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Mechanism-based target
therapy in primary biliary
cholangitis: opportunities
before liver cirrhosis?

Yushu Yang1, XiaoSong He2, Manuel Rojas2,3, Patrick S. C. Leung2*

and Lixia Gao1,2*

1Department of Rheumatology and Immunology, The Second Hospital of Hebei Medical University,
Shijiazhuang, Hebei, China, 2Division of Rheumatology, Allergy, and Clinical Immunology, University
of California, Davis, Davis, CA, United States, 3Center for Autoimmune Diseases Research (CREA),
School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
Primary biliary cholangitis (PBC) is an immune-mediated liver disease

characterized by cholestasis, biliary injuries, liver fibrosis, and chronic non-

suppurative cholangitis. The pathogenesis of PBC is multifactorial and involves

immune dysregulation, abnormal bile metabolism, and progressive fibrosis,

ultimately leading to cirrhosis and liver failure. Ursodeoxycholic acid (UDCA)

and obeticholic acid (OCA) are currently used as first- and second-line

treatments, respectively. However, many patients do not respond adequately

to UDCA, and the long-term effects of these drugs are limited. Recent research

has advanced our understanding the mechanisms of pathogenesis in PBC and

greatly facilitated development of novel drugs to target mechanistic checkpoints.

Animal studies and clinical trials of pipeline drugs have yielded promising results

in slowing disease progression. Targeting immune mediated pathogenesis and

anti-inflammatory therapies are focused on the early stage, while anti-

cholestatic and anti-fibrotic therapies are emphasized in the late stage of

disease, which is characterized by fibrosis and cirrhosis development.

Nonetheless, it is worth noting that currently, there exists a dearth of

therapeutic options that can effectively impede the progression of the disease

to its terminal stages. Hence, there is an urgent need for further research aimed

at investigating the underlying pathophysiology mechanisms with potential

therapeutic effects. This review highlights our current knowledge of the

underlying immunological and cellular mechanisms of pathogenesis in PBC.

Further, we also address current mechanism-based target therapies for PBC and

potential therapeutic strategies to improve the efficacy of existing treatments.
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1 Introduction

Primary biliary cholangitis (PBC) is a chronic and progressive

autoimmune cholestatic liver disease, which generally develop to

cirrhosis and liver failure after 10–20 years without treatment. The

global prevalence of PBC is estimated at 14.6 per 100 000

population, ranging from 1.91 to 40.2 (1). Both the incidence and

prevalence of this condition is increasing, with the Asia-Pacific,

Europe, and North America reporting annual incidences of 0.84,

1.86, and 2.75 per 100,000 population, respectively (2). The etiology

and pathogenesis of PBC remain unclear, and the clinical course of

the disease is insidious and heterogeneous, with variable individual

responses to drug therapy. Biliary injury is a consequence of

dysregulated intrahepatic and systemic immune responses, which

result in cholestasis and eventual development of liver cirrhosis. The

primary objective of PBC treatment is to prevent disease

progression and the development of cirrhosis and liver failure.

Collagen is a major extracellular matrix in fibrotic tissues (3), and its

synthesis increases in PBC. The metabolic regulation of collagen

biosynthesis and degradation (4) may counteract with the increased

synthesis in the early stages of PBC, but cannot compensate for the

extensive collagen synthesis at the late stages of PBC, resulting in

gradual development of liver cirrhosis (5). Therefore, the

development of new therapies for PBC requires two distinct

approaches. In the early stages of the disease, the primary focus is

on regulating the immune response, controlling inflammation, and

improving metabolism. In the later stages, the emphasis shifts

towards controlling collagen synthesis and increasing collagen

degradation. Agents targeting immune-mediated pathogenesis

and anti-inflammatory are probably most effective in the early

stage of PBC, while anti-cholestatic and anti-fibrotic therapies are

emphasized in the late stage. Although ursodeoxycholic acid

(UDCA) and obeticholic acid (OCA) are approved by the Food

and Drug Administration (FDA) as first and second line of therapy

respectively, cirrhotic patients hardly benefit and some PBC

patients are non-responsive (6, 7). This review summarizes the

advances in the research of PBC pathogenesis and related

treatment, with a perspective on the window of opportunity in

slowing the disease progression and prevent the development of

fibrosis and cirrhosis.
2 Novel advances targeting
immune factors

Innate and adaptive immunity are vigorously involved at different

stages of PBC. Innate immune cells include monocytes and

macrophages, dendritic cells (DCs), and natural killer (NK)/natural

killer T (NKT) cells are active players in the early stage of PBC (8, 9).

Adaptive immune cells including antibody secreting B cells and CD3

+ and CD4+ or CD8+ lymphocytes, are also critical in the early stages

of the disease whereas CD8+T cells are predominant around the

damaged interlobular bile ducts in early stage of PBC (10). Increasing
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evidence confirms the participation of different T cell subpopulations

in PBC pathogenesis, including Th1, Th17, regulatory T cells (Tregs),

follicular helper T (Tfh) cells, and follicular regulatory T (Tfr) cells

(11). Consequently, treatment targeting immune cells and cytokines

profiles have drawn much attention (Figure 1).
2.1 Targeting immune cells and
related cytokines

2.1.1 Targeting B cells and related cytokines
The presence of antimitochondrial antibodies (AMA) is

considered the serological hallmark of PBC. The disease specificity

of AMA and high levels of serum immunoglobulin (Ig) M signifies

the involvement of B cells mediated mechanisms in PBC (12, 13).

Compared to healthy individuals, the frequency of CD19+ B cells are

highly increased in livers of PBC patients, resulting in production of

higher amounts of interleukin (IL)-6, IL-10, interferon (IFN)-g and
tumor necrosis factor (TNF)-a. This can be attributed to the

functional abnormality of CD19+CD24hiCD38hi B regulatory cells,

increase in CD3+CD4+CXCR5+ICOS+ Tfh and CD38+ plasma cells in

the peripheral blood, and elevation of serum IL-21 in PBC patients in

comparison to healthy controls (14). These changes positively

correlated with the levels of Ig and autoantibodies in this condition

(15). In patients with PBC, circulating CD19+ B cells are reduced after

treatment with UDCA (16).

Targeting B cell is a logical treatment strategy in PBC.

Rituximab is an anti-CD20 monoclonal antibody that selectively

depletes B cells. In animal studies, although anti-CD20 and anti-

CD79 antibodies successfully depleted B cells and reduced the

autoantibody production, it also elevated liver enzymes and

aggravated PBC-like liver lesion (17). In PBC patients with

incomplete response to UDCA, rituximab treatment could

improve alkaline phosphatase (ALP) levels, reduce serum AMA

titer, increase Treg cells numbers, and modulate cytokine

production (18, 19). A phase-2 randomized controlled trial

demonstrated that rituximab was safe, but did not improve

symptoms of the fatigue (20). Subsequent clinical trials using a

chimeric antibody against human CD20 (hCD20) showed limited

efficacy. Furthermore, another humanized anti-human CD20

antibody (TKM-011) treatment, also impaired autoimmune

cholangitis compared with rituximab in a mouse model of PBC

(21). Hence, the efficacy of monotherapy using anti-CD20 in the

treatment of PBC remains uncertain.

B-cell -activating factor (BAFF) belonging to the TNF family

and a proliferation inducing ligand were thought to be involved the

pathogenesis of PBC. Serum levels of BAFF are increased in PBC

patients (22). BAFF inhibited IL-10 and TGF-b cytokine secretion,

and induced CD4+CD25+ Tregs cell apoptosis in PBC patients

(23). Bezafibrate induced BAFF activated B cells, further inhibited

BAFF-induced Treg cell apoptosis (23). In an Mdr2 −/− mice model

of PBC, anti-BAFF mAb (SANDY-2) treatment reshaped hepatic B-

cell receptor (BCR) repertoire and reduced the titer of the

autoantibody antinuclear antibody (ANA) and the levels of its
frontiersin.org
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immune complexes. However, targeting BAFF alone could not

alleviate hepatic fibrosis (24). Report from a case series found that

targeting BAFF with a BAFF receptor inhibitor (belimumab) did

not benefit patients with PBC; it could normalize the IgM levels but

not alleviate the liver inflammation in patients with PBC (25).

Binding of BAFF to its receptor on B cells is critical for the

development of splenic transitional B cells to follicular cells and

memory B cells. Furthermore, there is a positive correlation

between serum BAFF levels, AMA titer and frequency of

circulating plasmablasts (26). Hence, the use of anti-BAFF, which

is most effective on transitional B cells, could down-regulate the

development of B cells to memory B cells. However, BAFF receptor

is not expressed on short-lived plasma cells whereas anti-CD20

therapy is effective in depleting peripheral short-lived autoreactive

plasma cells. We believe strategies aiming at both peripheral short-

lived autoreactive plasma cells and transitional B cells

simultaneously could be effective in downregulating the B cell

mediated autoimmunity in PBC. Interestingly, a recent study

demonstrated that combination of anti-BAFF and anti-CD20

reduced B cells, liver portal infiltration and bile duct lesion in the

ARE-Del mouse model of PBC (27). These data shed light on the

potential of using a combination of biologics directed at specific

immune checkpoints in B cells to treat PBC.
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2.1.2 Targeting T cells and related cytokines
The relevance of IL-12/IL-23-mediated Th1/Th17 signaling

pathway in the etiopathogenesis of PBC has important

therapeutic implications. Livers of PBC patients are heavily

infiltrated with T cells. The significance of IFN-g secreting Th1 T

cells in the immunopathology of PBC is well established (28–30).

IFN-g plays a critical role in both AMA production and

autoimmune cholangitis (31–33). IFN-g regulates key signaling

pathways such as STAT, p38/MAPK, ERK, and JNK (34),

blocking these IFN-g downstream signaling pathways are likely

therapeutic targets in PBC.

The predominant T cell subsets in PBC change as the disease

progresses, transitioning from Th1 in the early stages to Th17 in the

later stages. Specifically, Th17 activation becomes significantly

dominant in the advanced and late stages of PBC. This

phenomenon is well demonstrated in livers and peripheral blood of

PBC patients (35, 36), as well as in animal models of PBC (37).

However, studies directed to monitor and modulate the cytokine

profile during disease stages are required to validate the usefulness of

this strategy.

Ustekinumab is an anti-IL-12/23 monoclonal antibody used in

treatment of several autoimmune conditions. IL-12/23p40 was

thought to be a potential target in PBC, via the selective
FIGURE 1

Immune mechanism based therapeutic strategies in PBC. B-cell activating factor of the tumor necrosis factor family (BAFF) and CD20-targeted
therapy play a crucial role in breaking immune tolerance and stimulating immune responses in primary biliary cholangitis (PBC). Promising novel
therapeutic targets for PBC treatment are highlighted in red. One potential strategy is B-cell targeted therapy, including the use of anti-CD20, anti-
BAFF, or a combination of both. Another approach is T-cell-directed immunotherapy, which involves inhibiting Th1 and Th17 cell differentiation by
regulating related cytokines, up-regulating Treg function and number via chimeric antigen receptor-modified Tregs (CAR-Tregs). Additionally,
interfering with costimulatory signals between cells, such as targeting CTLA-4, PD-1, and CD40, has shown potential in treating PBC. Regulating
related cytokines, targeting chemokines, and inhibiting signal pathways involved in PBC pathogenesis, such as monoclonal antibodies against
CXCL10, JAK inhibitors, or inhibitors of the NF-kB signal pathway, represent a fourth potential approach. Finally, mesenchymal stem cells (MSCs) can
be used to regulate innate and adaptive immune responses by differentiating induced pluripotent stem cells. BEC, biliary epithelial cell; PBC, primary
biliary cholangitis; BAFF, B-cell -activating factor; Th1, type 1 T helper cell; Th17, type 17 T helper cell; Treg, regulatory T cell; CAR, chimeric antigen
receptor; CTLA-4,cytotoxic T-lymphocyte–antigen-4; PD-1, Programmed death-1; CXCL10, chemokine (C-X-C motif) ligand 10; MSC,
mesenchymal stem cells.
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suppression of IL-12 signaling (38). However, IL-12p40 also have

been demonstrated to play a vital role as a negative regulator of

inflammation in hepatic fibrosis of autoimmune cholangitis; in

particular an animal study showed that p40-/-IL-2Ra-/- mice

expressed more severe portal inflammation and bile duct damage,

such as portal hypertension and liver fibrosis (39). A phase 2

multicenter, open-label, proof of concept clinical trial

investigating the use of ustekinumab in PBC was disappointing,

as none of the patients achieved the primary endpoint.

Administration of ustekinumab did not result in a decrease in

alkaline phosphatase (ALP) levels of more than 40% in PBC

patients who were unresponsive to UDCA treatment (40).

Th17 and mucosal-associated invariant T (MAIT) cells in the

liver secreted IL-17 A, which triggered fibrosis via inducing the

expression of IL-6 and other pro-fibrotic markers thus suggesting

that IL-17A could be a target for anti-fibrotic treatment (41). Both

IL-17A and Th17 related cytokines including IL-6 and TGF-b1
participated in the progress of liver cirrhosis. The expression of

Th17 associated cytokines was also skewed in patients with PBC.

The protein and mRNA levels of IL-1b, IL-6 and IL-23/p19 were

up-regulated whereas (transforming growth factor) TGF-b1 and

FoxP3 expression were down-regulated. Mechanistically, the

synergistic activity of IL-17A and TGF-b in the production of IL-

6 in dermal and lung fibroblasts depends on the convergent

signaling mediated by p38 MAPK, nuclear factor-kB (NF-kB) and
PI3K/Akt to some extent. Inhibiting IL-17A negatively affected

TGF-b-mediated collagen-I production by SMAD signaling (42).

MiR-200c is an anti-fibrotic regulator of cholestatic liver fibrosis.

MiR-200c restrained the proliferative and neuroendocrine-like

activation of cholangiocytes by targeting Sestrins1 and inhibiting

the IL-6/AKT feedback loop to protect against cholestatic liver

fibrosis (43). In this line, tocilizumab was found effective and safe in

the treatment of rheumatoid arthritis (RA) in patients with PBC

(44). However, there is currently only a case report available for this

treatment approach, and there have been no clinical trials

conducted to investigate its efficacy. Secukinumab is a human

monoclonal antibody to IL-17A, which was used to treat

psoriasis. Antifibrotic effect was found In 10 psoriatic patients

treated with secukinumab, which could improve liver elasticity

parameters (45). IL-17i treatment with secukinumab or

ixekizumab improved the non-alcoholic fatty liver disease fibrosis

score (46). Targeting the IL-17 axis could be a new therapeutic

strategy to prevent cirrhosis of PBC. In addition, the anti-TNF-a
agents, such as infliximab and adalimumab, potently suppressed IL-

12/IL-23 production by inflammatory macrophage by activating

FcgRs (47), but anti-TNF-a agent did not play a beneficial effect for

development of cirrhosis (48).

In patients with PBC, liver infiltrating CD4+T cells and CD8+ T

cells are directed against the lipoic acid binding domain of human

the E2 subunits of pyruvate dehydrogenase complex (PDC-E2), and

are localized at the pathological biliary epithelial cells (BECs).

Elimination of these antigen specific immune responses will be

critical in alleviating PBC. A Phase 2a double blind, placebo-

controlled study (NCT05104853) using a nano-particle, CNP-104

harboring a PDC-E2 peptide dispersed within a negatively charged

polymer matrix of poly (lactic-co-glycolic acid) (PLGA) particle is
Frontiers in Immunology 04
in progress to evaluate its safety, tolerability, pharmacodynamics,

and efficacy in PBC patients unresponsive to UDCA. A recent study

demonstrated that peptide-major histocompatibility complex class

II (pMHCII)-based nanomedicines displaying PDC-E2 lipoyl

domain could reprogramme cognate antigen-experienced CD4+

T-cells into disease-suppressing T-regulatory type 1 (TR1) cells in

mice with characteristic pathological features of PBC. Remarkably,

recruitment of TR1 cell to the liver leads to restitution of the liver

microenvironment, alleviation of autoimmune cholangitis, and

reversed established PBC in these mice (49).

Tregs are anti-inflammatory immune cells with a crucial role in

the maintenance of peripheral tolerance. The frequency of Treg cells

is lower in peripheral blood and livers of PBC patients than in

healthy controls. Moreover, the number of FoxP3-expressing Tregs

was markedly reduced in affected portal tracts in PBC livers when

compared with autoimmune hepatitis (AIH) and chronic hepatitis

(50). FoxP3 demethylation contributed to the reprogramming of

Treg/Th17 phenotype. 5-Aza- 2- deoxycytidine (DAC) can rebuild

the balance of Treg/Th17 axis via inhibiting DNA methylation of

FoxP3, and further alleviate the progression in PBC model. Thus,

DAC is also a likely future therapeutic target for reduction of

inflammation in PBC (51). PDC-E2 is the major PBC autoantigen

and the immunodominant epitope is well-defined at its inner lipoyl

domain. The application of chimeric receptor technology to Tregs is

a promising approach to induce immune tolerance in autoimmune

diseases (52). The humanized mouse model in vivo and in vitro

experiments showed Flagellin-specific human chimeric antigen

receptor (CAR) Tregs promoted the establishment of colon-

derived epithelial cell monolayers. The potential role of FliC-CAR

Tregs in treating inflammatory bowel disease has been documented

(53). Development of antigen/liver-specific Treg should be

considered for PBC. CAR-Treg can be further gene edited to

improve long-lasting outcomes in PBC (54).

AMP-activated protein kinase (AMPK) is a serine/threonine

kinase known for its energy sensor function and more recently its

ability to maintain FoxP3 stability and the immunosuppressive

functions of Tregs (55). AMPKa1 is a positive regulator of Tregs

suppressive function. It activates AMPK to phosphorylate FoxP3

and regulates its stability. Interestingly, Treg cell-specific AMPK a1
deletion in mice led to compromised Treg cell functions,

autoantibodies production, vigorous T cell responses and

autoimmune mediated liver injury (56), suggesting that AMPK

activation is important for the maintenance of Treg function and

the prevention of autoimmune liver disease. Moreover, the study

also reported that decreased AMPK phosphorylation in Tregs and

reduced in number of Tregs were also evident in PBC patients.

Metformin, a pharmacological activator of AMP effectively

attenuated the development of experimental autoimmune

encephalomyelitis and suppressed systemic autoimmunity in

C57BL/6 mice (57, 58). We contemplate that the modulation of

AMPK activation treating PBC warrants to be examined.

Imbalance of Tfh cells and Tfr cells has been suggested as one of

the underlying factors triggering autoimmunity (59–61).

Examination of Tfh cells and Tfr cells in PBC showed that the

frequency of circulating Tfh cells is increased whereas the frequency

of Tfr cells are decreased in PBC livers when compared with healthy
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controls. Tfr/Tfh ratio negatively correlated with serum IgM levels.

A lower Tfr/Tfh ratio was more prominent in patients with cirrhosis

and UDCA non-responders indicating the importance of Tfh and

Tfr in the disease development of PBC to UDCA responders

indicating the importance of Tfh and Tfr in the disease

development of PBC (62). Moreover, cytotoxic T-lymphocyte-

associated protein (CTLA)-4 expression in Tfr cells was

diminished in PBC. This type of Tfr cells regulated B cell

response through CTLA-4 within the germinal center (62). In

addition, effector memory CCR7loPD-1 hi Tfh cells and

CCR7loPD-1 hi Tfr cells were significantly increased in PBC

patients, with their levels positively correlated with serum levels

of IL-21 and ALP (62). Although UDCA therapy can alleviate such

Tfr/Tfh ratio, therapeutics designed for modulating Tfh and Tfr

subsets at early disease stages are desired.

Cysteine-rich angiogenic inducer 61 (Cyr61) is an

immunoregulatory protein that can modulate the migration of

immune cells and promote tissue repair by binding to intergins.

Cheng et al. showed that administration of Cyr61 by adenovirus

significantly reduced portal inflammation and biliary damage by

inhibiting CD8+ T cell cytotoxicity in two mouse models of PBC

(63). However, its clinical relevance remains to be determined.

The levels of serum IL-2 involved in liver inflammation and

immune process; serum IL-2 levels decreased in PBC. The

combination of lower serum IL-2 and higher Total BIL predicted a

worse prognosis and higher tendency of liver failure in PBC patients

(64). Low dose IL-2 restored immune balance of Sjögren’s syndrome

(SS), which was effective and well tolerated in clinical trial (65, 66).

Since both pSS and PBC are autoimmune epithelitis it is tempting to

speculate that low dose IL-2 could be effective for treating PBC.

2.1.3 Targeting other immune cells and related
immune signals

The liver architecture is highly complex with heterogeneous

functionally specific cell types such as hepatocytes, cholangiocytes,

Kupffer cells, sinusoidal endothelial cells, hepatic stellate cells (HSCs),

DCs and immune cells. In addition to T and B cells, immune cell

populations such as DCs, NK/NKT cells, monocytes and

macrophages are also involved in the pathogenesis PBC (67, 68).

Kupffer cells are sentinels of the liver-specific immune system.

When activated, they can produce inflammatory cytokines and

eventually damage BECs. Tyrosine-derived Clostridium metabolite

p-Cresol sulfate (PCS) effectively reduced PBC related

inflammation and regulated Kupffer cell polarization in vitro and

in vivo. Therefore, PCS and its analogues could be effective in

treating PBC (69). Mast cell (MC) infiltration are increased during

liver inflammation. Activated MCs are source of pro-inflammatory

mediators. MCs can indirectly manipulate Tregs functions and

inhibit their suppressive and proliferative activity by influencing

the intrahepatic microenvironment.

Co-stimulatory signals, cell surface molecules and mediators

such as cytokines and chemokines are also vital players in the

pathogenesis of PBC. Significant effort in pharmacological design is

in progress focusing on those that are pertinent to liver cirrhosis.

CTLA-4 gene is the first identified non-MHC susceptibility locus.

There is a strong linkage between the CTLA-4 exon 1
Frontiers in Immunology 05
polymorphism and PBC (70). Moreover, the number of CTLA-4

copies was found to be positively correlated with inducible co-

stimulator (ICOS) and FoxP3 expressions in PBC patients; lower

number of CTLA-4 copies was associated with cirrhosis and

decreased expression of CTLA-4 in late stage PBC (71). Lower

levels of CTLA-4 mRNA copies were related to the immune

suppression caused by cirrhosis. Decreased CTLA-4 and increased

ICOS could contribute in the pathogenic process by enhancing B

cell and GC response in PBC (62). Preclinical studies on CTLA-4 Ig

(abatacept) in PBC murine model showed that treatment with

abatacept both before and after immunization improved liver

histology, reduced T cell infiltrates and biliary cell damage in the

liver. CTLA-4 Ig also inhibited AMA production and autoimmune

cholangitis as a preventative agent (72). However, the outcome of

abatacept treatment was disappointing in clinical trial; there were

no significant changes in serological levels of ALP, ALT, total BIL,

albumin, Ig, or liver stiffness from baseline to week 24 after initial

treatment (73). The significance of discovering therapies for

established PBC cannot be overemphasized, as research studies

primarily focusing on “prevention” fail to capture the true clinical

conditions that exist in the real world where PBC has already

manifested itself. Therefore, it is imperative to shift the focus of

research efforts towards finding treatments for PBC that has already

developed, to help patients manage the condition effectively.

Programmed death-1 (PD-1), a member of the CD28

superfamily of co-stimulatory molecules, is widely expressed on

activated T cells and B cells. Abnormal expression of PD-1 pathway

in the liver may contribute to inflammation and autoimmune

injury. In the Ae2a,b
−/− mice model of PBC, PD-L1 expression in

mouse BECs was induced by IFN-g. PD-1/PD-L1 interaction

resulted in intrahepatic T-cell activation and the deletion of

activated intrahepatic CD8+ T cells in early stage. PD-L1

expression on biliary epithelia can be induced by IL-10 and TGF-

b and plays a key role in T-cell tolerance (74). Studies have shown

that abnormality in the PD-1 pathway in the liver contributes to

inflammation and autoimmune injury in PBC. In patients with

PBC, PD-1 was expressed abundantly on liver-infiltrating T cells

around injured bile duct (BD) (75),while the mRNA levels of PD-1,

PD-L1 and PD-L2 were decreased in the peripheral blood. The PD-

1 ligands were regulated by IFN-g in PBMC of PBC patients (76).

Recently, Zhang et al. reported that the expression of PD-1 in

peripheral CD8+T cells was decreased, while the level of PD-L1 in

human intrahepatic biliary epithelial cell (HiBEC) line was also

down-regulated. Hence, silencing of PD-1/PD-L1 pathway with

decreased PD-1 expression in CD8+T cells, downregulation of PD-

1/PD-L1 in the portal areas, increased CD8+T cell proliferation

subsequently enhanced CD8+T cell-mediated cytotoxicity and

induced BEC apoptosis (77). Pembrolizumab was the first anti-

PD-1 antibody, which produced the therapeutic effects by inhibiting

negative signaling via the PD-1/PD-L1 axis, but did not change the

phenotype or function of Tregs in vitro (78). A case report of a

melanoma patient with known PBC/AIH who was administrated

with pembrolizumab suggested its safety in humans (79). Further

studies including clinical trials are needed to verify the safety and

efficacy of PD-1/PD-L1 pathway biologics in reducing biliary

damage and liver cirrhosis in PBC.
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The trans-membrane protein receptor CD40 and its ligand

CD154 (CD40L) are members of the TNF receptor superfamily.

CD40 is expressed by a variety of antigen-presenting cells (APCs)

and CD154 is mainly expressed on activated CD4+ T-cells, they are

synergistically involved in co-stimulation of immune cells.

Genome-wide association studies (GWAS) and transcriptome

analysis indicated that IFN-g and CD40L were upstream

regulators in both disease susceptibility and activity of PBC (80).

Administration of an anti-CD40 ligand monoclonal antibody

reduced peripheral T cell activation and improved cholangitis in

the dnTGFbRII mice model of PBC (81). In PBC patients, the

expression of CD40L mRNA increased while DNA methylation of

CD40L promoter was decreased in CD4+T cells, and the level of

CD40L and serum IgM were negatively correlated with the CD40L

promoter methylation (82). A Phase I/II study (clinicaltrials.gov,

NCT 02193360) of an anti-CD40 monoclonal antibody (FFP104;

Dacetuzumab/Lucatumumab) in PBC patients was conducted to

evaluate its safety, tolerability and pharmacodynamics (83).

All immune cells including T and B cells are derived from

hematopoietic stem cells. Mesenchymal stem cells (MSCs) are the

most common cell source for stem cell therapy. MSCs played an

important role in the modulation of innate and adaptive immune

responses and was considered promising therapeutic agents for

PBC. MSCs therapy is a potential treatment for PBC. Experimental

evidence showed that bone marrow (BM)-MSCmight be effective in

a PBC mouse model. PBC mouse model induced by injecting polyI:

C was treated by allogeneic BM-MSC transplantation, which could

regulate systemic immune response and enhance recovery in liver

inflammation (84). Human umbilical cord–derived MSCs (UC-

MSCs) inhibited the responses mediated by Th1 and Th17,

decreased the activities of pro-inflammatory chemokines and

alleviated 2-octynoic acid coupled to bovine serum albumin

(2OA-BSA)-induced autoimmune cholangitis (85). There have

been three MSC based clinical trials for PBC. The first one

(NCT01662973) showed that umbilical cord derived MSCs

therapy is safe and feasible (86); the second one (NCT01440309)

showed that BM-MSC therapy could improve the quality of life and

decrease the levels of liver enzymes for as long as 12 months (87),

the third one is expected to enroll 140 subjects with 24 month follow

up (NCT03668145). MSCs therapy is a promising treatment for

PBC, technological advance in generating induced MSCs from

differentiation of induced pluripotent stem cells, and application

of gene editing and 3-dimensional(3D) culture can enhance the

availability and potency of MSCs for therapeutic application (88).

We believe that induced MSCs could represent a new breakthrough

in therapy for PBC.
2.2 Targeting Immune mediators and
related signaling pathway

2.2.1 Targeting chemokines of inflammation
and fibrosis

Chemokines are signaling proteins that can induce directional

chemotaxis in neighboring cells. Hepatocytes, stromal cells and

biliary epithelial cells can secrete chemokines mitigating cell
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migration and tissue infiltration. In PBC, chemokines mediate

leukocyte recruitment and subsequent immune mediated damage

of intrahepatic BECs. The role of chemokines in pathogenesis of

PBC, especially abnormality of C-X-C motif chemokine receptor

(CXCR)3 axis, has been reported (89, 90). The levels of chemokines

such as IFN-g-inducible protein-10 (IP-10)/chemokine (C-X-C

motif) ligand 10 (CXCL10), monokine induced by IFN-g (MIG/

CXCL9) and CXCR3 were found to be increased in PBC patients

and their first-degree relatives, with the expression of IP-10 and

MIG in the portal areas. In addition, the frequency of CXCR3-

expressing cells in peripheral blood was significantly higher in PBC.

CXCR3-positive cells were prominent in the portal areas of diseased

livers, primarily on CD4+ T cells (89). The serum levels of MIG and

IP-10, CXCR3 expression of peripheral blood mononuclear cells

significantly decreased after UDCA administration in PBC patients

(90). Serum concentrations of most chemokines primarily

responsible for Th1 or Th17 cell chemotaxis, such as IP-10/

CXCL10, CXCL11 and fractalkine (FKN)/CX3CL1 were increased

throughout the PBC disease course. On the other hand, chemokines

predominant for Th2 cell recruitment, for example CCL17, CCL22

and CXCL5, were decreased in PBC patients (91).

The serum level of CX3CL1 was the only chemokine that

positively correlates with PBC stage, which increases only in

advanced PBC (91). NI-0801 is a fully human monoclonal

antibody against CXCL10, which inhibited the combination of

CXCL10 with its receptor CXCR3. An open-label, single-arm,

phase 2a, proof-of-concept, multicenter study (NCT01430429)

was conducted in 29 PBC patients with inadequate response to

UDCA. Unfortunately, administration of NI-0801 at a dose of 10

mg/kg did not attain the therapeutic benefit, with headache being

the commonly reported adverse event (92).

The level of CXCL13 was higher in serum and liver of

treatment-naïve PBC patients. The serum CXCL13 level

decreased with oral UDCA, while intrahepatic CXCL13 increased

the recruitment of CXCR5+ lymphocytes to liver, eventually

resulted in abnormal production of autoantibodies by B cells (93).

Studies targeting at intrahepatic CXCL13 should be explored.

In the 2OA-BSA induced PBC model, CCR2-deficient mice

manifested milder disease. CCR2 recruited infiltrating Ly6Chi

monocytes into the portal zone of livers. Administration of

cenicriviroc, a dual CCR2/CCR5 inhibitor, improved liver fibrosis

in this PBC animal model (94). Cenicriviroc attenuated disease

severity in by decreasing serum bile acids and improving

histological severity scores (94). The therapeutic effects of

cenicriviroc need to be further investigated in clinical trials.

Substantial data suggested that the FKN–CX3CR1 axis is

involved in the pathogenesis of PBC (95, 96), CCL2 and CX3CL1

produced by senescent BECs was up-regulated. These chemokines

promoted infiltration of CCR2 and CX3CR1 positive cells and

further aggravate inflammation in bile duct lesion in PBC. Anti-

FKN mAb E6011 inhibited recruitment immune cells by blocking

the FKN–CX3CR1 axis, which was expected to be useful for Crohn’s

disease (CD), RA, and PBC (97). A phase II, double-blind, placebo-

controlled study showed the clinical benefit of RA patients with

inadequate response to methotrexate, although the primary

endpoint was not achieved (98). Phase 1 study of E6011 in
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patients with CD showed it was well-tolerated and might be

effective (99). Unfortunately, no clinical trials for PBC have been

conducted so far.

2.2.2 Targeting immune signal pathways
Genome-wide studies have identified several candidate genes

responsible for antigen presentation and lymphocyte signaling, for

example IL-12-JAK/STAT signaling and the NF-kB and TNF

signaling pathways (100). To date, studies on signaling pathways

in PBC are mainly conducted in animals, with a few clinical trials.

The role of JAK/STAT signaling pathways in many

autoimmune diseases has been demonstrated and related drugs

were used widely, such as RA (101). Recently the role of JAK/STAT

signaling pathway in autoimmune cholangitis was reported. In

animal experiments, when ARE-Del+/− mice were treated with

the JAK1/2 inhibitor ruxolitinib (102), the level of splenic Tregs

increased, and that of splenic CD4+ T, CD8+ T, Tfh cells and

germinal center (GC) B cells decreased. The hepatic CD4+ T cells

and CD8+ T cells were also suppressed. Ruxolitinib inhibited the

expression of IFN-g gene by the JAK-STAT pathway. A clinical trial

for baricitinib (LY3009104) in PBC patients who did not respond to

or could not take UDCA (Clinical Trials.gov Identifier:

NCT03742973) was conducted to evaluate the efficacy and safety

of baricitinib. The study was terminated early because of low

enrollment. Two patients were enrolled and completed the trial,

one was randomized to receive baricitinib 2 mg/day, and the other

received placebo (103). Over the treatment period, a single non-

serious treatment-emergent adverse event of moderate sinusitis was

reported by the baricitinib treated patient at day 47. This patient

demonstrated a rapid and significant decline in ALP, markers of

inflammation, pruritus and self-reported depression during a 12-

week treatment period, but ALP rebounded to pre-treatment levels

during a 4-week post-treatment follow-up. The placebo-treated

patient did not show improvement in such biomarkers (103).

With a growing body of evidence identified the important role

of the TNF super-family and downstream inflammatory signaling

pathways, including NF-kB signaling pathway, in the pathogenesis

of PBC, drugs directed at this mechanism is thus of pharmacological

interest. The Sirt1 signaling pathway plays a principal role via NF-

kB subunit in the development of PBC (104) and therefore a future

target for the treatment of PBC. Mammalian Sirtuin-1 (Sirt1), a

yeast silent information regulator 2 (Sirt2) homologs, is able to

regulate hepatic BAs homeostasis and central metabolic functions

through deacetylation. The level of Sirt1 mRNA level was increased

in liver tissue of PBC patients, while SIRT1 protein level was up-

regulated in the liver during human and murine cholestasis. Over-

expression of Sirt1attenuated FXR-mediated inhibition of bile acid

synthesis and contributed to the accumulation of bile acids, further

induced liver cells apoptosis and aggravated liver inflammation and

injury (105). Resveratrol, a Sirt1 activator, suppressed inflammatory

responses of PBC by p65 subunit of NF-kB in animal model. Thus

far, clinical trials on such related targeted drugs in PBC have not

been conducted.

The TLR4/MyD88/NF-kB signaling pathway was activated, and

the TLR4 and NF-kB mRNA levels increased in liver tissues of PBC
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mice. This pathway resulted in liver damage and cell apoptosis by

inducing the release of inflammatory factors and producing apoptotic

proteins in Poly I:C model mice (106). NF-kB regulated numerous

cytokines, and PPARa can interfere with NF-kB signaling. Fenobrate,

a peroxisome proliferator activated receptor a-agonist, mediated

PPARa activation, regulated inflammatory pathways and inhibited

the production of pro-inflammatory cytokines in vivo as well as in

vitro in animal studies. Recently, it was reported that fenofibrate

decreased the levels of many pro-inflammatory cytokines by

inhibiting nuclear NF-kB p50 and p65 protein expression on the

NF-kB signaling pathway, which likely contributed to its anti-

inflammatory effects in PBC (107). A CCR2 small interfering RNA

silencing (siCcr2)-based therapy by loading multivalent siCcr2 with

tetrahedron framework DNA nanostructure (tFNA) vehicle (tFNA-

siCcr2) reduced inflammatory mediator production by blocking the

NF-kB signaling pathway and attenuated liver fibrosis by regulating

the immune cell function in animal experiment (108).

Wnt/b-catenin signaling is critical for various aspects of biliary

physiology and pathology, including bile acid secretion, regeneration,

and homeostasis. Wnt/b-catenin signaling takes part in hepatocyte–

BEC trans differentiation and hepatobiliary repair (109). A crosstalk

between TGF-b/Smad3 and Wnt/b-catenin pathway promotes

abnormal extracellular matrix production, which is involved in the

progression offibrosis. b-catenin binds to the cofactor CREB binding

protein (CBP) or a homolog of CBP P300 and induces target gene

transcription. Inhibition of WNT/b-catenin signaling can attenuate

fibrosis. Wnt/b-catenin signaling also regulate T cell development

and function (110). OP-724 is the specific CBP–b- catenin

antagonist. Studies in animal models have verified that OP-724

decreased the Bile acids (BAs) by Egr-1 signaling and exerted anti-

fibrotic effects by inhibiting the infiltration of inflammatory cells

(111). An open-label phase 1 trial showed in patients with advanced

PBC, intravenous OP-724 infusion was well tolerated. Although it

did not significantly improve liver function, its anti-fibrotic effects

were indicated by decreased in collagen in livers of PBC patients with

advanced fibrosis (112).

The Notch signaling pathway was abnormally activated in

fibrotic patients (113). This pathway takes part in cholangiocytes

proliferation cycle. Inhibition of Notch signaling pathway can

prevent biliary liver fibrosis and the abnormal proliferation of

cholangiocytes (114). Niclosamide is an FDA approved oral

anthelmintic drug. It was found that niclosamide inhibited several

intracellular signaling pathways including the Notch pathway

during other disease therapy. Niclosamide is a promising

antifibrotic agent, which significantly reduced liver enzymes and

reduced inflammation by decreasing TNF-a, IL-6, NF-kB and p-

STAT3 in PBC animal model (115).
3 Targeting bile acid metabolism

The metabolism of BAs, especially enterohepatic circulation, plays

a vital role in cirrhosis and portal hypertension (116). BAs can activate

different receptors, including nuclear receptors (NRs) and membrane

receptors and subsequently affect downstream immunological
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responses. A schematic representation of BAs metabolism in liver and

intestine and the BA targets that are of relevance in treating PBC are

shown in the figure (Figure 2). Autoimmunity and cholangitis have

the potential to be improved via regulation of the immune system.

BECs survival may be extended by fortifying the bicarbonate umbrella

or improving cell membrane integrity (117). Drugs that antagonize

BAs toxicity, such as UDCA and nor-UDCA, might be effective at all

disease stages. UDCA obtained the cumulative experience over the

past decades, but the study aiming at this classical and traditional drug

still continue.
3.1 The advance and mechanism of
classical medicine

UDCA is recommended as the standard first line treatment for

PBC. The recommendation highlights a dose–response relationship

and the importance of the 13–15mg/kg dose (118). UDCA is a

endogenous bile acid, which plays its therapeutic role by multi-
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aspect mechanisms, including accelerating bile acid enterohepatic

circulation, stabilizing the biliary HCO3- umbrella, anti-apoptosis,

and anti-inflammatory (119). A large multicenter study indicated

that UDCA therapy improved liver transplant (LT)-free survival in

all patients with PBC, regardless of the disease stage and the

observed biochemical response (118, 120). Unfortunately,

although UDCA monotherapy improved overall LT-free survival,

approximately 30-40% patients do not respond favorably to UDCA.

A recent study showed that PBC patients benefited more from add-

on therapies in which UDCA is combined with glucocorticoids or

immunosuppressants (121). Bezafibrate combination with UDCA

resulted in better biochemical response and lower predicted

mortality or LT need than those treated with UDCA alone (122).
3.2 Targeting bile acid receptor

BAs consist of a group of multitudes endogenous signaling

molecules, that each activates specific receptors such as farnesoid X
FIGURE 2

BAs metabolism in liver and intestine and associated therapeutic targets in PBC. The major process of BAs metabolism during synthesis in the liver
and their uptake in the enterohepatic circulation provide various windows for developing effective treatments in PBC. Target locations for therapy
are highlighted in red. Ursodeoxycholic acid (UDCA) is the classical treatment, and its basic mechanism is to adjust the metabolism of BAs. The first
part of PBC treatment involves targeting BAs synthesis, and medication mainly targets nuclear receptors (NRs) such as farnesoid X receptor (FXR),
pregnane X receptor (PXR), peroxisome proliferator-activated receptor alpha (PPARa), and constitutive androstane receptor (CAR). Primary BAs are
synthesized primarily through the classic pathway, with CYP7A1 being the limiting enzyme. FXR receptors are expressed widely in hepatocytes as
well as enterocytes, and BAs inhibit CYP7A1 via the induction of small heterodimer partner in hepatocytes, while in enterocytes, they induce the
production of FGF-19, which acts via FGFR4 to inhibit CYP7A1 and BAs synthesis. PXR also plays a vital role in inhibiting CYP7A1. PPARa promotes
BAs efflux via MDR3 and MRP3/4, detoxifying BAs and counteracting intrinsic bile toxicity by CYP3A4. The second aspect focuses on the gut-liver
axis and gut microbes, including gut microbiota and apical sodium-dependent bile acid transporter (ASBT) inhibitors. Secreted BAs are actively
absorbed via luminal ASBT in the distal small bowel, from where they are transported to the portal circulation via organic solute transporter (OST).
The reabsorbed BAs are taken up by hepatocyte sinusoidal membrane protein NTCP and re-secreted. The third aspect targets biliary epithelial cells
(BECs), as apoptosis of BECs plays an important role in PBC pathogenesis. BECs secrete inflammatory cytokines/chemokines and other antimicrobial
molecules, serving as a bridge between bile acid metabolism and the immune response. BAs,Bile acids; PBC, primary biliary cholangitis; UDCA,
ursodeoxycholic acid; NRs,nuclear receptors; FXR, farnesoid X receptor; PXR, pregnane X receptor; PPARa, peroxisome proliferator-activated
receptor alpha; CAR, constitutive androstane receptor; CYP7A1,cytochrome P450 family 7 subfamily A member 1; FGF-19,fibroblast growth factor
19; FGFR4,FGF receptor 4; MDR3,multidrug resistant protein 3; MRP3/4,multidrug resistance-related protein 3/4; CYP3A4, cytochrome P450 family 3
subfamily A member 4;ASBT,apical sodium–dependent bile acid transporter; OST, organic solute transporter; NTCP, sodium taurocholate
cotransporting polypeptide; BECs,biliary epithelial cells.
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receptor (FXR), pregnane X receptor (PXR), peroxisome

proliferator-activated receptor alpha (PPARa), constitutive

androstane receptor (CAR), and vitamin D3 receptor (VDR), as

well as the membrane G protein-coupled receptors Takeda G

protein receptor 5 (TGR5) and sphingosine-1-phosphate receptor

2 (S1PR2) in the gastrointestinal tract. Physiologically, BAs

receptors function as a guard in maintaining gut barrier function

and portal pressure. BAs act on a myriad of NRs including FXR and

PPAR to regulate cholestasis, inflammation, and fibrosis. It is not

surprising that BA receptors are enthusiastically pursued as

potential therapeutic targets in PBC.

3.2.1 Farnesoid X receptor
FXR-agonists target both the gut and the liver (Figure 2). A

well-known agonist of FXR is OCA, which plays anti-inflammatory

and anti-fibrotic role by targeting the activation of both liver

sinusoidal endothelial cells and Kupffer cells. OCA was

recommended as a second-line treatment for UDCA non

responders. OCA was shown to be effective and safe in a 3-year

clinical trial and follow-up study (123). Its efficacy was also evident

in about 43% of UDCA non-responders in real-world (124). The

recommended dose of OCA is 5-10mg, with incidence of pruritus

increased with dose (125). The FDA issued a new warning in

2021that OCA use in PBC patients with advanced cirrhosis

should be restricted due to risk of serious liver injury (126). A

combination of UDCA and OCA provided satisfactory clinical

outcomes for patients inadequately responded to UDCA

monotherapy (127), while add-on therapy with OCA and

bezafibrate improved the prognostic markers of difficult-to-treat

PBC (128). The triple combination therapy of UDCA, OCA and

fibrates improved or normalized the biochemical and clinical

features of PBC, such as pruritus, but the safety and side effects

needed to be evaluated with longer and larger studies (129). New

therapies for PBC targeting NRs including FXR and PXR have

generated encouraging results. The combination of FXR agonists

and PXR agonists might be a potential approach in avoiding

cirrhosis, such as combination therapy of OCA and budesonide

for PBC (130). Long-term OCA therapy appears to optimize the

prognosis of PBC. OCA is a steroidal FXR agonist, which has poor

bioavailability and aqueous solubility. Further studies on

pharmacological and toxicological features of OCA and its

derivatives may help to enhance its efficacy. Another steroidal

FXR agonist, EDP-305, suppressed liver injury and fibrosis

without promoting ductal proliferation reaction in two murine

models with pre-established biliary fibrosis (131). However, a

phase II randomized, double-blind, placebo-controlled study

(NCT03394924) on EDP-305 in patients with PBC did not

achieve the primary end point (132).

Nonsteroidal synthetic FXR agonists are also therapeutically

effective in treating cholestasis diseases. For example, Tropifexor

(TXR) binds to the FXR ligand-binding domain and regulated FXR

target genes in the liver and intestine. TXR increased FGF19

secretion by activating FXR in the ileum and suppressed bile

acids synthesis in the liver. TXR inhibited cholestatic liver injury

and fibrosis by modulating the gut-liver axis (133). Clinical trials
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have shown that TXR was generally safe and well tolerated at daily

doses of 30–90 ug, which improved cholestatic markers and the

hepatocellular injury marker (134). TXR improved primary bile

acid diarrhea by prolonging the ascending colonic transit half-time

(135), but the similar side effect of pruritis as OCA still existed

because of TGR5 activation.

A Phase 2 clinical trial (NCT02943447) of another nonsteroidal

FXR agonist, Cilofexor (GS-9674) yield promising results, with 9%

of PBC patients reached the target endpoint of ALP less than 1.67

ULN in the 30-mg group and 14% in 100-mg group. However, 7%

of patients in the 100-mg group discontinued treatment due to

pruritus. Experimental study demonstrated that a non-bile acid

FXR agonist PX20606 greatly improved portal hypertension in a

partial portal vein ligation induced non-cirrhotic hypertension.

PX20606 also reduced liver fibrosis and sinusoidal dysfunction in

a carbon tetrachloride induced cirrhosis rodent model (136). The

effects of PX20606 in cholestasis disease such as PBC remains to

be determined.

3.2.2 Peroxisome proliferator-activated
receptor agonists

Both PPAR and FXR belong to the nuclear receptor family.

PPAR regulated bile formation, inflammation and fibrosis as

transcriptional modifiers. The PPAR nuclear receptors have 3

isoforms, PPARa , PPARd and PPARg . Bezafibrate and

Fenofibrate are two major types of PPARa agonist used in

treating PBC. Bezafibrate is considered as the third treatment

option for PBC, after UDCA and OCA. A clinical trial of add-on

therapy with bezafibrate and UDCA for 24 months reported a

higher rate of complete biochemical response and an improvement

in liver fibrosis in the combined therapy group than the UDCA

monotherapy group (137). Fenofibrate is a more selective PPARa
agonist, which significantly improved liver biochemical parameters

and alleviated pruritus in PBC (138). Fenofibrate in combination

with UDCA therapy improved LT-free survival and histological

features, including fibrosis and ductular injury, in advanced PBC or

liver cirrhotic patients (139, 140). Pemafibrate, a new selective

PPARa modulator, was recommended for treating PBC with

dyslipidemia, or for patients with poor response to UDCA

monotherapy or bezafibrate plus UDCA combination treatment

(141). It is also noted that switching from Fenofibrate or bezafibrate

to Pemafibrate reduced adverse effects for patients with incomplete

response or some renal disorder (142, 143).

Seladelpar (MBX-8025) is a selective PPARd agonist. A phase II

trial reported that patients received Seladelpar could regain

normalized ALP levels after 12 weeks of treatment, but the study

was terminated early due to increased aminotransferases in the high

dose group (144). A phase III trial (ENHANCE) for Seladelpar

found that ALP levels were significantly reduced with mild to

moderate adverse events in nearly 45% of patients treated with

10-mg dose (145). With its effectiveness in improving liver

biochemistry and symptoms, Seladelpar is likely a future second-

line agent for PBC (146).

Elafibranor, a dual PPARa/d agonist, significantly reduced PBC

disease activity markers over 12 weeks in a phase II clinical trial
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(NCT03124108) (147). A double-blind phase III trial (ELATIVE;

NCT04526665), aiming at validating effectiveness and safety of

elafibranor (80 mg/day) on cholestasis in PBC, is currently ongoing.

Saroglitazar is a novel dual PPAR (a/g) agonist. Clinical trial of

saroglitazar showed promising rapid and sustained improvement of

ALP in treated PBC patients (148, 149).

3.2.3 Pregnane X receptor
PXR is involved in regulating the biosynthesis, transport, and

metabolism of BAs. It regulates BA synthesis by down-regulating

cholesterol 7a-hydroxylase (CYP7A1). PXR also has anti-fibrotic and

anti-inflammatory properties. Budesonide is a dual agonist of nuclear

glucocorticoid receptor and PXR, and has anti-inflammatory as well

as immunosuppressive capabilities. Budesonide is also involved in

BAs synthesis, metabolism and transport. Unfortunately, budesonide

add-on therapy in non-UDCA responsive PBC patients UDCA was

not able to reduce liver pathology (150). Moreover, budesonide is not

recommended or cirrhotic patients due to risk of increased portal

vein thrombosis (132).

3.2.4 Other anti–cholestatic agents beyond NRs
FGF19 is an endocrine hormone, which have antifibrotic effects

through reduction of bile acid synthesis and activation of the

oxidative stress response. Aldafermin (NGM282), a non-

tumorigenic FGF19 analogue, improved cholestatic liver enzymes

levels compared with placebo in a clinical trial (NCT02026401) and

well tolerated in PBC patients (151). Future studies should focus on

decreasing hepatic decompensation or cirrhosis.
3.3 Targeting gut-liver axis and
gut microbes

The intricate relationship between the gut–liver axis, liver

cirrhosis and portal hypertension have positionally centered

targeting the gut–liver immune axis as a prospective treatment

strategy in PBC. The gut–liver axis highlights the close anatomical

and functional relationship between gut and liver. Gut dysbiosis

impaired the intestinal barrier and altered human immunity status,

enabling bacterial metabolites to reach to the liver through the portal

vein (116). The pattern recognition of microbial molecules by cell

surface receptors lead to activation of immune system subsequent

proinflammatory responses in the liver. Gut microbial dysbiosis was

evident in treatment-naïve PBC and could be partially ameliorated by

UDCA (152). Gut microbiota and bacterial translocation play an

important role in the pathogenesis of PBC, cirrhosis and its

complications of portal hypertension (152, 153). The gut

microbiota plays a key role in regulating bile acid metabolism,

influence intestinal permeability and portal hypertension through

the FXR. At the same time, cirrhosis and portal hypertension can

have an effect on the microbiome and increase translocation.

3.3.1 The microbiome-based therapies
The three biomes of the microbiome including the

immunobiome, endobiome and xenobiome, interact with the host
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play important roles in the pathogenesis of cholestatic liver disease

(154). Molecular mimicry between bacterial proteins could generate

humoral and cellular immune response to break tolerance to PDC-

E2 revealed the complex orchestration of microbiome and

immunobiome in the pathogenesis of PBC (155). Recent studies

reported that in patients with liver fibrosis, both the microbiome

composition and bile acid composition are altered, suggesting that

the gut-microbiota- bile acid axis is a potential target for in treating

liver fibrosis (156). The current advances of gut microbiome-based

therapies include antibiotics, probiotics, fecal microbiota

transplantation (FMT) and precision microbiome-centered

therapies. Although these strategies have been successfully used in

treating cholestatic liver and intestinal disorders (157), they have

not been examined in PBC. Regulating BAs homeostasis by

targeting FXR are still the main treatment strategy aiming at gut

microbiome in PBC. Both liver biochemistry values and circulating

levels of BAs were improved after administrating of cholestyramine

PBC patients, their gut microbiota and the composition of BAs were

also altered. The effect of cholestyramine on compositional and

functional alterations in gut commensal was also evident (158). Bile

Acid -microbiota interaction should be explored in treating PBC.
3.3.2 Apical sodium–dependent bile acid
transporter inhibitors

The liver has enormous capacity to regulate cholestasis by

reducing uptake systems and BAs synthesis. ASBT inhibitors can

increase intestinal bile salts absorption and decrease the BA load,

and logically should be considered for treating PBC. Several trials

have been conducted on small-molecule ASBT inhibitors in PBC.

Most of these trials focused on pruritus symptom of PBC.

Linerixibat (GSK2330672), a selective inhibitor of ASBT, may

treat cholestatic pruritus in this disease setting. Three trials

(NCT05448170) (GLIMMER) have documented that Linerixibat

effectively reduced pruritus and total serum BA concentrations

compared with placebo and also well tolerated (159–161).

However, data on preventing cirrhosis are not available. A phase

III trial (NCT04950127) named GLISTEN (Global Linerixibat Itch

study of efficacy and safety) is ongoing. This study aims to evaluate

the efficacy and safety of Linerixibat in 230 participants with PBC

and cholestatic pruritus.

Maralixibat (Lopixibat/LUM001/SHP625) is a selective ASBT

inhibitor. In a phase II RTC (NCT01904058) study, there were no

significant differences in pruritus reduction, cholestasis and

hepatocellular injury markers between maralixibat and placebo

groups due to a strong placebo effect.

The secretin (Sct)/secretin receptor (SR) signaling pathway

regulates the bicarbonate umbrella and stimulates biliary

bicarbonate via cyclic cAMP-mediated opening of the cystic

fibrosis transmembrane conductance regulator (CFTR) and

activates the anion exchanger protein 2 (AE2), which played a

key role in maintaining biliary homeostasis. The serological

expression of Sct and SR in hepatobiliary and Sct levels were

increased in early-stage PBC patients. SR antagonist (Sec 5–27)

reduced bile duct damage and liver fibrosis by inhibiting Sct/SR axis

in early-stage PBC (162). Sct regulated biliary proliferation and
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bicarbonate secretion in cholangiocytes via SR in mouse models and

human samples of late-stage PBC. Reduced Sct/SR/CFTR/AE2 axis

and anterior grade protein 2 (Agr2)/MUC1 levels were detected in

isolated late-stage human PBC cholangiocytes, and they were

restored after one week of in vitro treatment with Sct. Such

reduction in biliary Sct/SR/CFTR/AE2 expression and bile

bicarbonate levels lead to liver inflammation and fibrosis in late-

stage disease in a PBC mice model. Importantly, ductular reaction

and biliary senescence were ameliorated by supplying Sct (163).

Both short- and long-term Sct treatment promoted bicarbonate and

mucin secretion and hepatic bile acid efflux, thus reducing

cholestatic and toxic BAs-associated injury in late-stage PBC

mouse models (163). This indicated the expression of Sct/SR

signaling can be vary with PBC disease stages. Further

understanding on mechanism of differential Sct/SR expression in

hepatobiliary cells PBC is necessary for designing new diagnostic

and therapeutic approaches for the management of PBC.
3.4 Targeting biliary epithelial cells

BECs is the major type of hepatic epithelial cells lining both the

intracellular and extracellular bile ducts, forming a biliary tree. BECs

expresses MHC class I and class II and are active participants in

immune-mediated liver diseases. Immunologically, BECs secrete

inflammatory cytokines/chemokines and other antimicrobial

molecules after TLR stimulation as innate immune cells, present

antigens as APCs, as well as secrete IgA and various antimicrobial

peptides into the bile (164). BECs mostly expressed CD58

(lymphocyte function-associated antigen 3), CD80 (B7), and CD95

(Fas) (165). Injured and senescent BECs can also regulate the

microenvironment around bile ducts by producing associated

chemokines and cytokines, which contribute to the bile duct lesions.

In 2-OA-OVA-induced mouse model of autoimmune cholangitis,

BEC apoptosis was evident in early stage of autoimmune cholangitis

and also associated with altered gut microbiota. The apoptosis of

BECs was induced bacterial mediated TLR2 signaling (65). Apoptosis

of BEC is considered an initial step in the loss of tolerance in PBC,

followed by infiltration of CD4+ and CD8+ T cells and liver injury. A

recent study showed that emperipolesis is frequently observed in PBC

liver sections; such phenomenon is more prominent in early stage

than late stage PBC, was mediated by CD8+ T cells with BEC as the

host cells (166). Cysteine-rich angiogenic inducer 61 (Cyr61) is a new

type of dual immunomodulatory molecule that can regulate both the

innate immunity and adaptive immunity. In vitro studies showed that

Cyr61 regulated intrahepatic immunity by inhibiting the CD8 T cells

cytotoxic effects on BECs and inflammation. Overexpression of Cyr61

in vivo could alleviate liver inflammation and BECs injury in a mouse

model of PBC (63). Cyr61 can be a potential therapeutic candidate

for PBC.
3.5 Targeting liver fibrosis

Setanaxib (GKT137831) is a selective inhibitor for nicotinamide

adenine dinucleotide phosphate oxidase (NOX) isoform 1 and 4. This
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inhibitor may slow or reverse cholestatic fibrosis (132). It attenuated

liver fibrosis and reactive oxygen species production in the MDR2

knockout mice (167, 168). A large phase 2 trial (NCT05014672) on

setanaxib was completed, with a significant decrease in liver stiffness

and substantial decreases in cholestasis marker after 24 weeks (132).

Lysyl oxidase-like protein 2 (LOXL2) is a key enzyme in the

development of organ fibrosis. LOXL2 was associated with BECs

injury. It is over-expressed in liver fibrosis and promoted fibrosis

progression. Anti-LOXL2 therapeutic antibody inhibited LOXL2,

hence attenuated both parenchymal and biliary fibrosis as well as

promoted fibrosis reversal in animal experiment (169). LOXL2 is a

promising therapeutic target to treat biliary and non-biliary fibrosis.

Results from ongoing clinical trials of LOXL2 mAb Simtuzumab on

patients with liver fibrotic disease may open the window for new

anti-fibrogenic therapy in PBC.

Setanaxib (GKT137831) is a dual Nicotinamide adenine

dinucleotide phosphate (NADPH) oxidase (NOX) 1/4 inhibitor,

which exerts anti-inflammatory and antifibrotic effects. GKT137831

attenuated liver fibrosis, decreased hepatocyte apoptosis and

reactive species of oxygen production in animal models (170).

GKT137831 improved markers of cholestasis and inflammation

in PBC. A multicenter phase 2 Study (NCT03226067) was designed

to evaluate safety and efficacy of GKT137831 in PBC patients with

incomplete response to UDCA. A six-week ad-interim analysis

showed there was rapid reduction of GGT and ALP levels dose-

dependent way and without side effects (171).
4 Emerging strategies

Recent advances in molecular and tissue culture technologies

have greatly expanded the scope and potential of developing

approaches in the treatment of autoimmune diseases (172–175).

Here, we discuss some of these unprecedented opportunities and

their potential applications in the development of novel PBC

therapies in PBC.
4.1 Genetics and environmental factors

Genetics has long been recognized to play an important role in

autoimmune disease susceptibility. Geo-epidemiological studies in

PBC have provided evidence of familial risk, case control studies

and genome wide association studies have identified various HLA

and non-HLA alleles that are associated with PBC. However, these

alleles are non-PBC specific and most of the identified non-HLA

loci were also found to be susceptible genes in other autoimmune

diseases and different between study populations (176). Extensive

studies have addressed the association of HLA class II alleles with

the development of PBC. In particular, the DRB1*08 allele family,

with DRB1*0801, DRB1*0803, DRB1*14, and DPB1*0301 as

susceptible and DRB1*11, DRB1*13 as protective alleles (177–

180). A recent study from Japan identified HLA-DQ alleles,

DQB1*06:04 and DQB1*03:01, as disease protective alleles (181).

A high prevalence of HLA DRB1*0301–DQB1*0201 haplotype

among PBC patients in Sardinia was also reported (182).
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GWAS analyses from European countries, North America,

Japan, and China have identified HLA alleles that possess strong

link with susceptibility to PBC and revealed more than 40 non-HLA

alleles contributing to PBC susceptibility (183–193) but they can

differ among studies and populations. These alleles primarily belong

to genes and pathways involved in antigen presentation and

production of IL12 (IRF5, SOCS1, TNFAIP3, NF-kB, and IL-12A),

activation of T cells and IFN- production (TNFSF15, IL12R, TYK2,

STAT4, SOCS1, NF-kB, and TNFAIP3), as well as activation of B

cells and production of immunoglobulins (POU2AF1, SPIB,

PRKCB, IKZF3, and ARID3A). The association of these immune

pathways with the pathogenesis of PBC provide opportunities for

strategic therapeutic designs in personalized medicine.

Epidemiological studies on PBC showed that frequent exposure to

environmental chemicals such as nail polish, chemicals in tobacco

smoke, and hormone replacement therapies are significantly

associated with an increased risk of PBC (194). Bacterial infection

and xenobiotics have been proposed as candidate environmental

factors that may explain tolerance breakdown and production of

PBC-specific AMAs (195). Large-scale case–control studies have

consistently detected an association of PBC with urinary tract

infections caused by Escherichia coli, as E. coli PDC-E2 is

molecularly similar to human PDC-E2, the immunodominant

target of AMAs (155). Detailed analysis of AMA activity to the

human and E. coli PDC-E2 indicated that exposure to E. coli could

elicit specific antibody to E. coli PDC-E2 resulting in determinant

spreading and the loss of tolerance to the human autoantigen (13).

Another bacterium of interest isNovosphingobium aromaticivorans,

a ubiquitous xenobiotic-metabolizing bacterium that produces

lipoylated proteins, which are highly reactive with sera from PBC

patients (155). The complexity of interactions between genetics and

environmental factors (196, 197) together with the changing

geoepidemiology and mortality in PBC further highlight the need

of novel approaches in order to understand the immunopathogenic

basis of PBC to further advance therapeutic approaches towards

personalized medicine (198–200).
4.2 Epigenetics

Epigenetics is the study of DNA and related factors

modifications that are inheritable and do not involve changes in

the DNA sequence (201). Epigenetic information controls cellular

heterogeneity and identity since the genomic sequence is identical

in all cells of the body (201).There are four types of epigenetic

information, namely DNA methylation, post-translational changes

of histones, non-coding RNAs, and chromatin organization (lack of

data on PBC) (202). DNA methylation involves the addition of a

methyl group preferentially involving the nucleotide cytosine in

CpG sites, which typically results in gene silencing. Post-

translational modifications of histones change the DNA

accessibility to transcription factors or enhancers and influence

transcription and activate or silence genes. These modifications

include acetylation, methylation, phosphorylation, ubiquitylation,

and sumoylation (201). On the other hand, non-coding RNAs
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(ncRNAs) are RNAs that do not code for proteins and include

two main classes: small non-coding RNAs (miRNAs) and long non-

coding RNAs (lncRNAs) (203, 204). These epigenetic modifications

could be therapeutic targets in PBC.

Studies have shown the involvement of epigenetic dysregulation

in PBC. One study found a significantly reduced methylation level

of the CD40L promoter in CD4+ T cells of PBC patients, which led

to higher levels of CD40L mRNA expression (82). Additionally, the

study found that Immunoglobulin M serum levels were negatively

correlated with promoter methylation patterns. Studies on

methylation patterns in monozygotic twins discordant for PBC

and found regions with different methylation patterns on ChrX,

with hypermethylation being the common finding in PBC probands

(205, 206). In addition, it was shown that imbalance on Treg/Th17

axis in PBC was likely to be affected by the FoxP3 hypermethylation.

In the same study, it was demonstrated that DAC-mediated FoxP3

demethylation on PBC mice rebuilt the Treg/Th17 balance,

resulting in the alleviation of liver lesions and inflammation (51).

PBC affects women more frequently than men, which hampers

the drawing of conclusions about potential sex-dependent

epigenetic abnormalities. The post-translational modifications of

histones have also been implicated in PBC. For example, T

lymphocytes from patients with PBC have higher expression

levels of b-Arrestin 1 (barr1) than controls, which is involved in

T cell activation and has a pathological role in autoimmunity (207).

Recently, valproic acid, a histone deacetylase inhibitor, was shown

to have antifibrotic effects in the liver and kidney in the

experimental adriamycin-induced nephropathy model (208, 209).

Although not tested in PBC model, it warrants further study in

this condition.

Dysregulation of specific miRNAs has been observed in PBC,

and one study found that miR-506 is upregulated in PBC and can

target AE2 mRNA, which may contribute to the breakdown of PBC

tolerance (210–212). Intriguingly, miR-506 is located on the X-

chromosome. Conversely, few lncRNAs have been implicated in

PBC, but H19 has been identified as a key player in bile duct

ligation-induced cholestatic liver injury and is upregulated in PBC

and other cholestatic disorders (213). H19 has multiple functions,

including participation in different signaling pathways and

functioning as a miRNA sponge (213). There are not reported in

vivo models or clinical trials implementing RNA interference

(RNAi) or small interfering RNAs (siRNA) therapy for treatment

of PBC. Further studies targeting pathogenic RNA-associated

molecules are warranted. In summary, knowledge on the

epigenetic mechanisms and epigenetic contributors will help to

understanding the disease process and outcome in patients with

PBC so as to develop targeted directed therapies at different stages

of disease.
4.3 Single-cell RNA sequencing and spatial
transcriptomics

Single-cell RNA sequencing (scRNA-seq) technology and

spatial transcriptomic (ST) can not only discover new cell types,
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but also reveal unique changes in each cell, greatly promoting

genomics research. GWAS have reported that the association of

multiple genetic loci with PBC susceptibility in various populations

(214, 215) but without defining any candidate genes. Single cell

sequencing analysis revealed that ORMDL3+ cholangiocytes had

higher metabolism activity and are also play important immune-

regulatory roles via the VEGF signaling pathway in the pathogenesis

of PBC (216). Recently, Li et al. reported the identification of

DUOX2+ ACE2+ small cholangiocytes in human and mouse

livers by ST. DUOX2+ ACE2+ cholangiocytes interacted with

immune cells in the liver portal areas where CD27+ memory B

and plasma cells accumulated. Interestingly, it was also noted that:

a) the number of DUOX2+ ACE2+ cholangiocytes decreased with

the development and progression of PBC; b) the polymeric

immunoglobulin receptor (pIgR) was highly expressed in

DUOX2+ ACE2+ cholangiocytes; c) the expression of serum anti-

pIgR autoantibodies was highly increased in both positive and

negative AMA-M2 of PBC patients (217). Taken together,

DUOX2+ ACE2+ smal l cholangiocytes and anti-pIgR

autoantibody levels can be further evaluated as potential

biomarkers in monitoring therapeutic regimens in patients with

PBC. Targeting anti-pIgR autoantibodies is likely a potential

therapeutic approach in PBC.
4.4 Organoids

Organoid technology has evolved with the use of MSCs, liver

organoids can mimic different liver disease and increase the

translatability of drugs for pre-clinical therapies. Organoids are

three-dimensional structures that mimic the structure and function

of organs in vivo. They are derived from stem cells and can be used

to study diseases and test potential treatments (218). Biliary-like

cells can indeed be isolated from human bile and cultured long term

as biliary organoids (219). Organoids can be used to generate a

model of PBC which could be further used to study the disease and

its underlying mechanisms (220–222). Researchers can further use

organoids to test potential drugs or therapies for PBC, which can

then be translated to clinical trials. Some works have developed

successful organoid models for primary sclerosing cholangitis

which were able to recapitulate the disease inflammatory immune

profile (223).

The opportunity to isolate patient biliary stem cells will allow

researchers to screen pipe line drugs, develop personalized

treatments and therapies that are tailored to the individual

patient. This approach can help identify new drugs or repurpose

existing drugs for the treatment of PBC (219). On the other hand,

organoids could be used to generate new liver tissue to replace

damaged or diseased tissue. This approach could potentially be used

to treat end-stage liver disease caused by PBC. Using a cell

engraftment in human livers undergoing ex vivo normothermic

perfusion, Sampaziotis et al. (223) demonstrated that extrahepatic

organoids were able to successfully repair human intrahepatic ducts

after transplantation. It is intriguing that activation of receptor
Frontiers in Immunology 13
interacting protein kinase (RIPK)3-dependent necroptosis is a core

event in PBC (224) and human cholangiocyte organoids can

recapitulate cholangiopathy associated RIPK3-dependent

necroptosis signaling pathways in vitro (218). The potential

application of organoids for the development of new treatments

for PBC and other liver diseases is promising.
5 Current research gaps and potential
future developments

The pathogenesis of PBC involves many factors including

immunological abnormality, BAs metabolism, gut macrobiotics,

BECs injury, gut-liver axis and fibrotic formation. Although with

extensive preclinical studies and clinical trials, there does not seem

to be a single drug or a single mechanism that is effective in

completely halting disease progression and cirrhosis. With the

ultimate objective in stopping disease development early enough

to avoid cirrhosis and its complications, combinatorial approaches

targeting multiple mechanisms and their relevant players are

necessary. Multiple immune factors or BAs metabolism play

different roles in different stage of PBC disease. Stem cell therapy

and anti-fibrotic therapies are potentially useful for preventing

progression of PBC. Liver transplantation is currently still the

most effective treatment for PBC patients with end-stage liver

disease. Long-term studies are needed to evaluate the effectiveness

of current treatments and to identify predictors of disease

progression and adverse outcomes. Joint effort between clinicians

and wet bench scientist work closely together to take advantage of

recent research advances such as epigenetics, transcriptomics and

the use of organoids technologies to develop unexplored territories

in the therapy of PBC. Last but not least, the impact of PBC on

patients’ quality of life and well-being is significant, yet there is

limited research on patient-reported outcomes in this condition.

Future studies should focus on identifying patient-centered

endpoints that reflect the impact of PBC in daily life. Clinically,

PBC is heterogeneously presented with stages and clinical

manifestations; we do not anticipate that there is one “magic

bullet” for all PBC patients. Continuous effort in closing the gaps

in deciphering mechanisms underlying the disease progress,

identifying novel risk loci and vigorous research in candidate

drugs will improve the diagnosis, clinical management and

outcomes in patients with PBC.
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Glossary

PBC Primary biliary cirrhosis

UDCA Ursodeoxycholic acid

OCA Obeticholic acid

FDA Food and Drug Administration

DCs Dendritic cells

NK Natural killer

NKT Natural killer T

AMA Antimitochondrial antibodies

Ig Immunoglobulin

IL-6 Interleukin-6

IL-10 Interleukin-10

IFN-g Interferon-g

TNF-a Tumor necrosis factor-a

ALP Alkaline phosphatase

BAFF B-cell -activating factor

BCR B-cell receptor

ANA Antinuclear antibody

MAIT Mucosal-associated invariant T

TGF-b1 Transforming growth factor-b1

NF-kB Nuclear factor-kB

RA Rheumatoid arthritis

BECs Biliary epithelial cells

PLGA Poly lactic-co-glycolic acid

PMHCII Peptide-major histocompatibility complex class II

TR1 Regulatory type 1

PDC-E2 E2 subunit of pyruvate dehydrogenase complex

AIH Autoimmune hepatitis

CAR Chimeric antigen receptor

AMPK AMP-activated protein kinase

CTLA-4 Cytotoxic T-lymphocyte-associated protein-4

Cyr61 Cysteine-rich angiogenic inducer 61

Pss Primary Sjögren syndrome, HSCs, Hepatic stellate cells

MC Mast cell

ICOS Inducible co-stimulator

PD-1 Programmed death-1

BD Bile duct

BAs Bile acids

HiBEC Human intrahepatic biliary epithelial cell

(Continued)
F
rontiers in Im
munology 20
Continued

APCs Antigen-presenting cells

MSCs Mesenchymal stem cells

BM-MSC Bone marrow-MSC

UC-
MSCs

Umbilical cord–derived MSCs

2OA-BSA 2-Octynoic acid coupled to bovine serum albumin

3D 3-dimensional

CXCR3 C-X-C motif chemokine receptor 3

IP-10 Inducible protein-10

FKN Fractalkine

GC Germinal center

Sirt1 Sirtuin-1

NRs Nuclear receptors

LT Liver transplant

FXR Farnesoid X receptor

PXR Pregnane X receptor

PPARa Peroxisome proliferator- activated receptor alpha

CAR Constitutive androstane receptor

VDR Vitamin D3 receptor;TGR5, Takeda G protein receptor 5

S1PR2 Sphingosine-1-phosphate receptor 2

TXR Tropifexor

FMT Fecal microbiota transplantation

CFTR Cystic fibrosis transmembrane conductance regulator

SR Secretin receptor

AE2 Anion exchanger protein 2

NOX Nicotinamide adenine dinucleotide phosphate oxidase

LOXL2 Lysyl oxidase-like protein 2

NADPH Nicotinamide adenine dinucleotide phosphate. ncRNAs, Non-
coding RNAs

miRNAs Small non-coding RNAs

siRNA Small interfering RNAs

scRNA-
seq

Single-cell RNA sequencing

ST Spatial transcriptomic

RIPK Receptor interacting protein kinase
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