
UC San Diego
Technical Reports

Title
NP-Completeness of the Divisible Load Scheduling Problem on
Heterogeneous Star Platforms with Affine Costs

Permalink
https://escholarship.org/uc/item/2bn997rb

Authors
Legrand, Arnaud
Yang, Yang
Casanova, Henri

Publication Date
2005-03-10

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bn997rb
https://escholarship.org
http://www.cdlib.org/

NP-Completeness of the Divisible Load

Scheduling Problem on Heterogeneous Star

Platforms with Affine Costs

Arnaud Legrand2 Yang Yang1 Henri Casanova 1,3

1 Dept. of Computer Science and Engineering

University of California, San Diego
2 Laboratoire Informatique et Distribution,

Institut d’Informatique et de Mathématiques Appliquées de Grenoble
3 San Diego Supercomputer Center

University of California, San Diego

March 23, 2005

Abstract

In this paper we prove that the Divisible Load Scheduling (DLS) prob-
lem is NP-complete when the underlying distributed computing platform
is a heterogeneous star network and when the costs for communicating
and computing load chunks are affine functions of the chunk size. While
the complexity of the DLS problem was known in the case of linear com-
munication and computation costs (polynomial), or in the case of ho-
mogeneous platforms (polynomial), to the best of our knowledge it was
still open for heterogeneous platforms with affine cost. We prove (weak)
NP-completeness by reducing the DLS problem from 2-PARTITION, i.e.,
partition of a set of integer values into two sets whose sums are equal.

1 Introduction

Recent years have seen an increase in interest for the study of the Divisible Load
Scheduling (DLS) problem [6] and its complexity [3], with a particular emphasis
on master-worker platforms with a star topology. Consider an application that
consists of an amount of work, or load, which can be arbitrarily divided into
any number of “chunks”, where each chunk consists of some amount of input
data and some computation to perform on this data. The objective of the DLS
problem is to assign load chunks to workers, which are accessible from a master
over a network, so that the makespan, that is the overall application execution
time, is minimized. The entire load initially resides at the master. It is known
that the DLS problem is polynomial-time if the times to communicate and to

1

compute a chunk are linear in the chunk size [3]. It is also known that if the
computation and communication times, or “costs”, are affine in the chunk size
(thereby modeling start-up costs) and the platform is homogeneous, then the
problem is polynomial-time [6]. In this paper we show that in the case of affine
costs and of a heterogeneous platform the problem is NP-complete, which to
the best of our knowledge is a new result. Furthermore the affine heterogeneous
case corresponds to a more realistic and general platform model.

We define the DLS problem with AFfine costs (DLSAF) as follows:

Problem 1. Consider a set of N worker processors and a master processor.
The master must send out W0 units of load to workers to be computed. Each
worker can compute si, i ∈ J1, NK, load units per second, and each transfer to
a worker takes a fixed amount of time, βi seconds. Is it possible to compute all
W0 load units within T0 seconds after the master starts sending out the first load
unit? (T0, W0, βi, si are all rational numbers, due to the divisible nature
of the load.)

Note that in the problem definition above we use a linear model for the
computation time, and a fixed model for the communication time. For the
sake of simplicity we use infinite bandwidths and zero computation start-up
costs, but it would be a purely technical matter to rewrite our proof with “very
large” bandwidths and “very small” computation start-up costs. At any rate,
Problem 1 as it is defined above is a special case of the more general problem with
truly affine communication and computation costs, and we prove that it is NP-
complete, thereby making the more general problem NP-complete. Intuitively,
Problem 1 is difficult because, due to the affine costs, the total communication
start-up times,

∑

16i6N βi, may be larger than T0. Therefore, we must use only
a carefully chosen subset of the workers, giving the problem a combinatorial
flavor.

We note two related previous works that have made some contribution for
determining the complexity of the DLS problem on a heterogeneous star plat-
form with affine costs. The work in [4] shows that the difficult combinatorial
resource selection problem can be bypassed if one assumes that the total load
is “sufficiently large”. In this case, all the start-up costs are much smaller than
the overall makespan, and all workers should be used. The authors in [4] state
that when the “sufficiently large”assumption is removed, then the complexity of
DLS problem is open. In [1], the author studied the DLS problem with added
“buffer constraints”, i.e., for each worker Pi at most bi load units can be stored
on that worker. This limitation essentially provides one more condition, which
helps when reducing from known NP-complete problems, and NP-completeness
is proven in [1]. In [4], the authors strengthen the result by proving that the
DLS problem with buffer constraints is NP-complete in the strong sense. In this
paper we consider the more general problem without the “sufficiently large load”
assumptions and without buffer constraints, and we prove its NP-completeness.

2

2 Intuition Behind the Proof

In this section we present the intuition behind our proof, which is detailed in
the next section. For an instance to satisfy DLSAF, it has to meet two broad
requirements: (i) have a makespan lower than T0, meaning that the sum of
communication start-up costs of the selected workers must be small enough;
and (ii) compute more than W0 units of load, meaning that the compute speeds
of the selected workers must be large enough. Those two requirements suggest
that we should probably attempt a reduction from the 2-PARTITION problem.
In the reduction from 2-PARTITION to DLSAF, we have the following variables at
our disposal, which can be set freely to “force” the selection of workers: W0, T0,
si, βi. What we need to do is then to carefully choose a small enough T0, and
a large enough W0. We also got some ideas from the proof of a set of related
problems in [2].

3 NP-Completeness Proof

First it is easy to see that DLSAF is in NP: given a solution to an instance of
DLSAF, we can verify in polynomial time that the subset of workers complete
workload W0 within time T0 [5].

Then we prove that DLSAF is NP-hard via a reduction from the NP-complete
2-PARTITION problem. The 2-PARTITION problem [7] is defined as follows:

Problem 2. Given a finite set A of integers αi, 1 6 i 6 2m, is there a subset
A′ ⊂ A such that |A′| = m and

∑

α∈A−A′

α =
∑

α∈A′

α = L?

Given an instance of 2-PARTITION, we construct an instance of DLSAF as
follows. For each αi we create a worker Pi, whose fixed communication cost
is βi, and whose computing speed is si, with βi = si = M + αi. So together
we have N = 2m workers. We then choose T0 = mM + L + 1/2, and W0 =
m
2

(m−1)M2+(m−1)LM + m
2

M . We must chose M above as a “large”number,
and in our case it turns out that choosing M = 8m2L2 is sufficient.

Fig. 1 depicts a schedule with four workers with time on the horizontal axis
(from time 0 to time T0) and the four workers on the vertical axis. For each
worker we show a communication phase (in white), followed by a computation
phase (in various shades of gray, whose meaning will be explained shortly). Note
that all workers finish computing at the same time. Indeed, there is no reason
why a worker should stop working before time T0. Furthermore, since we have a
fixed cost for sending chunks over the network, one can easily send enough load
to each worker to keep it busy until time T0. Clearly, the number of load units
that a worker contributes to the computation is the product of its computational
speed, si, and the duration of the time interval from the end of communication
to the overall application finish time. To make the proof simpler to follow, we

3

3

1

2

4

t0

T0

β1

s1

α2

α2

1
2

M

t1 t2

D

E

B

A

C

Figure 1: Illustration of proof.

let the width of each worker slot in the figure be si, so that the worker’s contri-
bution to the overall computation number of work units is given by area of its
slot. In the proof, we will compute such areas in order to estimate numbers of
computed load units. We prove the reduction with the usual two steps.

2-PARTITION⇒ DLSAF If we have a solution to the 2-PARTITION problem,
we show that we also have a solution to the DLSAF problem. Pick all m
workers Pi such that αi ∈ A. For simpler notations, and without loss of
generality, we assume that i = 1, . . . , m. First, we note that the sum of
the communication start-up costs is

m
∑

i=1

βi =

m
∑

i=1

(M + αi) = mM + L < T0.

Consequently, all m workers can participate in the computation and ap-
pear in the schedule.

Given the set of workers participating in the schedule, we now estimate the
number of load units that are computed before time T0, which corresponds
to the shaded area shown in Fig. 1. The figure shows the shaded area

4

partitioned in five different types of rectangular zones. Zone A consists
of m(m − 1)/2 squares of dimension M ×M . Zone B consists of m −
i rectangles of dimension M × αi for i = 1, . . . , m − 1, for a total of
m(m − 1)/2 such rectangles. Zone C is similar to zone B, but with i− 1
rectangles of dimension αi ×M for i = 2 . . . , m. Zone D, which visually
corresponds to the intersections between rectangles in zones B and C,
consists of m(m−1)/2 rectangles of dimensions αj×αi, for i = 1, . . . , m−1,
and j ∈ [2, . . . , m] with j > i, and of m rectangles of dimension 1

2
αi, for

i = 1, . . . , m. Finally, zone E consists of m rectangles of dimension 1
2
×M .

We compute the sum of the areas of zones A, B, C, and E. The total area
of zone A is clearly M2m(m− 1)/2. The total area of zone B is:

M × ((m− 1)α1 + (m− 2)α2 + . . . + αm−1).

The total area of zone C is:

M × (α2 + 2α3 + 3α4 + . . . + (m− 1)αm).

Finally the total area of zone E is m
2

M . Because we have not counted the
area due to rectangles in zone D, we can bound below the total number
of computed load units, W , as follows:

W >
m

2
(m− 1)M2 + M

m−1
∑

i=1

iαi+1 + M

m−1
∑

i=1

(m− i)αi +
m

2
M

=
m

2
(m− 1)M2 + (m− 1)M

m
∑

i=1

αi +
m

2
M

=
m

2
(m− 1)M2 + (m− 1)ML +

m

2
M

= W0.

We conclude that we have a solution to the DLSAF problem.

DLSAF⇒ 2-PARTITION If we have a solution to the DLSAF problem, we now
show that we also have a solution to the 2-PARTITION problem. First, we
know that in the solution to DLSAF we can not have more than m workers.
Otherwise, the βi startup costs would add up to a time larger than T0. We
can also see that we need at least m−1 workers. Indeed, a smaller number
of workers will not suffice because the overall number of computed load
units will be strictly lower than W0. (Intuitively, we waste the opportunity
to compute at least M2 load units when using m− 2 workers.) Therefore
we must use either m− 1 or m workers. However, we now prove that we
cannot use m− 1 workers.

Let us assume that the solution of DLSAF uses m− 1 workers, and let us
compute the total number of load units computed before time T0. The
intuition is that by not having the mth worker we miss its contribution by

5

zone E, which makes the overall number of computed load units strictly
lower than W0. We count the area in two parts, the area before worker
m − 1 finishes communication (left of time instant t1 in Fig. 1), and the
area after that. For the first part, the squares in zone A sum up to
M2(m−1)(m−2)/2. Those in zones B and C sum up to M(m−2)

∑m−1

i=1 αi

as before. Rectangles in zone D left of t1 take up
∑

16i<j6m−1 αiαj <
1
2
(m−1)(m−2)(2L)2 < 2m2L2, because αi 6

∑m−1

i=1 αi 6 2L. The second
part is easily computed as the area between t1 and t2:

(

m−1
∑

i=1

si

)(

T0 −
m−1
∑

i=1

βi

)

.

We can add the two parts and obtain the total number of computed load
units, W , as follows:

W <

{

(m− 1)(m− 2)

2
M2 + M(m− 2)

m−1
∑

i=1

αi + 2m2L2

}

+

{[

(m− 1)M +

m−1
∑

i=1

αi

][

T0 −

(

(m− 1)M +

m−1
∑

i=1

αi

)]}

=
(m− 1)m

2
M2 + L(m− 1)M + 2m2L2 +

(L +
1

2
)

m−1
∑

i=1

αi − (

m−1
∑

i=1

αi)
2 +

1

2
mM −

1

2
M

<

[

(m− 1)m

2
M2 + L(m− 1)M +

1

2
mM

]

+

[(

2m2L2 + (L +
1

2
)

m−1
∑

i=1

αi

)

−
1

2
M

]

<
(m− 1)m

2
M2 + L(m− 1)M +

1

2
mM

= W0.

Therefore, we cannot have a solution with m − 1 workers, and we must
use exactly m workers.

For the solution of DLSAF with m workers we can write that the makespan
is lower than T0 (otherwise it would not be a solution). The makespan is
equal to the sum of the βi series and T0 is equal to mM +L+ 1

2
. Therefore,

we have:
m
∑

i=1

βi 6 mM + L +
1

2

Replacing βi by its value, we obtain:

m
∑

i=1

αi 6 L +
1

2
.

6

Because
∑m

i=1 αi is integer, we have

m
∑

i=1

αi 6 L. (1)

We now estimate the total number of load units computed. The small
area of zone D, denoted by D, is

∑

16i<j6m

αiαj +
1

2

∑

16i6m

αi 6
1

2
m(m− 1)L2 +

1

2
L,

because of Eq. 1. Then the total load is:

W =
m

2
(m− 1)M2 + M(m− 1)

m
∑

i=1

αi +D +
1

2
mM

6
m

2
(m− 1)M2 + M(m− 1)

m
∑

i=1

αi +
1

2
mM +

1

2
m(m− 1)L2 +

1

2
L.

Since the schedule is a solution of DLSAF, we also have:

W > W0 =
m

2
(m− 1)M2 + (m− 1)LM +

1

2
mM.

Therefore

M(m− 1)
m
∑

i=1

αi +
1

2
m(m− 1)L2 +

1

2
L > (m− 1)LM,

which, given that M = 8m2L2, implies that:

m
∑

i=1

αi > L−
1

16m
−

1

(m− 1)8m2L
> L− 1.

Because
∑m

i=1 αi is integer, we have:

m
∑

i=1

αi > L. (2)

Eqs. (1) and (2) show that
∑m

i=1 αi = L. Therefore, there is a solution to
the 2-PARTITION problem, which is obtained by picking all the αi values
that correspond to the workers participating in the computation in the
solution for the DLSAF problem.

7

4 Pseudo-Polynomial Time Algorithm

Drozdowski and Lawenda [8] gave a pseudo-polynomial time algorithm for the
DLSAF problem, thus showing that DLSAF is weakly NP-Complete. We also
independently found a pseudo-polynomial time algorithm, given below as al-
gorithm 3. Without loss of generality, we assume all quantities involved are
integers. For a schedule depicted in Fig. 1, the total work-units computed in a
schedule is

〈shaded area between t0 and t1〉+ 〈shaded area between t1 and t2〉. (3)

The first term of Eq. 3 can be calculated in two steps: (1) First we find out
the subset of workers whose sum of start-up costs is exactly the interval from
t0 to t1. This can be solved by using the pseudo-polynomial time algorithm 1
for SUBSETSUM [7] (page 90). (This algorithm was originally given to solve
PARTITION, but also works for SUBSETSUM.) We run algorithm 1 for every
possible value of t1. (2) Then, given a valid set of chosen workers, we calculate
the work-units completed before t1 by using algorithm 2, DSLAF Given Workers,
from [5].

Then we calculate the second term as:

∑

i|Pi is chosen

by SUBSETSUM

si

·

T0 −
∑

i|Pi is chosen

by SUBSETSUM

βi

.

Algorithm 3 solves the DLSAF problem. It returns True if it finds a schedule that
computes more than W0, otherwise it returns False. The algorithm is correct
because we have tried all valid schedules.

SUBSETSUM(t, β)
1: calculate β′ ⊂ β so that

∑

βi∈β′ βi = t

Algorithm 1: SUBSETSUM algorithm

DLSAF GIVEN WORKERS(t, β)
1: given a set of workers, whose start-up costs are β, and

∑

βi∈β′ βi 6 t,
calculate the work units completed within t time units.

Algorithm 2: DLSAF Given Workers algorithm

5 Conclusion

Our proof has several implications. We now know that the resource selection
problem for a heterogeneous star network with affine costs is a hard problem.

8

DLSAF(T0, β)
1: for t=0 to T0 do

2: (feasible , β′) ← SUBSETSUM (t , β) {β′ is a sublist of β}
3: if feasible then

4: W ←DLSAF GIVEN WORKER(t , β′)

+
(

T0 −
(

∑

βi∈β′ βi

))

·
(

∑

βi∈β′ si

)

5: if W > W0 then

6:

7: return True
8:

9: return False

Algorithm 3: Pseudo-polynomial algorithm to solve DLSAF

This justifies the use of heuristics such as the ones employed in [9]. It is impor-
tant to note that our proof not only works for one-round schedules, but also for
multi-round schedules. Indeed, our proof does not make any assumptions about
the number of rounds (although in our particular instance using multiple rounds
would not be effective). Finally, although we have proved that when bandwidth
is infinite, DLSAF is weakly NP-Complete, it would be interesting to determine
whether the more general problem, i.e. with finite bandwidth, is only weakly
NP-hard or strongly NP-hard.

References

[1] M. Drozdowski and P. Wolfniewicz. On the Complexity of Divisible Job
Scheduling with Limited Memory Buffers. Technical Report RA-001-2001,
Institute of Computing Science, Poznań University of Technology, 2001.

[2] Maciej Drozdowski and M. Lawenda. The Combinatorics in Divisible Load
Scheduling. Technical Report RA-012/04, Institute of Computing Science,
Poznań University of Technology University of Technology, 04.

[3] O. Beaumont, H. Casanova, A. Legrand, Y. Robert, and Y. Yang. Scheduling
Divisible Loads on Star and Tree Networks: Results and Open Problems.
IEEE Transactions on Parallel and Distributed Systems (TPDS), 16(3):207–
218, 2005.

[4] O. Beaumont, A. Legrand, L. Marchal, and Y. Robert. Independent and
Divisible Task Scheduling on Heterogeneous Star-Shaped Platforms with
Limited Memory. Technical Report RR2004-22, Ecole Normale Superieure
de Lyon, April 2004.

9

[5] O. Beaumont, A. Legrand, and Y. Robert. Optimal Algorithms for Schedul-
ing Divisible Workloads on Heterogeneous Systems. Technical Report 2002-
36, Ecole Normale Superieure de Lyon, October 2002.

[6] V. Bharadwaj, D. Ghose, V. Mani, and T. G. Robertazzi. Scheduling Di-
visible Loads in Parallel and Distributed Systems. IEEE Computer Society
Press, 1996.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to
the Theory of NP-Completeness. W. H. Freeman, 1991.

[8] Maciej Drozdowski and M. Lawenda. Pseudopolynomial Algorithms for
Divisible Load Scheduling on Heterogeneous Stars, 2005. personal commu-
nication.

[9] Y. Yang and H. Casanova. UMR: a Multi-Round Algorithm for Schedul-
ing Divisible Workloads. In Proceedings of the International Parallel and
Distributed Processing Symposium (IPDPS 2003), April 2003.

10

	1 Introduction
	2 Intuition Behind the Proof
	3 NP-Completeness Proof
	4 Pseudo-Polynomial Time Algorithm
	5 Conclusion

