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Genome-wide association studies (GWAS) have identified 
a large number of gene variants associated with schizo-
phrenia, but these variants explain only a small portion 
of the heritability. It is becoming increasingly clear that 
schizophrenia is influenced by many genes, most of which 
have effects too small to be identified using traditional 
GWAS statistical methods. By applying recently developed 
Empirical Bayes statistical approaches, we have demon-
strated that functional genic elements show differential 
contribution to phenotypic variance, with some elements 
(regulatory regions and exons) showing strong enrichment 
for association with schizophrenia. Applying related meth-
ods, we also showed abundant genetic overlap (pleiotropy) 
between schizophrenia and other phenotypes, including 
bipolar disorder, cardiovascular disease risk factors, and 
multiple sclerosis. We estimated the number of gene vari-
ants with effects in schizophrenia and bipolar disorder to 
be approximately 1.2%. By applying our novel statistical 
framework, we dramatically improved gene discovery and 
detected a large number of new gene loci associated with 
schizophrenia that have not yet been identified with stan-
dard GWAS methods. Utilizing independent schizophrenia 
substudies, we showed that these new loci have high repli-
cation rates in de novo samples, indicating that they likely 
represent true schizophrenia risk genes. The new statistical 
tools provide a powerful approach for uncovering more of 
the missing heritability of schizophrenia and other complex 
disorders. In conclusion, the highly polygenic architecture 
of schizophrenia strongly suggests the utility of research 
approaches that recognize schizophrenia neuropathology 
as a complex dynamic system, with many small gene effects 
integrated in functional networks.

Key words: GWAS/polygenicity/pleiotropy/empirical 
Bayes approach/molecular genetics

Introduction

Complex disorders such as schizophrenia (SCZ) are mul-
tifactorial and associated with the effects of multiple 
genes in combination with environmental factors. These 
disorders often cluster in families, have no clear-cut pat-
tern of inheritance, and have a high fraction of phe-
notypic variance attributable to genetic variance (high 
heritability). It is becoming increasingly clear that many 
genes influence most complex disorders,1 including SCZ.2 
In such a scenario with a very high number of risk genes 
(“polygenic”), each gene has a tiny effect.3 This makes it 
difficult to determine an individual’s risk and to identify 
disease mechanisms that can be used for development of 
new effective treatments.

Genome-wide association studies (GWAS) have iden-
tified many trait-associated single nucleotide polymor-
phisms (SNPs),4 but so far, these explain only small 
portions of the heritability of complex disorders.5 SCZ is 
highly heritable (0.6–0.8), but only a very small fraction of 
genetic variance has been identified despite recent large, 
successful GWAS.2,6–8 This “missing heritability” has 
been attributed to a number of potential causes, includ-
ing lack of typing of rare variants.5 However, it has been 
shown that a large proportion of the missing heritability 
is available within GWAS data when associations of SNPs 
are examined in aggregate.9 This implies the existence 
of numerous common variants with small genetic (poly-
genic) effects. These effects cannot be reliably detected 
with traditional GWAS statistical methods given current 
sample sizes. Thus, there is a need for innovative statistical 
approaches to identify polygenetic effects and reduce the 
proportion of missing heritability. Utilizing novel statisti-
cal approaches can speed discovery more cost efficiently 
than just collecting larger and larger samples.
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In this article, we will describe our recently developed 
statistical tools that are specifically designed for poly-
genic disorders, building on an empirical Bayesian frame-
work.10 These methods both enhance gene discovery and 
improve replication rates of discovered risk gene variants. 
This analytical approach is particularly useful for SCZ 
because of its high heritability, large missing heritabil-
ity, and evidence that it is highly polygenic1,2—a situation 
that implies that the majority of genetic effects are too 
small to be identified in traditional GWAS analyses.

Overview of Statistical Methods

Here, we briefly describe our statistical approach for 
uncovering more of the missing heritability of complex 
phenotypes using existing GWAS data. These methods 
have been described in detail in a series of studies inves-
tigating psychiatric11–13 and nonpsychiatric disorders.13,14

Q-Q Plots and False Discovery Rates

Q-Q plots are standard tools for assessing similarity or dif-
ferences between two cumulative distribution functions 
(CDFs). When the probability distribution of GWAS sum-
mary statistic two-tailed P values is of interest, under the 
global null hypothesis, the theoretical distribution is uni-
form on the interval [0,1]. If nominal P values are ordered 
from smallest to largest, so that P(1) < P(2) < … < P(N), the 
corresponding empirical CDF, denoted by “Q,” is simply 
Q(i) =  i/N (in practice, adjusted slightly to account for the 
discreteness of the empirical CDF), where N is the number 
of SNPs in the GWAS (or genic category). Thus, for a given 
index i, the x-coordinate of the Q-Q curve is Q(i) (since the 
theoretical inverse CDF is the identity function) and the 
y-coordinate is the nominal P value P(i). It is a common 
practice in GWAS to instead plot −log10 P against the −log10 
Q to emphasize tail probabilities of the theoretical and 
empirical distributions. For a given threshold of genomic 
control-corrected P values, “enrichment” is seen as a hori-
zontal deflection of the Q-Q curves from the identity line.

Enrichment seen in the Q-Q plots can be directly inter-
preted in terms of false discovery rate (FDR). For a given 
P value cutoff, the Bayes FDR, defined as the posterior 
probability of a given SNP is null, given its observed  
P value, is given by:

  FDR   P F P F P( ) ( ) ( )= π 0 0 / ,  (1)

where π0 is the proportion of null SNPs, F0 is the CDF 
under the null hypothesis, and F is the CDF of all SNPs, 
both null and non-null. Here, F0 is the CDF of the uni-
form distribution on the unit interval [0,1], and F(P) can 
be estimated with the empirical CDF Q, so that an esti-
mate of equation (1) is given by:

  FDR   P P Q( ) ⋅≈ π0 / ,  (2)

which is biased upwards as an estimate of the FDR. 
Setting π0 = 1 in equation (2), an estimated FDR is fur-
ther biased upward; if  π0 is close to 1, as is likely true 
for most GWAS, the increase in bias from equation (2) 
is minimal. The quantity 1  – P/Q is, therefore, biased 
downward, and hence a conservative estimate of the true 
discovery rate (equal to 1 FDR). Given the −log10 of the 
Q-Q plots, we can easily read off:

  − ≈( )( ) ( ) ( )log FDR   log log10 10 10P Q P– , (3)

demonstrating that the (conservatively) estimated FDR 
is directly related to the horizontal shift of the curves in 
the Q-Q plots from the expected line x = y, with a larger 
leftward shift corresponding to a smaller FDR.

Conditional Q-Q Plots and FDR.  We define the con-
ditional FDR as the posterior probability that a SNP 
belonging to a category c is null for a phenotype, given a 
P value as small as the observed P value. Formally, this 
is given by:

  FDR c   c cP P F P| |/( ) ( ) ⋅ ( )= π0   , (4)

where P is the P value for the phenotype, c = 1,…,C is 
one of C possible categories, F(P | c) is the conditional 
CDF, and π0(c) is the proportion of null SNPs in category 
c. We produce a conservative estimate of FDR(P | c) by 
setting π0(c) = 1 and using the empirical conditional CDF 
in place of F(P1 | c) in equation (4). This is a straight-
forward generalization of the empirical Bayes approach 
developed by Efron.10

In terms of Q-Q plots, enrichment of category c2 com-
pared with category c1 is expressed as a leftward deflection 
of the Q-Q curve for category c2 compared with c1. Given 
equation (3), this is equivalent to showing that the condi-
tional FDR is smaller for SNPs in category c2 compared 
with c1 for the same P value, ie, FDR(P | c2) < FDR(P | c1).  
Thus, by choosing a priori categories that result in dif-
ferentially enriched samples, a larger proportion of SNPs 
can be discovered for a given FDR threshold than can be 
obtained from typical (unconditional) FDR or P value–
based analyses.

Covariate-Modulated FDR

We have recently developed a methodology that can 
capture the combined enrichment signals from sev-
eral genomic factors, including 5′ untranslated region 
(UTR), exons, 3′UTR as well as minor allele frequency. 
Specifically, we are able to incorporate genic annotations 
and improve gene discovery with a covariate-modulated 
local FDR (CMFDR).15 This method includes a data-
driven re-ranking of SNPs based on genic annotations, 
and we have shown that this re-ranking increases yield 
(number of loci declared non-null) for a given empirical 
replication rate.
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Gene Discovery due to Genomic Enrichment

Using summary statistics derived from SNP associations 
of huge GWAS, we showed that functional genic elements 
show differential contribution to phenotypic variance, with 
some categories (eg, regulatory elements and exons) show-
ing strong enrichment (ie, more likely to have an effect) for 
phenotypic association.13 The enrichment of SNPs in genic 
elements of the genome (the 5′UTR and 3′UTR regions) 
was present across a wide spectrum of complex phenotypes 
and traits, including SCZ.13 This shows that SNPs in 5′UTR, 
in particular, but also in exons and 3′UTR regions are more 
likely to be involved in susceptibility to SCZ. Although the 
mechanistic implications of this discovery need to be fol-
lowed up with experimental studies, this information can be 
used in Bayesian statistical models to enhance gene discov-
ery by including information on the genic region in which 
each SNP is located, as this indicates how likely it is for each 
SNP to have an effect. By applying this approach to data 
from the Psychiatric Genomics Consortium (PGC) SCZ 
sample,16 we substantially increased the power for detecting 
small genetic effects, leading to discovery of new suscep-
tibility loci that did not reach threshold of significance in 
traditional GWAS analyses.13

Empirical independent replication remains the gold 
standard for confirming statistical findings. We tested the 
replication rates, defined as proportion of SNPs declared 
significant in training samples with P values below a given 
threshold in the replication sample and with z-scores with 
the same sign in both discovery and replication samples, in 
independent SCZ substudies from the PGC17 and found 
that annotation categories with the greatest enrichment 
(5′UTR, exons, 3′UTR) showed the highest replication rate 
for a given nominal P value, confirming that the observed 
enrichment is due to true associations and not to inflation 
due to population stratification or other potential sources 
of spurious effects (figure 1). These results are all based on 
summary statistics (P values, z-scores) for each substudy.

In order to illustrate the increased sensitivity and speci-
ficity for gene discovery, we obtained the publically avail-
able PGC SCZ sample.16 Applying the CMFDR method 
to the PGC SCZ sample, we identified a total of 86 gene 
loci (CMFDR < 0.05). The gene loci are listed in online 
supplementary table 1. By computing a posteriori effect 
sizes from the CMFDR model, we expect that a very large 
proportion of these loci will replicate in a SCZ GWAS 
of similar size. With the emerging results from the sec-
ond phase of the PGC SCZ working group, we will soon 
know if  this prediction is true.

Gene Discovery due to Pleiotropy Enrichment

The small number of genes relative to the vast number of 
human phenotypes necessitates pleiotropy—the influence 
of one gene or haplotype on two or more distinct pheno-
types. The value of pleiotropy for improved understanding 

of disease pathogenesis and classification, identification of 
new molecular targets for drug development, and genetic 
risk profiling have been recognized.18 But few studies have 
systematically investigated pleiotropy in human complex 
traits and disorders, and those that have have looked for 
pleiotropy only among SNPs that reach a threshold level 
of significance in one or both phenotypes.18 This approach 
fails to capitalize on the power inherent in pleiotropy to 
robustly detect weak genetic effects.

We applied our novel pleiotropy approach to assess the 
contribution of all SNPs from two independent GWAS to 
determine their common association with two distinct phe-
notypes. SCZ and bipolar disorder share several clinical 
phenotypes, and there is growing evidence indicating over-
lapping gene variants.6,16 We used this approach to increase 
gene discovery in these disorders, using two large GWAS 
from the PGC,6,16 where overlapping controls had been 
removed with same procedure as in the recent cross-dis-
order analysis.19 We discovered a very high degree of poly-
genic overlap between SCZ and bipolar disorder.12 We then 
used this information to increase the power of the GWAS, 
by including level of pleiotropy as a factor in the statistical 
models. This resulted in an improved yield (sensitivity) of 
genes discovered for SCZ and bipolar disorder compared 
to standard methods at a given significance level (specific-
ity).12 Thus, by applying the pleiotropy enrichment method 
and leveraging the bipolar disorder GWAS, we increased 
gene discovery in the SCZ GWAS. Note, while the power 
to detect nonpleiotropic loci is not increased using the plei-
otropy enrichment method, neither is power lost.

Simulations showed that a larger increase in gene dis-
covery would occur, using standard GWAS approaches, 
if  the SCZ sample was as large as the combined SCZ and 

Fig.  1. Cumulative replication plot, showing the average repli-
cation rate (y-axis), defined as P < .05 in the replication sample 
and the same sign in both discovery and replication samples, for 
schizophrenia (SCZ) substudies, for a range of discovery P value 
thresholds (x-axis). SNP, single nucleotide polymorphism; UTR, 
untranslated region.
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bipolar disorder GWAS.12 However, it is very expensive 
to recruit and genotype new samples; applying the new 
statistical tools to existing samples is a cost-efficient way 
to improve gene discovery.

Our results also showed that an estimated 1.2% of 
all SNPs analyzed are pleiotropic for SCZ and bipolar 
disorder. With approximately 1 million SNPs analyzed, 
this means that there are approximately 12  000 SNPs 
involved. This is very similar to the estimate from a recent 
large SCZ GWAS.7 This quantification of the polygenic-
ity further emphasizes that most of these variants must 
have very small effects.

The new statistical tools can also be used to investi-
gate genetic overlap between SCZ and nonpsychiatric 
diseases and traits to gain more knowledge about shared 
genetic mechanisms. There is a well-known comorbidity 
between SCZ and cardiovascular risk factors, including 
obesity, hypertension, and dyslipidemia.20 For each of 
these phenotypes, results are available from large GWAS. 
We used our pleiotropy methods to investigate polygenic 
pleiotropy, and found a striking genetic overlap between 
SCZ and several cardiovascular risk factors, particularly 
blood lipids (cholesterol, triglycerides). We leveraged this 
enrichment to boost gene discovery and identified several 
gene loci associated with SCZ,11 strongly suggesting that 
common molecular genetic mechanisms are underlying 
some of the epidemiological relationships between SCZ 
and cardiovascular risk factors.

Immune factors have been implicated in SCZ. By 
investigating pleiotropy with multiple sclerosis, a demy-
elination disorder with clear evidence for involvement 
of immune genes, we applied the new statistical tools to 
determine polygenic overlap. We found a strong genetic 
overlap between SCZ and multiple sclerosis21 and iden-
tified several independent loci associated with SCZ. In 
contrast, we found no genetic overlap between bipolar 
disorder and multiple sclerosis. Imputation of the major 
histocompatibility complex (MHC) alleles indicated 
opposite direction of effect in multiple sclerosis and SCZ. 
As most of the overlap between multiple sclerosis and 
SCZ was located in the MHC region, and there is pre-
vious evidence for large genetic overlap between bipolar 
disorder and SCZ, our findings suggest that the MHC 
region could differentiate between bipolar disorder and 
SCZ.

Polygenic Architecture: Implications for Disease 
Mechanisms and Clinic

The underlying biology of complex brain disorders such 
as SCZ remains mostly unknown. Structural magnetic 
resonance imaging (MRI) brain phenotypes are highly 
heritable (80%–90%),22 and a new cluster analytical 
method has shown how pleiotropic brain phenotypes 
cluster together.17 Previous work has shown how a selected 
number of SNPs can be used to identify genetically 

determined brain structure variation.23,24 Recent large 
meta-analysis showed how brain structure volumes can 
be successfully used in a GWAS, and SNPs associated 
with hippocampal volume were identified.25 By extend-
ing a twin study–based approach to a large MRI sample 
across different behavioral phenotypes, combined with 
our new statistical framework for analysis of GWAS 
data to identify polygenic effects, we expect to be able to 
identify genetically determined brain substrates related to 
SCZ and core disease phenotypes.

It remains a challenge to translate the new knowl-
edge about the polygenic architecture of SCZ into dis-
ease mechanisms. In a scenario with hundreds of genes 
involved, each with a small effect, it will be an enormous 
endeavor to extensively characterize the functional con-
sequences of individual gene variants. In addition, it 
would probably also be important to elucidate the com-
bined effects of the gene variants, which is difficult to 
test in standard techniques, such as transgenic animal 
models. Thus, SCZ pathophysiology may be best studied 
as a complex dynamic system, with a range of interact-
ing small gene effects integrated in functional networks. 
One obvious aim would be to determine if  there are con-
verging functional consequences related to pathophysi-
ological mechanisms already implicated in SCZ, such as 
dopamine neurotransmission, neurodevelopment, or syn-
aptic function.26 Such an approach will only be made pos-
sible by improved biostatistical tools and computational 
models. Further, recent evidence also suggests that stem 
cell technologies is promising for studies of human brain 
development27 and may be a new experimental approach 
to elucidate some of the functional implications of the 
polygenic architecture of SCZ.

A critical challenge in genetics is to be able to generalize 
phenotypic predictions and explained variance from exist-
ing samples into future datasets. Recently, Purcell et al2 dem-
onstrated one method for assigning polygenic risk scores 
by selecting SNPs according to significance thresholds. We 
propose to leverage our new discoveries of genomic anno-
tations and pleiotropy and their relative enrichments to 
better select plausible candidate SNPs for calculating and 
testing generalization performance of polygenic risk scores. 
Further, we will leverage more powerful statistical tech-
niques by building on empirical Bayesian mixture models, 
and preliminary results indicate improved prediction based 
on genomic annotation and polygenic enrichment. The new 
methods in combination with increasing SCZ GWAS sizes 
have the potential to produce a number of new insights into 
the genetic etiology of SCZ, and this could lead to develop-
ment of personalized medicine approaches and individual 
prediction of disease risk.

Supplementary Material

Supplementary material is available at http://schizoph 
reniabulletin.oxfordjournals.org.
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