
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Dissociating Syntactic Operations via Composition Count

Permalink
https://escholarship.org/uc/item/2bp2m26p

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 46(0)

Authors
Kajikawa, Kohei
Yoshida, Ryo
Oseki, Yohei

Publication Date
2024
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2bp2m26p
https://escholarship.org
http://www.cdlib.org/


Dissociating Syntactic Operations via Composition Count
Kohei Kajikawa (kohei-kajikawa@g.ecc.u-tokyo.ac.jp)

Department of Language and Information Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan

Ryo Yoshida (yoshiryo0617@g.ecc.u-tokyo.ac.jp)
Department of Language and Information Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan

Yohei Oseki (oseki@g.ecc.u-tokyo.ac.jp)
Department of Language and Information Sciences, The University of Tokyo, Meguro-ku, Tokyo, Japan

Abstract

Computational psycholinguistics has traditionally employed a
complexity metric called Node Count, which counts the num-
ber of syntactic nodes representing syntactic structures and
predicts processing costs in human sentence processing. How-
ever, Node Count does not dissociate distinct syntactic oper-
ations deriving those syntactic structures, so that how much
processing cost each syntactic operation induces remains to be
investigated. In this paper, we introduce a novel complexity
metric dubbed Composition Count, which counts the num-
ber of syntactic operations deriving syntactic structures, allow-
ing us to understand the computational system of human sen-
tence processing from the derivational, not representational,
perspective. Specifically, employing Combinatory Categorial
Grammar (CCG) which is equipped with multiple syntactic
operations and thus suitable for the purpose here, we investi-
gate (i) how much distinct syntactic operations of CCG con-
tribute to predicting human reading times, and (ii) whether
the same holds across languages. The results demonstrate
that distinct syntactic operations of CCG have independent
and cross-linguistic contributions to predicting human read-
ing times, while Node Count turns out not to be robust cross-
linguistically. In conclusion, these results strongly suggest the
importance of Composition Count to dissociate distinct syntac-
tic operations, not whole syntactic representations, and under-
stand the computational system of human sentence processing.

Keywords: human sentence processing; reading time; Node
Count; Composition Count; Combinatory Categorial Grammar

Introduction
Natural language has syntactic structures (Chomsky, 1957),
which are essential for computing meanings (Heim &
Kratzer, 1998). The previous literature has demonstrated
that syntactic structures are built in human sentence pro-
cessing, as evidenced by both behavioral and neural data
(e.g., Roark, Bachrach, Cardenas, & Pallier, 2009; Fossum
& Levy, 2012; J. R. Brennan, Stabler, Wagenen, Luh, &
Hale, 2016; Nelson et al., 2017; Hale, Dyer, Kuncoro, &
Brennan, 2018). Theoretically, it is assumed that the com-
putational processes of constructing hierarchical structures
are directly based on competence grammar (competence hy-
pothesis, Chomsky, 1965; Bresnan & Kaplan, 1982; Berwick
& Weinberg, 1983; Steedman, 2000; Marantz, 2005; Sag
& Wasow, 2011; S. Lewis & Phillips, 2015). In light of
this hypothesis, theories like derivational theory of com-
plexity (DTC, Miller & Chomsky, 1963), which quantifies
processing costs depending on the number of syntactic op-
erations within competence grammar, have been proposed.
Building upon this theoretical foundation, computational psy-

cholinguistics has traditionally employed a complexity met-
ric called Node Count, which counts the number of syntactic
nodes representing syntactic structures and predicts process-
ing costs in human sentence processing (J. R. Brennan et al.,
2012, 2016; J. R. Brennan & Pylkkänen, 2017; Nelson et al.,
2017; Bhattasali et al., 2018; Li & Hale, 2019; Stanojević
et al., 2021; Li et al., 2022; Stanojević, Brennan, Dunagan,
Steedman, & Hale, 2023).

However, Node Count does not dissociate distinct syntactic
operations deriving those syntactic structures, so how much
processing cost each syntactic operation induces remains to
be investigated. In this respect, while the previous litera-
ture has almost exclusively employed Context-Free Grammar
(CFG) in combination with Node Count, Combinatory Cat-
egorial Grammar (CCG, Steedman, 2000) is equipped with
multiple syntactic operations with distinct syntactic and se-
mantic properties and thus suitable for the purpose here. In
fact, recent results have demonstrated that Node Count and
the Reveal operation of CCG successfully predict processing
costs in human sentence processing (Stanojević et al., 2021;
Stanojević et al., 2023).

In this paper, we introduce a novel complexity metric
dubbed Composition Count, which counts the number of
syntactic operations deriving syntactic structures, allowing
us to understand the computational system of human sen-
tence processing from the derivational, not representational,
perspective. Specifically, employing CCG which is equipped
with multiple syntactic operations such as Function Appli-
cation (FA), Function Composition (FC), and Type Raising
(TR), we investigate (i) how much distinct syntactic opera-
tions of CCG contribute to predicting human reading times,
and (ii) whether the same holds across languages, especially
in both head-initial (English) and head-final (Japanese) lan-
guages. The results demonstrate that distinct syntactic op-
erations of CCG have independent and cross-linguistic con-
tributions to predicting human reading times: FA/TR and
FC exhibit positive and negative effects, respectively, with
the relative magnitude of the effects being FA > TR > FC.
In contrast, Node Count turns out not to be robust cross-
linguistically. In conclusion, these results strongly suggest
the importance of Composition Count to dissociate distinct
syntactic operations, not whole syntactic representations, and
understand the computational system of human sentence pro-
cessing.
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Background
Node Count
Node Count assumes that, for a given syntactic structure of
a sentence, under a specific parsing strategy, the total num-
ber of nodes traversed between each word corresponds to the
processing costs of that word. For instance, let us examine
the process of traversing a CCG syntactic structure of the
sentence Mary ate apples as depicted in Figure 1a with a
bottom-up parsing strategy. In this process, the total num-
ber of nodes traversed for each word is 1, 1, and 2, respec-
tively. These numbers are just the processing costs postulated
by Node Count. A more intuitive way to put it is that Node
Count is a complexity metric that calculates the processing
costs based on a syntactic nodes representing syntactic struc-
tures.

Historically, Node Count is a complexity metric that orig-
inates from the derivational theory of complexity (DTC),
which was once denied by Fodor, Bever, and Garrett (1974).
However, as Marantz (2005) correctly pointed out, it is pre-
mature to conclude the failure of DTC given the underdevel-
oped state of syntactic theories at the time. In addition, DTC
is “just a name for standard methodology in cognitive sci-
ence and cognitive neuroscience” (Marantz, 2005, p.439). In
fact, DTC-inspired metrics like Node Count have been widely
used in research on human sentence processing (e.g., Miller
& Chomsky, 1963; Frazier, 1985; Hawkins, 1994; J. R. Bren-
nan et al., 2012, 2016; J. R. Brennan & Pylkkänen, 2017; Nel-
son et al., 2017; Bhattasali et al., 2018; Hale et al., 2018; Li &
Hale, 2019; Stanojević et al., 2021; Li et al., 2022; Stanojević
et al., 2023).

Node Count, which directly calculates a processing cost

1 1 2
Mary ate apples

NP S\NP/NP NP
>T <T

S/(S\NP) S\(S/NP)
>B

S/NP
<

S
(a) Incremental derivation of Mary ate apples (English)

1 2 1
Mary-ga ringo-o tabe-ta

NP NP S\NP\NP
>T >T

S/(S\NP) (S\NP)/(S\NP\NP)
>B

S/(S\NP\NP)
>

S
(b) Incremental derivation of Mary-ga ringo-o tabe-ta (Japanese)

Figure 1: Incremental CCG derivations of English and
Japanese sentences. The operation applied to each word is
shown in the same color as the word. The number above each
word indicates the number of nodes that are constructed at
each word (Node Count).

from a syntactic structure, is different from the other two
major types of complexity metrics used in psycholinguistics
and computational psycholinguistics, memory-based metrics
(e.g., Gibson, 2000; R. L. Lewis & Vasishth, 2005) and
expectation-based metrics like surprisal (Hale, 2001; Levy,
2008). Indeed, Node Count partially overlaps with a memory-
based metric, but they are conceptually different and it has
been shown that Node Count can explain variances in neural
data that the other metrics cannot (Bhattasali et al., 2018; Li
& Hale, 2019; Stanojević et al., 2023).

However, Node Count does not dissociate distinct syntac-
tic operations, assuming them as uniform processing loads.
Consequently, it remains unclear whether distinct syntactic
operations have effects on behavioral data differently and how
much processing cost each operation incurs.

Combinatory Categorial Grammar
CCG is a formal linguistic theory that enables incremental
construction of structures at a level that can be implemented
on computers and its adequacy for modeling hemodynamic
activity has already been shown (Stanojević et al., 2021;
Stanojević et al., 2023). In addition, CCG is equipped with
multiple syntactic operations with distinct syntactic and se-
mantic properties. In CCG, all the syntactic and semantic rep-
resentations are constructed in parallel, projected from each
lexical item recursively via a small number of type-dependent
syntactic operations. These syntactic representations are re-
ferred to as syntactic categories consisting of atomic cate-
gories like N, NP, or S, and complex categories like NP/NP
or S\NP\NP. Complex categories are recursively built from
basic categories with two types of slashes (“/”, “\”) repre-
senting the directions of arguments. X/Y is a function that
takes Y as an argument to its right to yield X, while X\Y is
also a function that takes Y as an argument to its left to yield
X.

The syntactic operations mainly used in this study are
shown below:1

Function Application (FA) Type Raising (TR){
X/Y Y =⇒> X
Y X\Y =⇒< X

{
X =⇒>T T/(T\X)
X =⇒<T T\(T/X)

Function Composition (FC){
X/Y Y/Z =⇒>B X/Z
Y\Z X\Y =⇒<B X\Z

Note that T is a meta-variable over categories. With FC
and TR, CCG can construct flexible constituents, which
contributes to deriving non-constituent coordination and
long-distance dependencies. For example, an object relative
clause has a constituent that lacks an object in wh-clause on
its surface structure shown in Figure 2.

Furthermore, owing to FC and TR, CCG can derive a left-
branching structure in both head-initial (English) and head-
final (Japanese) languages, which makes it possible to eagerly
build syntactic structures with a bottom-up parsing strategy

1We used the syntactic operations employed in the CCG
parsers developed by Stanojević and Steedman (2019) for English
and Yoshikawa, Noji, and Matsumoto (2017) for Japanese.
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I like what you like

NP S\NP/NP NP/(S/NP) NP S\NP/NP
>T

S/(S\NP)
>B

S/NP
>

NP
>

S\NP
<

S

Figure 2: Derivation of an English objective relative clause.
The syntactic operations used to derive each constituent are
indicated on the right of the bar.

as shown in Figure 1.2 Previous work has shown that the
CCG left-branching structures tend to be more effective at
explaining incremental sentence processing than CCG right-
branching structures in English (Stanojević et al., 2021). This
finding aligns with theoretical predictions concerning human
memory capacity (Abney & Johnson, 1991; Resnik, 1992). In
the case of a head-final language like Japanese, the construc-
tion of a left-branching CCG structure requires establishing
the relationship between arguments before the verb, which is
supported by the findings in psycholinguistics (e.g., Mazuka
& Itoh, 1995; Kamide & Mitchell, 1999; Isono & Hirose,
2022).

By employing CCG as a theory of grammar, we can exam-
ine how much distinct syntactic operations with distinct syn-
tactic and semantic properties contribute to predicting human
reading times. There is no empirical reason to believe that
these operations incur the same processing cost, as assumed
by Node Count.

Methods
In this paper, we employed CCG to investigate how much
the predictors based on the three main syntactic operations
of CCG (Function Application (FA), Function Composition
(FC), and Type Raising (TR)) contribute to predicting human
reading times, and whether the same holds for both English
and Japanese. In addition, we investigated whether Node
Count itself can predict reading times, as there is no empirical
evidence to suggest that Node Count is a robust predictor for
predicting reading times, unlike its established efficacy with
neural data. Specifically, we constructed linear mixed-effects
regression models (Baayen, Davidson, & Bates, 2008) in-
cluding predictors based on distinct syntactic operations and
Node Count for modeling reading times, and examined the
coefficients of the predictors.

2TR is considered a lexical rather than a syntactic operation in
Steedman (2000), but following Stanojević et al. (2021); Stanojević
et al. (2023), we treated it as a syntactic operation. Moreover, while
in the previous studies on English, TR is not applied to noun phrases
in object positions, we apply TR to such noun phrases as well, which
was conducted to align conditions between English and Japanese.
In Japanese, an SOV language, it is necessary to apply TR to noun
phrases in object positions to construct a left-branching structure.

Reading time data
As behavioral data, we used log-transformed total reading
times of eye-tracking from the Dundee corpus (Kennedy, Hill,
& Pynte, 2003) for English and BCCWJ-EyeTrack (Asahara,
Ono, & Miyamoto, 2016) for Japanese. The Dundee cor-
pus includes the reading times of 10 English native speak-
ers to 2,368 sentences, while BCCWJ-EyeTrack contains the
reading times of 24 Japanese native speakers to 218 sen-
tences. Note that while the reading times are annotated to
space-separated words in English, they are annotated to each
phrasal unit in Japanese. To align these differences, we
put the word-by-word data points in the Dundee corpus to-
gether into phrasal units based on gold dependency annota-
tion by Barrett, Agić, and Søgaard (2015); as shown in Fig-
ure 3, focusing on only dependency arrows extending from
right to left, words with the same dependent and the depen-
dent itself were combined into a single phrase. Furthermore,
the words with an arrow extending from the root were treated
as a single phrase. Through this grouping process, the an-
notations, such as word positions and dependency relations,
were reconfigured.

Figure 3: Composing phrasal unit based on dependency struc-
ture

Then, for the Dundee corpus, data points (i) not fixated
and (ii) where the phrasal unit grouped crosses over sepa-
rate lines were removed to align the unit with the Japanese
dataset. For BCCWJ-EyeTrack, data points (i) not fixated and
(ii) where the word units obtained by sentencepiece (Kudo
& Richardson, 2018), the tokenizer used in GPT-2 (Radford
et al., 2019), crossed over the phrasal units of BCCWJ-
EyeTrack were removed. GPT-2 was utilized for calculating
surprisal, one of the explanatory variables for reading times.
Consequently, we used 182,736 data points from the Dundee
corpus and 8,911 data points from BCCWJ-EyeTrack in the
statistical analyses.

Syntactic structures
We assumed syntactic structures being constructed during
sentence comprehension are incremental left-branching CCG
derivations, as shown in Figure 1.

To obtain a left-branching CCG derivation for the Dundee
corpus and BCCWJ-EyeTrack, we initially parsed the sen-
tences in these corpora to get the best derivation with
ccgtools,3 an English CCG parser, and depccg (Yoshikawa
et al., 2017),4 a Japanese CCG parser, respectively. These

3https://github.com/stanojevic/ccgtools
4https://github.com/masashi-y/depccg
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word Mary ate apples Mary-ga ringo-o tabeta

FA 0 0 1 0 0 1
FC 0 1 0 0 1 0
TR 1 0 1 1 1 0

NC 1 1 2 1 2 1

Table 1: Composition Counts and Node Count of each word of CCG derivations in Figure 1. FA, FC, and TR represent the
Composition Counts of FA, FC, and TR, respectively. NC represents the Node Count.

parsers were trained to output right-branching CCG deriva-
tions. Subsequently, to rotate the right-branching deriva-
tions to left-branching, we performed TR on each NP node
that was taken by verbs as an argument. 5 Finally, we ap-
plied the “tree-rotation” operation (Stanojević & Steedman,
2019) to the resulting type-raised right-branching trees. All
of the type-raised right-branching trees were recursively ro-
tated from bottom to top to achieve left-branching trees.

Complexity metrics
We used the total number of each syntactic operation per
phrase as complexity metrics, assuming a bottom-up pars-
ing strategy. Specifically, we focused on three representa-
tive syntactic operations: FA, FC, and TR, which have robust
theoretical support in CCG and are implemented in a CCG
parser. We refer to the count of these operations as Composi-
tion Count. Table 1 presents the Composition Counts for the
English and Japanese derivation trees shown in Figure 1. Ad-
ditionally, we also calculated the Node Count per phrase for
comparison with the Composition Counts. The Node Count
represents the sum of the Composition Count for the three
syntactic operations and the count of other operations proper
to the CCG parsers.

Statistical analyses
For the regression model to analyze reading time data, we
used a linear mixed-effects model (Baayen et al., 2008). This
was implemented with the lmer function in the lme4 pack-
age (Bates, Mächler, Bolker, & Walker, 2015) in R (R Core
Team, 2023). The p-values were approximated with the
lmerTest package (Kuznetsova, Brockhoff, & Christensen,
2017). The following regression model was used as a base-
line regression model:

log(RT)∼ dependent+wlen+num of word

+freq+prev freq+surp

+phraseN+lineN+screenN

+prev is fixed

+(1|article)+(1|subject)

5The term verb refers to a complex category, where the resulted
category is S and it includes some NPs as an argument like S\NP
or S\NP/NP in English. In Japanese, it refers to a complex cate-
gory, where the resulted category is S, it includes some NPs as an
argument, and all slashes are backward such as S\NP or S\NP\NP.

In the baseline regression model, we used the predic-
tors that have been suggested to have the effective power
to model the human reading time data. dependent is the
number of dependency relations to the phrasal unit from
the previous phrases. This is intended to capture anti-
locality effect (Konieczny, 2000). The dependency struc-
ture of each corpus was annotated manually by Barrett et
al. (2015) and Asahara and Matsumoto (2016). wlen and
num of word are the number of characters and the number
of words composed of each phrase, respectively. The pre-
dictor num of word was not considered in previous stud-
ies, but it was included to take into consideration a discrep-
ancy between the unit (word) handled by the CCG parsers
and the unit (phrase) to which the reading time is assigned.
freq is the frequencies of each phrasal unit that were esti-
mated using Wikipedia word frequency generator6 and Na-
tional Institute for Japanese Language and Linguistics Web
Japanese Corups (Asahara, Maekawa, Imada, Kato, & Kon-
ishi, 2014). surp is surprisal that was computed using GPT-2
models (Radford et al., 2019).7 To determine the surprisal of
each phrasal unit, following Wilcox, Gauthier, Hu, Qian, and
Levy (2020), the cumulative sum of surprisal assigned to each
sub-word was calculated. phraseN, lineN, and screenN are
indexes of the positions of each phrase presented to the sub-
jects. prev is fixed is whether the gaze to the previous
phrasal unit is fixed or not. All numeric predictors were z-
transformed.

First, the baseline model was fitted, and data points beyond
three standard deviations were removed based on the distri-
bution of residuals, which left 182,304 data points in English
and 8,903 data points in Japanese for final statistical analysis.

We constructed four separate models by adding each of
the three Composition Count-based and the one Node Count-
based predictors to the baseline model individually to inves-
tigate how much each predictor contributes to predicting hu-
man reading times.

6https://github.com/IlyaSemenov/wikipedia-word
-frequency

7https://huggingface.co/openai-community/gpt2 for
English and https://huggingface.co/rinna/japanese-gpt2
-medium for Japanese.
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Figure 4: Results of Composition Counts and Node Count across the Dundee corpus (English) and BCCWJ-EyeTrack
(Japanese). Bar graphs displaying the coefficients for the predictors based on Composition Counts or Node Counts within
the Dundee corpus and BCCWJ-EyeTrack. The x-axis and y-axis represent complexity metrics and estimated coefficients,
respectively. Colors correspond to complexity metrics: red = Function Application (FA), blue = Function Composition (FC),
green = Type Raising (TR), and grey = Node Count (NC). Error bars indicate standard errors, on which p-values are presented.
The log-likelihoods of each model were as follows: in the Dundee corpus, −123048 for FA, −123059 for FC, −123064 for
TR, and −123045 for NC; in BCCWJ-EyeTrack, −8861 for FA, −8872 for FC, −8859 for TR, and −8876 for NC.

Results
The results of Composition Counts and Node Count
across the Dundee corpus (English) and BCCWJ-EyeTrack
(Japanese) are summarized in Figure 4. The x-axis and y-
axis represent complexity metrics and estimated coefficients,
respectively.8 Colors correspond to each complexity metric.
Error bars indicate standard errors, on which p-values are pre-
sented. In order to address the issue of multiple comparisons,
the α-value was adjusted using the Holm-Bonferroni method.

There are three main results. First, all predictors based on
Composition Count were statistically significant, demonstrat-
ing that distinct syntactic operations of CCG have indepen-
dent and cross-linguistic contributions to predicting human
reading times. Second, in contrast with Composition Count,
the predictor based on Node Count reached statistical signif-
icance in English, but not in Japanese, indicating that Node
Count turned out not to be robust cross-linguistically, which
is rather surprising given that the effect of Node Count has
been robustly observed for English in the previous literature.
Finally, both FA and TR exhibited positive effects, while FC
showed negative effects, with the relative magnitude of the
effects being FA > TR > FC, despite the absolute magnitude
being different across both languages.

8The magnitudes of the coefficients appear small, but this will be
largely due to the log-transformation applied to the dependent vari-
able, reading times. Compared to the coefficients of other explana-
tory variables, these values are not inherently small. Specifically, the
scale of surp is 10−2, and for dependent, it ranges form 10−3 to
10−2.

Discussion
All Composition Counts we proposed in this study to more
precisely quantify the computational costs of individual syn-
tactic operations significantly predict human reading times in
both English and Japanese, suggesting that the operations the-
oretically licensed in linguistics are directly applicable to hu-
man sentence processing. In addition, we found that, while
Node Count in English contributed to the prediction of read-
ing times, thus supporting prior studies that have utilized this
metric in modeling neural data, its predictive utility does not
extend to Japanese reading time data. This discrepancy, not
previously reported in the literature, suggests Node Count is
not a robust predictor for capturing human sentence process-
ing costs. As to the effects of the three distinct Composition
Counts we examined, the relative magnitudes were found to
be consistent across these languages.9 Furthermore, owing
to the Composition Counts, we have been able to detect the
processing costs of each syntactic operation. In the follow-
ing, we will delve into theoretical discussions concerning the
implications of our findings for these operations.

9Here, we have yet to ascertain why the absolute magnitudes of
the coefficients are different between English and Japanese. One
possible explanation may lie in the theoretical analyses that the CCG
parsers of the two languages assume. Specifically, case assignment
and inflection are analyzed syntactically in the Japanese CCG parser,
but not in the English CCG parser. Another explanation would be
related to the characteristics of the datasets; for example, Shain, van
Schijndel, Futrell, Gibson, and Schuler (2016) suggested that the
limited number of participants or complex structures in the Dundee
corpus may obscure the detection of processing costs associated with
human sentence processing.
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Function Application (FA) is the most fundamental oper-
ation of syntactic operations in CCG, commonly used for
integrating arguments. In both English and Japanese, the
processing costs of FA are notably large and positive. FA
exhibits similarities to the F-L+ operation of the left-corner
parser utilized by van Schijndel and Schuler (2013) both in
terms of theoretical properties and the timing of its applica-
tion. The F-L+ operation, as van Schijndel and Schuler noted,
bears resemblance to the integration process in Dependent
Locality Theory (DLT, Gibson, 2000), wherein a processing
cost is incurred during the integration of a word into an in-
complete parse. While there may be variations in the pre-
dicted magnitude of these costs, the anticipated timing for
the occurrence of processing load is similar. In DLT, the
integration cost is known to incur a positive cost in read-
ing tasks (Gibson, 2000; Grodner & Gibson, 2005; Gib-
son & Wu, 2013; Levy & Keller, 2013, but see Konieczny,
2000; Vasishth & Lewis, 2006). In corpus-based studies,
while Demberg and Keller (2008) observed a negative effect
of DLT in the Dundee corpus, Shain et al. (2016) found the
effect to be positive in the syntactically complex Natural Sto-
ries Corpus (Futrell et al., 2018) (but see Shain & Schuler,
2018). These align with our finding on the positive process-
ing cost of FA. Regarding the F-L+ operation, van Schijndel
and Schuler found a significant negative cost in the Dundee
corpus. However, they suggested that the operation might
capture an anti-locality effect (Konieczny, 2000). Our model,
incorporating dependency relations as one baseline predictor,
attributes anti-locality effects to these relations, thereby inter-
preting FA costs as positive.

Function Composition (FC) is an operation that merges
complex categories, typically applied to combine a subject
noun phrase (NP) with a verb in English and a subject NP
with an object NP in Japanese to an incomplete parse dur-
ing incremental processing. Semantically, FC demands mul-
tiple beta-reduction steps, making it theoretically more com-
plex than FA, which involves just a single such step. How-
ever, contrary to the intuition, the effect of FC was minimal
and even negative in both English and Japanese. This find-
ing challenges the assumption that theoretical computational
complexity necessarily translates into higher cognitive pro-
cessing costs. Nonetheless, the critical insight is that the fre-
quency and timing of structural-building operations, includ-
ing FC, can sufficiently predict reading times, which suggests
that, as Berwick and Weinberg (1983) pointed out, the dis-
tinctions of grammatical rules may be preserved as distinc-
tions of parsing operations.

Type Raising (TR) is a unary operation that is applied to
NPs directly combined with verbs. The effect was found to be
positive. This aligns with prior research showing the positive
processing cost of Type Shifting, which is theoretically simi-
lar to TR, through neural responses to complement and aspec-
tual coercion (e.g., Pylkkänen & McElree, 2007; J. Brennan
& Pylkkänen, 2008). In addition, given that Type Shifting is
limited to the semantic domain while TR, within the syntax-

semantics transparent framework of CCG, also entails syn-
tactic considerations and thereby encompasses Type Shifting,
our findings suggest the general existence of TR applied to
noun phrases as an operation that takes positive processing
cost.

Furthermore, our results intriguingly suggest that FA, a
theoretically fundamental operation, incurs the highest pro-
cessing load, challenging the view of Pylkkänen and McEl-
ree (2006). They, adopting Heim and Kratzer’s (1998) se-
mantics, argue that FA should be both preferred and the
least costly in processing compared to other operations like
Predicate Modification (PM), citing psycholinguistic research
that argument phrases are processed more easily than adjunct
phrases (e.g., Clifton, Speer, & Abney, 1991; Schütze & Gib-
son, 1999; Kennison, 2002). In Heim and Kratzer’s frame-
work, FA is used for argument phrases, whereas PM is for
adjunct phrases, thereby implying a processing preference for
FA over PM. Pylkkänen and McElree also hypothesize that
the processing costs might influence their structure-building
preferences, predicting FA to be the least costly. However,
contrary to their prediction, our findings suggest that FA is,
in fact, the most costly operation. One possible reason is that
Heim and Kratzer’s semantics do not directly predict process-
ing mechanisms during real-time sentence comprehension.
Therefore, the observed processing efficiency for arguments
over adjuncts might not translate to a preference for FA over
PM. In CCG, FA is used in processing both types of phrases.
If we consider a left-branching structure incrementally con-
structed, adjuncts attach at a structurally lower position than
arguments, requiring more FA at that time, which may ex-
plain the dispreference of adjuncts. Hence, our study suggests
that fundamental operations may not always be less costly,
and the processing costs of building structures could underlie
their preferential use.

Conclusion

In this paper, we introduced a novel complexity metric
dubbed Composition Count to investigate (i) how much dis-
tinct syntactic operations of CCG contribute to predicting hu-
man reading times, and (ii) whether the same holds across
languages. The results demonstrated that distinct syntac-
tic operations of CCG have independent and cross-linguistic
contributions to predicting human reading times: FA/TR and
FC exhibited positive and negative effects, respectively, with
the relative magnitude of the effects being FA > TR > FC.
In contrast, Node Count turned out not to be robust cross-
linguistically. These results strongly suggest the importance
of Composition Count to dissociate distinct syntactic opera-
tions, not whole syntactic representations, and understand the
computational system of human sentence processing.10

10Code for reproducing our experiments is available at https://
github.com/osekilab/CompositionCount.

302



Acknowledgements

We thank Shinnosuke Isono for his helpful feedback. We also
thank the three anonymous reviewers for their insightful com-
ments. This work is supported by JSPS KAKENHI Grant
Number 24H00087 and JST PRESTO Grant Number JP-
MJPR21C2 and JST SPRING Grant Number JPMJSP2108.

References
Abney, S. P., & Johnson, M. (1991). Memory requirements

and local ambiguities of parsing strategies. Journal of Psy-
cholinguistic Research, 20(3), 233–250.

Asahara, M., Maekawa, K., Imada, M., Kato, S., & Kon-
ishi, H. (2014). Archiving and analysing techniques of
the ultra-large-scale web-based corpus project of NINJAL,
Japan. Alexandria, 25(1–2), 129–148.

Asahara, M., & Matsumoto, Y. (2016). BCCWJ-DepPara:
A syntactic annotation treebank on the ‘Balanced Corpus
of Contemporary Written Japanese’. In Proceedings of
the 12th workshop on Asian language resources (ALR12)
(pp. 49–58). Osaka, Japan: The COLING 2016 Organizing
Committee.

Asahara, M., Ono, H., & Miyamoto, E. T. (2016). Reading-
time annotations for “Balanced Corpus of Contemporary
Written Japanese”. In (pp. 684–694). Osaka, Japan: The
COLING 2016 Organizing Committee.

Baayen, R. H., Davidson, D. J., & Bates, D. M. (2008).
Mixed-effects modeling with crossed random effects for
subjects and items. Journal of Memory and Language,
59(4), 390–412.
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Bates, D., Mächler, M., Bolker, B., & Walker, S. (2015).
Fitting linear mixed-effects models using lme4. Journal of
Statistical Software, 67(1), 1–48.

Berwick, R. C., & Weinberg, A. S. (1983). The role of gram-
mars in models of language use. Cognition, 13(1), 1–61.

Bhattasali, S., Fabre, M., Luh, W.-M., Saied, H. A., Constant,
M., Pallier, C., . . . Hale, J. (2018). Localising memory re-
trieval and syntactic composition: an fMRI study of natu-
ralistic language comprehension. Language, Cognition and
Neuroscience, 34(4), 491–510.

Brennan, J., & Pylkkänen, L. (2008). Processing events:
behavioral and neuromagnetic correlates of Aspectual Co-
ercion. Brain and language, 106(2), 132–143.

Brennan, J. R., Nir, Y., Hasson, U., Malach, R., Heeger, D. J.,
& Pylkkänen, L. (2012). Syntactic structure building in the
anterior temporal lobe during natural story listening. Brain
and language, 120(2), 163–173.

Brennan, J. R., & Pylkkänen, L. (2017). MEG evidence for
incremental sentence composition in the anterior temporal
lobe. Cognitive science, 41, 1515–1531.

Brennan, J. R., Stabler, E. P., Wagenen, S. E. V., Luh, W.-M.,
& Hale, J. T. (2016). Abstract linguistic structure correlates

with temporal activity during naturalistic comprehension.
Brain and Language, 157–158, 81–94.

Bresnan, J., & Kaplan, R. (1982). Introduction: Grammars
as mental representations of language. In J. Bresnan (Ed.),
The mental representation of grammatical relations (pp. i–
lii). Cambridge, MA: MIT Press.

Chomsky, N. (1957). Syntactic structures. Mouton.
Chomsky, N. (1965). Aspects of the theory of syntax. MIT

Press.
Clifton, C., Speer, S., & Abney, S. P. (1991). Parsing argu-

ments: Phrase structure and argument structure as determi-
nants of initial parsing decisions. Journal of Memory and
Language, 30(2), 251–271.

Demberg, V., & Keller, F. (2008). Data from eye-tracking cor-
pora as evidence for theories of syntactic processing com-
plexity. Cognition, 109(2), 193–210.

Fodor, J., Bever, T., & Garrett, M. (1974). The psychology of
language. New York: McGraw Hill.

Fossum, V., & Levy, R. P. (2012). Sequential vs. hierarchi-
cal syntactic models of human incremental sentence pro-
cessing. In Proceedings of the 3rd workshop on cognitive
modeling and computational linguistics (CMCL 2012) (pp.
61–69). Montréal, Canada.
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