

)
≤

λ − 1
2

λ −1
D2λ

(
PA ,Q(ZIU |XIS = xs)

PA ,P(ZIU |XIS = xs)

)
+D2λ−1

(
PA ,P(ZIU |XIS = xs)

PA ,Q(ZIU |XIS = x′s)

)
.

By a data processing inequality, the divergence of the first term is bounded by ∆(2λ ) and the

blue term may be bounded by a second application of the triangle inequality:

D2λ−1

(
PA ,P(ZIU |XIS = xs)

PA ,Q(ZIU |XIS = x′s)

)
≤

2λ − 3
2

2λ −2
D4λ−2

(
PA ,P(ZIU |XIS = xs)

PA ,P(ZIU |XIS = x′s)

)
+D4λ−3

(
PA ,P(ZIU |XIS = x′s)
PA ,Q(ZIU |XIS = x′s)

)

The first divergence is bounded by ε(4λ−2) and the second divergence is bounded by ∆(4λ−3).

Putting all this together we have the following upper bound

Dλ

(
PA ,Q(ZIU |XIS = xs)

PA ,Q(ZIU |XIS = x′s)

)
≤

λ − 1
2

λ −1
∆(2λ )+∆(4λ −3)+

2λ − 3
2

2λ −2
ε(4λ −2)

Proof of Theorem 5.3.3

Theorem 5.3.3 CIP loss bound for GP conditional priors: Let Θ be a GP conditional

prior class. Let Σ be the covariance matrix for X produced by its kernel function. Let S be

the basic or compound secret associated with IS, and S be the number of unique times in IS.

The mechanism A (X) = X +G = Z, where G∼N (0,Σ(g)), then satisfies (ε,λ )-Conditional
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Inferential Privacy (Spairs,r,Θ), where

ε ≤ λ

2
Sr2
( 1

σ2
s
+α

∗
)

where σ2
s is the variance of each Gi ∈ GIS (diagonal entries of Σ

(g)
ss ) and α∗ is the maximum

eigenvalue of Σeff =
(
ΣusΣ

−1
ss
)⊺(

Σu|s +Σ
(g)
uu
)−1(

ΣusΣ
−1
ss
)
.

Proof. Again, the conditional prior class Θ is defined by a kernel function i, j→Cov(i, j), which

– given the indices of the trace X – induces a covariance matrix Σ between all Xi,X j. In practice,

when the sampling rate of locations is non-uniform the kernel function may use the time-stamps

of the points in the trace to assign high correlation to Xi that are close in time and low correlation

to Xi that are far apart in time. Of course, correlation between Xi that are different dimension

(e.g. latitude and longitude) must be designed for the given application and may be completely

independent. The kernel function can encode this as well.

Recall from Equation 5.1 that the Rényi divergence between two mean-shifted multivari-

ate normal distributions, P1 = N (µ1,Σ) and P2 = N (µ2,Σ) is

Dλ

(
P1

P2

)
=

λ

2
(µ1−µ2)

⊺
Σ
−1(µ1−µ2)

Now, for any prior P ∈ Θ, we have that X ∼N (µ,Σ) for some µ and for Σ defined by the

kernel function. Again, G∼N (0,Σ(g)). IS encodes the indices of a single location basic secret

or a multi-location compound secret. Then, the divergence to bound for (ε,λ )-CIP(Spairs,r,Θ)

is

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
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for any

(si,s j) ∈Spairs = {(xs,x′s) : ∥xs− x′s∥2 ≤ 2r}

if IS encodes a basic secret, or for any

(si,s j) ∈Spairs =
{(
{xs1,xs2, . . .},{x′s1,x

′
s2, . . .}

)
: ∥xsk− x′sk∥2 ≤ 2r,∀ k

}

if IS encodes a compound secret. A discriminative pair (si,s j) is two real valued vectors ∈ R|IS|,

representing two hypotheses about the true values of XIS . We denote the mth element as sim,s jm.

Let f : IS → [|IS|] be a mapping from each index w ∈ IS to its corresponding position in the

vector si or s j (where the value of Xw is hypothesized). By Lemma 8, the divergence can be

written as

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
= ∑

w∈IS

[
Dλ

(
PA (Zw|Xw = si f (w))

PA (Zw|Xw = s j f (w))

)]
+Dλ

(
PA ,P(ZIU |XIS = xs)

PA ,P(ZIU |XIS = x′s)

)

where PA (Zw|Xw = x) =N (x,σ2
s ) for all w ∈ IS. Recall from the statement of the Theorem that

we assume the diagonal entries of Σss all equal some value σ2
s : we add the same noise variance

to each point in the secret set, which is optimal under MSE constraints. Additionally, note that

for the hypothesis XIS = xs, we know the distribution of XIU |XIS = xs ∼N (µu|s,Σu|s), where

µu|s = µu +ΣusΣ
−1
ss (xs−µs) and Σu|s = Σuu−ΣusΣ

−1
ss Σsu. Notice that only µu|s depends on the

actual value of xs, and Σu|s depends only on the indices of IS. Being the sum of two normally

distributed variables, we have that (ZIU |XIS = xs)
d
= (XIU |XIS = xs)+GIU =N (µu|s,Σu|s+Σ

(g)
uu ).
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Substituting this into the divergences above sum of divergences:

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
=
|IS|

∑
m=1

[
Dλ

(
N (sim,σ

2
s )

N (s jm,σ
2
s )

)]
+Dλ

(
N (µu|si,Σu|s +Σ

(g)
uu )

N (µu|s j ,Σu|s +Σ
(g)
uu )

)
(1)

=
λ

2

|IS|

∑
m=1

1
σ2

s
(sim− s jm)

2 +
λ

2
(µu|si−µu|s j)

⊺(Σu|s +Σ
(g)
uu )
−1(µu|si−µu|s j) (2)

=
λ

2σ2
s
(si− s j)

⊺(si− s j)+
λ

2
(
ΣusΣ

−1
ss (si− s j)

)⊺
(Σu|s +Σ

(g)
uu )
−1(

ΣusΣ
−1
ss (si− s j)

)
(3)

=
λ

2σ2
s
(si− s j)

⊺(si− s j)+
λ

2
(si− s j)

⊺
Σ
−1
ss Σsu(Σu|s +Σ

(g)
uu )
−1

ΣusΣ
−1
ss (si− s j) (4)

Line (1) substitutes in the normal distributions given by our mechanism and conditional prior

class. Line (2) substitutes in the closed-form expression for Rényi divergence between two

mean-shifted normal distributions given in Equation 5.1. Line (3) substitutes in the expression

for µu|s given above, and simplifies. To expand out this simplification in explicit steps:

(µu|si−µu|s j) =
(
µu +ΣusΣ

−1
ss (si−µs)− [µu +ΣusΣ

−1
ss (s j−µs)]

)
=
(
ΣusΣ

−1
ss si−ΣusΣ

−1
ss s j

)
= ΣusΣ

−1
ss (si− s j)

Line (4) distributes the transpose in the right term of line (3):

(
ΣusΣ

−1
ss (si− s j)

)⊺
= (si− s j)

⊺(
ΣusΣ

−1
ss
)⊺

= (si− s j)
⊺(

Σ
−1
ss
)⊺

Σ
⊺
us

= (si− s j)
⊺
Σ
−1
ss Σsu

where that final step is a consequence of Σ being symmetric. Σss is also a symmetric matrix (so

its inverse is symmetric) and Σ
⊺
us = Σsu.
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Returning to line (4) above, simplify this expression by substituting ∆ = si− s j:

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
=

λ

2σ2
s

∆
⊺
∆+

λ

2
∆
⊺
Σ
−1
ss Σsu(Σu|s +Σ

(g)
uu )
−1

ΣusΣ
−1
ss ∆ (5)

=
λ

2σ2
s
∥∆∥2

2 +
λ

2
∆
⊺
Σeff∆ (6)

Where Σeff = Σ−1
ss Σsu(Σu|s +Σ

(g)
uu )
−1ΣusΣ

−1
ss . The left term of line (6) attributes the direct loss of

ZIS on XIS and the right term attributes the indirect loss of ZIU on XIS .

We are interested in bounding the expression of line (6) for all (si,s j) ∈Spairs. We do

this by bounding it for all vectors ∆ ∈D

D = {si− s j : ∥si− s j∥2 ≤
√

S r}

, where S is the number of basic secrets (locations) contained in IS which may be a basic or

compound secret set. For a basic secret (S = 1), this bound is tight, since D = {si− s j : (si,s j) ∈

Spairs}. The set of ∆ ∈ D is exactly any two hypothesis (si,s j) that are within any circle of

radius r. For a compound secret, this bound is not guaranteed to be tight. Recall once again that

the set of Spairs for a compound secret is given by the set of (si,s j) in

Spairs =
{(
{xs1,xs2, . . .},{x′s1,x

′
s2, . . .}

)
: ∥xsk− x′sk∥2 ≤ r,∀ k

}

For concreteness, consider the 2d location trace example in Figure E.1, where we have a

compound secret of S = 3 locations. Here, si,s j ∈ R6, where 6 comes from the fact that we

have three 2d locations. So, (si,s j) represents a pair of hypotheses on all three locations. si’s

hypothesis of the first secret location — written as xs1 ∈ R2 above — is within r of the s j’s

hypothesis of the first secret location — written as xs
′
1 ∈R2 above. The same goes for the second
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and third locations. So, the L2 norm of ∆ = si− s j is no greater than

sup
(si,s j)∈Spairs

∥si− s j∥2 = sup
(si,s j)∈Spairs

√√√√ 6

∑
m=1

(sim− s jm)
2

= sup
(si,s j)∈Spairs

√√√√ 3

∑
k=1
∥xsk− xs

′
k∥2

2

=

√√√√ 3

∑
k=1

r2

=
√

3 r

For compound secrets, D represents the L2 ball enclosing all ∆ ∈ {si− s j : (si,s j) ∈Spairs}.

However, D also includes some values of ∆= si−s j not covered by Spairs. Suppose an adversary

considers the hypotheses

si = {xs1,xs2,xs3},s j = {x′s1,x
′
s2,x

′
s3}

where xs1 = 0,xs
′
1 =
√

3 r,xs2 = xs
′
2,xs3 = xs

′
3. Since xs1,xs

′
1 are not within r of each other, this

is not in Spairs. However, it is covered by D , and thus is covered by our bound on CIP loss and

our mechanisms.

With D defined, we may return to bounding the expression in line (6):

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
≤ sup

∆∈D

(
λ

2σ2
s
∥∆∥2

2 +
λ

2
∆
⊺
Σeff∆

)
(7)

≤ λ

2

(
1

σ2
s

Sr2 +Sr2maxeig(Σeff)

)
(8)

=
λ

2
Sr2( 1

σ2
s
+α

∗) (9)

where line (8) distributes the supremum. For the right term, this is given by the maximum

magnitude of all ∆ ∈ D times the maximum eigenvalueof Σeff which equals Sr2maxeig(Σeff).
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Line (9) simply substitutes α∗ = maxeig(Σeff).

Proof of Corollary 5.3.3.1

Corollary 5.3.3.1 Graceful Composition in Time Suppose a user releases two traces

X and jX with additive noise G∼N (0,Σ(g)) and jG∼N (0, j
Σ(g)), respectively. Then basic or

compound secret XIS of X enjoys (ε̄,λ )-CIP, where

ε̄ ≤ λ

2
Sr2
( 1

σ2
s
+ ᾱ

∗
)

and where ᾱ is the maximum eigenvalue of Σ̄eff =
(
ΣusΣ

−1
ss
)⊺(

Σu|s + Σ̄
(g)
uu
)−1(

ΣusΣ
−1
ss
)
. Σ is the

covariance matrix of the joint distribution on X , jX and

Σ̄
(g) =

Σ(g) 0

0 j
Σ(g) .


Proof. Here, we record two traces (presumably) far apart in time

(X1, . . . ,Xn) and ( jX1, . . . ,
jXm)

And release

(Z1, . . . ,Zn) = (X1,+G1, . . . ,Xn +Gn) and ( jZ1, . . . ,
jZm) = ( jX1,+

jG1, . . . ,
jXm,+

jGm)

the first trace protects secret locations XIS and the second protects X̂IS , so we have that

Dλ

(
PA ,P(Z|XIS = si)

PA ,P(Z|XIS = s j)

)
≤ ε

Dλ

(PA ,P( jZ|X̂IS =
jsi)

PA ,P( jZ|X̂IS =
js j)

)
≤ jε
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We aim to update the losses:

Dλ

(PA ,P(Z, jZ|XIS = si)

PA ,P(Z, jZ|XIS = s j)

)
≤ ε

′

Dλ

(PA ,P( jZ,Z|X̂IS =
jsi)

PA ,P( jZ,Z|X̂IS =
js j)

)
≤ jε ′

Fortunately, our framework is pretty friendly to figuring this out, and can be done simply by

updating the ‘inferential loss term’ α∗ and jα∗ of each, the max eigenvalues used to compute

each of ε and jε , respectively. Let’s focus on ε ′, since the same analysis follows for jε ′.

Recall that α∗ is given by the max eigenvalue of Σeff which is

Σeff =
(
ΣusΣ

−1
ss
)⊺(

Σu|s +Σ
(g)
uu
)−1(

ΣusΣ
−1
ss
)

Where Σ is the covariance matrix of X1, . . . ,Xn and Σ(g) is the noise covariance matrix added.

Simply augment Σ to become the joint covariance matrix ΣJ of X , jX , and augment Σ(g) to become

Σ
(g)
J =

Σ(g) 0

0 j
Σ(g)


then update Σeff to Σeff,J which uses both ΣJ and Σ

(g)
J . Using the corresponding max eigenvalue

α∗J in the loss expression of Theorem 3.2 gives us ε ′.

Note that for kernels like RBF, ε ′→ ε as the traces X and jX move apart further and

further in time. This is not the case for traces using a purely periodic kernel with not time decay,

and we should expect much worse composition.

Traces with Independent Dimensions

In many cases, the different dimensions of the trace may be probabilistically independent,

and it may be more convenient to make separate privacy mechanisms for each. For a 2d trace
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X , suppose Ix and Iy store the indices of the latitude points XIx and longitude points XIy , such

that X = XIx ∪XIy . If latitude and longitude are independent, it may be more convenient to

characterize the conditional priors of XIx abd XIy separately. The question is whether privacy

guarantees remain for the full trace X . To answer this, we provide the following corollary:

Corollary E.1.0.1. CIP loss of independent dimensions Let Θ be a GP conditional prior class on

a 2d trace X such that the dimensions are independent. Let IS be some secret set of time indices

corresponding to some basic or compound secret. For the trace X = XIx ∪XIy , the Gaussian

mechanism A (X) = ZIx ∪ZIy where ZIx = Ax(XIx) = XIx +GIx and ZIy = Ay(XIy) = XIy +GIy

satisfies (ε,λ )-CIP where

ε ≤ λ

2
Sr2( 1

σ2
s
+α

∗
x +α

∗
y
)

when Ax and Ay provide λ

2 Sr2( 1
σ2

s
+α∗x ) and λ

2 Sr2( 1
σ2

s
+α∗y ) to IS∩ Ix and IS∩ Iy, respectively.

The gist of this corollary is that a mechanism can be designed to achieve the bound

of Theorem 5.3.3 to each dimension independently and released with still-meaningful privacy

guarantees. The reason is that this still includes all secret pairs Spairs

Proof. By independence, XIx and XIy can be treated as two unconnected traces of the type seen in

Figure 5.1. As such the privacy guarantee of Theorem 5.3.3 can be upheld for each. The question

is whether bounding CIP loss to the one-dimensional basic or compound secret associated with

secret sets IS∩ Ix and IS∩ Iy still provides guarantees for the full secret set IS.

Without loss of generality, we will demonstrate for a basic and a compound secret.

Consider the basic secret set IS = {X10,X11}, where IS∩Ix = {X10} (latitude) and IS∩Iy = {X11}

(longitude). We again assume that independent gaussian noise of variance σ2
s is added to all XIS ,

since this is optimal under utility constraints. We have now bounded the Rényi divergence when
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conditioning on pairs of hypotheses on latitude and longitude separately.

Spairsx = Spairsy = {(xs,x′s) : xs ∈ R,∥xs− x′s∥2 ≤ r}

By independence, this also bounds the Rényi divergence conditioning on pairs of hypotheses on

latitude and longitude jointly:

Spairsxy = {(xs,x′s) : xs ∈ R2,∥xs− x′s∥2 ≤ r}

In effect, we have guaranteed privacy for any pair of hypotheses (si,s j) in the square circum-

scribing the circle of radius r that we with to provide. The analysis on the direct privacy loss is

exactly the same as it was in the more general case. Since the Rényi divergences of XIU ∩XIx

and of XIU ∩XIy add, the α∗’s add.

The same goes for a compound secret. Consider three location compound secret pairs

given by

Spairsxy =
{(
{xs1,xs2, . . .},{x′s1,x

′
s2, . . .}

)
: xsi ∈ R2,∥xsk− x′sk∥2 ≤ r,∀ k

}

Instead, we bound privacy loss for

Spairsx = Spairsy =
{(
{xs1,xs2, . . .},{x′s1,x

′
s2, . . .}

)
: xsi ∈ R,∥xsk− x′sk∥2 ≤ r,∀ k

}

Separately, giving us α∗x and α∗y . This again includes any two hypotheses on the three locations

such that each pair of xsk,x′sk is within a square circumscribing a circle of radius r. We achieve

this by bounding privacy loss for all ∆x in a 3d L2 ball of radius
√

S r, as with ∆y.

This corollary can be extended to all traces of all dimensions that are probabilistically

independent.

We make use of the above proof in the Experiments section.
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E.1.3 Derivation of Algorithms

In this section, we derive the three SDP-based algorithms of Section 5.4 and their

properties.

Derivation of SDPA

SDPA minimizes the privacy loss bound of Theorem 5.3.3 for any compound or basic

secret encoded by secret set IS. As is clarified in its proof (Appendix E.1.2), the bound is tight

when IS encodes a basic secret. If IS encodes a compound secret, the tightness depends on the

conditional prior class Θ.

Our variable for minimizing this bound is the noise covariance matrix Σ(g). Due to the

conditional independence exhibited by Lemma 8, GIS and GIU may be independent. The additive

noise Gi ∈ GIS are all independent Gaussian with variance σ2
s . This is because — conditioning

on {XIS = xs} — ZIS is independent of XIU and ZIU . So, GIS ∼N (0,σ2
s I), and Σ

(g)
ss = σ2

s I.

The additive noise Gi ∈ GIU are all dependent as described by Σ
(g)
uu , and GIU ∼ N (0,Σ(g)

uu ).

Consequently, Σ(g) is completely characterized by Σ
(g)
uu and σ2

s .

To see how the bound of Theorem 5.3.3 can be redrafted as an SDP, first notice that its

two terms may be written as the maximum eigenvalue of a matrix product. Here, Σeff = A⊺BA,

where A = ΣusΣ
−1
ss and B =

(
Σu|s +Σ

(g)
uu
)−1

1
σ2

s
+α

∗ = maxeig
( 1

σ2
s

I +A⊺BA
)
= maxeig

([
I A

] 1
σ2

s
I 0

0 B


 I

A

)= maxeig
(
Ã⊺B̃Ã

)

This expression uses all parameters of Σ(g): σ2
s parametrizes Σ

(g)
ss and Σ

(g)
uu = B−1−Σu|s, where

Σu|s is given by the kernel function of Θ.

Before casting this as an SDP, we provide a formal definition from [158]:

Definition E.1.1. Semidefinite Program The problem of minimizing a linear function of a
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variable x ∈ Rn subject to a matrix inequality:

min
x∈Rn

c⊺x

s.t. F0 +
n

∑
i=1

xiFi ⪰ 0

Ax = b

where the Fi ∈ Rn×n are all symmetric and A ∈ Rp×n is a semidefinite program, or SDP.

The task of minimizing maxeig
(
Ã⊺B̃Ã

)
under MSE constraints can almost be formulated

as an SDP:

min
B⪰0,1/σ2

s≥0
β
∗

s.t. β
∗I ⪰ Ã⊺B̃Ã

B⪯ Σ
−1
u|s

tr(Σ(g)
uu )+ |IS|σ2

s ≤ not

Here, the first constraint guarantees that the maximum eigenvalue of Ã⊺B̃Ã is bounded by β ∗,

which the objective minimizes. At program completion, we set Σ
(g)
uu = B−1−Σu|s, and the second

constraints ensures that this is still PSD. The final constraint bounds the MSE of the mechanism

Σ(g). Note that tr(Σ(g)
uu )+ |IS|σ2

s = tr(Σ(g)). The trouble lies the last constraint. Our program

variable is B, but the final linear constraint requires Σ(g), which is expressed using the inverse of

B. This is not immediately available in the SDP framework.

To make the final linear constraint available, we invert the above program using the

observation that the maximum eigenvalue of Ã⊺B̃Ã is the inverse of the minimum eigenvalue

of (Ã⊺B̃Ã)−1. Instead of optimizing over B and 1/σ2
s , we optimize over B−1 and σ2

s . Since

B−1 = Σu|s+Σ
(g)
uu , we may now have a utility constraint directly on the trace of Σ(g). To make B−1

our program variable, we approximate (Ã⊺B̃Ã)−1 with Ã−1B̃−1Ã−⊺. First note that Ã ∈ Rn×|IS|,
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and has full column rank for the covariances we work with. So, Ã−1 = (Ã⊺Ã)−1Ã⊺ ∈ R(|IS|×n)

is the left inverse of Ã and is the least squares solution to Ã−1Ã = Ã⊺Ã−⊺ = I (we denote its

transpose as Ã−⊺). It is also the least squares solution to ÃÃ−1 = Ã−⊺Ã⊺ = I. Thus, we have an

approximation of the inverse (Ã⊺B̃Ã)−1:

(Ã⊺B̃Ã) (Ã−1B̃−1Ã−⊺)≈ Ã⊺B̃B̃−1Ã−⊺

= Ã⊺Ã−⊺

≈ I

We now can optimize in terms of B−1 with the augmented matrix B̃−1:

B̃−1 =

 σ2
s I 0

0 B−1


We then optimize the following SDP:

max
B−1⪰0,σ2

s ≥0
β
∗

s.t. β
∗I ⪯ Ã−1B̃−1Ã−⊺

B−1 ⪰ Σu|s

tr(B̃)− tr(Σu|s)≤ not

Upon program completion we recover σ2
s and Σ

(g)
uu = B−1−Σu|s which we know is PSD due

to the second constraint. The first constraint guarantees that the minimum eigenvalue of the

approximated inverse is ≥ β ∗, which the objective maximizes. If the minimum eigenvalue of

the approximate inverse is close to that of the true inverse, then we successfully minimize the

maximum eigenvalue of Ã⊺B̃Ã, and thus minimize the direct and indirect privacy loss. The
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third constraint limits the MSE of Σ(g) since tr(B̃)− tr(Σu|s) = (tr(Σ(g)
uu )+ |IS|σ2

s + tr(Σu|s))−

tr(Σu|s) = tr(Σ(g)). By inverting Ã⊺B̃Ã, this constraint is available in the SDP framework.

By expressing the above program in terms of the variable Σ(g) instead of indirectly via

B−1 and σ2
s , we get SDPA:

SDPA : argmax
Σ(g)⪰0

β
∗

s.t. Ã−1B̃−1Ã−⊺ ⪰ β
∗I

tr(Σ(g))≤ not

It is straightforward to write this SDP in the form seem in Definition E.1.1. The program

variables x would be the diagonal and upper or lower triangular part of Σ(g) along with β ∗. With

some linear algebra, the first constraint can be written in the form of F0 +∑
n
i=1 xiFi ⪰ 0, and the

second constraint can be written as Ax = b. With the use of contemporary convex programming

tools like CVXOPT [157] rewriting into this form is unnecessary.

Derivation of SDPB

SDPB takes a set of covariance matrices F = {Σ1, . . . ,Σk}, each of which is designed to

protect some secret set ISi, and returns a covariance matrix Σ(g) that preserves the privacy loss

bound of each Σi to each ISi. It does so while minimizing the utility loss of Σ(g). This algorithm

is also expressed as an SDP. It is based on the following corollary, which we have omitted from

the main text:

Corollary E.1.0.2. More PSD, More Private: For a basic or compound secret denoted by

indices IS, the CIP loss bound of Equation 5.5 provided by a Gaussian noise mechanism with

covariance Σ(g) is lower than it would be for any Σ(g)′ ≺ Σ(g).
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Proof. First note that if Σ(g) ≻ Σ(g)′, then the same is true for its sub-matrices:

Σ
(g)
ss ≻ Σ

(g)
ss
′

Σ
(g)
uu ≻ Σ

(g)
uu
′

Recall the privacy loss bound of Equation 5.5:

ε ≤ λ

2
Sr2
( 1

σ2
s
+α

∗
)

Also recall that Σ
(g)
ss = σ2

s I and Σ
(g)
ss
′
= σ2

s
′I. Since Σ

(g)
ss ≻ Σ

(g)
ss
′
, we already know that σ2

s > σ2
s
′,

and thus the first term of Equation 5.5 is lower for Σ(g).

It remains to show that the second term is also lower, α∗ < α∗′. Starting with what we’re

given,

Σ
(g)
uu ≻ Σ

(g)
uu
′

Σ
(g)
uu +Σu|s ≻ Σ

(g)
uu
′
+Σu|s

(Σ
(g)
uu +Σu|s)

−1 ≺ (Σ
(g)
uu
′
+Σu|s)

−1

B≺ B′

A⊺BA≺ A⊺B′A

maxeig(A⊺BA)< maxeig(A⊺B′A)

α
∗ < α

∗′

Therefore 1
σ2

s
+α∗ < 1

σ2
s
′ +α∗′, and the CIP bound of Equation 5.5 is lower for Σ(g) than it is for

Σ(g)′.

With Corollary E.1.0.2 in mind, SDPB is natural:
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SDPB : argmin
Σ(g)

tr(Σ(g))

s.t. Σ
(g) ⪰ Σ

(g)
i , ∀Σ(g)

i ∈F

SDPB attempts to minimize, but does not constrain, the utility loss of the chosen Σ(g). To

provide an upper bound on the resulting utility loss, we provided the following claim in the main

text:

Claim Utility loss of SDPB: The utility loss of Σ(g) = SDPB(F ) is no greater than

∑Σi∈F tr(Σi).

Proof. The covariance Σ(g)′ = ∑
Σ
(g)
i ∈F

Σ
(g)
i with MSE ∑

Σ
(g)
i ∈F

tr(Σ(g)
i ) is in the feasible set of

SDPB problem since Σ(g)′ ⪰ Σ
(g)
i , ∀Σ(g)

i ∈F . Unless Σ(g)′ has the lowest MSE of all Σ(g) in the

feasible set, a covariance matrix with better utility will be chosen.

Derivation of Algorithm 2, Multiple Secrets

Multiple Secrets combines SDPA and SDPB to minimize the privacy loss to each basic

secret within a trace. The basic mechanism is useful in cases when inferences at each time within

the trace — each basic secret — is sensitive.

Let ISi be the secret set representing basic secret i, of which there are N (e.g. if location

is sampled at N times). Then ISb = {IS1, . . . ,ISN} contains the indices corresponding to each.

Multiple Secrets works by first producing N covariance matrices, Σ
(g)
i = SDPA(ISi,Σ,ot) on each

basic secret. It then uses SDPB(F = {Σ(g)
1 , . . . ,Σ

(g)
N }) to produce a single covariance matrix Σ(g)

that preserves the privacy loss to each basic secret (note that, being basic secrets, the privacy loss

bound that SIG OPT optimizes is tight).

By virtue of using SDPB, the MSE of the resultant Σ(g) is minimized but not constrained.

To bound the MSE of the Basic Mechanism by O, we may simply bound the MSE of each Σ
(g)
i
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by ot = O/N. Then, by the above Claim, the MSE of the solution cannot be greater than O. In

practice, this bound may be too loose. We hope to tighten it in future work.

E.1.4 Experimental details

We use a 2d location trace and a 1d home temperature dataset. For the location data,

having observed that the correlation between latitude and longitude is low (≈ 0.06) we treat each

dimension as independent. By way of Corollary E.1.0.1, this allows us to bound privacy loss

and design mechanisms for each dimension separately. Furthermore, having observed that each

dimension fits the nearly the same conditional prior, we treat our dataset of 10k 2-dimensional

traces as a dataset of 20k 1-dimensional traces, where each trace represents one dimension of a

2d location trajectory.

The one-dimensional traces of temperature and location are indexed by timestamps, for

which we would use the following kernel functions:

kRBF(ti, t j) = σ
2
x exp

(
−

(ti− t j)
2

2l2

)
kPER(ti, t j) = σ

2
x exp

(−2sin2(π|ti− t j|/p)
l2

)
(E.1)

to determine the covariance between two points sampled at times ti and t j. The parameters

including variance σ2
x and length scale l. The lengthscale determines the window of time in

which two sampled points are highly correlated.

Preprocessing of location data

We first limit the dataset to traces of under 50 locations that are between 4.5 and 5.5

minutes in duration. Caring only about the conditional dependence between locations, we

then de-mean each trace and normalize its variance to one. Normalizing the variance of traces

implicitly sets σ2
x = 1 in the above RBF kernel, in essence assuming that the adversary has a

decent prior for the user’s average speed in a given trace, and could do the same operation.
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Fitting of location data

We then find the maximum likelihood RBF kernel for each distinct trace. Having fixed

the variance σ2
x , this amounts to fitting only the length scale for each dimension, lx and ly,

individually. The length scale represents the average window of time during which neighboring

locations are highly correlated (i.e. correlation > 0.8). Relatively smooth traces will have large

length scales and chaotic traces will have low length scales. However, the fact that sampling

rates vary significantly between traces means that traces with equal length scales can have very

different degrees of correlation. To encapsulate both of these effects, we study the empirical

distribution of effective length scale of each trace

leff,x =
lx
P

leff,y =
ly
P

where P is the trace’s sampling period and lx, ly are the its optimal length scales. leff,x, leff,y tell us

the average number of neighboring locations that are highly correlated, instead of time period.

For instance, a given trace with an optimal leff,x = 8 tells us that every eight neighboring location

samples in the x dimension have correlation > 0.8. The empirical distribution of effective length

scales across all traces describes – over a range of logging devices (sampling rates), users, and

movement patterns – how many neighboring points are highly correlated in location trace data.

After this preprocessing, we are able to use the kernels that take indices (not time) as arguments.

kRBF(i, j) = exp
(
− (i− j)2

2l2
eff

)
kPER(i, j) = exp

(−2sin2(π|i− j|/p)
l2
eff

)

In each plot we then observed a spectrum of conditional priors by sweeping the effective

length scale and plotting posterior uncertainty for various noise mechanisms of equal utility loss.

This ranges from a prior assuming nearly independent location samples (chaotic trace) on the left

up to highly dependent location samples (traveling in a straight line or standing still) on the right.
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To understand how realistic these conditional prior parameters are, we displayed the middle 50%

of the empirical distribution of leff (x and y together) from the GeoLife dataset. Note that the

distribution of leffx and leffy are nearly identical.

To compute posterior uncertainty, we consider a 50-point one-dimensional location trace.

The basic secret is a single index in the middle of the trace, and the compound secret consists

of two neighboring indices also in the middle of trace. For each value of leff, we compute the

R50×50 conditional prior covariance matrix Σ using the RBF kernel above. We then compare the

posterior uncertainty when Σ(g) is an Approach C baseline, or an optimized covariance matrix

using one of the three algorithms. We re-optimize Σ(g) for each leff, since each leff represents

a different conditional prior class. The MSE is fixed in all figures except the two exhibiting

“All Basic Secrets”, where SDPB is used. Recall that this algorithm minimizes utility loss while

maintaining a series of privacy guarantees. Here, the MSE is identical across mechanisms for

each leff, but changes from one leff to another.

For the temperature data, our preprocessing steps were nearly identical, except we use

the periodic kernel instead of the RBF kernel, and we did not need to remove any traces from the

dataset, as the data was much cleaner.

Computation of Posterior Uncertainty Interval

Each of the plots in Figure 5.2 shows the 2σ uncertainty interval on XIS of a Gaussian

process Bayesian adversary with prior covariance Σ and any mean function

The posterior covariance is computed using standard formulas for linear Gaussian systems.

Knowing that Z = X +G, we may write the joint precision matrix Λ (inverse of covariance

matrix) of (X ,Z) as

Λ
(X ,Z) =

Σ−1 +Σ(g)−1 −Σ(g)−1

−Σ(g)−1
Σ(g)−1


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It is then a well known result that the conditional covariance matrix is given by

Σx|z = Λ
−1
xx

=
(
Σ
−1 +Σ

(g)−1)−1

This provides the posterior covariance of all locations X given any released trace Z that uses a

Gaussian mechanism with covariance Σ(g). Note that the CIP guarantee naturally keeps posterior

uncertainty large since the posterior density at any two xs close together must be similar. For

these Gaussian posteriors, 2σ tells us the adversary’s 68% confidence interval on XIS after

obvserving Z.

For basic secrets (one location), we simply report twice the posterior standard deviation

at the sensitive index i, given by

2
√

Σx|z,ii .

For compound secrets involving multiple locations the posterior distribution is a length |IS|

multivariate normal with covariance Σx|z,ss. Intuitively, we wish to find the direction of the vector

XIS in which the posterior interval is the shortest. This is the worst case posterior interval on the

compound secret. We do this by reporting

2
√

mineig Σx|z,ss .

E.1.5 Discussion of GP Conditional Prior Class

Recall that a conditional prior class requires for any PPi,PP j ∈Θ that

PPi(XIU |XIS = xs) = PP j(XIU + cu
i jIS
|XIS = xs + cs

i jIS
)
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for all xs. Notice that the mapping (xs,x′s)+ cs
i jIS

is a bijection from Spairs onto itself. As such,

each pair of conditional distributions,

(
PP j(XIU |XIS = xs),PP j(XIU |XIS = x′s)

)

induced by (xs,x′s) ∈Spairs is a mean-shifted version of the pair of distributions

(
PPi(XIU |XIS = xs− cs

i jIS
),PPi(XIU |XIS = x′s− cs

i jIS
)
)

induced by (xs,x′s)− cs
i jIS
∈Spairs. Since the Rényi divergence between two distributions and

two mean-shifted versions thereof is unchanged, we may use one additive noise mechanism for

all priors in class Θ.

To see how this applies to the GP prior class, recall the formula for a conditional

multivariate Gaussian distribution:

P(XIU |XIS = xs) = N (µu|s,Σu|s)

where,

µu|s = µu +ΣusΣ
−1
ss (xs−µs)

Σu|s = Σuu−ΣusΣ
−1
ss Σsu

A GP prior class includes all GP distributions with a fixed kernel k(ti, t j) and any mean function

µ(t). For a fixed set of time points, this corresponds to a fixed covariance matrix Σ and any mean

parameters µµµ:

X ∼N (µµµ,Σ)
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Let PPi = N (µ̄µµ,Σ) and PP j = N ( jµµµ,Σ), then conditioned on some sensitive points XIS

the distribution on XIU has the same covariance Σu|s and conditional means

µ̄u|s = µ̄u +ΣusΣ
−1
ss (xs− µ̄s)

= (µ̄u−ΣusΣ
−1
ss µ̄s)+ΣusΣ

−1
ss xs

jµu|s = jµu +ΣusΣ
−1
ss (xs− jµs)

= ( jµu−ΣusΣ
−1
ss

jµs)+ΣusΣ
−1
ss xs

which implies that the conditional distributions are identical up to a mean shift for the same xs

value.

PPi(XIU |XIS = xs) = PP j(XIU + cu
i jIS
|XIS = xs)

for all xs. Here, cu
i jIS

= (µ̄u−ΣusΣ
−1
ss µ̄s)− ( jµu−ΣusΣ

−1
ss

jµs), and cs
i jIS

= 0.

To see how this allows a single additive mechanism to work for all mean functions, notice

that we also have

PPi(XIU |XIS = x′s) = PP j(XIU + cu
i jIS
|XIS = x′s)

for x′s, so the divergences

Dλ

(
PPi(XIU |XIS = xs)

PPi(XIU |XIS = x′s)

)
= Dλ

(
PP j(XIU + cu

i jIS
|XIS = xs)

PP j(XIU + cu
i jIS
|XIS = x′s)

)
= Dλ

(
PP j(XIU |XIS = xs)

PP j(XIU |XIS = x′s)

)

are equal. The same goes for the noisy trace XIU +ZIU |XIS = xs, when Z is drawn independently

of X , allowing us to bound privacy loss for all P ∈Θ.
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