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STUDY OF DYNAMICAL S-MATRIX EQUATIONS
WITH REGGE BEHAVIOR
C. Edward Jones
Lawrence Radiation Laboratory
University of Californis -
Berkeley, California

October 31, 1963

| ~ ABSTRACT

A detailed'sfudy of the modified N/D equations with Regge be-
havior, originally proposed by Chew,'is'made'héreino An exact version of
the dynamical’eqﬁatidn is formulated and it is shown to be of a combined
Wiener-prf Fredholmvtype. The principle of Maximal Analyﬁicity 6f the
Second DegreeAis demonstrated as a tool for defining unambiguoﬁsly and
free Of arbitrary parameters the dyhamical equations and their solutions.
at low values of angular momentum.  The so-called strip approximation
to the equations,.embodying a crossing symhetric-Regge representation,
is discussed and the validity of the approximation scheme 1s verified.
An investigation is made into the high energy behavior of the Regge poles
and residues which result as solutions to the dynamical equations in

both the exact problem and in,the_strip approximation.
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C. Bdward Jones
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October 31, 1963

' I. INTRODUCTION

Recent years have seen a number of attempts to formulate dyma.
mical equations for the strong-interaction.Smatrix based upon its-
_analyticity propertiesgl_lo)' The starting point of these attempts has
beén the Mhndelsfamvrepresentation(ll) which prescribes the analytic
structure of two-body amplitudes as a function of the invafiant momenta-
sqﬁared. The_éomﬁon goal of these pfograms hes been to prbvide a dyna-
mical theory of strong-interaction phenomena based entirely upon obser-
vabie S-matrix eie@ents and.their analytic continuation with no reference
t§ qn§ntum.fieldé. This basic approach was fir§t<pfoposed by'Hbigenberg.
in i9h§$12) .
| The modern attempts at an S-matrix theory achieve dynamical
Téontént thrdugh a bootstrap mechanism wherein S-maﬁrii elements are-
determined by integfal equations involving oth¢r S4matrix_eléménts,.
»These eqpatiéns gventuglly_fold;back 6n themselves and an all~ovef réf‘
quirement pf self-consisﬁencyvis iméosed. 1t is:the hope of fhe S-matrix

theorists that the feqnirements of self-consistency so imposed will
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eompletely and uniquely determine the full & matrix. .Novcurrent dynamical -
scheme works on such a grand scale and most practical calculations are
- considered successful if a sort of "local" self-consistency is achleved
where one or a few amplithdes generate themselves self-consistently.
| It is difficult to overstate the significance of the Mandelstam
_representation in the history of S-matrix dynamics. It 1s true that this

development had been foreshadowed by the work of Chew and Lowqj

)

Karplus
and Ruderma as well -as others--particularly the work on one—dimensional
dispersion relationé 5—-but it seems falr to say that not until the under-
vstanding was achieved by Mandelstam of the analyticity properties in both
_energy and momentym;transfervcould there be real hope fer a dynamieal
theory based on the S matrix alone.

| Few attempts at formulating dynamical S;matrix'equations have

‘been based on the full scattering amplitude; most efforts Droceeding'
through the simpler one-variable partial-wave dispersion relations.

Chew and Mandelstam initiated this work( 1) Within the framework of
partial-wave dispersion relations, the basic phllosophies and approxi-
mation schemes of S-matrix theory evolve§l6) These notlions could be
summarized briefly as follows: (1) Singularities nearest the physical
reglon were most important and dietant singularities could be neglected

in a firstvapproximation. (2) The left-hand cut arose from crOSsed
"channel processes, whereas the rlght -hand cut could be determined in the

'elastic approximation by unltarlty. Thus exchanged particles were thought

of as giving rise to the forces with the direct process being determined
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by unitarity. (3) Assuming the left-hand cut discoﬁtinuity, that is-the
forces or potential, to be given, a linear integral equation employing
- the so-called N/D method could be esfablished whose solution determined
the partial wave amplitudes.

Further advance of S-matrix theory awaited a bettér understanding
of the number and nature of the arbitrary parameters in the theory.
Caétillejo, Dalitz end Dysoé17)had_pointed out the presence of arbitrary
parameters in partial wave amplitudes due to the possibility of adding
"poles to the D-function (CDD poles), which did not alter the analyticity
‘or'unitarity of the amplitude. Such poles were identified with indepen-
"dent.stable or unstable particles (depending on the values.of the pole
parameters), By "independent' particles we mean those not determined
by a knowledge of the forces or the left-hand cut,

This arbitrariness in the partial-wave amplitudes could then
be linked to subtractions ngeded_to‘make the dispersion intggréls of the
Mﬁndelstam representation ‘conVergé° These subtraction terms could not
be determined by the doubl'e-.-spectral—functioh° Aﬁ.important theorenm
by Frqissaréla_establishéd that no arbitrariness could be pfesent above
theA'p-Wave and hence "independent" particles were restricted to be of
spin one or less.

In 1961 +the work of Regge on complex angular momentum showéd
howvéll the subtraction terms in potential theory where there~i$ ﬁo
arbitrariness could be formally determined,i and presen£ed the results

59

in a form which could be readily adapted to the relativistic probl
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Chew and Frautschic®) proposed on this basis that the relativistic S-matrix
contained no arbitrary parameters at all (except_perhaps for a single
mass to set the all-over scale). Recently,'this proposal has found a
wwore precise formulation in what is termed Maximal Analyticity of the
Second Degreeggl )Uhder ﬁhis pfinciple, the low angular momentum partisl
waves are to be determined by interpolation from high angular momentum
| va;ues. All particles in this view lie on Regge trajectories, none
being more elementary than‘any other. - | |
‘Pbstulating analyticity in angular momentum and that all par-
ticlesvlie on Regge trajeqtories.for the relativistic S matrix leads to
an understanding of fhe asymptotic properties of scattering amplitudes.
and,]ip‘principle, shows how all particle parameters are to be determined;:
vChew has récently proposed a set of fully Reggeized dynamical
S-matrix eqpationg?> These equaﬂidns haye been further Qeveloped by
Chew and Jones(lo).and a specific model for calculations proposed. |
In this paper we shall study the structure of thesé'équaﬁions dnd}
see_ﬁhat can be established about tﬁe nature 6f the solutions. We: shall
also write down én exact version of the equations and deﬁérmine when
'soiutiﬁns.exist.' It will be possible for us to éiamine thé.points of
différence between the exact equations and the approximate model(lo)
.ﬁhich'will'bé used in actuﬁi calculations,.'Mﬁnj Qﬁestiohs to be 1nv¢sti—
gated are relevant to both éhe.exact and model cases. |

One point to be investigated in detail is the manner in which the

assumed postulate of Maximal Analyticity of the Second Degree-~-that is,
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that the ﬁartia1~wave amplitudes be interpolated from high angular momenta
by analytic continuation--is to be enforced in practice. It will be seen
that the model equations(lO) {incorporating the new form of strip approxi-
mation) as written automatically embody this postulate.
| We shall also investigate what the equations predict about the
.high energy behavior of the Regge pole parameters. |

We now summarize the basic assumptions made and upon which the
dynamical equations herein are formulated and discﬁsseds

(1) Two body amplitudes are considered which obey the Mandel-
stam representation. .For simplicityland conﬁenience, the particles
are assumed to be spinless. |

(2) A Regge representation for the amplitude 1s assumed to hold
in each of-fhe thfee channels separately. That is, the partial-wave
-amplitude in each of the three channels as a function of the anguler mo-
.‘mentum £ is assumed meromorphic 1n the right half vﬁjplane Re £ > = % .

(3) We shall also assume that the residues of Regge poleé which
'reach.the right-half l—plane_vanish in the 1limit of high energies.
~Assumptions (2) and} (3) wilr enable us to establish a crossing symmetric
‘represéntation for the full amplitude in which the Regge asymptotié be-
‘havior for each channel is explicitly separated out with the rest of the
‘amplitude vanishing at infinity in each of the enérgy variables. This
representation is the basis for the Chew—Jones(lo) strip approximation.

In another section, we shall show that  the residﬁes computed from the-

strip equation do tend to vanish asymptotically.
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(4) We shall assume where necessary that the Regge pole positions
and reduced residues are real analytic functions with only a right-handl
cut. This fact has been proved in potential scattering (except when
trajectories intersect) by John R. Taylor(ee) and made plausible in the
relativistic case by Barutvand Zwanﬁiger§25)

(5) Maximal Analyticity of .the Second Degree as expressed by
Chew(al)is assumed.

Finally, we remark ﬁhat.little attention has been given herein to
the possible presence of cuts which reach the right~half £-plane, as
suggested by Mandelstamfgh) although some discussion on this point will
be found in section VI. The reason for omitting a detailed discussion
of this phénomenon is threefold. First, no simplé means of incorporating
‘the cuts explicitly into the equations has been discqvered. Second, it
| is now known thatva good fit of existing high energy scattering date is

possible in terms of Regge poles aloneSQS) suggesting that the cuts may

be weak compared to the poles and that a calculation based on‘poles-alone
may have some chance of success. Third, a set of equatiqns'invélving
- Regge poles only is an important model to study, and may;véry well suggest
the next lmportent step to take'in bringing the equations . cloger to des-
cribing the real world.. |
II. THE DYNAMICAL EQUATION

We shall first write down the basic dynamical equation in its

full generality. For convenience, we consider the equal mass caée and

define the partial-wave amplitude Bz(s) in terms of the phase shift



ﬁz(s)‘ as follows

iaz(s)
- sin.Sz(s) e : :
. where s 1is the total energy squared in the center of mass and
. ' £
pz(s) (s—ﬁ—ﬁ) = ; 4 , taking unit mass. The factor E—ifﬁj

makes Bz(s) rgal‘in the gap 0 < 8 < so for real values ofjlzi
(s 'is‘threShold)Saj)..
1t s well-known that By(s) is en snalytic function of s
wiﬁh.a right‘énd left-hand cut and may contain bound state poles for
.suffiqientl& small £ valués, However, for our purposes:wg shall write

down an equation simpler than the complete dispersion relations9)' namely;v
| P 1 . »
By(s) = B, (s) + 3 ds! (11. 2)

where £ is taken to be large enough so there are no bound state poles.
Hbre;we'seé that BEP(sj contains all the detaiié of the high

gnergy-behavior of Bz(s); while the last two terms in (II. 2) give

simply a 1/s asymptotic behavior. Equation (II. 2) is true for any

value of s with s; < 5, < . On the other hand, equation (1. 1)
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which is just elagtic witarity if the phasé shift is real holds exactly
only below the first inelastic threshold. | o

If we require the upper limit of integration 8, in.eQuation
(II. 2) +to be lower than the first inelastic threshold and assume that |
BzP(s) is a given input function, then we may regard equations (II. 1)
and (II. 2) as a well-defined mathematical problem for determining
Bz(s) .

Of course in practice, we shall not know the function BZP(S)
exactly. To know it exactly would mean knowing the left-hand cut dis-

continuity, the right-hand cut discontinuity above s, and the asymp-

1
totic behavior of Bﬂ(s) . However, it seems poséible to make & reason-
able approximation to BZP(s) by including a few crossed channel Regge
poles. In additioh we may also assume that elastic unitarity (II.1)
continues to be approximately valid above the inelastic threshold and
under - the se two assﬁmpﬁions éQﬁatiOHS“(Ii;,l};andw(II. 2) beédme the

(9)

basis for practical dynamical calculations as discussed by Chew and

Chew and JonesSlo)
However, we shall continue for the time being, to discuss the

exact equations and shall take the next step by cohverting the problem

into a linear integral equation by a modified 'N/D technique. That is,

we shall write the amplitude as

) Nz(s) |
Bz(s) = 5;(37# o (1T 5?»
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where Dg(s) is cut from s, to s

while Nz(s) carries thke remaining cuts of Bz(s) and is real in the

and is real outside this region,

region 0 < s < 8
The justification for the break-up of BI(S) in (II. 3) is
provided by the Omnes fofmulaﬂ26): For sufficiently large £ such

that there are no bound states we may.define

1 .
' _ '
D,(s) = exp{-% f as' Ouls) (11. b)
ﬂ - _
- 8 -8
0
Here we have assumed 62(50) = 0, (W shall discuss our phase shift

~ convention more fully in the next section.) The Dz(s) so defined

- clearly carries the phase of Bz(s) on. the interval (SO’-si) , is
T
5:

real outside this interval, and if 81(31) <
zeros. Finally, Dz(s)-* 1 as s~ o®. Thus Dz(s) has the dispersion

it has no poles or’

relation
D,(s) = 14+% ds —— . (11. 5)
J Al . - T 4 A .

Using (II. 2) we may write for Nz(s) R



W,(s) = B,(s) D;(s) = B,%(s)D,(s)

S

Dy(s) (1, ImBy(s)
v ds -t (11. 6)
- B8 =~ 8 o
®o

By definition, szs)' 46 real in the interval (so , sl)‘, so the
~second term in (II. 6) must cancel the imaginary part of the first term.
~ We .recall that the second term vanishes at infinity like l/s which

leads to the unambiguous identification:

8 5.
,-l . [] l P H [
D,(s) | . , ImB,(s) « B,"(s ) Im D,(s )
£ 2 1 £ £
ds ; = - = ds T
Tt Tt
§ =8 , s =~ 8
SO' SO
(1. 7)
Finally, we may write for Nz(s) s incofporating (1I. 5) ,
- |
1
P, ! P
. P 1 1 Bz Gs ) - B'e (S) ' '
Ny(s) = B, (s) + = ds . s ) Ny(s ) .
, s =-s
50

(11. 8)
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(9)

This is Just Chew's equation. We have derived the equation etef-by-
Zstep in order to call attention to all of the assumptions which are made,
because at various points in subsequent discussion we shall find it
necessary to modify’nearly all of these aesumptions<?7)

Equation (II. 8) provides a linear integral equation for Nz(s)','

and Dz(s) is then determined through the equation

Dz(s)' - i _.%. | dsf',pz(s‘) NZ<s )' . (II-.9)V
. s _-.v- -VS .

We now check that a solution of (II. 8) satisfies our original equations
(II. 1) and (II. 2) with B,(s) = N,(§)/D,(s) . If the solution N,(s)

‘is real in (so ,vsl) we see from (II. 9) that.l

gt | - gl mue - - pya) (. 10)

But this relation is entirely equivalent to (II. 1) which is just unitarity.
We emphasize that N (s) must be real to Justify such an argument be~'.

(23)

cause Banergee has shown that in certain cases - (11. 8) may possess
solutions which are not real. This situation will arise, for example,

in & model problem where BZP(S) is only approximate and happens to exceed
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the unitarity limit at s = s, for some real value of 4 . In this

1
case branch points in £ occur at those values for which the unitarity
limit is exceeded. In the exact problem we have been considering, unitarity
will always be maintained.

We now check that equation (II. 2) is satisfied by our solution.

We see that our solution gives

s : P 1 1 1
L J[ Lo (s ) ?2(5 ) NZ(S )
o 'S - 8-
B,(s) = BZP(s) + e — : (II. 11)
l l fl d_ ! pz(s )Nz(s ) |
n S | s' -8
0

Employing the same reasoning we have used before, we see that the second

term in (II. 11) is real except for the {nterval (sO 5 sl) and more-

' over, it vanishes like l/s as s > . We can thus make the identification

<]
Pl 1 ]
1] By (s ) 0y ) Ny(s )
. t
T 5 -8 51 ' _
S vaB(S)
0 - i ds : L (11. 12)
S b1
l AT 1 S - S
1 v pyls ) Wy(s ) 8,
1-= ds —
b14
' 5 -8
s
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and equation (II. 2) is verified.

| The derivation of this section is based upon the assumption that
£ 1s real. It is simplest to formulate and to solve the equations.for
real £ and the amplitude for complex £ may be determined by analytic
continuation. We have also assumed that £ 1is large enough so that there
are no bound states. in the next section we shall analytically continue
these equations to smaller £ values and shall verify that equation (II. 8)
retains its form.even though even though equation (11. 2) generally will
be modified by the addition of bound state poles.

I1T. MAXIMAL_ANALYTICITY OF THE SECOND DEGREE
~ For a fixed energy s, the amplitude Bg(s) is holémorphic in

4 to the right of some line Re £ = M. (It should be noted that,
.in the presence of Mandelstam_cut352u) no fixed boundary for the region
}of holomorphy can be given which is valid for all values of the energy.)
Assuming no natural ‘boundaries are present in the £-plane, one may
define Bz(s) for all values of £ in the complex plane by analytic
continuation. However, it is not certain that the amplitude so defined
for physical values of £ < M will actually coincide with.th¢ physical'
amplitude. If, for éxgmple; there exist spin % or spin 1 particles
or resonanceé that do ﬁot lie on Regge trajectories, then thé interpolated
amplitude will not coincide with the physical one at these angular momentum
values. In these cases the phyéical amplitudes will contain a kronecker

delta contribution, which is zero except at angular momenta %»_or 1.

The parameters of these particles will have to be grafted into the theory
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and cannot be determined. ‘They will be, in a sense, "elementary" particles.

Maximal Analyticity of the Second Degree(zl).elimimates the pos-
~sibility of such "elementary" particles by requiring that thé'interpélafed.
‘and the physical amplitude coincide.blThus éll parameters associated
with particles and resonances which 6ccur at lower angular momentum
values are to be established by continuation from the holomorphic region_
of high angular»momentum. Also other constants, like tﬁe one associated;
with the pion-plon- s-mave channel are similarly determined.

Let us make two brief remarks in connection mith this principlei
‘First,.it may be reduhdant. Tha£ is,vit may_turn out that no non-triviall
solution to the S-matrix equations exists satisfying analyticity; uni-
tarity in all three channels as well ds crossing symmctry, which does
not automaticaily embody Maximal Analyticity of the Second Degree. To
prove such & statement, however, may be very difficult, since the theorem
itself seems rather close to the complete solution of the dynamical prqblem}
Meanwhile, this poétulaté apﬁears to be a.very satisfactory and--as we shall
see~-very powerful working hypothesis. To date several célculations as
well as evidence from experiments appear to support the notion that all
particles lie on Regge trajectoriés. |

The second point is simply to note thaf Maximal Analyticity of the

(17)

Second Degree impiies the complete absence of CDD : poles}
We shall now examine our equations in more devail and show how
they are to be defined for all /-values using Maximal Analyticity of the

Second Degree. We shall still work with the exact problem and assume that
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s, is less than the threshold for production processes. We shall defer
until the next section the question of the existence of the solutions of
these equations in the sense of integral equation theory.

We begin by examining more carefully the D-function as defined

earlier,

A
o
n

Dz(s) = exp | - (III. 1)

This eqﬁation defines the D-function for large angular-momentum
.valugs, where there are no bound states. Threshold conditions on the
amplitude dictate that Sz(so) must be a integral multiple of % . How-
ever, since we want the D-function as defined in (ITI.1) to be free of

zeroes in the absence of bound states, we are led to the convention

62(50) = 0 (11I. 2)

for - 4's sufficiently large that there are no bound states. This estab-
lishes once and for all the phase-shift convention and means that Dz(s)
has no poles or zeroes at large angular momentum. This convention will

be shown to correspond to the usual one made in potential scattering.
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Let us now focus our attention on a particular Regge pole in

the amplitude which occurs at £ = a(s). This formula may be inverted ahd
- gives the location s = sR(E) of a pole in the energy plane. If £ -
is large enough so there are no bound states this pole is to be reached

in the usual manner by analytic continuation in energy through the rigth .
hand cut from sbove the real axis (see figure 1). A companion pole is
also located at s = s*R(ﬁ) reached by coming up through the right-hana
cut from the bottom. If we designate the residue of such a pole by r(z),

we can write in the neighborhood of the pole

) (
62162(5, ~ -F 2)£
5 - sp |
(1II. 3)
5,(s) =~ 5= fn (s - s (£))
) 21 °R |
Thus 52(5) is logarithmically singular at s = sR(z)"and'also at

8 = s*R(ﬂ) .

As we decrease the angular momentum, the point sR(E) moves to the
left in the energy plane. Finally sR(z) emerges_ﬁhrough the branch cut
onto the phyéical sheet, representing a bound state.

Let us now examine Dz(s) as defined by equation (III. i). We
may view the integral over 5£ as a contour 1ntegration C' with- fixed

¢ 1

endpoints at 8 = 5o end s = gy - The polnt s 1is defined as
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being above the contour (that is, with a small, positive imaginary part).

Suppose we consider Dz(s) for some particular angular momentun £ = £,

where the phase shift is now singular at sR(EO), (See figure 2.) We

determine the analytic continuation of Dz(s) ‘down through the (so , sl)

cut by distorting the contour as shown in figure 2. If we allow s to
approach sR(ZO) , the contour becomes pinched. It is easy to see if

we distort the contour C around the branch point in Sz(s) at s = sR(ZO)

that as s — sR(lo) (see figure 3),

f
DB(S) ol exp { - % )[ 'ds - +§§i 10([5 - sR(zO)]
NN {
(ITI. &)
Thus we see explicitly that Dz(s) has a zero on the second
sheet at a position corresponding to the resonance pole. Note, however,
that we must reach the zeroes of Dz(s) by going through the (so 5 sl)

cut. We may also consider the N-function defined by
Nz(s) = Bﬂ(s) Dz(s)

The right-hand cut for Nz(s) begins at 8 = s We see from figure U

ln

that since the branch point at s = is artificial, Bz(s) will

Sy
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have g poie at s = sR(E) -whether we continue through ﬁhe right-hand
cut of .Bz(s) to the left or the right of 8, - Thus when we continue
along path P the point sR(ﬂo) is a pole in 'Nz(s) , while if we
continue along path Q , sR(zo) is a zero of Dz(s) . Our definition
of Dz(s) with only a finite cut is responsible for putting the pole .
at sR(zO) into both N a.nd' D . However it should be realized that
Nz(s)/Dz(s) has only a simple, not a double pole.

A similar argument to the one given also applies to the point
s = s*R(z) , it also being a zero-of”'DZ(é) if we continue through
the (so 5 sl) cut from undérneath,

Our process of analytic continuation in £ can now be carried
further as we decrease £ . As we approach thevvalue L = a(so) the
singularity at sR(ﬂ) will approach the physical sheet. The function
sR(Z) is actually itself singular at £ = a(so) but if we give £
a small, positive imaginary part in this neighborhood, the point sR(Z)
will emerge into the upper half s-plane dragging the contour with it.
(See figure 5.) '

It is interesting to study the motion of the singularities at
sR(z) and s*R(Z) in the neighborhood of £ = a(so) . For this
purpose, we employ the threshold equation for a(s) given by Barut and

Zwanziger(ej). Recalling that a(so) is real, we write

£ -afsy) =~ 1C(s- s(:))O‘(‘t.so)*'l/2 . (111.05)

S"’So
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where C 1is real and positive and £ is the pole position, By inverting

(III. 5) we obtain

1

ais,)+l/2 ,
: ) 2 - a(so) 0 -in/g 07 SO +1/2
sRﬂ = G .
1 _ 1
\ a(s0§+l;2 ' a(s.)+1/2 (T11. 6)
* 4 - a(so) in/2 0

S = | ) .

These equationé clearly show that as £ - a(so) from above with a small

positive imaginary part, the imaginary part of sR(E) goes from negative

to positive while that of s*R(z) stays positive and does not change

sign. This proves that with the path of continuation described the

SR(z) singularity drags the contour and s*R(z) does notvinterfere.

Had we chosen to continue £ through £ = a(so) with a negative

imaginary part, the s*R(E) singularity wouldvhave distorted the contour.
We now evaluate ,Dz(s) for 4 < a(so) ; the integral from

sR(E) to 8g Just being over the discontinuity of the logarithm,

_ ; | ds +27i
Dyls) = exp (-3 ' 2] N

(cont.)



- .=19-

51
. : ¢ B (s') s - s (2)
X exp J'- ;(]"' f ds -s-f——-—-; = o IZO
L g
081 o 1 (111 7)
1 o1 Byle)
exp {- ; j[ ds s, i i(
. SO .

. The zero in Dg(s) is now & bound state since it occurs on the real axis;
Particularly interesﬁing is the fact clearly indicated by figure 5 that
81(86) is now equal to =x . This ensures a cancellation of the apparent
pole in Dz(s) at s = B; - | | |
We have focused our attention on one Regge pole but clearly the
‘argument is general and for m bound states we shall find that ‘82(50) = my .
By infgstigatlng the nigh energy behavior of the phase shift we can estab-
1lish a relativistic version of Levinson's theorem§29) Assuming high
energy behavior is governed by the Pomeranchuk Regge trajectory in the

crossed channel'one'has(Bo)

Qisz(s)
e % i T 1 .
< > T X . .

5T s t5 5 . (11I. 8)
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which is valid for all £ .
For any positive energy, the amplitude also venishes exponentially
in the limit of large £ as shown by the Froissart-Gribov transform .

which defines Bz(s) . Hence we know

8,(8) -—— onm (III. 9)
£~
s positive

where n is an integer. However the convention (IIiQ 2) wé have taken

means n = O . Since (III. 6) 4is good for all £ we may conclude
that
‘Re 5e(5) _—— 0 (IIT. 10)
' 500

Hence the real part of the phase shift vanishes at infinity and equals
mit at threshold, m being the number of bound states; this is just the
, (29)

analogue of Levinson's Theorem from ordinary potential scattering.

Another important point is that for all values of £, D,(s)

maintains the normalization
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=

Dz(s) _— 1.
500

Let us now investigate the properties of Dg(s) as a function

of 4 and s . First we observe that D,(s) has a branch point in £

Z(

at £ = a(sl) which occurs as an endpoint singularity‘at -8, 1in the

1
integration over § . To see this we expand 'sR(z) in the neighborhood -

s(8) = s+ sy’ (alsy)) U - als))]
' | (III. 11)
Sz(s) ~ const. 4n [s - 5 - sR'.(z - a(sl))‘] |
s -
£ = as

Thus the singular part of Dg(s) ‘can'bé-wiitten

ds 4n [s' -5 - SR' (¢ - a(sl)),]-

A

Dz(s) ~ exp{ -
ﬂ*a(sl)'

(cont.)
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f 1

const. exp ¢ const.[£ - a(sl) ] &n (2 - a(si) ]

L (11I. 12)

A similar branch point occurs at £ = d*(sl) . Thése two branch points
occur of f the real £ axis and may be connected as shown in figure 6,
The correct path of continuation from high £ as tréced out earlier is’
to stay on the real axis and go through the cut. This cut, of course,
is entirely spurious. It appears also in Ng(s) but cancels out of the
fuil partial-wave amplitude. The proper chkoice of sheet in the #-plane
is‘completely determined by requiring that Dz(s)_ have the resonance poles
~on its second sheet. |

The distorted contour shown in figure 5 gets dragged to infinity
as. £~ ofoco) and we expect a singularity in generél to occur in Dz(s)
at 4 = a(co) . ‘This point will be discussed in a latef'secfion.

Now let us turn to an examination of the structure of Dz(s)

in the s variable. Singularities occur in Dz(s) at s = s, and
s = s, . For s near s, We can expand 8 ,(s) and obtain
s
1
| | r :
D) ~ T ew - | 22— ts (s))
o i J 8 -8
5784 ; S

from below

(cont.)
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+ 521(51)(8' - sl) + -f-

¢y

')a.z(sl)fﬂ

Sl - 8

= I'(g,s) \cqsyﬁz(sl).- i sin 82(51) '
!

A

(III.,13)

Here I''(£,s) will be unity unless there are bound states in

which case it will have the form (III. 5) . The constant ¢, is positive.

1

If we approach the point 8 from above we have

(s) (s, 5) e
D,(s). ~ T s) -

4 . ’ , 8,5, )/
. S‘Sl (sl - S) .8 Sl

(II1. 14)

from above

where again 5 is & positive constant. As discussed earlier, our

- definition of  b£(s) assures it will be free from zeroes except for
bound state zeroes which emerge onto the phyéical'sheet at low JA-values.
This fact is reflected in the positive character of ¢, 1in (111I. 10)
vhich enables Dz(s) tolconnect asymptotically to plus one at infinity
with no zeroes above Sy In figure 7' we sketch?the'graph of Re Dz(s)

for several values of £ starting at a value for which there are no

bound states. Note that the value of Eb(sl) - determines the sign of
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Re Dz(s) as we approach s, from below and also determines the strength

1

of the singuwlarity at S,
Although we have seen how Dz(s) is.to be defined for lower angular

momenta by continuation from high £ andralso Nz(s) through the equation

N,(s) = B,(s) D,(s) , it remains to find the equation satisfied by

Nz(s) for these lower 4 values where bound states occur. We shall

find that Nz(s) continues to satisfy (II. 8) even in the case of

bound states (so long as Sz(sl) < w) . One may ask why not just con-

tinue equation (II. 8) in £? The answer is that there may 5e points

along our path of continuation where 82(81) > x and in these cases

the integral term of the equétion will not be defined. The fundamental

definition of N,(s) is in terms of B,(s) and D,(s) , so ve begin

with equation (II. 2) which in the presence of a bound state becomes

' P 1
Bz(s) = B, (s) + = ds . +

(III. 15)
As long as Bz(sl) < n for the particular £-value we are
looking at, equation (II. 5) will continue to be valid (if '83(51) >
the integral term in (II. 5) willnot cohverge_as one may see from (III. 9) ).
All the femaining steps of the argument go_through(Bo), equation (II. T)

becoming
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1
s 1
Dz(s) i ; Im Bz(s ) Dz(s), I (e)
" J - s - s T SR{z} 
SO |
. P 1 1
. [ '« By(s ) mD,(s)
= - ;'[- / d.S . 1 ]
p s =8
5o '

Equation (Ii: 8) then follows. It hés beén.crucial:to the above
argument that Dz(s) retain its normalization to unity, its asymptdtic
behavior, and also its original analytici@y during.the process of contin-
uation to lower z-values.v Tﬁesé facts which were prdved in this;Sectibﬁ
show the manifesﬁ-way,inlwhich Maximal,An@lyticity of the Sécond Degree1
determines the dynamical équationsifor lower angular_ﬁomenéa. ‘We have
thus also verified that the strip equations of references 9 and 10,
which are based on (II. 8) , are in correct form for the lower angular

momente values Whére the strip calcuiations are to. be mﬁde.
| The'question‘of what happéns‘to fhé form of the'dynamiéal equation
for values of £ with 8£(sl) > g will be answered in the gext section

where we consider the solutioﬁs of the integral erations.
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IV. SOLUTIONS OF THE INTEGRAL EQUATIONS

In Section II we derived the Chew equation(9) for Nz(s)

(see (II. 8)) and we have seen in the previous section that the equation
continues to be valid when we analytically continﬁe to lower angular
momenta whenever 82(51) < st . In this section we consider the fo;lowf
ing importent dquestions: (1) Does equation (II. 8) continue to be
satisfied by N,(s) for £'s with 8,(s)) > = ? (2) Can the equa-
tion (II. 8) be reduced to a standard-type integral equation (such as a
Fredhplm type)? (3) Are the solutions of the integral equation unique?
We continue to‘regard (1I. 8) in what follows as an exact equation.

The answer tb'question (1) will turn out to be no; for.valueé
of £ such that 53(51)' > n, equation (II. 8) will have to. be
modified. Question (2) has already been partially answered by Chew$32) |
‘He showed that the’answer is yes if Eiﬂ(sl)‘j< g . We shall extend
his result and show that a solution to the relevant'(in somé cases modified)
version of (II. 8) exists for all real £.

| The answer té question (3) is, in géneral; no. The solutions to ‘
.the integral eqguations are not always unique. However, once again Max-
_imal Analyticity of the Second Degree comes to the rescue, and we shall
find that requiring a given soiution be connected to the solutions for
high £ removes coﬁpletely all arbitrariness. Of course this last state-
‘ment must be regarded as obvious if the solutions at high £ are unique.

Since we have seen in the last section that Nz(s) possesses a continuation

to all £ (i.e. there are no natural boundaries), it follows that if a
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unique solution exists for a certain rangé of high £, the solution for
all £ is uniquely determined. What is not c;ear is that the solutions
of (II. 8) regarded as an integral equation for a fixed £f-value are
unique. In fact, as mentioned, this is not true, in'general.

We wish to emphasize the importance of being able t§ put the
dynamical equation into the form'of_one of the standard integral equation
types. First, of cOurse,imany important, general theorems concerning the
nature and existence of solutiohs become accessible from integral equation
theory. Any formulation of the exact problem must of necessity have a
solution if our basig equations are correct--even if the eqﬁations were
not standard tjpe integral equations. But of overridiﬁg practical importahce
is the solubility of the problem when the equqtion and the input are.ap-. |
proximate. Here 1t 1is obviously a distinct advantage to have the inte-
gral éqpation in a standard form so we can teil when the approximate prob-
lem has solutions. - |

We bégin by discuésing the solutions of the dynamical equations
for large £ . For sufficiently big £ , E%(sl). < %’ and there are
no bound states; The important point here is that eqpation_(III. 10)‘
shows that unless_sz (sl) < %, Dz(s) will have a'pole (generally sﬁper-
imposed with a branch point) at s = 89 and in this case the dispersion
relation (II; 5) for Dz(s) would not be valid and hence the dynamical
equation (II. 8) would not be correct. The reason for restriction to
62(51) < inrthe beginning will.begome clear as we prbceed. With

63(51) < all conditions are fulfilled in section II - for the deriva-

R R
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tion of equation (II. 8) and we are faced with finding a solution to this
integral equation.
In equation (II. 2) as s~ s, from above the second term haé the

1
limiting behavior,

1 . . _
Im B,(s ) Im B (s.)
1 ' b S 271
T ds ; > = In(s - sl) ,
§ =8 .
0
So in order for unitarity to be preserved at s = .Sl , it follows that
p Tm Bz(sl) : '
B, (sl)~—»—4> - — En(sl - s) . Thus the kernel of our original
s>s ' o
1
. _
: _ Zn(sl -5 ) - Zn(sl.- s) _
equation (II. 8) behaves like : as both s and
1 ’ 5 =8
s approach Sy and is not square integrable or of the Fredholm type.

Following Chew(52) we may recast the problem into the farm of
two simultaneous integral equations by separating off the singular.part of

the kernel. Using Chew's notatio&32) we rewrite equation (II. 8).

NGs) = BFe)+ | as’ K(ss') Wy(s")
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5

!
-_g J dsk(s,s)N(s) | (1v. 2)
50,
where
, dn(s, - s') - (s, - s) , ,
ky(s, 8) = ——t—g L (. 3)
E - 8 ' o
A, = pyls) ImBP(s)" sin 8,(s,)

£

The two coupled integral equations are

Nzo(s) = sz(s) + J[ ds' Kﬁ(s, s') Nz(s') (zv. 4)

Nﬁ(s) (Iv. 5)

}
=
o,
o
~
16)]
-
]
rol
o
n
-
~
)
.
[/:3
-
=
~~
)]
p
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(32)

Chew's procedure then consists in the explicit construction of the

| .
resolvent kernel Oz(s, s ) for equation (IV. 5) such that

Nz(s) - ( ds | Oz(s, s') Nzo(s') . : (1Iv. 6)

With a knowledge Oz(s, s ) (which depends only upon Aw) , Nzo(s)

may be found as the solution of

‘ 1l
0 P t 1 1 0, !
N, (s) = B, (s) + ds K, (s, 5 ) N, (s )
s %0
1
' t [ " 1 1 '
K, (sy 8 ) = ds Kﬁ(s, s ) Oz(s s 8 ) . (zv. 7)
S0

With the solving of (IV. 7) , Nz(s) may be determined by equation
(IV. 6) . Chew showed that (IV. 5) possessed a solution for 82(31) < g

of the Wierer-Hopf type and that under these conditions (IV. 7) becomes
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of Fredholﬁ type so Nﬂ(s) is completely and uniquely determinedgﬁe)
In our case the Chew solufion is the one we are interested in
for large £ since 82(31) < g— . of course, in principle, we may
just analytically continue the solution so obtained to all £ wvalues
but in practice such a éontinuation procedure may be difficult. So we
-nowlexplore how explicitly to obtain Nz(s) for lower £ . The first
;step is obtaining the solution in the region of £ such that n > sz(sl)_> g .
We shall see that this may be accomplished by analytically continuing the"
resolvent kernel Oz(s, sl) in £ .
To carry out our program we must review the construcfion of the
. solution to thé Wieneerbpf,equation (IV. 5) which Chew discusses for

82(51) < g + The change of variables

.(s - s

X = £in -(S—l—-_—?;' . o (IV. 8)

leads to thc eguation
" oo
oo ' o
0] - ‘ ‘ .
n,(x) = n, (x) v dx = — n,(x) (Iv. 9)
=4 R - X _q A '
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- obtained by substituting (IV. 8) into equation (IV. 5) . The Wiener-Hopf

(33)

technique consists now in defining n£+(x) and nzf(x). as follows,

nz(x) x > 0

nz+(x) =
= 0 x‘ < 0
nz-(x) = 0 x > O
= n,(x) | x < 0 v, 10)
. We may thus write'
ny(x) = n,"(x) +n,"(x) . - (Iv. 11)

We next adopt for convenience the convention that

nzo(x) = 0 x < 0 - (Tv. 12)
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Taking the Fourier transform of equation (IV. 9) gives

*) oweyley) | ") = &%) (v, 15)
g, (k) |1 = ——————r—| + g, (k) = g, (k) IV, 13
4 sin” x4 Xk g 4 »

where gz+ s gzn s gzo are the Fourier transforms'of nzf s pz' ,,n£0~.;

'Both 'Nz(s) and Dz(s) ere singular’at s = s, (which corresponds

‘here to x = od) but'their‘ratio:must»be'regular,at this point. Thus
: Nﬂ(s)  must have fhe same singular behavior as ~D£(s) nearj;é = By .
That is, from (III. 10) we conclude that

N (s) ~ ' cbnsﬁ. ' | . (IV. ih)
g 58y L 82(81) - '

(sy =8) 7"

Thus we seek & sclution of (IV. 9) with the behavior

8,(s,)
nz(x) — exp[ —g;ilﬂ x} (Iv. 15)

X700
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This réquiremenf-on »nz(x) means that gz+(k) is holomorphic in the
-half-plane Imnk > Bz(sl)/ﬁ ; gzn(k) is holomorphic in the haif- |
plane Imk < 1 gzo(k) is holormorphic in the half-plane Im k > .O’.
Furthermore if nz(x) is well-behaved at x = O, g£+ “and gz-(k)
" each vanish as,v]k| *Aoo in their half-planes of holomorphy. The quan-

tity

2
sin' Sz(sl)

"U(Z:Ivk) = 1-

5 (Iv. 16)
sin” = L k . .

:is hblomorphic in the stripv 0 < Imk < 1. However, it is impor-

tant to note that u(2, k) has two zeroes in the strip at

8,(s,) - 5,(s. )" .
: Y ARt - S _ 421
Ak = T end ik, = - ‘ (Iv. 17)

The Wiener-Hopf method consists in factorizing U(4 k)

UL, k) = A (1v. 18)
, gz'(k) o
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in such a way that ¢£+(k) is holomorphic and free from zeroes in some
upper half-plane and- ¢z~(k) is hoiomorphic and free from zeroes in
some lower half-plane, the two half-planes being required to overlap in
a strip which lies inside the region 0 < Imk < 1 . This strip
must contain é substrip in which the guantities gzi(k) , gzo(k) are
also holomorphic. The functions ﬂﬂi(k) can be chosen such that the

growth as |k| - 00 1s only algebraic. We then rewrite equation (1v. 13)

g, (k) g, (x) + g, (1) 8,7 (k) = g, () g, (k) (1v. 19)
Finally, the product g£°(k) ﬁz—(k) ‘can be written
g, (%) #,7(6) = 1, 7(6) * 0,7 (0) (1v. 20)

in & manner to be described shortly, sSuch that n£+(k) is holomorphic
in an upper half-plane, vnz-(k) is a lower half-plane and where the

two half-planes overlap in the substrip defined above. Thus we may write

g, (k) | g, () - ﬁ;(k) = - g, (k) (k) +n, () (Iv. 21)
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The left side of (IV. 20) is holomorphic in the upper half-plane and the
right side is analytic in the lower half-plane and there exists a common
strip of holomorphy. This means that both sides of (IV. 20) are entire
functions of k and in fact are equal to some polynomial P(k) .
In order to proceed further, we must now consider the explicit

: +
construction of ﬂz (k) . We observe that

sin [x 1 k + 52(81)] gin [ 1 k - 83(51)]

UL, x) = =
sin w1 k
T2( -1 k) T°(1 + 1 k)
r(-1i k - 83) (1 + 8, + 1 k) F(Bz,- 1k) Ir(1+ 1 k- 52)
- (1v. 22)
5,(s,)
G A !
where 82 = T .

Each gamma function appearing in equation (IV. 21) has an upper or lower
half-plane ‘of holomorphy as follows:
| ‘Teble I
| Reglon of lolomorphy
r( -1 x) Imk > O

(1 +1x) Imk < i
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Region of holomorphy

I‘(Sz—ik) Imk > -i3,
I‘(1+az+ik) . Imk<i(1+6z)
1“(-1k+53) Ink > 18,
I‘(l+ik-6£) ’ Imk<i(l-52)

If 52(81) < g then we may define
g, (k) = (- 1k) (1v. 23)
L\ IT(Ez-vik)F(-ik-&BT ‘
- I‘(1+sz+ik)r(1-sz+ik) : ,
sz'(k) = (IV. 24)

r°(1 + 1 k)

end all functions in equation (IV. 19) are holomorphic in the substrip

' +*
'8, < Imk < 1-35, shown in figwe 8. Both % (k) approach con-
stants as |k| ~+ . Let us consider the possibility of homogeneous solu~

tions to our problem where gzo(k‘) = O . Then equation (IV. 19) be-

comes

g, k) 8, (x) = -g, (k) 8, (k) = P (&) (av. 25)
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. _ +
where P(k) is an entire function of k . However, since g, (k) » ¢
+ ' : ' ‘ .
as |k| > oo and @ (k) approach constants, P(k) must be identically
i . .
zero and g, (k) are therefore zero proving that no non-trivial
homogeneous solution exists. Thus the solution to the inhomogeneous
problem is unique.
£4
2 L]

In this case the strip region where all relevant functions must be holo-

Suppose we attempt a solution to the problem when Bz(sl) >

morphic is shown in figure 9. The factorization made earlier will not

work for the strip of figure 9 but it isveasy to establish a new factor-~.

ization
l+ .
U(L,x) = ‘%,_(k) (Tv. 26)
g, (x)
where
ﬁz'+(k) = ;d;(k)'[k - 1(1 - 8,)]

1]

g, () = g, (k) [k - 101 - 5,)]

We consider whether a homogeneous solution exists in this case. The only

difference between this case and the one previously considered is that
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ﬁz (k) diverge linearly as |k| = oo . This means P(k) of (IV. 2h) .

may be a constant, Thus

'+k = =1 : IV.E
g, (k) . gz 5) ( T)
and
S : - ~ikx : _
n£+(x) = ¢ K~ | o  (Iv. 28)
| 2 ; (k) ,

where C 1s a contour inside the strip (see figure 9) . If x > 0
we can close the contour C: in the lower half-plane and the two zeroes
t . .
of #, "(k) in the strip produce the following asymptotic behavior for

n£+(X)

. - : 8 (s,)] 8 (s,)
+ , 417 47471 ,
n, (x) —_— Cl exp |1 = —— K.+ Gev exp = X .

X ' '
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Since Bz(sl) > the second term of (IV. 29) gives the leading and

X
2
pPhysically required asymptotic behavior. Thus it would appear that there

7t

exists an arbitrariness in the solution for values of £ with 82(51> > 3.

lHowever, as we shall now see, this arbitrariness is completely eliminated
by Maximal Analyticity of the Second Degree. The solution (IV. 25) may

be continued in £ to a region where 62(51) < and equation (IV, 26)

X
2
still gives the asymptotic behavior of the solution. Now, however, since

8,(s,) < -’2‘—, ‘the first term of (IV. 26) gives the leading behavior

which violates the physical requirement established'earliér that

[8,(s))

nz(x) - expt

i
Jxas X bo.
7

What can we conclude from this result? First, we see that an
apparent arbitrariness in the solution of the dynamical equations when

£ 1is such that 52(s1) > is deceptive. That is, one cammot, in

X
2

general, add to the inhomogeneous solution obtained when aﬂ(sl) > X

2
an arbitrary multiple of the homogeneous solution. Such a solution will
not be correctly linked to higher angular momenta in accordance with

Maximal Analyticity of the Second Degree. What occurs is that the inhomogeneous.

solution for 63(31) > g must be modified by adding & uniquely de-

termined multiple of the homogeneous solution so that the right asymp-
totic behavior is obtained when the amplitude is continued to £L-values

with 52(31) < In this manner, the apparent arbitrariness in the

X
2 »
solution is completely removed.

In practice it will not be necessary to carry out explicitly
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the steps just indicated to determine the solutions for Sﬂ(sl) > % .
It is simpler Jjust to analytically continue the solutions which are‘
. uniquely determined for 83(51) < g . This is accomplished by ana~
lytically continuing the resolvent kernelv‘GZ(x, x') . We now show that
this kernel can be so continued and that the gsolution determined for
82(51). > g meets all physical requirements. We return thén to a
consideration of equation (IV. 19) and solutions in the strip region
indicated in figure 8. |

To achieve the break-up of gﬂo(kj ﬂz-(k) given in (IV. 20)
we recall that the product is holomorphic in the strip 1 - 53(31) > Imk > O,

We then write a Cauchy integral for gﬂo(k) ¢z-(k) with k in this strip

(see figure 8) . The result is

+00+1€
O/ 'y oo = ¢! ‘ :
é-;f—{ dk i = m .
¥ -k k -k
C -00+i€
oo+1-6£—i€ ‘
1
. 0,,} - ! 1 _ dk O/ "Ny =7t
ng(k)gz(k)'m k'_kg'g(k)¢z(k)
-oo+1-6£-ie

(Iv. 30)

The asymptotic behavior of gzo(k) ﬁzu(k) as |k| » @ ensures that
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these integrals converge and we may identify

Q4+i€
Nt ) = g [ l—f}-‘ﬁ—: gy (k) 8,7 ()
~0+i€ .
7 Wla&z-ie |
n, (k) '*.45,5‘,% o ;‘33‘——; gzo(k')¢2'<k')
-oo+l-8£-'1€
(352) (Iv. 31)

' )
Each side of (IV. 21) vanishes identically (see Chew ) and we have

' h w+i€e
1 1 | ax' 0, ! -, !

g, (k) = B 5 ) f k.,_k_zz.(.k)%(k)

Y

~00+1i€
(Iv. 32)
n, (x) = V-g-_-, f ax e g (k) (Iv. 33)
» :
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The contour C runs through the strip &, < Imk < 1 -5 We note

. £ "
from equation (IV. 32) that g,"(k) has a pole at k = 1 8, coming

from a zero of ¢ z+(k) at that point; the integral fé.ctor is holomorphic
for Imk > 0 . If we deform contour C around thé pole at k = i .b!, '

conclude that

| n£+(x)v§;~;“> exp fﬁzx] S (IV. 3&)
. v _ R

Furthermore, equations (IV. %2) and (IV. 33) may be analytically continued

in £ dinto the region Wwhere 82 ‘ > % . 'We must deform contour C

during this process, keeping it always above the rising pole at k .= 1 62 .
We see that the asymptotic behavior (1v. 314-) persist.s which meets the |
physiéal requirement and the sélution for 62 l> %— is thus uniquely
determined by tﬁis -prbced_ure. ' |
We #ow examine the resolvent kernel: Gz(x,x') for the solution
1

‘co+ie

o ( ,I Voo Lo o eniE 1 : /
A Vex [ ) oni g7 (k) |

C - +ie

(qont.)
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The 'k integration nay be performed by closing the contowr in the
uppér.half-plané, and cdméuting the'residues of the poles in the.iﬁtegrgnd.
Fof;bﬁr puiposéé wé shall'iny need‘to consider:theAfirét two poles which |
occur in the integrand at. x = i(ll-;Sz).,aﬁd k' = ¥, which will

enable us to'determine the asymptotic properties of the kernel. Thus -

oo+l€
[ & 'y v x|
- B il I (D BT Sl A eY
i Sk =k
-co+i€
(6,1’
6,1 |
e 4 " Res. ¥, (x =1(1 - 5,)) .
* T -26‘7'? e (zv. 36)

. The k integration may be performed by closing the contowr € in the

t
lover half-plane if x > x &and remembering that C lies above
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k = 135, > i(1 - Sz) . We keep the two leading poles at X = 18,
and k =. 1(1 - 52) which give the asymptotic behavior ia x;’ with
X fixed
1 . : ' I t
,Qz(x, x ) =~ a, exp‘[sz(x - X )] +va,2 exp [Szx + (§£ -1)x ]
(Iv. 37)

vhere &, and a, are constents. In a similar way we may make the cale
culation gésumingb x' > x ; in this case we must close the C contour
above for the first term and the second term remains unchanged. Keeping
the leading poles which give the asymptotic behavior in x'. with fixed

1
x < x , we obtain

Qz(x,_x') ~ _al' exp[(l - Bz)(x - x')]‘+ ge' exp[§£x +_(5z.f 1) xf],

(1v. 238) "

Summarizing

1 f

6,(x, x) =~ exp [(8, -1)x]
X »00
x fixed
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‘ . |
ez(x, X ) = exp [52 x)
' X
1

x fixed - (Iv. 39)

o . ' .
Expressing the kernel again in terms of s and s , the corres-

ponding result is

, =B

v co :
Oz(s, s”) = ,(Sl -5 )
os7s)
5 fixed
- ) ‘-6 N
Oz(s, s ) = (sl - 8)
ey |
o ,
- s fixed : (Iv. 40) -
These are the same limits which were established. by Chewt32) in the
case 5, < f% . Now.we wish to verify that equation (IV. 7) is essen-

tially Fredhom so that'a‘complete and unique solution to the problém'exists.

We must examine the kernel” X (s, s ) of (IV. 7) which is given by
%1

' v ' E - , _
K, (s, s ) = - ds" KZ(S, s") Oz(s", g') .



-

In the dangerous region

[ 9 .
. (e, =8 ) fn(s;, -5 )} -~ (s, - 8) #n(s, - 8)
Kz(si 8 ) T 1 1 - 1 1

8,8 »8; 8 -8
A
" [] 1
Ols s s) | % 5 5
i ,-Z [ .6
8 K} 8, "8 *

(1v. 38)
. (28)
From this we deduce (see Banerjee )
In(s, - s)
¢ ¢
é -‘-‘—M‘l‘—-ﬂh—_—ﬂ-‘
X, (s, s )u ' 5,
L]
88 8 (s1 -8 ) (1v. 39)
For 62 > % s . the kernel as 1t stands is not square integrable, but
by setting
B +€-=

NoG) = ¥ %s)sy -8) F 2 (1v. bo)
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wvhere € > 0 as Banerjee éuggests(28) we achieve a square integrable
4“kernel in the equation determining ﬁzo(s) so the problem is solved.
(We have already shown in section II that a solution for‘ N and D
determines a solution to the original problem).
Finally, we must discuss solutions to the dynamical equations
~ when Sz(sl) > s . For convenience let us assume that % x> Sz(sl): > s
the modifications. which we make in this'case being easily generalized,.
When 62(81) > , equation (III. 10) indicates that Dz(s) no longer

possesses a siﬁble branch cut but has a pole at ‘s superimposed upon

1 F;
e branch point. This means that equation (II. 5) is no longer true,
nor is (II. 8) correct. The simplest procedure for dealing with this

situation consists‘in defining a new function Ez(s) defined by'

8

1 o
~ f 1 8 a'e(s) _ C
= (s = - = : ——— (Tv. W)
Dz(?) -  <$ 5y expi n [ e[ |
SO '

We must now retrace the steps'leéding to the formulation of equation (II. 8)
in section II. First we observe that the asymptotic behavior of.'Dz(s)

is given by

~

Dz('s.)' > B + cl(ﬁ)

5+00 ‘ (IV° l&2)




.
g) = 2

whe?e cl(

| s
o 1 o
~ l l . IIInD'e(S) ' K
Dz(g) = 8 + cl(z) - ds : - (1v. 43)
‘ | s ~8
o0
We also define ﬁz(s) = Bz(s) 5£(s) where Bz(s) still satisfies
equation (II. 2)
51
. ~ . 1 4
- D,(s) Im B (s ) o
A P,y P v ImByts )
Nz(;). = B, (s)ADz(s) + //’ - ds| — (Tv. L4)
' : 8 = 8.
_ 5,

Remembering the asymptotic behavior for Bz(s) we may make the iden-

tification,
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1 1
~ A f P L] ~ 1
D,(s) , Im B,(s) . : B,"(s ) Im D,(s )
£ j/ 1 | 2 £
- ds ——— = -3 | @5
S _"S . ' s -8 -
5o 55 :
+ ey (£) (Iv. b5)
1
cg( ) = = = ds Im Bz(s )
o)

We combine equations (IV. 43) - (IV. 45) to arrive at the integral

‘equation for 'ﬁz(s) , . ' AR
s .
1
o : ’ Lo ) 1] B ‘(‘S ) - B (S)
 Nz(s) = BzP(s)[s + cl(z)] + % | . dsl':z s. - sz
. i
x pyls ) Fy(s) + ey (£) o (IV. 46)

This equation for ﬁg(s) mey now be solved according to the techniques

discussed earlier in this section to yield a unique solution. The in-
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homogeneous part of the equation has been modified by the presence of
. two functions of £ , cl(ﬂ) and ce(z) . From the point of view of the
integral equation they are to be regarded as given quantities and they
may be determined through their defining equations (see (IV. he) and.
(IV. 45)) by analytic continuation from large £ . Thus the problem
.again has no indeterminancy when Maximal Analyticity of the Second Degree
is enforced. |
'Although it seems highly unlikely in practice that we shall ever be
called upon to solve equation (IV. 46) , still for certain general dis-
cussions (such as thg one to be given in section VI), it is exceedingly
helpful to know that regardless of the value of 63(51) 5 NB(S) continues
to be.the unique solution of an integral eqpatioﬂ of essentially the same
fofm, 
The results of this section may be summed up in the following way:
it 1s always possible to formulate for real £ 'an integral equation for
the émplitudeiof a standard type, whose solution. is unique and which obeys
Maximal-Analyticity of the Second Degfee. |
V. CROSSING SYMMETRIC REGGE REPRESENTATION
AND THE STRIP APEROXIMATION
We now discuss the dynamical equations within the framework of
8 specific mbdel, namely the strip approximation as formulated in CJ.
Our object here will be to examine the Crossing Symmetric Regge. representation |
which is the basis'for the strip approximation to see that it conforms |
to all reasonable physical requirements and that it is consistent with

the basic approximation scheme. The object of the strip approximation is
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to detefmine an approximste representation for BzP(s) in equation
(II. 8) . One reason for discussing the strip approximation at this
point is to provide a concrete example for discussing the asymptotic
behavior bf Regge parameters in section VI. |
Having already shown in previous sections that our basic equation
canAbe giyen meaning in the exact case ana that it is an integral equation
of the combinéd Wiener~Hopf~Fredholm type, the steps which follow merely
approXimate the exact versioﬂ of the equation. The advantage of this
point of view is thét we shall immediately be able to compare the exact
and gpproximate statements of the prdblem»to see that the approximate
,casesvaiso possess unique mathématical solutions.
| The input of”our problem BEP(s) is defermined by ‘S-matrix
elements'in the t and u channels (using the usual Mandelstam variables),
_rthe'inelastic amplitudes'in the s-channel, and the elastic s-channel
| amplitudes insofar as they contribute to the left-hahd cut. The elas@ic
: scattering dmpiitude in the s-chanﬁel is then computed from this informa-
" tion by meéns of the dynamical eq_uation{(II‘° 8). A1l thé needed informa-
tion fér Qﬁr input just listed is never-in practice at our disposal. In |
fa@t itvqften occurs that some of the S-matrix elements we require in the’
: t .and u channels are identical to those we are proposing to cémpute
in the-s-chéﬁhél.‘ This situation gives us the famous "bootstrap" pheno-
‘menon whereby thevinput ampliﬁudes generate themsel&es.' The dynamical
content Of the thepry results from requiring.the input and output amplitudes

to coincide;
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In this strange arrangement, we know neither the answer or the
input but hope to find them both by requiring self--.consistency° In
practice, this is achieved by first‘finding a8 simple representation for
the importdnt ‘part of BzP(s) in terms of a few paraﬁeters or unknown
fﬁnctions, then doing the calculation and determining the parameteré orv
unknown functions at the end by requiring agreement of the computed
ampiitude with.the input.

Representing BzP(s) by & few leading Regge pole terms in the
t énd u channels appeafs to be the best parameterization of the in-
put yet discovéred. _These ferms include the effects 6f resonances iﬁ fhé
crosged-channels which dominate the nearby portion.of the left-hand cut
prus correctly characterizing  the asymptotic behavior on the left and
righf hand cuts. Most previous calculations have been content with |
représenting correctly only the nearby part of the left-hand cut, and
iénoring, inelastic effects (such as keeping our term of a polynomial
.expansion in the crossed channel as was propoéed'in the original work

(1))

byﬁChéWWand Mandelstam . Even admitting that the Régge parameterization '
lis desirable{ there is still the question remaining of whaf form the

‘Regge representation should take. We shall examine here the one proposed
by CJ and'compare it with one suggésted earlier by Khurigah)

What we'séek is an approximate representation of the full ampli-

~tude of the form
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| 0 N P PN
A(s,t,u) = 2%, LRi (s,t) + £y Ry (s,u%

- .
L.Rl(t,)»: Rult, ) | V. 1
* i[s‘ S”jd“‘_. (v 1)

s t '
+ g{Rk Ya,8) + g B T(w b))

where'we‘ﬁave-a sum over the leading Reége pole terms in the s,t, and
u chénnels'respéctively. ~($he gi’j’k' are signature factofs and we have .
:used.the.notation'in CJ,) The strip regions in which the various tefms :
'of (Vm i) are assumed to dominate the amplitude are shown in figure lO,
These regions includé the low energy range pf all three chamels and |
the high:energy domain near the forward'and baqkmard directions. The
companion.diagram iiguie ll,showé the‘corresponding regions where the
Mandelétamvdouble épectral functions are dominatedAby'Regge pole terms.
Our BﬂP(s) input is to be determined by the t and u Regge tefms.
frdm (v. 1) as weli as -the left-hand cut contribution from the s term.
We now 1list the deéired Properties of our Regge representation

‘7 (v. 1) .
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1) Near the resonances in each chammel the expression should go over
to the usual Breit-Wigner form with the correct position and.width.
This means that in the angular momentum plane there should be a pole.
at £ = a(g,t,,or u) in the amplitude with the cofrect residue

B(s,t, or u) . |

2) Fach Regge term:should give the correct asymptotic behavior in the .

strip region in which it dominates. For example, the S-channel term

a,(s)
must have a behavior ci(s) t T as t - oo, where the power and the

coefficient are correct.

 3) No spurious poles are permitted in the £-plane to the right of -

Re £ = = % o Spuriousvpoles which approach the physical region are
obviously unwanted and have the effect of distorting the left hand cut.
4) Each Reggé term should satisfy the Mandelstam representation with a
. doubie-spectrél-function characteristic of the strip region in which it
dominates. (See figure 1,)

5) Each Regge term should- vanish asymptoticallyvin & direction perpen-
dicular fo its strip. Thus a ' s-channel Regge teim‘gives the asymptotic
beha?ior of the amplitude as 't ~ o, but is required to vanish as

s = . This réquirement is very important if we are to avoid double-
counting in (V. 1) and also if we are to be certain that the part of the
amplitude neglectéd in (V, 1) is small. This reéuirement means that

| a Regge term will contributeiasyﬁptotically in a direction perpendicular
to its strip no mofe.strongly tban the background ferm of a Sommerfeld-

Watson transform.
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In order to establish the representation (V. 1) satisfying
properties l) through 5) we shall assume: a) the partial wave ampli-
~tude in each of the three channels is meromorphic with only Regge poles to
the right of Re 4 ‘= - %; b) the actual résidues»of the Regge poles,
B, vanish asymptotically at least as fast as the inverse square-root of
energy, to within logarithmié factors;c) in order for the specific
representation we discués to satisfy requirement 3),lall Regge poles
which reach the right half Z-plane must restrict their movement in the
L-plane to the right of Re £ = - % ; d) both 7 (the reduced
residue) and @ are real analytic functionscut’from threshold to +co.
It may be poésible to invent a representation (V. 1) which
dispénsés with assumptidn c),however it appears Quite possible in the
CJ model that the equation will actually generate solutions having
property c) e..
:.We now show. that the representation given in CJ has the propertiés

: ) t .
required. . We look at Ri'l(s,t) defined by

. . _ ai(S)'
R, L(s,t) = %— [ea.i(s) + 1] Vi(é)(—qs-g)
-
L B etk AO A RRTC e
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_where'-yi(s) is the actual residue Bi(s) divided by (gse) and
2

g = s/b-1. Equation (V. 2), &s it stands, is well-defined for

di(s) < 0, and is to be determined in other regions by analytic con-
tinuation. We see immediately by inspection that Ri l(s,t) satisfies

property (4), having a double-spectral-function with asymptotes .s = 57
6 =t . | /

Using the dispersion relation for Legendre functions of complex

order, we may rewrite equation (V. 2)

t . | oyls),
Ry Hst) = o %- (22, (s) + 1] 7,(s) (quz)

F | 7
.

C Fa () |

o : ]
X P 1+ + : dz
\ ] ] N
sin x ai(s5 ai(s) 2q J s 1+ .t
‘ : , : S t 2
‘ 1 . . 2q
-1~ 4 s
- 2q 2
s

(v. 3)
The first term in (V. 3) is Jjust the ordinary Regge pole formula

. which then has a pole in the angular momentum at £ = ai\s) ‘with
the correct residue,‘ Bi(s) . As is well-¥nown, the first term alsp
possesses.arspurious’ pole in:the f-plane at f.= -di(s) -~ 1, but

as long as we.make-assumption (e) it will never reach the right:haif

f-plane. The integral term in (V. 3) has for fixed s, an asymptotic
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"t expansion consisting of integral powers of..l/t. This means that this
term can have at worst, a sequence of fixed poles in the £-plane at the

- negative integers. Properties (1) and (3) are thus verified.

| Asymptoti@ behavior in t for fixed s is clearly governed by

, the first term of (v. 3) and has the correct form required by property (2)
For.the asymptotlc properties perpendicular to the strip we ‘must

. look at the secbnd term of (V. 3), which for_large s and fixed t' diverges’

at the lower limit of integration. In this neighborhood, we can write |

1 :
’ 1
P
t ai(s)(z )
dz : ~
. : + 1 + _E_. .
' 2 5 2 - sr00
lk t ‘ . 9 t fixed
- '2 2. P -
qs
" const., dz = — En(z +tl> e 2n2§ S (V. b)
R ' z + 1+ 5 : .
: tl 2qs :
-1~
S

‘and thus
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) 2 '
(s,t) = const. Bi(s) Ins S (v. 5)

S
.t fixed

With assumption (b) s thie establishes property (5)

We now wish to. verlfy that equation (v. 1) constituxes a good
Y:Aapprox1mation to the amplitude in the sense that the remainder of the e-
amplitude (presumably depending almost exclusxvely on portions of the
double;speetralefunction not shaded in Figure 12)‘§anishes asymptotically
.in each direction at least as fast as the inverse square root of the
eneréy-variable.f This fact follows from assumption (a) .

To eerry out the proof, we break the amplitude up into the
'contiibﬁtions coming from each double-spectral-function. We eoneider
A (s,t) arising from the (s,t) double-spectral- functlon.: Tﬁe partial-
wave amplltudes which result from A (s,t) by progectlon in the s and
"t channels possess the same Regge poles in those channels as the full
amplitude  A(s,t)'.' We‘now perform a Sbmmerfeld-Watson'transformation.
on>A‘ (E,t) ‘in the t"channel' when this is accomplished we replace

S¢

the. ordlnary Regge pole term with R (ﬁ,s) , incorporating the difference

into the background Thus we wrlte(BS)
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A (st) = AStBt(s,t)'+ R; He,s) SR (v. 6)

the first term on the right representing the t background term.

_ Asymptoticaliy in s, we may write

.AstBt(sit)' v_s const. | (V. 7)
' s~+00 Y 8 S
t fixed

We can now perform a Sommerfeld-Watson transformation of (V. 6) in the

s-channel-and-recalling the dsymptotic -t-vehavior of the second term

s . f S ‘ - -
Ry T(ts) > By(8) 4% (v 8)

s fixed

‘We see that with assumption (b) this term can be identified as an s-channel

background term.: Finally, therefore, we may write.
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t) ‘ -
A (st) = A, Bts g t) + Ry (s{t):+ stl(t,s) (v. 6)

where the firét term on the right»ofl(V. 6) must venish asymptotically
the inverse square root in either s or t. An ldentical argument
may be carried out for the segments of A(s,t) coming from the other
two~double-spectral-functions and the validity of the representation
(v, l) 1s established.

Khuri(3 ) has recently proposed an alternate Regge pole formula p
'to eqpation (V. 2) . The two formulas differ in an important way and we.
now wish to_compare tﬁem. The link between (v. 2) and the Khuri
.formula is most easily establlshed by replacing E, (S),;in‘(V.'Q)

1 . ' :

by its asymptotic expansion 1n t .

" Assuming ai(s).‘> - % we have

, - as)
Ry ;(s,t) = _% [eag(s) + l]vyi(s) (-qsa)
® o ()n
g at’ N7 U
——— . c - ) . V. 7
. t -t n éf 0 n(S) 2qse) . )
%
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Khuri's Regge term, R, (s,t) results from taking only a finite number
of terms in (V. 7) determined by the maximum excursion of ai(s) for
reai s. Specifically, Khuri drops those terms which deérease at infinity-
at least_as fast és the inverse square-root of t' for‘all real values of
é. The correct asymptotic t-behavior is clearly preserved in this case
and the pole term is correctly present satisfying our properties (1) and
(@) .

The important difference between (V. 7) and (V. 2) is in the
asymptotic s-behavior O . Equation (V. 7) contains the feature that the

asymptotic s-behavior depends as follows upon the number of terms N

vhich are retained in the sum:

t ' N-ai(s)
~ 1 ' 2 ' A
R, "(s,t) — 5  const. Bi(g).(qs ) ‘ (v. 8)
. s
t fixed

We have neglected here’the cn(s)' which modify the answer by no more then
a squafe-root factor of s. |

 In order to satisfy property (5) ; and also the condition that the
‘remainder of the amplitude after the Khuri téfms are removed vanishes
in all direcfions like the background term, we must make different
'assumptions about the asymptotic behavior of»the ﬁi(s) than were made

“in (b) .. Specificallyy in‘theéKhuritcase.ﬁhe Si(s) must generally vanish
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more stroﬁgly, the precise power required depending upon the maximum
- rightward excursion of the Regge pole ai(s) . This is the heart of the
distinction between the two approaches, namely, a difference in the assump-
 tions about tlie asymptotic behavior of the residues.
We find no reason to support the notion that the ésymptotic
‘ behavior of the’residues is linked to the number of resonances or boun@
| states produced by a given Reggé trajectory, and so we tend to favor
assumption (b) made in CJ, and the use of expression (V. 2) . The es-
timates given in the next section éf the asympfotic behavior of the
'Régge:parameters based upon the dynamical equations alsé appear to suppértll
Tassumption (b)v. Although a potential theory argument on this point . |
' must be cqhsidered weak, we note that in the case of non;relativistié
.poteﬁtial scattéring there is no correlation between thé asymptotic
'5ehavior of the residue and the rightward exéursion of the Regge tréjectory.

| VI. ASYMPTOTIC BEHAVIOR OF REGGE PARAMETERS | |

The dyhamical équations we aré discussing are partiéularly:conven-

ieﬁﬁ’for detefmining'Reggé‘trajectories L = a(s)- thfbﬁgh solution of

| the equation
Dy(s). = 0 | o (Vi. 1)

This can be solved for s < 89 where all quantities involved are real.



-6l

-.Having determined ofs) , the residue may then be calculated. In fact
the self-consistency requirement of the bootstrap calculation mentioned
in the previous section is satisfied by matching the Regge parameters
which go into determining BzP(s) with those computed using (VI. 1).
Of immediate interest is the question of the asymptotic behavior of

- trajectories and residues.

We have seen in the previous section that a consideration of
this point is quite important in attempting to set up a practical boot- .
strap calculation based on the dynamical equations. .We now wish to ask
vhat general statements can be‘made on this question both in model problems
and in the exact case.

We shall see that not too much can be said on this matter but just
asking the qugstidn will lead us to some. important insights into the dyn-
~amical equations.

" First, we shall discuss the asymptotic behavior of a(s) which’
is determined by the solutions of (VI. 1) as s‘%'og . We>know ADZ -1
as s‘*“oo, so it appears feasonable that if the‘top-lyiﬁgvtrajectories
"~ approach distinct limits as s — o0, this limit must be a fixed infinite-.
type zasingularity of rDz(s) . To illustrate we cbnsider'the model case
of CJ_where the mechanism of a fixed simple pole in £ is discussed. In

this case e can write for Dz<s)
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where r(s,£) is regular at £ = afoo) . Solving equation (VI. 1)

in the high-energy limit gives

a(s) = afoo)

il

d/s + terms of order, 1/52
1

a =% as' x(s, al0)) (V1. 3)

Tt is argued:ih CJ that the fixed poles which occur arise from the
Fredholm character of the basic aqpaﬁibn«(II. 8). (Actually the Fredholm
part_&f (1I. 8) is given by'(Iv. 7) .) In this problem it is important
to note that the kernel is actually a funétion of the eigen-parameter -z;‘
rather;than béing a simple, multiplicative factor,. In regiéns where
Kﬁ(s,sl) is locally an analytié funetion of £ , this cannot change'the- :“
naturé of the eigenvalue prdblem for Kzr(s,s') can be expanded in these f
regionsjto give;in a neighborhood, the usual, lineér dependence on 4.

. This analytic dependence of the kernel og.the parameter £, however,.
"modifies theisblutiéﬁ as a function_of 2 from Vhat would be expeéted.
'in the uéual Fredholm case and‘it becomes an importan£ problem to study
the siﬁgulérities of fhe; kernel in- £ . -In the standafd'case the eiggp:"_

'parametervsimply multiplies the kernel and the.solﬁﬁion possesses poles
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in the /Z-plane given by the zeroes of fhe.Fredﬂolm determinant, which is
a holomorphic function. These_poles posséés no poinf.of accumulation in
the finite plane. |

In our case, the kernel Kz'(s,s') will'géneraliy jéssessvpoles :
as well as branch points and the Qbové picture.becomes considerably
moie complicated. Nearrfixedvpoles'df the kernel in ﬂ; ﬁe expect an
accumu;ation of Fredholm poles since the kernel becomes unboundedfih

" such a neighborhood. Branch points in the kernel may be transmitted more .

- ~or less directly to the solution or such singularities may be modified

in thé process depending-én the singularity-type. In any event the singular-‘
- ity,stfucture of the kerﬁel, Kzf(s,s,) in £ wili cléariy play an |
: ﬁhpofﬁant role_iﬁ deﬁermining the nature of the dynamical‘soiutions and
as aiready'discussed we also eXpect it to play a central role in deter-
7mining the asymptbtic béha&ior.of ‘the Régge'parametéfs;:

1The,Fredhoim.kerqél K?f(s,s’) has eééentially thg‘géme'singularf
ity sﬁructﬁre as Bﬂp(s) does in the 2-plané and we shall begin our
discﬁssion by locating some of the important singularities of BzP(s) .
We shall begin. with the modél case because iﬁ_is somewhat simpler. As
shown in‘CJ, if the residues vanish suffiéieﬁtly fés£ at infinity the leading
singulafity will be a pole at £ = -1. This fixéd-pole_is related to the
Gribov;Pomefanchuk phenomeno%?g%d oceurs as résult'of a pole in the lef#-
hand cut disconﬁinuity. 'In the case considéred.Where the residues vanish .
strongly at infinity, this is the only'reiévant singuiarity. The unbounded

character of the function near £ = -1 is expected to produce an accu-
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“mulation point for Fredholm poles and if these poles are distinct we may

focus our attention on the one standing farthest to the right at £ = q(o).
The pole.produced in the solution of the integral equation for 'Nz(s)
is carried over to Dz(s) by the .relation '
1 .
r (s) 8,5 ) M,(s)
, p,(s s s :
D(s) = 1-% | g 27X L (VI. 1)
£ T /
'}': S_M - S . ,
0

I we assume & simple pole at £ = a(w) , the situation of equation

(VI.ZQ) is produced and the asymptotic behavior (VIf 3) is found for
‘a(s). Note that the Fredholm pole occurs in both N and D,_thereby
Acanceiling out in the complete amplitude. ,Thisﬁis as 1t should be; for .
the complete amplitude has no fixed pole af\_z =" a(oo).. ﬁe also point. ,
out that .BZP(S) is, in t#e_mbdel case; regular #t i = afw) . To

-determine the corresponding asymptotic behavior for the reduced residue .

7(s) we use the fact

Ny(s) (8)
7(s) = lgéz>s —

L
al £ = als) (VI. 5)
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We can expand both N and D in a Laurent series about £ = afoo) ,
. x (S) q—? . D : } n 6
Dz(s) = 1+ 7_£%§C§r7 + L £ (s) [& - afoo)] (vi. 6)
oo}
]i\l_e(s) o N n '
Ny(s) = g—==r=y + & £ (s) [4 - a_(oo)] (vi. 7).

- For our purposes it will be convenient to write the equation for Nz(s) as

- - 1 t
o B, (s ) e, (s ) W (s )
N,(s) = D,(s) B,7(s) + = / as A A 4
S - S
so'
- (vI. 8)
Thus inserting (VI. 7) into (VI. 8) |
Fl Pls') p,(s') r(s)
: : , N ¢ B, (s ) p,(s )r.s
() = Dy(e) BRe) v ey | e s? — 1
' égi

(cont. )
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© . Sy o
P, ! 1 t N s'
Z [z - a(m)]n [ dsl- Bz (S ) pe(s ) fn ( )
n=0 :

' . . 8 =8
8 - S .
o . .

+

9 |

’

(V. 9)
The functions BBP(s) and pz(s) also have expansions about the point -
4 = a(w): ' |
P ®"- _ vn',
B, (s) = Z bn(s)[z‘—.a(oo)-] (vI. 10}
n=0 T
e
pgls) = ) 0%s) £ - )]
o n=0

Substituting 2

il

a(s) into (VI. 9), we keep the leading behavior in
s as s - . We find the first term of (VI. 9) vanishes because

Dy(e)(s) = ©, giving

N 1
Na(s)<s) vy ST Q(8) -ca(oo)




S

l .
c = J/F ds’ bo(s') po(s') rN(sf)‘. :'(VI, 11)
SO ) ‘
We also have
dDz(s) _ fD(S) IOO‘ D n-1
A . £ “(s) la(s) = a(w)]
at (o) [a(s) - (o) 2 nZ‘O e e X
£=x(s _
(VI 12)
- rp(s) |
e La(s) - a(e0)T?
‘ rD(‘S) ~ corslst.'
' S*00

Recalling (VI. 3) we have finally
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) EL;a(S) - a{o) _ const.

7(s) =~ s rD(s) - 5

o (vi.a13)
s> | o

Now wé ask to what extent considerations like the'foregoing can
'.be expanded to include the exact eqpations. First of all, in the exact

_case‘ﬁe expect to find a singuler behavior for a(s) in the neighbdrhbpd
| of 5 = due to ﬁhe branch ﬁoint. waéver, with a simple pole at
.:2 = afoo) in .Dz(s) , equation (VI. 2) shows it would be inconsistent
to have anything but inverse integral powers of 's-'in the asymptotic
‘behavior of a(s) . bhe is naturally led to ask if muitiple ﬁqiésvcould
develop at £ = ‘d(oo) in our Fredholm equatioﬁ._ The answef to the |
‘questién‘is apparently yes because the kernel Kh(s,s') is ndt symmgtrical;,
_ ﬁhen.the~kernel is.not symmetrical there is nd assurance:it can be diagbn-‘
 aliied and su§h a failurg pro&idés ﬁhe:opportﬁnity fqr multiple po}es, “
‘tovoccu:. | | o

' We can illustrate the occurrenceof multiple poles for non-

1Symmeffical'kernels'by'feference'to,a'simple.éxémple‘in‘linear algebraic

equations. Considér the linear equations



-2~

S v . {’1 1-"}
x = y = ;= - : ‘ .
.This equation is readily seen to have a double eigenvalue for A = 1,

i
Y
and the solution to (V. 3) has a double pole when X = 1 . Because of .

but there is only one eigen vector (l\ o 'Thus L cannot be diagonaliied
the complete corresponderice which existé between systéms_of linear alge-
bréic énd Fﬁedholm integral equations, we may infef that the above result
is qﬁite genéfal and we may expect to find, for thé casé of non-symmeﬁric'
. kefn_els, K order Fredholm polesg37) |

In the case of kth order poles,'reasoningzsimiiar tonfﬁét leading

to eduation (VI. 3) gives

=

o(s) - alew) = const. (-s) (vI. 15)

- In the model problem already'digcussed, thé Fredholm kernel is
also non-symmetrical and: we may ask if kth. order Fredholm poles may

occur also in this case. There appears no reason to exclude this pos-
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sibility, in gemeral, and if it occurs the asymptotic behavior of y(s)

is again the same as for a(s) ,

e

7(s) ~  const. (-s) (VL. 16)

s™*C0

In order for any of the previous reasoning an asymptotic behavior

" to be valid, B, (s) --that is, the Fredholm kernel--must be regular

£
:at‘ 4;_= (o) » permitting a Laurent expansion of the solution about
‘this point. In the moéel case, it is true thaﬁ Bﬂp(s) is regular at
4 = ‘a(oq) , but we shall see that for the exact case sz(s) is generally
sinéd;ar_at 4 = (o) . _Howéver, by modifying our equation in this
1attér case we shall be ablé to reinéfate_thé aéymptotic arguments_for
a(s) ‘but the same modification. will cause the 7(s) _asymptotic prediction
to siipvaway ffom us. .. » |

'We now list the préminent siﬁgularities of -BzP(S) in the ﬂ;plané
(in the exact problem).

(a) Similarly to »Dz(s) , BzP(s) has branch points at £ = o(s)

and .2_ = a*(sl) as shown in figure 12 . The branch cut is indicated
as well‘as the physical £ sheet. A Regge tfajecﬁory is shown for
-0 s < © . Much the‘séme as before with Nz(s) , we see that
BzP(S) contains the Regge pole on the physical 4 'sheef_if s > s

but does not contain it if s <-'sl o
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(36)

(b) The fixed Gribov-Pomeranchuk pole at £ = -1 is
present in BﬁP(s) . In a sense this singularity is independent of the
other singularities which arise in association with right-hand energy cut

~and it occurs on both sides of the cut in £ shown in figure 12.

(¢) The Mandelstam cuts(gh) which arise from the enforcement of -
unitarity beyond the inelastic threshold at s = S will be present
in BzP(S) . We return to a discussion of this point later.

(d) In general BEP(s) will have a fixed singularity at £ = a(o) .

We turn now to a discussioﬁ of the singularity at £ = (o),
which is of crucial importance to the arguments presented so far in this
section. The presence qf such a singularity means that neither the
kernel nor the inhomogeneous term of our Fredholm equation possess Taylor

expansions about this point, invalidating our previous arguments about

the asymptotic behavior of a(s) . (As pointed out earlier, the model case

is still all right because BEP(S> in this case is not singular at £ = af{m)).
To see the presence of the singularity at £ = of(w ) we consider equation
(11I. 10),
®1 = .
: Im B (s )
. P 1 : ; T(£)
s -5 R
5o
(vI. 17)

where
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:7(sR(ﬂ))

ri¢) = - = ———wr
| o (sp(e))

- The comjlete amplitude Bz(s) will be regular at £ = q(oo) aﬁd SO
‘will the second term in (VI. 17) , vhich is only singular at £ = afs;)
and L = a*(sl) . The last term of (VI. 17) will, hovever, generally
be singular at £ = (o) , the singularity-type depending upon the
asymptotic behavior of y(s) . 'This requires that BEP(S) have a com~-
-_peﬁsatiﬁg éingularity-in.order that .BgP(s)-be regular. Let us suppose

in accordance with the earlier discussed multiple-pole mechanism that

SR(g) ~ | ,_.JazEﬁﬁ_k (VI. 18)
200 ) L6 - o0 )] ) ' |

where X 1is a positive integer.

Then it follows that

o (s3(8) = const. L4 - a(w)) (v1. 19)

Z~a(oo)
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If y(s) behaves at infinity as

7(s) —s SDEL: (VI. 20)

where P is an arbitrary, real power then

7(sp(8)) =~ const. (4 - a(e0)I¥F (VI. 21)
£oa(co) | |

So finally we have

]kP-l

= const. [4 - ‘a(oo) (VI. 22)

s - 8,(4
4-a(oo)

Thus generally (VI. 22) and also the kernel will be singular at
L = o) and e are prevented from making an asymptotic argument

for y(s) . We note here, however, a certain self-consistency of the
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model problem. In this case We.know by construction that BzP(s) is
regular at £ = Q(oo) and equation (VI. 16) indicates that P = mk

‘Where m is a positive integer. Thus (VI. 22) is also reguler in the
modelvcase and the machanism is consistent.
Going back to the exact case; we can avoid a singularity in the

. kernel at £ = «a(w) by defining

"ﬁf(g) . BEP(S‘MVA—-(-”I_‘Q;; B (vi. 23)

which is regular at £ = a(w). The integral equation (II. 8) for
Nz(s) can be derived where ‘BzP(s) is replaced by %EP(S).o Now,
however, %zP(s) possesses the Regge pole at £ = q(s) on the

1

vanishes when we set £ = as) . Therefore, the asymptotic arguments

physical £ sheet below s, and the first terh;of (vI. 8)‘n6 1ongér .
for  7(3) cannot be_carried through. This is really no surprise. It is
the asymptoticvbéhaviorlof f(s): which is responsible for the singu-
larity in 'BzP(s) at £ = afoo) and it can hardly be a matter of
astonishment that eliminating the singularity at L = o) in the
kernel alséyeliminates our ability to predict fhe asymptotic behavior of
7(s) « |

We should-poiﬁt out that our basic dynamical equation, as well

as all the arguments of this section, may not hold for values of £ < = %
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The point is that an infinite number of Regge poles appear along the line
Re £ = - %4‘When § = 85« This phenomenon is a threshold effect
discussed by Gribov and'Pomeranchuk and arises from an infinite pile~-up
of Landau singuléritiesg39). It means thcre are an infinite number of

zeroes for Dz(s) at threshold. For £ < - L the equations may still

2
. have meaning, but one cannot be sure. For one thing the threshold
behavior for the amplitude is not well understood for £ < - % .

Be that as it may, there is the_possibility mentioned earlier
that the leading trajectories may very well terminate to thé right of -
"Re ﬂ:v= - % s an assumption which we have made befofe 1n the previous
section. Only detailed dynamical calculations can answer this question;
‘We return flnally to & brief discussion of the effect of Mandelstam’
cuts on the asymptotic arguments given here, Mandelstam has shown that
when one attempts to enforce cnitarity in the inelastic region, cuts in
the angular-momentum plane are produced which move with energy(2 )
This means that our function Bg (s) will have branch points in £
(and alternatively, branch points in the enérgy plane which move with
£ ). These cuts had no opportunity to appear in the model case but would
bc preseht in the exact pioblem. |
An 1mportant characteristic of these branch cuts in angular-momentum
is that they force the Grlbov-Pbmeranchuk essentlal singularities onto
unphysical sheets in the ﬂ-plane. Although a COmplete,formulation of the
dynaﬁical equations in the presence of cuts is stiil lacking, one might

still conjecture that since the essential singularities are still present,
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the mechanism discussed here involving Fredholm poles might still produce
the accumulation of Regge poles in these neighborhoods. Thus a model
which correctly incorporates the Mandelstam cuts might still gi&e essen~
tially the same asymptotic behavior for tfajéctories and residues de-
rived here.

However, a more‘detailed understanding of the cuts, the Gribov-Pom-
eranchﬁk singularities and the connection of these phenomena with problems
involving spin seems requisite before the dynamical problem can be further
advanced.
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Fig. 1. Resonance pole on unphysical sheet of energy plane as a

function of angular momentum.
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Fig. 2. D-function defined by contour integral over phase shift.
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Fig. 3. Zeros of D-function corresponding to resonance poles.
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Fig. 4. Two paths of continuation to resonance pole in B 2(5) .
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Fig. 5. Transition of resonance pole to bound state as angular

momentum is decreased.
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Fig. 6. Branch cut appearing in N and D .
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Fig. 7. Real Dz(s) plotted for the cases:
| (a) No resonances or bound states and 51(81) < nf2,
(b)  One resonance and 52(51) < nf2,
(¢) One resonance and 6‘8(51")' > xf2 , and

(d). Bound state and ’53(51) < nfe .
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Fig. 8. Substrip} of holomorphy for Fourier transforms when

Sz(sl) < st/2 .
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Fig. 9. Substrip of holomorphy of Fourier transforms when

B,(s;) > /2 .
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Fig. 10. Region of validity of strip approximation.
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Fig. 11. Regions where Regge terms dominate the double-spectral

" functions.
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Fig. 12. Singularity structure of Bg(P)(s) in the angular-

momentum plane.
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