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Abstract

Large-scale data obtained from aggregation of already collected multi-site neuroimaging datasets 

has brought benefits such as higher statistical power, reliability, and robustness to the studies. 

Despite these promises from growth in sample size, substantial technical variability stemming 

from differences in scanner specifications exists in the aggregated data and could inadvertently 

bias any downstream analyses on it. Such a challenge calls for data normalization and/or 

harmonization frameworks, in addition to comprehensive criteria to estimate the scanner-related 

variability and evaluate the harmonization frameworks. In this study, we propose MISPEL 
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(Multi-scanner Image harmonization via Structure Preserving Embedding Learning), a supervised 

multi-scanner harmonization method that is naturally extendable to more than two scanners. 

We also designed a set of criteria to investigate the scanner-related technical variability and 

evaluate the harmonization techniques. As an essential requirement of our criteria, we introduced 

a multi-scanner matched dataset of 3T T1 images across four scanners, which, to the best of our 

knowledge is one of the few datasets of this kind. We also investigated our evaluations using 

two popular segmentation frameworks: FSL and segmentation in statistical parametric mapping 

(SPM). Lastly, we compared MISPEL to popular methods of normalization and harmonization, 

namely White Stripe, RAVEL, and CALAMITI. MISPEL outperformed these methods and is 

promising for many other neuroimaging modalities.

Keywords

MRI; Technical variability; Scanner effects; Normalization; Harmonization

1. Introduction

There is a growing interest in the neuroimaging community in combining imaging data 

from a variety of diverse datasets to enable large-scale multi-study analyses that have high 

statistical power, reliability, and robustness (Madan, 2021; Mar et al., 2013; Madan, 2017; 

Milham et al., 2018). Despite the promise of massive data aggregation initiatives, large-scale 

neuroimaging analyses from such data collections often suffer from issues of technical 

variability due to scanner- and individual-based heterogeneity across studies, which may 

introduce bias in imaging-derived measures (Kruggel et al., 2010; Potvin et al., 2019; 

Torbati et al., 2021a) and causes alterations of the biological signals of clinical interest 

(Shinohara et al., 2014a, 2017), among other unwanted and unexpected artifacts. Scanner 

technical variability has been majorly recognized as intensity unit effects and scanner effects 

(Wrobel et al., 2020; Torbati et al., 2021a).

Intensity unit effects are due to the arbitrary nature of image intensity scale, which can 

cause variability in interpretations of intensity units and thus make the direct quantitative 

analysis of image intensities difficult (Wrobel et al., 2020). Intensity unit effects have been 

long recognized and addressed by intensity normalization methods, such as White Stripe 

(WS) (Shinohara et al., 2014b), a well-known normalization method in neuroimaging. A 

comprehensive review of the initial intensity normalization methods can be also found in 

Shah et al. (2011).

Scanner effects refer to any post-normalization inter or intra-scan variation that is not 

biological in nature (Fortin et al., 2016) and stems from scanner and acquisition differences 

(Dinsdale et al., 2021). So far, these causes of variation have been recognized: differences in 

scanner manufacturer (Takao et al., 2014), scanner upgrade (Han et al., 2006), scanner drift 

(Takao et al., 2011), scanner field strength (Han et al., 2006), and gradient non-linearities 

(Jovicich et al., 2006). An example of such effects can be seen in tissue type volumes 

extracted from White Stripe (WS)-normalized images in Fig. 1(b). The group of methods 

that aim to remove scanner effects is referred to as harmonization. Harmonization is a 

Torbati et al. Page 2

Med Image Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complex and challenging task due to (1) lack of thorough understanding of scanner effects, 

and (2) lack of standardized criteria for assessment of scanner effects and evaluation of 

harmonization.

In this specific study, our main interest lies in understanding and compensating for 

technical variability of images, specifically the scanner effects. Scanner effects cannot be 

easily removed by simple intensity distribution matching (Fortin et al., 2016) or a linear 

transformation of images (Wrobel et al., 2020). Even though there has been a noticeable 

growth in the number of studies focused on scanner effects and harmonization recently 

(Dewey et al., 2019, 2020; Liu et al., 2021; Cackowski et al., 2021; Zuo et al., 2021), 

there is a lack of insight with respect to how these scanner effects appear on images. One 

main reason could be the lack of ground truth for these studies, which leaves them with 

no standard evaluation criteria and consequently makes their observations partly incoherent 

and hard to compare. Based on the observations confirmed by several of these studies, it is 

now known that scanner effects can vary across the voxels of an individual image (Chen et 

al., 2020). Furthermore, it is also known that scanner effects change the tissue contrast and 

consequently affect the results of tissue segmentations (Meyer et al., 2019). Torbati et al. 

(2021a) has shown that scanner effects can affect different regions of brain differently and 

result in regional summary measures with varying degree of scanner effects.

The best experimental design setup to understand and quantify scanner effects is to conduct 

a paired study by having subjects travel to different sites/scanners, to collect the paired 
dataset (Dewey et al., 2019; Zuo et al., 2021). A paired dataset is a set of paired images 

that are the images of each individual scanned on two scanners with short time gap. Paired 

images are expected to be images of biologically similar brain with differences solely due to 

scanner effects. Using a paired dataset, scanner effects and harmonization can be estimated 

as similarities and dissimilarities within paired images, respectively. As such, a ground truth 

is not necessary.

Fig. 1 illustrates an example from a matched dataset, similar to a paired dataset but with 

more than two scanners. An example of technical variability across MRI scanners can be 

observed as dissimilar contrast and voxel intensity histograms of these matched images in 

Fig. 1(a), as well as the resulting variability in deduced volumes for both gray matter (GM) 

and white matter (WM) tissue types in Fig. 1(b). Also, Fig. 1(c) depicts the histograms of 

the WS-normalized version of the matched images. The scanner effects can be observed 

in the WS-normalized images as their dissimilar histograms in Fig. 1(c), as well as their 

discrepant volumes in Fig. 1(b).

From a methodological and more specifically, a machine learning perspective, paired and 

unpaired datasets are considered respectively as labeled and unlabeled data for the task 

of harmonization. Accordingly, the harmonization methods developed based on paired and 

unpaired data are called the supervised and unsupervised methods (Dewey et al., 2019; 

Zuo et al., 2021; Torbati et al., 2021a; Liu et al., 2021). The majority of the research 

on harmonization is currently focused on the unsupervised methods, due to scarcity of 

matched or even paired datasets. However, there exist two supervised methods, namely 

DeepHarmony (Dewey et al., 2019) and mica (Wrobel et al., 2020). DeepHarmony is a 
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contrast harmonization method that maps images of two scanners to a middle-ground space 

in which images are harmonized by having similar contrast. However, DeepHarmony is 

limited to harmonizing images of just two scanners. On the other hand, mica is a multi-

scanner (i.e., more than two scanners) method that harmonizes images by adapting their 

intensity distributions to that of the target scanner. Even though adapting images to a target 

scanner seems to simplify the task of harmonization, it introduces the new challenge of 

determining the “best” scanner in the pooled data. Selecting such scanner is not a trivial task 

when, for example, motion artifacts in images could be of concern (Alexander-Bloch et al., 

2016; Torbati et al., 2021a).

Harmonization can be applied to, two broad categories: (1) harmonization of image-derived 

measures, and (2) harmonization of images. The methods of the first category can be 

described as ComBat (Johnson et al., 2007) and its extensions (Beer et al., 2020; Chen et 

al., 2020; Pomponio et al., 2020; Reynolds et al., 2022). ComBat is a location and scale 

adjustment method used in neuroimaging for harmonizing image-derived measures and has 

been applied to images of different modalities: DTI (Fortin et al., 2017), MRI (Fortin et al., 

2018), and fMRI (Nielson et al., 2018). Even though ComBat is a straightforward method 

which showed success in harmonization of image-derived measures in many studies (Yu 

et al., 2018; Radua et al., 2020; Foy et al., 2020; Torbati et al., 2021a), its performance 

cannot be easily evaluated at the image level. Moreover, ComBat is directly affected by 

the known or unknown biological differences among subjects. In fact, ComBat is prone to 

removing the biological variability that is correlated to scanner effects and was not known 

to be considered through ComBat harmonization (Liu and Markatou, 2016; Obenauer et al., 

2019). Thus, a potentially better way to approach harmonization is to conduct it at the image 

level.

RAVEL was proposed as the first normalization and harmonization framework, removing 

inter-subject variability from MRIs at the voxel level (Fortin et al., 2016). Harmonization 

methods using deep learning techniques have subsequently been proposed. The 

unsupervised deep-learning-based methods treat harmonization as the task of domain or 

style transfer learning, in which images of scanners are mapped to the domain or style 

of one selected scanner, called target scanner (Dewey et al., 2020; Zuo et al., 2021). As 

well as the challenge of selecting the target scanner, these methods have other limitations 

based on the deep learning network they used for transfer. For example, methods using 

CycleGAN (Modanwal et al., 2020) or DualGAN (Zhong et al., 2020) networks are 

limited to harmonization of just two scanners. Another example is CALAMITI with a 

disentanglement network limited to harmonizing inter-modality paired dataset. These data 

consist of paired images of two predetermined modalities taken from an individual on the 

same scanner with a short time gap. Methods using style transfer (Liu et al., 2021; Liu and 

Yap, 2021) are prone to mapping images to the biological or clinical information of the 

target scanner if images across scanners are confounded by this information. Another major 

group of unsupervised methods proposed generating scanner-invariant latent representations 

for synthesizing harmonized images (Moyer et al., 2020) or training the neuroimaging tasks 

on images (Aslani et al., 2020; Dinsdale et al., 2021). However, these methods are prone to 

lose the information of images during harmonization, as their generated representation has 

been proven to be limited to the least informative scanner (Moyer and Golland, 2021).
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In this work, we present MISPEL (Multi-scanner Image harmonization via Structure 

Preserving Embedding Learning), which is a supervised multi-scanner harmonization 

method that maps images of scanners to a middle-ground harmonized image space. Figs. 

1(b) and 1(d) depict the result of MISPEL on harmonizing our example of matched images. 

In this study, we also introduce a multi-scanner matched dataset of 3T T1 images across 

four scanners, one of the few datasets of its kind (Duchesne et al., 2019; Magnotta et al., 

2020; Maikusa et al., 2021; Hawco et al., 2022). In addition, we provide a set of experiments 

assessing scanner effects and evaluating harmonization on our unique set of matched data by 

applying commonly used MR image processing and segmentation software packages FSL 

(Zhang et al., 2001), SPM (Ashburner and Friston, 2005), and FreeSurfer (Fischl, 2012). 

Lastly, we compare MISPEL with three well-known methods of image-based normalization 

and harmonization, White Stripe, RAVEL, and CALAMITI.

2. Materials and methods

2.1. Study population and image acquisition

The sample used in this study consists of 18 participants which are part of an ongoing 

project (UH3 NS100608 grant to J. Kramer and C. DeCarli). The median age of the 

participants was 72 years (range 51–78 years) and 44% (N = 8) were males. All participants 

were cognitively unimpaired. 10 participants have high degree of small vessel disease (SVD) 

as previously defined (Wilcock et al., 2021). The rest of participants have low degree 

of SVD. T1-weighted (T1-w) images were acquired for each participant on each of four 

different 3T scanners [GE, Philips, SiemensP, and SiemensT (Table 1)]. For each participant, 

these matched images were taken at most four months apart, a time period over which we 

assume no biological changes could occur in the brain and differences observed between 

any pairs of scans are solely due to the scanner effects. In a matched dataset, the scanner 

and harmonization effects can be estimated based on the dissimilarity and similarity of 

matched images, respectively. The details of estimation of scanner effects and evaluation of 

harmonization methods are provided in Section 2.5.

2.2. Image preprocessing

We use RAVEL as one of our harmonization methods in this study. In order to prevent 

confounding our evaluation with inconsistent preprocessing steps, we preprocessed all 

images using the pipeline prescribed for RAVEL (Fortin et al., 2016). Therefore, we first 

used a non-linear symmetric diffeomorphic image registration algorithm (Avants et al., 

2008) to register images to a high-resolution T1-w image atlas (Oishi et al., 2009). We 

then applied the N4 bias correction method (Tustison et al., 2010) to the registered images 

to correct them for spatial intensity inhomogeneity. As the last step of the pipeline, we 

skull stripped the images using the mask provided in Fortin et al. (2016). We also scaled 

images in one additional step, in which intensity values of each image were divided by their 

within-mask average intensity value. Throughout this manuscript, these preprocessed images 

are referred to as RAW and used as input to our models.
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2.3. MISPEL

Our proposed framework, MISPEL, is a convolutional deep neural network for harmonizing 

images from multiple scanners, for which a matched dataset is available. We designed 

MISPEL to (1) generalize to multiple (more than two) scanners, (2) preserve the structural 

(anatomical) information of the original brains, (3) learn harmonization on a matched 

dataset, and (4) later harmonize unmatched images of the scanners for which the matched 

dataset was collected. Although it is more desirable to train a harmonization method on the 

whole images rather than slices, this is not possible due to our current GPU limitations. 

Accordingly, we designed a two-step training framework for MISPEL which consists of 

units of 2D encoder and decoder modules for each of the scanners. The 2D network (Fig. 

2) is trained on axial slices, since this orientation has the highest resolution in our images. 

More details on MISPEL were provided in Torbati et al. (2021b) and the code is publicly 

available.1

2.3.1. Implementation—We consider M scanners for RAW data, i.e., the preprocessed 

matched images which are registered to the same template space. The axial slices across 

all RAW scans are combined for a total of N slices for each scanner i, i = 1 : M. The 

dataset thus consists of Xi = 1 : M
j = 1 : N, where Xi

j is the slice j from scanner i and X1
j, X2

j,…,   XM
j  are 

the matched axial slices. Our goal is to achieve the harmonized axial slices, referred to as 

Xi = 1 : M
j = 1 : N, by making them similar across scanners, i.e., achieving X1

j ≈ ⋯ ≈ XM
j , for j = 1 : N.

For network generalizability and expandability to multiple scanners, MISPEL uses a 

separate unit of encoders and decoders for each of the scanners. We designed Enci (the 

encoder for scanner i) as a 2D U-Net (Ronneberger et al., 2015), which decomposes slice 

Xi
j into its set of L latent embeddings Zi

j = Zi,1
j ,…, Zi,L

j . Deci is then designed as a linear 

function combining the components of latent embeddings, Zi,1
j ,…, Zi,M

j , to map Zi
j to Xi

j.

2.3.2. Network training—Each Enci − Deci unit reconstructs Xi
j from Xi

j for each scanner 

i and slice j and cannot reach harmonization by itself. Thus, we employ another mechanism 

in order to make the synthesized images, Xi = 1 : M
j = 1 : N, similar across the scanners and achieve 

harmonization. One way to do that would be to train all Enc − Dec units to directly impose 

similarity of matched slices by a loss function. However, this may result in modification of 

brain structures, as we noticed that even our matched slices which were co-registered in the 

preprocessing, have small structural differences. Thus, we implemented a two-step training 

for MISPEL which preserves the brain structure. In Step 1, we first learned the embeddings 

with structural information, and in Step 2, we harmonized the intensities of embeddings 

without modifying the structure of the brains.

Step 1: Embedding Learning.: For learning embeddings that could preserve the structural 

information of the brain, we train the Enc − Dec units to reconstruct their corresponding 

input slices. For example, for scanner i and slice j, the goal for Enci − Deci is to achieve 

Xi
j Zi

j Xi
j, in which Xi

j ≈ Xi
j. To enforce all units to image reconstruction, we used 

1https://github.com/Mahbaneh/MISPEL.
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Reconstruction loss Lrecon . Lrecon should enforce all units to reconstruct their input images. 

To use this specific Reconstruction loss, we first compute the pixel-wise mean absolute error 

(MAE) between Xi
j and Xi

j for i = 1 : M and then sum them over. In addition to this image 

reconstruction strategy, the Deci modules maintain the structural information of the brain by 

linearly combining the embeddings.

Making the latent embeddings similar across scanners will improve the results of 

harmonization later in Step 2. By this similarity, for example for scanner i and slice j, 
the goal is to obtain Z1,l

j ≈ ⋯ ≈ ZM,l
j , for l = 1 : L. For enforcing the similarity, we designed 

the Embedding Coupling loss Lcoup  to “couple” the embeddings of the M scanners. We 

first calculated the pixel-wise variance for the lth embedding over all M scanners. We 

conducted this step for all L embeddings. We then calculated Lcoup as the mean of these 

variances over all embeddings and their pixels. The loss for Step 1 is then calculated as 

Lstep1 = λ1Lrecon + λ2Lcoup, where λ1 > 0 and λ2 > 0 are the weights. We trained our units of 

Enc − Dec for j = 1 : N slices. The units trained simultaneously for T1 times.

Step 2: Harmonization.: We continue the training process with Step 2 in which for 

each scanner i and slice j, the goal is to achieve Xi
j Zi

j Xi
j. Unlike Step 1, the Xi

j

will be the harmonized slice in this step. For harmonizing slices, we froze the encoders 

during the training and updated just the decoders to synthesize similar matched slices, 

i.e., achieving X1
j ≈ ⋯ ≈ XM

j . For enforcing the similarity, we used the Harmonization loss 

(Lℎarm). We first calculated the MAEs between the images of all unique scanner pairs. Lℎarm

was then the mean of these MAEs. For example, for slice j, the Lℎarm is the mean of 

MAEs for { Xi
j, Xk

j |i, k ∈ {1,…, M} and i < k}. In the loss for Step 2, we also incorporate 

Lrecon to discourage deviation of harmonized images from their originals. Thus, we have 

Lstep2 = λ3Lrecon + λ4Lℎarm, where λ3 > 0 and λ4 > 0. With Lstep2, we trained the decoders of all 

units for j = 1 : N slices and repeat it for T2 times, when Lstep2 does not change anymore. By 

the end of this step, the synthesized images, Xi = 1 : M
j = 1 : N, are the desired harmonized ones.

2.3.3. Harmonization practicality—The general harmonization approach for 

supervised methods is to use matched data to learn scanner effects of the scanners for 

which the matched data were collected (Dewey et al., 2019; Wrobel et al., 2020). Such 

a trained model could then be used for harmonization of the images taken by any of 

these scanners. These images do not necessarily need to be matched, and harmonization 

can be applied to images of each scanner separately. For showing such practicality of 

MISPEL in harmonization, we conducted a 6-fold cross-validation at the subject level using 

a 12/3/3 split for training, validation, and testing, respectively. In this manner, the images 

of validation and test sets are treated as unmatched images and are harmonized individually. 

Moreover, these images are harmonized by models that have not seen them during their 

training.

We used RAW images as the input of MISPEL. As explained in Section 2.3.2, we started by 

training each of the 6 models (i.e. datasets) with Step 1 and then continued with Step 2. For 

tuning the hyper-parameters of the models, we used the images of the validation sets. In Step 
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1, we fixed λ1 = 1 and trained models for λ2 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and L ∈ {4, 6, 8}. We 

then selected appropriate values of these hyper-parameters for each of the 6 models based 

on the Lstep1 values for their validation sets. In Step 2, we fixed the models for λ3 = 1 and 

trained the models for λ4 = {1, 2, 3, 4, 5, 6}. We selected appropriate values of λ4 for each 

model based on the Lstep2 for their validation sets. The training was conducted on NVIDIA 

RTX5000 for T1 = 100 and T2 = 100 with the batch size of 4. For both steps, we used ADAM 

optimizer (Kingma and Ba, 2014) with a learning rate of 0.01. Training of each model took 

approximately 200 and 30 minutes for Step 1 and Step 2, respectively.

We then used the tuned models for harmonizing their corresponding test sets. In the next 

section, we explain that two of our competing methods, WS and RAVEL, were designed 

to be applied to all images at once. For ease of comparing MISPEL to these methods, we 

pooled all the MISPEL-harmonized test sets as one harmonized set. This is the dataset that is 

used in Section 3 for reporting the harmonization performance of MISPEL.

2.4. Competing methods

We compared MISPEL with one method of intensity normalization, White Stripe (WS), and 

two methods of harmonization, RAVEL and CALAMITI. We selected WS and RAVEL as 

they (1) are widely applied to MRI neuroimaging data, (2) can be applied to multiple (more 

than two) scanners, and (3) do not require specifications of a target scanner. We considered 

CALAMITI as our main competing method since it can be slightly modified and applied to 

matched data, and could be regarded as one of the state-of-the-art methods in harmonization. 

We emphasize that determining the ultimate state-of-the-art harmonization method is not 

trivial as harmonization lacks standardized evaluation criteria.

White Stripe (WS) is an individual-level intensity normalization method for removing 

discrepancy of intensities across subjects within tissue types (Shinohara et al., 2014b). It 

first extracts the normal-appearing white matter voxels of the image and estimates moments 

of their intensity distribution. It then uses these moments in the z-score transformation for 

normalizing the voxels of all brain tissue types.

RAVEL is an intensity normalization and harmonization framework (Fortin et al., 2016). 

It initializes with a WS normalization step and then applies a voxel-wise harmonization 

strategy to images. In the harmonization strategy, RAVEL first estimates the components 

of scanner effects by applying singular value decomposition to cerebrospinal fluid (CSF) 

voxels of images. These voxels are known to be unassociated with disease status and 

clinical covariates and are representative of scanner effects. RAVEL then uses these voxels 

to estimate scanner effects and harmonizes the images by removing the estimated scanner 

effects from the voxel intensities. Throughout the estimation of the scanner effects, we 

considered the status of the subjects (cognitively normal with low or high degree of SVD) 

as the biological/clinical covariates. We also set the components of scanner effects to 1, 

as suggested in the original work (Fortin et al., 2016). For further details on the biological/

clinical covariates and components of scanner effects, see Algorithm 1 in Torbati et al. 

(2021a).
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CALAMITI is an unsupervised deep-learning method for harmonizing multi-scanner inter-

modality paired dataset (Zuo et al., 2021). It is a domain adaptation approach mapping 

the images of scanners to the domain of a target scanner. Inter-modality paired dataset 

consists of images of two predetermined modalities taken from one individual on the 

same scanner with a short time gap. This dataset can have paired images of multiple 

scanners. For simplicity, we refer to these images as paired in the description of this 

method. CALAMITI should be first trained on paired images of two scanners, one of which 

should be the target scanner. It could then be fine-tuned to map images of other scanners 

to the target domain. During the training, CALAMITI first gets the paired images as 

inputs and generates a disentangled representation that captures the mutual scanner-invariant 

anatomical information (β) of images as well as the contrast information (θ)s of their 

modalities and scanner, and then synthesizes the input paired images using their generated 

mutual β and θs. For harmonizing an input image, the trained model is used to generate the β
of the image and θ of one random image from the target scanner. The model then synthesizes 

the harmonized image using these two components.

We used CALAMITI as a supervised method by simply training it on our inter-scanner 
paired data. Like MISPEL, we used the 6-fold cross-validation strategy for training and 

testing the models. We also pooled the harmonized test sets to have one set of data to 

report the harmonization performance of CALAMITI in Section 3. Following its original 

paper, we went through one step of normalization and trained CALAMITI using the WS-

normalized RAW images. Instead of conducting fine-tuning, we went for a simpler approach 

and trained 3 individual models to map GE, Philips, and SiemensP to SiemensT. We used 

the same machines used for MISPEL and trained CALAMITI with the hyper-parameters 

reported in its original paper. For being comparable and fair to other methods, we trained 

CALAMITI on 2D axial slices and skipped its super-resolution preprocessing step and 

post-harmonization slice-to-slice consistency enhancement step.

Among the competing methods, we regard CALAMITI as a state-of-the-art harmonization 

method to compare against MISPEL, and we emphasize that WS and RAVEL were not 

designed to use matched data in their technical variability removal process. Specifically, 

WS is an intensity normalization method, which does not account for scanner information. 

However, it is beneficial to study scanner effects and harmonization on the WS-normalized 

data to emphasize the importance of harmonization for neuroimaging data. On the other 

hand, RAVEL was designed to remove the inter-subject technical variability of images 

after intensity normalization. Although RAVEL does not account for scanner information 

either, scanner effects may appear in the singular value decomposition component extracted 

individually for each of the subjects from their CSF tissue in this framework. As such, we 

regard RAVEL as a normalization and harmonization framework that can be compared to 

CALAMITI and MISPEL to evaluate the advantages of using and accounting for matched 

data in harmonization methodology.

2.5. Data analysis

A harmonization method is expected to remove scanner effects while preserving the 

biological variables of interest in the data. In our specific matched dataset, the matched 

Torbati et al. Page 9

Med Image Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



images are assumed to be biologically identical but differ entirely due to scanner differences. 

Thus, the scanner effects can be estimated as dissimilarity of the matched images, and 

removing the scanner effects can be regarded as increasing their similarity. We investigated 

the similarity and dissimilarity of matched images using four evaluation criteria: (1) image 

similarity, (2) GM-WM contrast similarity, (3) volumetric and segmentation similarity, and 

(4) biological similarity. We also selected SVD as the clinical signal of interest in our data 

and investigated whether we could preserve or even enhance the SVD group differences in 

our data after harmonization.

We performed our evaluation metrics for all five methods: RAW, White Stripe, RAVEL, 

CALAMITI, and MISPEL. The entire matched dataset was used in evaluating each method 

unless otherwise mentioned. Many of our evaluation metrics require pairwise image-to-

image comparison, for which we considered all possible combinations of scanner pairs: 

{(GE, Philips), (GE, SiemensP), (GE, SiemensT), (Philips, SiemensP), (Philips, SiemensT), 

and (SiemensP, SiemensT)}. Throughout this manuscript, the two matched images of each 

scanner pair are referred to as paired images. To determine the statistical significance of any 

comparisons, we used paired t-test with p < 0.05 denoting the significance.

Scanner effects could appear as contrast dissimilarity across images of different scanners 

(Dewey et al., 2019, 2020; Liu et al., 2021). More specifically, such dissimilarity could 

appear as tissue-specific contrast differences in images (Meyer et al., 2019). We, therefore, 

assessed scanner effects and evaluated harmonization using an image similarity metric to 

measure the similarity of cross-scanner images in their appearance, as well as a GM-WM 
contrast similarity metric to assess the tissue contrast similarity of images.

We first investigated the image similarity. For this, we assessed the visual quality of the 

matched slices for all methods. We also quantified the similarity of all paired images using 

the structural similarity index measure (SSIM). SSIM is a pairwise metric that compares 

two images in terms of their luminance, contrast, and structure. A harmonization method is 

expected to increase the visual and structural similarity of paired images.

Second, we investigated the GM-WM contrast similarity of images. The GM-WM contrast 

can highly influence the quality of segmentation methods, and increased contrast is expected 

to result in more accurate segmentation. The GM-WM contrast of an image can be estimated 

as the separability of its histograms of GM and WM voxels. This separability was used as 

the classification of GM and WM voxels of an image in Torbati et al. (2021a) and reported 

as the area under the receiver operating characteristic (AUROC) values, with AUROC 

= 1 denoting perfect classification (complete separation of histograms) and AUROC = 

0.5 showing random classification (complete overlap of histograms). For calculating these 

AUROC values, we conducted the procedure explained in Torbati et al. (2021a) for each of 

the images. We first labeled GM and WM voxels of the image using the tissue mask in the 

EveTemplate package (Oishi et al., 2009). We then classified these voxels using intensity 

thresholds selected from the range of intensity values of the GM and WM voxels. Lastly, we 

formed the AUC curve of the image using the result of each classification. A harmonization 

method is expected to increase the GM-WM contrast similarity.
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Third, we investigated the volumetric and segmentation similarity criterion for 

images. The most practical benefit of harmonization is to enable unbiased multi-scanner 

neuroimaging analyses with minimal scanner effects. Tissue-specific regional neuroimaging 

measures are the basis of these analyses, and therefore, the volumetric and segmentation 

similarity of these measures across paired images is a crucial metric for evaluating 

harmonization. We segmented and measured the volumes of the two brain tissue types: 

GM and WM. We then analyzed the similarity of each of these two tissue types 

separately in four ways: (1) volume distributions, (2) volumetric bias, (3) volumetric 

variance, and (4) segmentation overlap. For volumetric distributions, we compared the 

distributions of volumes of each tissue type across their four scanners. These plots show 

the harmonization performance of methods as the similarity of the distributions of their 

harmonized measures across scanners. Most of the metrics used in the three other criteria 

are pairwise comparisons, thus we applied them separately to all of the 6 scanner pairs. 

Volumetric bias and variance are two metrics assessing the similarity of measures across 

scanners in two different ways. For volumetric bias, we calculated the absolute differences 

between volumes of paired images of each scanner pair and evaluated the harmonization 

based on the mean of these differences over all individuals of the scanner pair. We used 

root-mean-square deviation (RMSD) for estimating the volumetric variance of paired images 

of all individuals within each scanner pair. RMSD of a scanner pair denotes the deviation 

of volumes of one scanner from that of the other scanner. Lastly, we used Dice similarity 

score (DSC) to estimate the overlap of tissue segmentation of paired images of each scanner 

pair. The mean of these DSC values over paired images of all subjects was used as an 

evaluation metric for harmonization. A harmonization method is expected to result in (1) 

similar distribution of volumes across scanners, (2) minimal (ideally zero) bias, (3) minimal 

(ideally zero) variance, and (4) maximal (ideally complete) segmentation overlap; for both 

tissue types and all scanner pairs.

We conducted the volumetric and segmentation similarity evaluation using two segmentation 

tools: (1) FSL FAST (version 6.0.3) (Zhang et al., 2001), and (2) segmentation in Statistical 

Parametric Mapping (SPM12) (Ashburner and Friston, 2005). These frameworks are widely 

used for tissue segmentation in neuroimaging studies, however, the results of these two 

segmentation algorithms could have moderate to large differences (Tudorascu et al., 2016). 

We, therefore, assessed volumes from each segmentation tool independently. Originally, the 

output of WS, RAVEL, CALAMITI, and MISPEL methods were images in template space, 

as all methods used RAW images as input. The RAW images were non-linearly registered 

to a T1-w image atlas (Oishi et al., 2009) in the preprocessing step, Section 2.2. Using their 

inverse transformations, processed images of all methods were transferred to their native 

space and then used as inputs of the two segmentation tools for tissue volume extraction 

and then volumetric similarity evaluation. On the other hand, for having a meaningful tissue 

segmentation overlap, segmentations and accordingly their images should remain in their 

template space. Thus, we also ran FSL and SPM frameworks on the template-space images 

to generate the segmentations and then evaluate the segmentation overlap similarity. For all 

runs of the segmentation frameworks, we set the tissue class probability thresholds to 0.8.
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Fourth, we investigated the biological similarity of images using biomarkers of Alzheimer’s 

disease (AD). We studied the bias (mean of cross-scanner absolute differences) and variance 

(RMSD) for these biomarkers. For bias, we calculated the cross-scanner absolute differences 

of all scanner pairs and reported their mean (SD). For variance, we calculated the mean 

of RMSDs across all scanner pairs. We report these metrics for all 5 methods and all 

biomarkers of AD. As biomarkers of AD, we investigated cortical thickness measures of the 

entorhinal and inferior temporal cortices, as well as volume measures of the hippocampus 

and amygdala. These summary measures are the sum of measures over both hemispheres, 

and they were extracted using FreeSurfer 7.1.1 (FS) (Fischl, 2012). These regions have 

previously been found to be most relevant to AD (Schwarz et al., 2016). We extracted 

these measures across all harmonization methods for 17 of the 18 total subjects. RAVEL-

harmonized images of a single subject failed FS segmentation due to an error in the corpus 

callosum segmentation step. Thus, for a fair comparison across methods, we omitted this 

subject from the experiments on biomarkers of AD. We also skipped skull stripping and bias 

correction steps in the FS processing pipeline, as RAW images had already gone through 

skull-stripping and N4 bias correction during image preprocessing (Section 2.2).

Fifth and last, we investigated whether each harmonization method preserved or even 
enhanced a biological/clinical signal of interest in our matched data. We selected SVD 

as our clinical signal of interest and investigated the effect size between two groups of low 

and high SVD in our data. For this experiment, we calculated Cohen’s d effect sizes of the 

two SVD groups for each of our FS-derived biomarkers of AD individually. For each of the 

biomarkers, we calculated the size effects of the scanners separately and reported the mean 

(SD) of these values across scanners. A harmonization method is expected to not deteriorate 

the effect sizes of groups after harmonization.

3. Results

In this section, we report our evaluation criteria on RAW, WS-normalized, RAVEL-, 

CALAMITI-, and MISPEL-harmonized images. For a more convenient comparison with 

RAW, WS and RAVEL, we pooled harmonized images of each of CALAMITI and MISPEL 

as one dataset.

3.1. Image similarity

The similarity of images across normalization and harmonization methods is depicted in 

Figs. 3 and 4. Visual assessment of processed images in Fig. 3 revealed that (1) scanner 

effects are present in the matched RAW images and appear most significantly as differences 

in image contrast, (2) White Stripe made matched images more similar, but at the expense 

of decreased contrast, (3) RAVEL improved upon WS by increasing contrast relative to WS-

normalized images, (4) CALAMITI improved similarity of the matched images by adapting 

contrast across all scanners to that of the RAW SiemensT, and (5) MISPEL improved the 

similarity of images similarly to CALAMITI but visually smoothed images to some extent.

For a quantitative understanding of similarity of images, we explored the SSIM distribution 

of the matched images of all subjects for the 6 scanner pairs enumerated in Section 2.5. 

These distributions are depicted as violin plots for the five methods: RAW, WS, RAVEL, 
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CALAMITI, and MISPEL in Fig. 4. The violin plots with the smallest SSIM mean belong 

to RAW, indicating scanner effects exist in our matched dataset as dissimilarity of images. 

Scanner pairs including GE have long-tailed distributions, which indicates that GE images 

are most dissimilar to others. Moreover, the SiemensP-SiemensT scanner pair had the largest 

SSIM mean, indicating that these two are the most similar scanners.

We observed that WS, RAVEL, CALAMITI, and MISPEL improved SSIM of RAW for 

all of its scanner pairs, except for CALAMITI for the SiemensP-SiemensT scanner pair. 

Lastly, we observed that MISPEL outperformed the other three methods. All comparisons 

were statistically significant (assessed using paired t-tests), except for CALAMITI for the 

Philips-SiemensP and SiemensP-SiemensT pairs.

3.2. GM-WM contrast similarity

We quantified the GM-WM contrast of an image using the AUROC values denoting the 

separation of histograms GM and WM voxel intensities. High AUROC indicates higher 

contrast, with 100% the highest. In Fig. 5, we depicted the spaghetti plots of AUROC values 

of images of all subjects across the four scanners. A harmonization method is expected to 

(1) make the AUROC of matched images similar, i.e., results in overlapped lines, and (2) not 

deteriorate the AUROC of images.

Fig. 5(a) shows that scanner effects exist in RAW data and appeared as dissimilarity of 

GM-WM contrast in matched dataset, i.e., distant lines in this plot. Fig. 5(b) shows that 

WS does not change AUROCs of RAW. On the other hand, Figs. 5(c), 5(d), and 5(e) show 

respectively that RAVEL, CALAMITI, and MISPEL resulted in more overlapped lines, with 

MISPEL having the highest overlap.

Fig. 6 shows the bar plots indicating the mean AUROC of images of each scanner. MISPEL 

is the only method that increased the mean AUROC of RAW images for all scanners. We 

also observed that: (1) WS did not change the mean AUROC value of RAW, (2) RAVEL 

improved the contrast for GE and Philips, but made it worse for SiemensP and SiemensT, 

and (3) CALAMITI improved the mean AUROC of GE and Philips and did not affect that of 

other scanners. In addition to these results, MISPEL seems to be the most successful method 

in bringing the mean AUROC of the scanners closer to each other. In summary, we show 

that MISPEL is the only method that satisfied both harmonization criteria determined for 

GM-WM contrast similarity.

3.3. Volumetric and segmentation similarity

We estimated the volumetric and segmentation similarity of GM and WM tissue types based 

on four criteria: (1) volume distributions, (2) volumetric bias, (3) volumetric variance, and 

(4) segmentation overlap. We performed our evaluation for FSL and SPM segmentation 

frameworks and expected the harmonization methods to result in: (1) similar volume 

distributions across scanners, (2) minimal bias, (3) minimal variance, and (4) maximal 

segmentation overlap; for both tissue types and both segmentation frameworks.

3.3.1. Volume distributions—Fig. 7 shows boxplots of volumes of the two tissue 

types, GM and WM, across the four scanners for all five methods, with Figs. 7(a) and 7(b) 
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depicting these boxplots for volumes extracted by FSL and SPM frameworks, respectively. 

Plots in Fig. 7(a) showed that scanner effects exist in the matched volumes derived through 

FSL and appeared as dissimilar boxplots for RAW across scanners. When compared to 

RAW, WS and RAVEL resulted in more dissimilar boxplots for FSL-derived volumes of 

both GM and WM. On the other hand, we noticed that the use of CALAMITI and MISPEL 

helped towards harmonization of data. CALAMITI made GE and Philips more similar to 

SiemensP and SiemensT for both GM and WM, but increased variance for distributions of 

all scanners for WM. Similarly, MISPEL made GE more similar to SiemensP and SiemensT 

for both GM and WM volumes. Fig. 7(b) showed that scanner effects exist in RAW volumes 

extracted by SPM too. Our normalization and harmonization methods though resulted in 

relatively minor changes in SPM-derived GM and WM volumes, with CALAMITI and 

MISPEL showing the most noticeable changes. Both CALAMITI and MISPEL made Philips 

closer to SiemensP and SiemensT for GM volumes. They also made GE closer to these two 

scanners for WM.

In summary, MISPEL and CALAMITI outperformed WS and RAVEL in harmonizing 

FSL-derived volumes and none of the methods resulted in visually significant assessed 

harmonization for the SPM-derived volumes, when volumetric distribution similarity of 

both GM and WM volumes were used as the evaluation metric. Results for the statistical 

assessment of harmonization of FSL- and SPM-derived GM and WM volumes are presented 

in the next section.

3.3.2. Volumetric bias—Table 2 shows mean and standard deviation (SD) of cross-

scanner absolute differences of all paired volumes in each scanner pair. We calculated 

these statistics for volumes of GM and WM tissue types extracted using FSL and SPM 

segmentation frameworks, for all five methods. We also presented the distributions of 

these differences as violin plots in Fig. 8. Using paired t-test, we compared each of these 

distributions to their equivalent distributions in RAW.

A harmonization method is expected to result in minimal (ideally zero) mean of absolute 

differences (bias), with no major increase in SD of the differences. The SD values 

indicate the consistency of harmonization across subjects. A harmonization method should 

harmonize images of all subjects to a comparable degree, and thus should not increase the 

SDs drastically. Likewise visually, the violin plots in Fig. 8 for harmonized images are 

expected to be centered as close as possible to zero.

We observed that scanner effects exist in the RAW volumes extracted through FSL 

framework and appeared for all scanner pairs as non-zero bias values. We also observed 

that MISPEL resulted in the largest number of smallest biases for FSL-derived volumes, 

when compared to the other three methods. This number was 11 out of a total of 12 

cases, which are the 6 scanner pairs of the 2 tissue types. 8 out of these 11 biases were 

significantly different than their equivalents in RAW. Moreover, we noticed that MISPEL 

did not significantly increase the SD of distributions, just 2 increases out of 12, in which 

only the SD of GM for the GE-Philips pair had a major increase. On the other hand, WS, 

RAVEL, and CALAMITI showed increases in SD of differences for all 12 distributions, 

with WS showing the most drastic increases (Fig. 8). In general, RAVEL and CALAMITI 
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harmonized FSL-derived volumes to some extent. Compared to RAW, RAVEL resulted in 

5 decreased biases and CALAMITI resulted in 6 decreases. However, CALAMITI also 

resulted in drastically increased biases for the WM volumes of 5 of the scanner pairs (Fig. 

8(a)).

Results of RAW volumes extracted by SPM show that SPM is also sensitive to scanner 

effects. MISPEL and CALAMITI decreased bias for 11 and 7 cases, respectively. They 

resulted in the largest numbers of smallest biases for SPM: 5 and 4 out of 12 cases for 

MISPEL and CALAMITI, respectively. Among these cases, 3 for each of MISPEL and 

CALAMITI showed statistically significant differences when compared to RAW. On the 

other hand, CALAMITI increased SD for 8 out of 12 cases, while other methods did not 

show any major increases. This can be observed in Table 2 as well as Fig. 8(b). WS and 

RAVEL harmonized the SPM-derived volumes to some extent by decreasing the biases of 5 

and 11 cases, respectively. They also resulted in a few smallest biases: 1 case for WS and 2 

cases for RAVEL.

Summarizing Table 2 and Fig. 8, we observed that MISPEL outperformed WS, RAVEL, and 

CALAMITI when FSL and SPM were used for extracting volumes and volumetric bias and 

SD of differences were used as harmonization evaluation metrics.

3.3.3. Volumetric variance—Fig. 9 shows bar plots that indicate the RMSD of paired 

volumes in each of the scanner pairs. We calculated these values for volumes of GM and 

WM tissue types and depicted them for all five methods. Fig. 9 contains these sets of 

bar plots for volumes extracted through FSL and SPM frameworks in Figs. 9(a) and 9(b), 

respectively. Ideal harmonization would result in a zero RMSD for each scanner pair.

We observed that scanner effects exist in RAW volumes for both segmentation frameworks 

and appeared as non-zero RMSD values. Also, MISPEL outperformed WS, RAVEL, and 

CALAMITI, showing the smallest RMSD values: 6 and 8 out of 12 cases for FSL and SPM, 

respectively. These statistics are 0 and 1 for CALAMITI as well as 0 and 3 for RAVEL. We 

also observed that WS did not improve the RMSD values of any 12 scanner pairs for FSL, 

when compared to RAW. However, it performed better for SPM by decreasing the number 

of worse cases to 6. MISPEL, CALAMITI, and RAVEL deteriorated some of the RMSDs 

too. Among these methods, MISPEL deteriorated the least number of cases, 4 for each of the 

FSL- and SPM-derived volumes.

In summary, we observed that MISPEL outperformed WS, RAVEL, and CALAMITI when 

FSL and SPM were used for deriving volumes and volumetric variance was used as the 

harmonization evaluation metric.

3.3.4. Segmentation overlap—Fig. 10 shows bar plots that indicate the mean DSC 

of all paired segmentations in each scanner pair. We calculated the means of DSCs for 

segmentations of GM and WM tissue types and depicted them for all five methods. Fig. 

10 contains these sets of bar plots for segmentations extracted through FSL and SPM 

frameworks in Figs. 10(a) and 10(b), respectively. DSC shows the overlap of two paired 
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segmentations. A good harmonization method would result in an increased mean of DCSs 

for all scanner pairs, with 1 indicating the highest.

We observed in Fig. 10 that scanner effects exist in RAW segmentations of both FSL and 

SPM and appeared as relatively low means of DSC values. MISPEL outperformed WS, 

RAVEL, and CALAMITI in harmonization by having the largest means of DSC for all 

scanner pairs for both FSL and SPM. We compared the DSC distributions of MISPEL with 

their equivalents in RAW using paired t-test and all improvements of MISPEL over RAW 

were statistically significant. Results also showed that while WS decreased the DSC for two 

scanner pairs for FSL, it did better for SPM by increasing the means for 6 of the cases. 

RAVEL performed slightly better than WS by increasing 6 and decreasing 3 of the DSC 

means for FSL and improved 9 cases for SPM. CALAMITI showed 10 and 6 increases 

for FSL and SPM, respectively, while decreasing the rest of the cases. Using paired t-tests, 

we observed that these DSCs were statistically significantly larger than that of their RAW 

equivalents.

In summary, MISPEL outperformed WS and RAVEL, when FSL and SPM were used 

as segmentation frameworks and segmentation overlap was used as the harmonization 

evaluation metric.

3.4. Biological similarity

We investigated biological similarity of images over several biomarkers of AD: cortical 

thickness values of the entorhinal and inferior temporal cortices, as well as volume measures 

of the hippocampus and amygdala. As the evaluation criteria, we selected (1) biomarker bias 

and (2) biomarker variance. A harmonization method is expected to result in minimal bias 

and variance for the biomarkers.

3.4.1. Biomarker bias and variance—Table 3 shows the biomarker bias for each of 

the AD biomarkers. We reported this metric for all 5 methods. For each method, we first 

calculated the absolute differences between paired measures of all the scanner pairs and then 

reported their overall mean (SD). We also compared the distribution of differences for each 

of the methods to that of RAW, using paired t-test. Moreover, Fig. 11 shows the mean of 

RMSDs across all scanner pairs for each of the methods. These means were calculated for 

each of the AD biomarkers separately.

We observed in Table 3 and Fig. 11 that scanner effects appeared as non-zero bias and 

variance values for the biomarker measures in the RAW data. We also noticed that MISPEL 

resulted in the largest number of statistically-significant smallest biases: 3 out of 4. MISPEL 

did not harmonize hippocampus. It slightly increased cross-scanner volumetric differences 

for hippocampus, but this increase is not statistically significant. On the other hand, WS and 

RAVEL statistically significantly increased the distribution of differences for all biomarkers, 

except for amygdala. CALAMITI showed similar performance. This method resulted in 

increase in distribution of differences for 3 biomarkers while being statistically significant 

for 2 of them. The same trend of results was also seen for the mean of RMSD values in Fig. 

11.
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In summary, we observed that MISPEL outperformed WS, RAVEL, and CALAMITI 

when harmonization was investigated as bias and variance across scanners in FS-derived 

biomarkers of AD.

3.5. Analysis on biological variables of interest

We investigated whether harmonization could succeed in preserving or strengthening SVD-

related group differences in our data. For this, we studied the Cohen’s d effect sizes of 

SVD groups in each of the scanners. We calculated these values for each of the biomarkers 

and methods separately. Table 4 shows mean (SD) of these Cohen’s d values over all 

scanners. A harmonization method is expected to not reduce these means of Cohen’s d after 

harmonization, that is to preserve group differences. We observed that MISPEL increased 

effect sizes for all of the biomarkers, except for hippocampus. MISPEL resulted in a minor 

decrease in Cohen’s d of hippocampus. On the other hand, WS, RAVEL, and CALAMITI 

resulted in major decreases for hippocampus and amygdala, a minor decrease for inferior 

temporal, and a minor increase for entorhinal. In summary, we observed that MISPEL 

succeeded in preserving our biological signal of interest and outperformed other methods in 

this respect.

4. Discussion

In this study, we presented MISPEL, a supervised deep harmonization technique for 

removing scanner effects from images of multiple scanners, while preserving their biological 

and anatomical information. Unlike other supervised or unsupervised methods, MISPEL is 

a multi-scanner method mapping images to a scanner middle-ground space in which images 

are harmonized. We evaluated MISPEL against commonly used intensity normalization 

and harmonization methods (White Stripe, RAVEL, and CALAMITI) using a set of 

evaluation criteria including image similarity, GM-WM tissue contrast, tissue volumes and 

segmentation similarity, and biological similarity in a dataset of matched T1 MR images 

acquired from 4 different 3T scanners. We also investigated whether these methods could 

preserve or even enhance the SVD group differences as a biological signal of interest. We 

found that (1) scanner effects appear in our dataset as dissimilarity in image appearance/

contrast, GM-WM contrast, tissue type volumetric and segmentation distributions, and 

distributions of regional measures of AD; (2) White Stripe normalized images, but did not 

achieve harmonization; (3) RAVEL and CALAMITI achieved harmonization to some extent; 

and (4) MISPEL outperformed all other methods in harmonization.

Based on the evaluated harmonization metrics, we observed that images of GE were more 

similar to those of Philips and images of SiemensP showed more similarity to SiemensT’s. 

We also observed that scanner effects appeared mainly as the dissimilarity between pairs 

of GE or Philips and SiemensP or SiemensT. We observed that removing intensity unit 

effects using White Stripe successfully normalized images (Supplementary Figure 1) and 

resulted in improved image similarity, but did not majorly enhance other metrics we used for 

evaluating harmonization. The relative failure to harmonize may be due to the fact that WS 

is an intensity normalization method, which does not account for scanner information. We 

also observed that WS increased the variability of image-derived measures across subjects. 
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Such behavior was observed in bias and variance metrics for GM and WM volumes, as 

well as biomarkers of AD. This was expected as WS is an individual-level method. This 

property of WS makes the normalization of any new unseen image more convenient but 

may also result in inconsistent normalization across images. WS also decreased the effect 

size for volumetric biomarkers of AD, when SVD group differences were studied. In fact, 

scaling and centering the intensity distributions does not necessarily remove scanner effects; 

on the contrary, over-matching distributions could result in the removal of other sources of 

variability that could be of interest (Fortin et al., 2016). These results show that scanner 

effects are not addressed solely through intensity normalization and a more comprehensive 

harmonization method is necessary.

RAVEL is an unsupervised normalization and harmonization framework that could extract 

components of scanner effects for each of the subjects as inter-subject variability across 

their CSF area. Our results show that RAVEL achieved harmonization to some extent 

relative to White Stripe, but was outperformed by MISPEL. RAVEL increased the similarity 

of images in their appearance/contrast, GM-WM contrast, and tissue type volumes and 

segmentation overlap when the SPM framework was used. However, RAVEL could not 

achieve harmonization for FSL-derived GM and WM volumes. Moreover, it deteriorated the 

bias and variance for biomarkers of AD, except for volumes of the Amygdala. RAVEL also 

did not preserve the SVD group differences when volumetric biomarkers were investigated. 

These relative failures could be due to several reasons. First, RAVEL uses neither the 

information of scanners nor the matched data during its harmonization process. Second, 

RAVEL is prone to remove some biological variability across subjects, if such variability 

is not accounted for in RAVEL modeling. RAVEL also showed large variability and 

inconsistent harmonization across subjects, especially for FSL-derived volumes. Such results 

have been also reported in Torbati et al. (2021a) when RAVEL was used for harmonizing 

paired images of GE 1.5T and Siemens 3T scanners and FreeSurfer was used. Similar results 

were observed for WS. Thus, such behavior of RAVEL could be due to using WS in its 

normalization step.

For a fair comparison with CALAMITI, we used it in a supervised manner by applying it to 

our inter-scanner paired dataset instead of inter-modality paired data as discussed in Zuo et 

al. (2021). Results showed that CALAMITI achieved harmonization to some extent relative 

to White Stripe. However, it did not perform better than RAVEL and was outperformed 

by MISPEL. CALAMITI improved similarity of images in their appearance/contrast, 

GM-WM contrast, and tissue type volumes and segmentation overlap when the SPM 

framework was used. CALAMITI did not show consistent harmonization for FSL-derived 

volumes. It resulted in both increased and decreased biases for these measures. Moreover, 

CALAMITI showed large variability and inconsistent harmonization across subjects for 

both FSL- and SPM-derived volumes. This method did not achieve harmonization for AD 

biomarkers either. It deteriorated the bias and variance for the entorhinal and hippocampus 

measures. It also deteriorated the SVD group differences for all biomarkers, except for the 

entorhinal. These failures in harmonization could be due to CALAMITI’s harmonization 

approach. CALAMITI encodes paired images into their mutual scanner-invariant anatomical 

components, and their individual contrast and scanner-variant components. For harmonizing 

an image, it synthesizes the harmonized image by using its anatomical component and 

Torbati et al. Page 18

Med Image Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the target scanner’s contrast component/scanner component. Such methodology is prone to 

losing some anatomical information of images, if it could not segregate the anatomical and 

contrast components properly. Similar harmonization failures were observed for CALAMITI 

in Zuo et al. (2021) when image-derived summary measures were investigated.

MISPEL outperformed White Stripe, RAVEL, and CALAMITI based on all harmonization 

evaluation criteria. MISPEL mapped images to a middle-ground harmonized space, in which 

matched images were made more similar in contrast by removing scanner effects. For our 

data, GE and Philips images were more similar to those of SiemensP and SiemensT, in terms 

of GM-WM contrast and tissue type volumetric distributions. It should be noted that no 

directed mapping or a target scanner was selected for MISPEL harmonization, and MISPEL 

does not require a selected target. In fact, MISPEL naturally finds this middle-ground space. 

GE and Philips images were made more similar to SiemensP and SiemensT, with relatively 

minimal change made to SiemensP and SiemensT by MISPEL, likely due to SiemensP and 

SiemensT images being most similar and therefore biasing the middle-ground space found 

by MISPEL. For this scenario of data, not requiring a target scanner could be regarded as 

an advantage for MISPEL over other deep-learning based harmonization frameworks. Other 

widely used statistical harmonization methods, including WS, RAVEL, and ComBat, also 

do not require a target scanner. However, harmonizing to a middle-ground rather than a 

specified target could be problematic in other scenarios, such as if the data were collected 

on a majority of lower-quality scanners. This may bias MISPEL to learn a lower-quality 

middle-ground space for harmonizing images and degrade the quality of images from more 

advanced scanners. In such cases, MISPEL could potentially be modified to map images to a 

target scanner.

Results from volumetric and segmentation evaluations also show that MISPEL image-based 

harmonization improves the harmonization of downstream image analysis results regardless 

of framework. It showed improvement for both segmentation platforms tested, FSL and 

SPM, which have been shown to largely differ in their segmentation results (Tudorascu et 

al., 2016) even in healthy volunteers. MISPEL also showed success in harmonization of 

biomarkers of AD and enhancing the SVD group differences when these biomarkers were 

used. The improved performance of MISPEL compared to RAVEL and CALAMITI could 

be due to the design choices for MISPEL. First, U-Net (Ronneberger et al., 2015) units were 

used as the encoder–decoder units in MISPEL. The U-Net could preserve the structure of 

brain by transferring the information of images from encoder layers to the decoder layers. 

Second, the loss functions for MISPEL were selected cautiously to tackle the contrast 

discrepancy within paired images and preserve their anatomy. Even so, MISPEL is far 

from perfect. We observed that MISPEL showed better harmonization for cortical thickness 

biomarkers relative to volumetric measures. MISPEL improved volumetric bias and variance 

for the amygdala and preserved the SVD group differences in amygdala volumes, but 

MISPEL also slightly reduced the SVD group differences in hippocampal volumes.

One possible reason for the suboptimal performance of MISPEL in hippocampal-derived 

harmonization metrics could be related to its 2D network. Such a network may result in 

slice-to-slice inconsistency for harmonized images. To evaluate this, we assessed slice-to-

slice consistency measures for each of the RAW and MISPEL-harmonized images. We 
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collected an array of SSIM measures between each adjacent axial slice of each image. 

We then paired each of the harmonized images with their equivalent RAW image and 

calculated the correlation between SSIM consistency measures of images of each pair. A 

harmonization method that preserves the slice-to-slice consistency of RAW images should 

have a statistically significant correlation near 1 over all pairs. We conducted this experiment 

for slices of each brain orientation separately and observed 0.994 (ranges: [0.969, 0.999]), 

0.992 (ranges: [0.962, 0.999]), and 0.991 (ranges: [0.973, 0.998]) mean of correlations 

across subjects for axial, sagittal, and coronal slices, respectively. These high correlations 

demonstrate that slice-to-slice inconsistency is not a significant concern for MISPEL when 

trained exclusively on axial slices. As such, further investigation is necessary to optimize 

MISPEL for multi-scanner studies where focal regional volumes are of interest.

Our study adds to the growing harmonization literature by (1) presenting MISPEL, a 

supervised multi-scanner harmonization method; (2) introducing a multi-scanner matched 

dataset of four 3T scanners; (3) providing a set of experiments assessing scanner effects 

and evaluating harmonization; and (4) evaluating the practical harmonization performance 

of MISPEL against widely used and state-of-the-art image intensity normalization and 

harmonization methods. One limitation of our study is the use of a single matched-scan 

cohort. The generalizability of MISPEL to unmatched multi-scanner data, relative to existing 

and commonly used normalization and harmonization methods, was not assessed. As future 

work, we will investigate whether MISPEL harmonization can be improved for volumetric 

measures by using the 3D fusion network proposed in Zuo et al. (2021). This network 

synthesizes the harmonized image by fusing the 2D harmonized slices of the image across 

all orientations. We will also study the generalizability of MISPEL to other matched datasets 

with different degrees of scanner effects, such as paired GE 1.5T and Siemens 3T data 

(Torbati et al., 2021a), as well as unmatched multi-scanner datasets. We will further study 

MISPEL across other modalities, such as Fluid-attenuated inversion recovery (FLAIR). 

Using these new datasets and modalities, we will investigate whether not selecting a target 

scanner for MISPEL could result in suboptimal harmonization and whether modifying 

MISPEL to map images to the space of a target scanner could improve image quality.

In this article, we proposed a supervised multi-scanner harmonization approach, MISPEL, 

that harmonizes the T1-w MRI of scanners for which a matched dataset is available. 

The main design goal for MISPEL was preserving the anatomical information of images 

while harmonizing them. MISPEL showed decent harmonization performance while our 

well-suited set of evaluation criteria was used. This set uses the matched data to investigate 

harmonization from various aspects. MISPEL and our evaluation criteria are promising tools 

to help multi-site studies dealing with the scanner technical variability.
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Fig. 1. 
Example of technical variability, White Stripe normalization, and MISPEL harmonization 

in matched images. For this example, Original images are the matched T1 MRIs scanned 

on four different 3T scanners: GE, Philips, SiemensP, and SiemensT. Specifications of these 

scanners can be found in Table 1. Figure (a) depicts the technical variability of the Original 

images as dissimilarity in contrast of their axial slices, and discrepancy among histograms of 

their whole brain. Figure (b) shows the technical variability of matched images in terms of 

their tissue type volumetric dissimilarity. The volumes were depicted for the Original images 

as well as their WS-normalized and MISPEL-harmonized versions. Figures (c) and (d) 

depict the histograms of whole brain in WS-normalized and MISPEL-harmonized matched 

images, respectively. Histograms of matched images have identical axes and correspond 

(from left to right) to GE, Philips, SiemensP, and SiemensT scanners.
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Fig. 2. 
Illustration of MISPEL. For each of the i = 1 : M scanners and the j = 1 : N input axial 

slices, Enci (2D U-Net) decomposes the corresponding latent embeddings: Zi
j = Enci Xi

j . The 

corresponding Deci (linear function) then maps the embeddings to the output: Xi
j = Deci Zi

j . 

Step 1 Embedding Learning: Enci − Deci unit reconstructs the input images for each scanner 

i. In this step, Enci = 1 : M and Deci = 1 : M are updated using the Embedding Coupling loss and the 

Reconstruction loss. Step 2 Harmonization: the Deci synthesizes the harmonized images for 

each scanner i. In this step, only Deci = 1 : M are updated using the Harmonization loss and the 

Reconstruction loss.

Torbati et al. Page 26

Med Image Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Visual assessment of matched images of a slice. Rows and columns correspond to methods 

and scanners respectively. All four methods: WS, RAVEL, CALAMITI, and MISPEL made 

the matched slices of RAW more similar, with CALAMITI and MISPEL preserving their 

contrast the most.
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Fig. 4. 
Structural similarity index measures (SSIM) for the matched dataset. The SSIM distributions 

of images of scanner pairs were depicted as violin plots for each of the methods. A 

harmonization method is expected to have the highest mean of SSIM. MISPEL improved 

SSIMs of RAW and outperformed the other three methods.
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Fig. 5. 
GM-WM contrast spaghetti plots. The GM-WM contrast was estimated as AUROC values 

and was depicted for images of all subjects as spaghetti plots. In these plots, each 

line corresponds to one scanner. A harmonization method that performs well should 

show overlap of the lines. Plots showed that MISPEL outperformed WS, RAVEL, and 

CALAMITI with the highest overlapped of the lines.
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Fig. 6. 
GM-WM contrast bar plots. Each bar indicates the mean AUROC of images of each scanner, 

with error bars denoting the standard deviation for each method. A harmonization method 

is expected to not deteriorate the GM-WM contrast of images. Plots show that MISPEL 

outperformed WS, RAVEL, and CALAMITI reflected in the similarity of the boxplots.

Torbati et al. Page 30

Med Image Anal. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. 
Volume distribution boxplots. Boxplots denote the volume distribution of GM and WM 

tissue types for images of each scanner. These boxplots were depicted for all five methods 

and explored for two segmentation frameworks: (a) FSL and (b) SPM. A harmonization 

method is expected to result in similar distributions of volumes across scanners.
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Fig. 8. 
Absolute difference violin plots. The distributions of absolute differences of paired volumes 

as violin plots for all scanner pairs. The volumes are for GM and WM tissue types and 

extracted using two segmentation frameworks: (a) FSL and (b) SPM. A harmonization 

method is expected to result in short and fat (wide) violins, with mean values centered 

at zero. MISPEL outperformed WS, RAVEL, and CALAMITI by having largest number 

of these violin plots for both FSL and SPM. The distributions that showed statistically 

significant t-statistics when compared to RAW were marked by **.
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Fig. 9. 
Root-mean-square deviation (RMSD) bar plots for GM and WM volumes. Bar plots indicate 

the RMSD of paired volumes in scanner pairs. These values were calculated for volumes 

of GM and WM tissue types and depicted for all five methods. These set of bar plots 

were depicted for volumes extracted through two segmentation frameworks: (a) FSL and 

(b) SPM. A harmonization method is expected to lower values of RMSDs. MISPEL 

outperformed WS, RAVEL, and CALAMITI by having the largest number of smallest 

RMSD values for volumes of both FSL and SPM.
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Fig. 10. 
Dice similarity score (DSC) bar plots. Bar plots indicate the means of DSCs of all paired 

segmentations in scanner pairs. These values were calculated for segmentations of GM and 

WM tissue types and depicted for all four methods. These set of bar plots were depicted 

for volumes extracted through two segmentation frameworks: (a) FSL and (b) SPM. A 

harmonization method is expected to result in high mean of DSCs. MISPEL outperformed 

WS, RAVEL, and CALAMITI by having the largest DSC means for all scanner pairs in both 

FSL and SPM.
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Fig. 11. 
Root-mean-square deviation (RMSD) bar plots for biomarkers of AD. Each bar indicates the 

mean RMSD of paired measures of all scanner pairs for each of the methods. The RMSDs 

were reported for each of the FS-derived biomarkers of AD. A harmonization method is 

expected to lower values of RMSDs. MISPEL outperformed WS, RAVEL, and CALAMITI 

by having the largest number of smallest RMSD values.
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Table 3

Mean absolute differences for biomarkers of AD. Mean (SD) of cross-scanner absolute differences were 

calculated for paired measures across all scanner pairs. The measures are the FS-derived cortical thicknesses 

for the entorhinal and inferior temporal cortices, as well as volumes for the hippocampus and amygdala. A 

harmonization method is expected to decrease mean and SD of differences in RAW. MISPEL showed the best 

harmonization performance by having the largest number of smallest mean of differences. The distributions 

with the smallest means are in bold.

Mean (SD) of absolute differences over all scanner pairs

Method Cortical thickness (mm) Volume (cm3)

Entorhinal Inferior temporal Hippocampus Amygdala

RAW 0.62 (0.42) 0.46 (0.36) 0.30 (0.23) 0.25 (0.20)

WS 1.00 (0.73)* 0.63 (0.48)* 0.43 (0.52)* 0.23 (0.30)

RAVEL 0.84 (0.57)* 0.56 (0.41)* 0.41 (0.29)* 0.24 (0.21)

CALAMITI 0.87 (0.60)* 0.45 (0.32) 0.71 (0.54)* 0.30 (0.26)

MISPEL 0.46 (0.34)* 0.25 (0.24)* 0.32 (0.26) 0.19 (0.18)*

*
The distributions that showed statistically significant t-statistics when compared to RAW.
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Table 4

Mean (SD) of Cohen’s d measures for biomarkers of AD. Mean (SD) of Cohen’s d values were calculated 

over all scanners for biomarkers of AD and all methods. A harmonization method is expected to preserve or 

increase the effect sizes calculated relative to RAW. Increased effect sizes relative to RAW are in bold.

Mean (SD) of Cohen’s d measures over all scanners

Method Cortical thickness Volume

Entorhinal Inferior temporal Hippocampus Amygdala

RAW 0.46 (0.14) 0.66 (0.38) 0.76 (0.20) 0.74 (0.26)

WS 0.50 (0.11) 0.62 (0.39) 0.29 (0.13) 0.40 (0.11)

RAVEL 0.49 (0.18) 0.62 (0.34) 0.26 (0.11) 0.30 (0.22)

CALAMITI 0.50 (0.51) 0.57 (0.65) 0.31 (0.13) 0.28 (0.10)

MISPEL 0.71 (0.09) 0.73 (0.14) 0.73 (0.20) 0.80 (0.17)
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