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CORIOLIS COUPLING IN POLYATOMIC MOLECULES

... . WTTH PARTLY FROZEN VIBRATIONS
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]fDepartment of Chemistry, and Inorganic Materials Research Division of the
- - Lawrence Radiation Laboratory, University of . .....
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ABSTRACT

The "Eckart expansion of the normal mode,- proposed by Herschbach and
'?}Laurie, has been used to derive explicit form for Coriolis coupling con-_ d

fstants and first and second order expansion coefficients for the instanta—'

" neous moment of inertia tensor.v Several examples of "unfrozen vibrational

~.

wpmodes;in moletules of CEV and-C3v symmetry are’ treated with the use of

\{;Polo's p-vectors, and the results are given in. tabular form. e;L} - ,f[i
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Table I - Notation o hLOe

= coordinates of the ith atom in the principal axis .

system, chosen from x, y, z in cyclic order

= unit vectors along axes a, B, T

moment of inertia about ath axis

N

normel coordinates
'Wilson's s-vector on the ith atcm_&iSplacédfihfthe;.ﬁ; 
‘kth internal coordinate o i .‘ ,f.',‘§ jgf.f
= Polo's p-vector SRR Tl

T-';.xoz"mal vibrations through rotations about the ath axiéw_
Coriolis coupling matrix (3 x 3N - 6) .

internal coordinate matrix (3N - 6 x 1) j_  2;;,5
Wilson's vibrational G matrix (3N - 6.x 3N = 6) ;;leijﬁfr

) ) .. : ‘ ci ‘

traensformation matrix between nérmal and internal
coordinates. (3N - 6 X 3N - 6) '

denote the corresponding quantities for symmetry . :' |
coordinates o :




The calculation of Coriolis coupling constants, moment of inertia

.=corrections, etc.; requires a transformation which relates the 3N-6p;

'Jf}jc~ ;‘fﬁfa ..normal coordinates of the molecule to the 3N cartesian coordinates.zfln*

;"7;:.order to specify uniquely the normal vibrations and to minimize the :vi;.""L
”*}f?/?“? Coriolis coupling terms, six supplementary equations.arevused, fthe'so-'ij
h't:ﬁ%~called Eckart conditions(l),(g). These conditions define the moleculee T\
.Aﬂ;f,fixed axes in such a way that each normal mode of vibrationywilllcause no . .

.. net rotation of the axes (giving three equationszfor rotations about x, y;f

-«and z) and will leave the molecular center-of-mass at the origin (giving |
. .three more equations for translations along x, y, and z)

The application of these conditions is simplified.by the fact that we;:

:may take atomic displacements in any direction we wish, as long as we sub-p
. tract the corresponding rotations and translations of the axes resulting :
4:fvfrom our arbitrary displacements (3) In the following treatment, the atoms
Dtcgiwill be moved 80 as to change one. particular normal coordinate by one unit,
~ leaving all other coordinates "frozen". Since a molecule of N_atoms in thefygzvﬁ
alnormal coordinate representation is just an aggregate of 3N-6 ”sub-moleculesaé

or independent harmonic oscillators, such freezing is allowed, provided ve .

'v'include the effects of translation and rotation for each mode. Also, straight-a;;hn

fbrward.symmetry arguments will immediately tell us which modes. will be ;

Eckart-corrected, and.which of the six Eckart subtractions will have to be

i

‘ff applied in each case.. N




D

o ECKART DISPLACEMEN’I"é S

We consider the equilibrium configuration of the atoms to be specified

by vectors gi “with cartesian proJections ( , Bi,Yi) : The vibrating atoms

| o 6Yi) such that
e ) *

50,1 = C(.i '} 1 ’ etc-

_ The Eckart conditions state that'for'an'allowed;displacement::Ji§f¥,

15™4Py = O

. j-',-' . ) | .
i . g .
¢

.‘vai ry xpi '_;TGV.‘ oy

,?Equation (l) puts the origin of the displaced molecule at the centerfof
;the mass, and Eq,‘(2) requires that the rotation caused by pi will be zero
| The simplESt method for evaluating vibrational displacements is to .
?take some arbitrary,,convenient displacement of the atoms, calculate the e
;resultant translations and_ rotations, and subtract these from the arbitrary

~¥.setf If we ‘denote the arbitrary (uncorrected) set by primes and leave the - :

'{;:final unique (corrected) set unprimed,/theni'

0y = O % - 0Ty - .(59 x ¥y )_w NS
=9 @1-4;-;?—7&,'.(&' bl .Fi-_,fée,,)_ e (3),:

o where 61 is Just the displacement of the center of mass along the cth

"°f§l:axis given'by

2m (r v'x p )a/I

= Zm, (s Sri ri sa )/I -




Herschbach and Laurie defined the Eckart expansion of the normal
,mode ' as a set of the Bot.i

increments which change a particular normal_»
mode one unit ’ while leaving ‘the other coordinates unaffected " i‘rozen :

(h) From the transformation from internal to_ 'normal coordinates

joo o S S = z l 2 oooo3N"6 |
m//j {“; o ]"55 k =1, th Qt ,_, L

:fwe get, letting Q =1, and all other Qt Jf

‘j Z: LKt 6, Iks

such that this equality will hold. An explicit form can be obtained in terms*

of the: p-vectors introduced by Polo (5) » which satisfy

)

.in wh_ich the it_h_ atom moves. The i’orm of the p-vector depends on the type '

its magnitude is such as to change S by one unit leaving all other coordi-"‘

k.

Y nates unchanged. The propertles of the p-vectors and procedures for evalua-

= ting them have been fully discussed by Polo (5) and further illustrated in o
the examples treated by Herschbach and Laurie (l&)

The various vibration-rotation parameters are’ readily evaluated :f:'rom the ‘

R Ee}:art expansions(h)., (6) ’(8’)).. The Coriolis constant linlcing normal modes

3s and t through rotation about the ccth axis is given by

v"afg st = zi 1(8B 8Tit 57198 t)fi'




wljm '
3 _ ©  The coefficlents in the expansion of the instantgneous moment of inértia
3 | tensor, o
S, ~ TaB TaB aB T s s B s,t Q‘t o
&g = P 1Ty (B BB, *+ Ty -&ris)‘& S
af *_ % ,
. 8g T -Zimi(a'i BBy *+ By Boyg) Lt
Ags = ;imi [(Sﬁis) . (5‘{18) ] R
A%y 4By 80:. 58, -
.. 88 v iS- \f
Fina.lly, the centrifugal distortion constants are given by (___ )
/“ aa'B Tb

) l - Y . .
Tapd T Th TR IBB R Tss. 8“2° “%h

- .In many examples ;Lt is found that the major contributions to’ the moment

**" of inertia corrections, Cériolis coupling constants, and rotational distor-

tion coefficients arise from the low-frequency vibrational modes. Thus it .
. is of interest t0 formulate a method. treating a. mblecular model in which all
-but one or two of the 1ow—frequency modes are frozen. We shall carry this

L+ out for various modes of branched planar WXY,

2, tetrahed.ral WY /N and.

22

" pyramidal XY3 molecules.

BRANCHED FLANAR WXY, MOLECULES .

Symmetric Angle Bend

Figure l(a) ‘shows ‘the numbering of the coordinates and. the atoms.. The

z-axis is the out-of-plane axis, and. the 3( ax:ls is along the C symmetry a.xis

: ; 2
-j,'-of the’ molecu.’!.e. ‘I'he P vectors are chosen ao as to change the 1-2-3 angle

1

; ‘P (}) ) by an amount ZZS From Table II we see that the only Eckart correctrionfj
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7. Table II Symmetry Speciés 6;,1515@:* WXY2 E Tt I S
: L R I o o  Coordinates and Eéica.rt Co?rections & A ‘ '

. . -y

;
4

r12{='r23§ the z axis 1is out_offpléne,ﬁfhe'y axis along the .

ﬁf}AfSymmetry_axis.’li
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for this A1 vibration will_involve translation of the center of mass along

-

B TTST the symmetry axis, and Eq.ﬁ(h) gives the set of arbitrary displacements as

N 1/2
Srisb

T (e21 X e?)xé

fl

| -arés -2 1:/21, @23’x ?‘P)"(és B S

1/4;

. where r- is the 2-1 and 2-3 bond length, and the factor of 2 ' normalizes:.l:i

5 + 8! ) Here, € and e23 are unit vectors‘

“ffalong the 2-1 and 2-3 bonds respectively, and eq>— (e21 23)/sinq9 is a

j‘the change in.xl -1/2 (S

ilif? .unit vector along the z axis.

The cartensian projections of these vector displacements are obtained
o from the. dot products

. | ' — v - : e ..' ,’ ‘. ‘ _" -
S Xy =2 r‘és (}62_1_4_?,‘, ﬁq)._-; e

The set of nonvanishing projections generated'in this ﬁ&y,ﬁfdrz_nff

o= 1/2 @., are

e e g b a9 e o

L ey - 2“1/2r X, cos a. e

for i—l (upper sign) or 3 (lower sign), and

ayis> %/2 rl? ‘8in a.fﬁ

S j_for-i=l;3. The- center of mass has moved along the yhaxis by'an amount

'5;}3where m’é'mi = m3 is the mass of atoms 1 and 3, and.M is “the total mass R

; },2m + m, +m. The rotational corrections are zero since none of the rotations‘
-! transform as A1 _

: After subtracting the center of mass motion from'the y coordinates of .

each of the four atoms, we have the Eckart expansion (io)

&




Bx, =+ o-1/2 'rlfzg cos a -

“sign)s

o SRR .Q:f'«.for 1=2,4;
'1/2 .5(' (l 2m/M) sin a. for 1=1,3;

-2'1/2 i (m/M) sin o for 1=2,k4;

0 for -1=1,2,3,4,5.

=7x* X * = x x), ¥ —o, 4 —o(for1—1,23,h)

|

by
XX Yy

. B .S ' :‘:‘ . -,«»;“., :,-.r,-;v:_Aj'

2m (ﬁyl )2 + m2(5y2 ) + mu(ﬁyus.

2m(6x )

A =’A FA =
- B8 28 88 P R

't;ransform as Ao Lo S

BV

From Polo s results 5. i'b is readily seen that when a.'Ll other coordinates

' ":,‘.for i—l(upper sign) » 3 (rlo»wezh"_

of the same ‘symnmetry. are frozen, ‘the ﬁés element for the uni‘rozen coordina‘bé




o
-F?i; ?{;.;5f:.ﬁ;f‘ :‘Gef ii;l pis .[}ax) + (ay) + ( Z)J /M ‘r:im: ':fhlth
e [(bx)E‘/I + (by) I + (b )2/1 J .. -

.. where . ... ¢ ST

zmipi = s 4' ,

- suf

‘f°ﬂIh:thé;Preseht case, ve set all the £ - = 0 except the diagonal element
o (Qcéé)—e =mr2 [l_—(‘am/M)sinea.j o

~__af,ncl"thi‘s relation was used to obtain the resulti A,:; = 1;._,;".‘ TR

Out-of-Plane Bend v},aA‘

As another example we will cha.nge the out-of—plane a.ngle 6 (J ) of;fj
“.:; 132 syxmnetry shovn in Fig. l(b) by taking pe = eqg R, e.nd. displacing atom g

. ’+ by g
, A . . arht e‘PR £ : . .
and. leaving Sr ' -0 Ifor i=1,2,3.

'Ihe cartesian projections are. then tht 8y,+t = O, and Bz% 5661;"'

This mode 1nvolves a tra.nslation a.long the z-axis by an a.mount

51 = Rdt .'

: ‘and a rotation about the x-axis by an angle

s a

The final displacements are 'then : b

axit.;,o,}f ' for 1-1,2 3,h;;*,

Syit = °,iil7*”

R , : _5for 1-1,2 3k  lgf‘
‘ 5 1t =,'muRJﬁst(l/M+y*vﬁ/I )

jfor i=l,2 3 ﬂ:j_._gLf




o

- 5zh'tv= RSC6t (l-mh/M-m'h}’ue/Ix)o;t'rj,s‘ . ' L

: ihg B._e'lem.ents can be obtained in the seme stralghtforward maxinze_rof"::;i'hus

L e - %}; soyand e
L | B = (anylﬁzlt-l*mey*ﬁz -*-mhy'ﬁ‘ézut ot :
- i‘he only nonzero first order correction is aZ since only the prodnct
B . yz ',,tr_ansfo'rms as B,, and weA'have | ” B 3 v ‘
aZz = - (amy, letﬁzye Szat*muyuszht) ° |

the s:!mple form Att = Aﬁ: =1, as found. from Eq. (79.), and i
-2 = o : Ty i~

) = mhR (l-mu/M - mhyu /Ix)o P ) X

. . . - : . t

Antisymmetric Bond. Stre’cch» o

'1 {A‘Ihe proper p vectors for this BJ. mode are. shown :Ln Fig. l(c), a.nd their

explicit form 18

- .o 1/2
=R ey
PP VLB
P37 BT e

,\‘

'v'_wher'e 'the‘ factor of 2'1/ 2 . insures that the displacemen‘b ofa& is unity.

The Eckart correction involves a translation along the x-a.xis of
l/ 202 (m/M) sin a

o :land. a rotation about the z-axis by _ Lo

8, = 21/2<=€ (m/I I x:L cos a - yl‘ sin a.) -

The unique displacements for this mode are tbtainedsdn the éame manner - .

L as before, and the results for this mode, as well as those for the symmetr_ié 2 ;

angle bend and out-of-plane bend, are given in a convenient form in Table IIL. t



 TABLE III

Corrected aisplaeements of atoms in the WXY, molecule. The rovs give L
the cartesian- components of the displacements ’ and the columns give : " .

. the atomic numbering.

;1/2' _
ras

cos @ o 2_1/2 riés‘c;os'd. 0

1/2 "f'hr sin a [1-(2m/M)] A_ 1/2{1 (m/M) sin a sameas 1 | ._21/2:,6 (m/M) sin @

+21/ 2%‘ (yl*a/I ) " : +21/ aofb{ (ye*a/I ) | “ - *‘ +21/ 21 h (yh*a/lz)

72, -z,

‘— : -llzi COS & - 2 /Ei (xl*a/I )

sin a.[l (2m/M)] -21/2 r.,'f Gsin cn(m/M) - seme asl e :sa.me as 2

‘2-1/2’thrcos ‘c:, +21/2°4-&r(xl*a/Iz) ‘0 .

8 As before,

1 3

21 23

.‘_;1, B

= * Ly %
s R r2h’ ‘and a - m(xl cos a yl sin, d.)

~0T-

g (/) em zaa/m-ym/;,;s*‘**'- e st Gomfemp®n)



Since R transforms as B

1) ve have B, '} as" the »on"ly"non-_zero':element

. -

zr'= Qm(xlfsylr) ey*e Sx r " mhy*uaxu

R

Mso s since the product Xy transforms as Bl, we obtain only aryv‘a.s' .tne.

first order correction, and we have

xx 2
= el
Arr 2m(yl) , o
Yy .
AL =2m (le ) + m2(5x ) +: mh(Bxhr)
R . S Ayy =1
rr rr ‘rr

the S N
whereo\cd} ‘element for this coordinate , (r-lt)

(G{M)-z =m {l—(Qm/M) sine—w:--'- (am/Ic )(xl+cos ait ylr :sin.q,) }

j—‘was used in obtaining the last result.

Coriolis Coupling Constants o T R

';‘

In order for two vibrations to couple via a rotation, the product of

':'the representations of the vibration must transform as one of the rotations.

1

-In our case, the Al and B vibrations couple via § since I‘(R ) = Al x B

y
1 1 2. vie &y

'HIBQ, the A and B, via ; oy’ and the B, .and B S
From Eq. (5) and Table III we can obtain the non-zero coupling constants:

'

C)sct = 2m(8yl Gzlt) + m (5y2 ) + mll-(syh 52)“;)
”'c:ri'-"'- 2‘“(5"15 t"’1r) 3 (% o ) - mu (%s sxhr) e T

5
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'TETRAHEDRAL WY,Z, MOLECULES

Methylene chloride will be chosen as a specific example of a tetra-'€;

", hedral WY2Z2 molecule and the p-vectors for it _can, of course, be generalized

,'uto other WY Z, molecules of Coy symmetry. The molecularzparameters for theu

| ilf vibrational modes can be evaluated as before, and ‘the modes chosen are the. -

«

§3three low-frequency vibrations, each in a- separate symmetry representation,
.'was:shown in Fig. 2°.2 . the Al symmetric Cl-C-C1 angle bend (v = 1548 cm ),ﬁ

‘Tf}theABQ symmetric C-Cl stretch (v = 2057 cm ), and the B

' the CH, group against the CCl

1

rocking mode of
plane (v 2673 cm l) (ll)

2

Symmetric Angle Bend'

The symmetry coordinates and Eckart species are given in Table IV.;>ln¢
"ﬂ_ythe A1 mode, the chlorines move in the yx plane with a resultant change‘in
;fthe l-5-2 angle EB GJL) as shown in Fig. 2(a)
= .If the S-l and 5—2 bond lengths are. denoted.by R then the appropriate

E“atomic displacement are

Sr]'_s =. -R (esl x e(?)oq[

5r25 = + R (e52 X e(p)jzs

- where eq =(e x e5£/sin 2B is a unit‘vector alongithe'out-of-plane'iﬁaxis.
The cartesian proJections and the subsequent Eckart corrections can f

'y be - conveniently dbtained‘by'writing the projections of each of the unit

'vectors as elements of column vectors. Thus o

(O, sin B, -cos B) ‘e

5 (O,-sin B, ~cos B)
"J', (Pn (1: 0: 0) : Lo o

o




coordinates

Zo

is torsion

/ .

2

".between the YWY and ZWZ pl

Symmetry speéies of WY
-and Eckart corrections

TABLE IV

4

and

gnes,

‘is the redundant coordinate.

Eckart Corr.

Mode No.

)

3

Sf56f87+88

1/2 (s

)

- Sh)
-s6-s7)

M2

‘{1/2 (s5+s8

-2




_lh__

[
h

'1?Only translations along the symmetry z-axis transform as Al’ and this';mhnb-

«;;:translation is, just ‘ ,' ‘ o '_ t_ | B :

61, = iRv-thS(m/M). sin B |

::uwhere m1'= m., =m is the mass of the chlorine atoms, m3 = mh mH thei:d

‘ @_mass of the hydrogen atoms, m, that of the central carbon atom, and
M= 2m + 2mH + m, the total massSe

The Eckart displacements for this normal mode are summarized in Table

v. The displacements in the out-of-plane direction (along the x-axis) are

“all zero for this in-plane vibration Just as in the- A1 mode for the WXY

p * *

~.example., The equilibrium relations for this molecule are 2z, = 2 ,-.“r
S * * o xF ouk * k% x %
Z3— Z)_"': yl - "Y2 ) y3 "'y)_'_ "'Iys = 0) xlv = X2~,_.— xs & O’ 3 « -xll.‘_

The elements: of the coupling matrix are again all "Zexro since rotations

i'about the X, Y, and Z axes transform as B2, Bl and A2 respectively, while

only the A, mode is excited. . z

ey

The initial corrections are relatively simple for this mode, and the -

s

non—zero first and second order corrections are’

S
a)’ = am)zl tbgls + 2 Sz (2z3mH + Zg m )




g

Antisynunetric Bond Stretch o

1/2 (51

the p vectors :E‘or the asymmetric Cc- Cc1 stretch are shown in Fig. 2(b) :

The symmetry coordinate for this mode is % = -Sé)”, ‘and
Proper normalization of )f dictates that we divide the p vectors On atoms

1 and > by 24-/ 2, 50 that |
o - -J_'/g 'of" o ';'«v'ii";"

S g SRS
) r2t 2" e52°f9t .

in the WXY2 case, and the atomic displacements for this case are- given in

EEE S A . . N

Ta.ble Ve - ' ‘ ' e - R '
i The B2 mode couples only with rotations about the x-axis 5 and the -

coupling element is

th—zmyl 2y "2mZy ByltamH "3 55’31; 05~5y5t

K

The procedure for obtaining the Eckart expansion is identical to tha.t involved __




,'léf

.'The first result. follows i‘rom ‘the fact that only the vz components of the

{:‘ﬂh j,,;,.,'moment-of-inertia tensor . transforms as ‘B, 0 and the last relation from the '

vibration s being in the yz plane. afg9 element used in this last

result was found to be

(&, )"‘ m[l-(Em/M) sinB-v :2/'1‘,;17'.?_7

“where a = (yl. cos_fo*-vzl ,_‘Ej»_in B)-v .

CH Rocking Mode '

The coordinate J in Fig. 2(c) and 'I‘able IV defines the rocking motion

‘ T. ‘
'-_"of the CH2 group against the CCl plane ) and is given in terms of the » ‘
H-C-Cl angles € (where c_‘os € = e e € =' - cos o cos B) ;

,&7 (s +sB-s6-s)
o "_:'However, in order to insure that we have a set of independent coordinates s

'“‘:we must’ eliminate the redundant coordinate )5{ by setting it equal t° zero.

(ﬁ)n.
j;'Replacing the combination ~(85 + s » by s5 .

s '#7-‘ S;+8e .

The appropriate displacement vectors on atom 3 are given 'by

+ 88, the independent coordinate

3r =5 ;_‘(e53xe2)/cos \!! .‘ .

‘i'or a change of one-half unit in S5’ and

Ba 4 R
P 8 lr '(e x e )/cos -'\yg..
. for a change of one-half unit in’ SB’ vhere cos \lf = e52 (e ) / sin e. .

The net displacement of atom 3 will be the sume" oi’ these two vectors,

-'and if the appropriate eross. and dot products are calculated with the aid of '-

2

¥y EQv (lO) and the relation e53 ( sin Go 0: °°3 ﬁ")-v we. get




Ll gt e L e st e e d s ooyt g e i o et ar e AT W R o i et " - - A e

-.-'.'resultaht_"'-'5+;8 rsinel
qp3",': - '3r 3r Qsina.cosB

(cos co, O, sin a.)

1

s ._'which is a vector in 'bhe X2 plane. :

cos 2a - 0 v,)sin.é‘a_ .
0.1 0

- sin2au. 0. cos2a

. a.nd we have ‘bha.t phresulftant §33 ‘.esull.‘ta._r;t s Or

' -p' resultant _ r sin €
4 , 2 sin o cos B

(cos a., O, -s:ln a.)

The Eckart corrections are

,"8T,v=1;sin'e j‘_lj
¢ fsinacosB M

7
_r sin eiTr.", My %
, 86 = ——— (Z
7y “sinacos B Iy'

" where the -mo‘re’c"onvenient' notation is i

%
cos’*a,- x sin a.)

"'c r sin‘e/2 sin o cos ﬁ

*
d.-(z cos a4 - X

3 sin cc)
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=" L 2‘“H"3 oy o, B, g O f
= 2m(8x ) + 2mH(5x ) +m (5x )
AZZ =1

e 'AVV A

, _ with the relation N R

1'» Coriolis Coupling Constants

_ From the direct product representations , the A.L mode (8) can couple

through rotations about the y axis with the Bl mode (r) 3 the Al with the :

" B (t) through rotations sbout the x exis; and the By with the B2 mode via

' AN rotations about the z axis. ‘l'he non-zero coupling constant will then be

Gsrr‘ 2m(ﬁlsaxlr) * au’H(6“'7"3.55x3:r'). + mc(62538x5r)"

Y om - ‘Bz By..) - 2n (8a, By, ) - m_(bz, By, ),
g = 2By By - Bz Vi) - 2oyl ?3s‘y3t) mc('zss yst)’:

bat =
Z . .
€F, = -Em(Oyy By ) -2y (g g, ) - m (BB, )
;;e:.ﬁgfff B ) PYRAMIDAL XY, MOLECULES o

. As.a further example we examine a degenerate low-frequency mode of a
" pyramidal XY3 molecule with C3 symmetry (e.ge, NH ) (12). The column vectorv‘
" notation will be useful here, and the degenerate asymmetric stretch ‘ :

30 -1/2 B
c \&5 =6 / (QSh-S -86) which transforms as the x coordinate of the degenerate

S ,v‘pair (see Fig. 3 and Table VI) will be the excited coordinate. Since unit

- displacements in Slr' s and S6 will cause a total displacement of 1&/ J in

>
' SS’ the p vectors will each be divided by M\r- to get the unit displacement k

-in j



C'orrecté_d iisPlac'emeni{éa of 'a.tom‘s_ in_'CH2C1é.a

-2c xii{tcos oL(mH/M)

T n ECeal) el X ol s
' _. -2co‘f (de z /I ) | : S _gc ‘x'%t(m}{dzf/Iy) ST e "Z?(t(mnd ! /I )

S R N

o Byl ._"‘:-1/205 sin B( l+2m/M) sa.measl | 21/2o£’9rs1n B (m/M)j"'il same as‘ 3 o l/eoégrsin B (m/M)
+21/2of (mb 2 /I ) +21/ 26€9r(m bz /I ) E | " +21/ "‘oC (mb 2 /I )

=.6-;..

i

A e s ), = 3

-1/202_’ cc;; ‘B' - A
1/205 (mb yl/I )

~ The definitions are b = (y cos B+ 2z, sinB); c =r sin e/(2 sin a cos B); d é (z, cos a-"x," sina); € is . =
the H-C-Cl angle; a andB eFe one-halflthe C1-C-Cl and H-C-H angles respectively. 3 T 3 e

a




. -20_ ’

. Sl 8;' = :’;; _2 (61/2/1&) ehloﬁ'hs ' |
' 23,—(6 /h) ehefhs

s ., A=(61/ /1,) ehsoﬁhs g |

S where the ugit;t,_ve-ctors havg_;the.)projectiOns o ‘

ehi = (sin B, :O,_ -cos B), €, = .
= (- 1 sin—"B,' -\%- sin B, =-cos B) .

2 T AR o :
L eue R(+120 )ehl (-% s;iri_ﬁ,\l-—g sin B, -éos’, ;_3)5" S

o Where R< -120° ) and R(+l20 ) are matrices similar to that in Eo. (11) repre-:,.“f’.‘_

; jsenting rotations of ~120° and +120 respectively in the xy plane, and B e

AR :'1‘ ““:I.s the’ angle between el&l and the negative 2 axis as shown in I‘ig.‘ 3.'
_' ., E ,"_.'terms of the XYX face angle 8, we can shown that sin B=-2(1- cos 6)/9

~ For this member of the degenerate pair:, we obtain the corrections

bt e -<3\!€/u>{s<m/m> A
| thm | |

o :v,se,y { > 2 sin-BAxl_:oos..thadcjos B I
‘.; where m—ml —m and"z:zl = 2, ="z3.‘, :

The-lset of .-displacements areA then.._w ol

\/g- % Sin ""1 + 3 - — L‘As(, PR

zﬁ




'.IZABLEVI. Symmetry Speciés'of Triangular
- ' Pyramidal XY Coordinates and
- Eckart Corrections . '

. B Eckart Corréction Mode »N6.~
ot 1 '
. - Z :
R )2
SRR L R 6 | (esh 55'36)
‘ : SRR 1/2

2

(S




-22.

sin B(-l + = ) - £ e

\F‘.r

8x28 . 5x3s

M

'}jffiij;);'f 5y2s = -5y3 = -(3‘/-78)¢fz sin B

i}

Byl 6yhs

\/-T_ °Z1 cos B + xl £ .
y o ’_‘,.,

L e

, o 822 §z_3 =5 | &), cOS B + »‘ , _21y

bz, =

‘ Szh

]
o

“where the' substitution:f =(-2z sinB - % cos P+'x, sin B ) has
';r’been made. R Y - ST
For the E mode, Ty

e

‘ L ) . % . . ':‘ v'.'“"' ) * ‘.-’ .," . B *‘ . \
B =mz (bx é + 28x,, ) -Ag§1. 15_;.2mx2_ 8z, + mz) 5¥h3{1

A'a‘b=’-mz (6x18+28x )-m& Sz. -2mx2522>-m2h5x1‘: .
:_"‘:,where use has been. mad.e of the relations y2 = (V 372) xl’ Ye = "Y3: .x = x3 ’ 3

» o AJ.SO, '

Xz
- A
ss

_m(s; .Szig.f428x2 522;);;1. -
[(sy ) + (8z )2] +fm(6z )2

AZ}S' [(Sx ) + (sz ) ]+m [(leS

.

- with the:af " element givenr as -

’A"_(xuu‘)';a =§m[ g '.g sta” B ; % ( ‘;‘ z*

sir;:-‘B +.% - cos B::!-jxa “cos’ B)°|

.
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! Displacement 'vectors‘ and coordinates for: piéhar WXY2

. "molecule.. S, + S_+ S
[ MOLECUIEr B3 T By T Po ,

" Displacement vectors and internal coordinates for CVH2'C1‘-

is the redundant coordinate.

‘_molecule.’v_ Thé rémaining aﬁgles _a.:;*e.S'5 = J_ 1-5-3;5.
86 = ,%[.?fs-h;KST = ‘g[;rs-h; and Sg =

- Displacement vectors

S and Sg are the 1-k-2 and 1-b-3

v o 5
:: ‘angles respectively, and B 1s the anglé bétween "che -

”
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-

mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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