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STUDY OF DYNAMICAL S-MATRIX ~UATIONS 

WITH RIDGE BEHAVIOR 

C. Edward Jones 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 

October 31, 1963 

ABSTRACT 

A detailed study of the modified N/D equations with Regge be-

bavior, originally proposed by Chew, is made herein. An exact version of 

the dynamical equation is formulated and it is shown to be of a combined 

Wiener-Hopf Fredholm type. The principle of Maximal Analyticity of the 

Second Degree is demonstrated as. a tool for def·ining unambiguously and 

free of arbitrary parameters the dynamical equations and their solutions 

at low values of angular momentum. The so-called strip approximation 

to the ~quations, embodying a crossing symmetric Regge representation, 

is discussed and the validity of the approximation scheme is verifiedo 

An investigation is made into the high energy behavior of the Regge poles 

and residues which result as solutions to the dynamical equations in 

both the exact problem and. in. the strip approximation. 



-1-

STUDY OF DYNAMICAL S-MATRIX EQUATIONS 

WITH RIDGE BEHAVIOR 
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Lawrence Radiation Laboratory 
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I. INTRODUCTION 

UCRL-11125 

Recent years have seen a number of attempts to formulate dyna. 

mical equations for the strong-interaction.Smatrix based upon its 

(1-10) analyticity properties. The starting point of these attempts has 
. . (11) 

been the Mandelstam representation which prescribes the analytic 

structure of two-body amplitudes as a ~~ction of the invariant momenta-

Squared. The common goal Of these programs has been to provide a dyna­

mical theory of strong-interaction phenomena based entirely upon obser-

vable S-matrix elements and their analytic continuation with no reference 

to quantum fields. This basic approach was first propose4 by Hei~enberg 

in 1943 ~ 12 ) . 

The modern attempts at an S-matrix theory achieve dynamical 

content through a bootstrap mechanism wherein S-matrix elements are 

determined by integral equations involving other· S~matrix.elements. 

These equations eventually fold back on themselves and an all-over re-· 

quir~ent ·or self-consistency is imposed. It is the hope of the S-matrix 

theorists that the requirements of self-consistency so imposed will 
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completely and uniquely determine the full S: matrix. No current dynamical 

scheme works on such a grand scale and most practical calculations are 

considered successful if a sort of "local" self-consistency is achieved 

where one or a :few amplitudes generate themselves self-consistently. 

It is difficult to overstate the significance of the Mandelstam 

r.epresentation in the history of S-matrix dynamics. It is true that this 
' ' ~ ) 

development had been foreshadowed by the work of Chew and Low, 3 Karplus 

and Ruderman~4) as well as others--particularly the work on one-dimensional 

dispersion relation~i52-but it seems fa~ to say that not until the under-

standing was achieved by Mandelstam of the analyticity properties in both 

energy and momentum-transfer could there be real hope for a dynamical 

theory based on the S matrix alone. 

Few attempts at :formulating dynamical S-matrix equations have 

been based ori the. :full scattering amplitude, most efforts nroceeding 

through the simpler one-variable partial-wave dispersion relations. 

Chew and Mandelstam initiated· this work\l) Within the :framework of 

partial-wave dispersion relations, the basic philosophies and approxi-
. (L6) 

mation schemes of S-matrix theory evolv~ These notions could be 

summarized briefly as :follows: (l) Singularities nearest the physical 

region were most important and distant singularities could be neglected 

in a :first approximation. (2) The left-hand cut arose :from crossed 

·channel processes, whereas the right-hand cut could be determined in the 

elastic approximation by unitarity. Thus exchangect particles· were thought 

of as giving rise to the :forces with the direct process being determined 
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by unitarity. (3) Assuming the left-hani cut discontinuity, that is the 

forces or potential, to be given, a linear integral equation employing 

the so-called N/D method could be established whose solution determined 

the partial wave amplitudes. 

Further advance of S-matrix theory awaited a better understanding 

of the number and nature of the arbitrary parameters in the theory. 

Castilleja, Dalitz and D,yson~?)had pointed out the presence of arbitrary 

parameters in partial wave amplitudes due to the possibility of adding 

·poles to the D-fUnction (CDD poles), which did not alter the analyticity 

or unitarity of the amplitude. Such poles were identified with indepen-

dent. stable or unstable particles (depending on the values of the pole 

parameters). By 11 independent" particles we mean those not determined 

by a knowledge of the forces or the left-hand cut. 

This arbitrariness in the partial-wave amplitudes could then 

be linked to subtractions needed.to make- +..b.e dispersion integrals of the 

Mandelstam representation converge. These subtraction terms could not 

be determined by the double~spectral-function. An important theorem 

by Froissart~~ established t~t no arbitrariness could be present above 

the . p-Wa.ve and hence· "independent11 particles were restricted to be of 

spin one or less. 

In 1961 the work of Regge on complex angular momentum showed 

how all the subtraction terms in potential theory where there is no 

arbitrariness could be formally determined, and presented the results 

in a form which could be readily· adapted to the relativistic probl~9 ) 
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Chew and Frautscht20)proposed on this basis that the relativistic S-matrix 

contained no arbitrary parameters at all (except perhaps for a single 

mass to set the all-over scale). Recently, this proposal has found a 

1:aore precise formulation in what is termed Maximal Analyticity of the 

(21) . 
Second Degree. Under this principle, the low angular momentum partial 

waves are to be determined by interpolation from high angular momentum 

values. All particles in this view lie on Regge trajectories, none 

being more elementary than any other. 

Postulating analyticity in angular momentum and that all par-

ticles lie on Regge trajectories for the relativistic S matrix leads to 

an understanding of the asymptotic properties of scattering amplitudes 

and,.· in principle, shows how all particle parameters are to be determined. 

Chew has recently proposed a sei of fully Reggeized dynamical 

S-matrix equation~?) These equat.ions have been further developed by 

(10) 
Chew and Jones and a specific model for calculations proposed. 

In this paper we shall study the structure of these ~quations and 

see what can be established about the nature of the solutions. We· shall 

also write down an exact version of the equations and determine when 

solutions exist. It will be possible for us to examine the points of 

di:l?ference between the exact equations and the approximate model (lO) 

which will be used in actual calculations •. Many questions to be investi-

gated are relevant to both the exact and model cases. 

One point to be investigated in detail is the manner in which the 

assumed postulate of Maximal Analyticity of the Second ·Degree--that is, 
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that the partial-wave amplitudes be interpolated from high angular momenta 

by analytic continuation--is to be enforced in practice. It will be seen 

that the model e~uations(lO) (incorporating the new form of strip approxi­

mation) as written automatically embody this postulate. 

We shall also investigate what the e~uations predict about the 

.high energy behavior of the Regge pole parameters. 

We now summarize the basic assumptions made and upon which the 

dynamical e~uations herein are formulated and discussed: 

(1) Two body amplitudes are considered which obey the Mandel-

stam representation. For simplicity and convenience, the particles 

are assumed to be spinless. 

(2) A Regge representation for the amplitude is assumed to hold 

in each of the three channels separately. That is, the partial-wave 

amplitude in each of the three channels as a f1ll1ction or the angular mo-

mentum t is assumed meromorphic in the right half 1 
£-plane Re £. > ~ 2. 

(3) We shall also assume that the residues of Regge poles which 

reach the right-half £-plane vanish in the limit of high energies. 

Assumptions {2) and (3) will enable us to establish a crossing symmetric 

representation for the full amplitude in which the Regge asymptotic be-

havior for each channel is explicitly separated out with the rest of the · 

amplitude vanishing at infinity in each of the energy variables. This 

representation is the basis for the Chew-Jones(lO) strip approximation. 

In another section, we shall show that the residues computed from the-

strip e~uation do tend to vanish asymptotically, 
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(4) We shall assume where necessary that the Regge pole positions 

and reduced residues are real analytic functions with only a right-hand 

cut. This fact has been proved in potential scattering (except when 

trajectories intersect) by John R. Taylor(22 ) and made plausible in the 

relativistic case by Barut and Zwanziger~23) 

(5) Maximal Analyticity of.the Second Degree as expressed by 

Chew(2l)is assumed. 

Finally, we remark that little attention has been given herein to 

the possible presence of cuts which reach the right-half £-plane, as 

suggested by Mandelstam~24 ) although some discussion on this point will 

be found in section.VI. The reason for omitting a detailed discussion 

of this phenome_non is threefold. First, no simple means of incorporating 

the cuts explicitly into the ·equations has been discovered. Second, it 

is now known that a good fit of existing high energy scattering data is 

possible in terms of Regge poles alone}25) suggesting that the cuts may 

be weak compared to the poles and that a calculation based on poles alone 

may have some chance of success. Third, a set of equations involving 

Regge poles only is an important model to study, and mayvery well suggest 

the next important step to take in bringing the equations closer to des-

cribing the real world. 

II. Tim DYNAMICAL EQUATION 

We shall first write down the basic dynamical equation in its 

full generality. For convenience, we consider the equal mass case and 

define the partial-wave amplitude B£(s) in terms of the phase shift 
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o..e(s) as follows 

= (II. .1) 

where s is the to~l energy squared in the center of mass and 

Pn(s) (s. 4- 4) ..e -.rs-:4s-4 , 
111 

~~ taking unit mass. The ( 
s -factor 4 

makes B,.e(s) real in the gap 0 < s < s0 for real values of ..e 

( . )(23) s0 is ·threshold ... . 

It is well-known that B..e (s) is an analytic function of s 

with a right and left-hand cut and may contain bound state poles for 

suffiqiently small ..e values. However, for our purposes we shall write 

down an equation simpler than the complete dispersion relation~9 ). namely, 

sl 
I 

B..e(s). B..e p(s) 1 f ds' 
Im B..e(s ~ 

(II. 2) = +-:rc 
s - s 

so 

where ..e is taken to be large enough so there are no bound state poles. 

Here we see that B..e p(s) contains all the details of the high 

energy behavior of B..e(s); while the last two terms in (II. 2) give 

simply a 1/s asymptotic behavior. Equation (II. 2) is true for any 

value of s1 "With s0 < s
1 

< oo. On the other band, eq.uation (II. 1) 
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which is just elastic unitarity if the :phase shift is real holds exactly 

only below the first inelastic threshold. 

If we require the u:p:per limit of integration s1 in equation 

(II. 2) to be lower than the first inelastic threshold and assume that 

B£p(s) is a given in:put function, then we may regard equations (II. 1) 

and (II. 2) as a well-defined mathematical :problem for determining 

Of course in :practice, we shall not know the function 

~xactly. To know it exactly would mean knowing the left-hand cut dis-

continuity, the right-hand cut discontinuity above s1 and the asymp­

totic behavior of B£(s) • However, it seems possible to make a reason­

able approximation to B£p(s) by including a few crossed channel Regge 

poles. In addition we may also assume that elastic unitarity (II.l) 

continues to be approximately valid above the inelastic threshold and 

under th:: se two assumptions equa:tioris · (II. 1} ·and (II. 2) become the 

basis for practical dynamical calculations as discussed by Chew(9) and 

Chew and JonesSlO) 

However, we shall continue for the time being, to discuss the 

exact equations and shall take the next ste:p by converting the problem 

into a linear integral equation by a modified N/D technique. That is, 

we shall write the am:pli tude as 

= (II. 3) 
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where D.e(s) is cut from so to sl and is real outside this region, 

while N.e(s) carries tre remaining cuts of B.e(s) and-isreal in the 

region 0 < s < sl. 

The justification for the break-up of B.e(s) in (II. 3) is 

. (26) 
provided by the Omnes formula. . For sufficiently large .e such 

that there are no bound states we may,define 

1 = exp --3{ 

I 

ds o~(s I} l 
s - s 

(II. 4) 

__ Here we have assumed o .t {s0 ) = 0 • ( ~ shall discuss our phase shift 

convention more ful.iy in the next section • ) The D .e ( s) so defined 

clearly carries the phase of B.e(s) on.the interval (s0, s1 ) , is 

real outside this interval, and if o-..e (s
1

) < ~ , it has no poles or 

zeros. Finally1 D.e(s) -+ 1 as s-+ ro. Thus D.e(s) has the dispersion 

relation 

I 

ds 
s - s 

Using {II. 2) we may write for N.e(s) , 

(II. 5) 
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N.e(s) = B,e(s) Di(s) = B.e p(s) D.e(s) 

D.e(s) r I 

I Im B£(s ) 
+ ds (II. 6) :rc s - s 

so 

By defi.niM.con, N,e\s} :ts real in the interval (60 , s1~., so the 

.second term in (:Eli. 6) m'lllst cancel the imaginary part of the first term. 

We.recall that the second term vanishes at infinity like· 1/s which 

leads to the unambiguous identification: 

sl 
I fi p I 

D,e(s) ( 
I Im B,e(s ) 1 t B.e (s ) 

J ds ·= -- ds 
:rc :rc s - s s 

so so 

Finally, we may write for N .e ( s) , inc·orporating (II. 5) , 

p 1 
= B.e (s) + ;r 

so 

I 

ds 

p· I p 
B.e ·~s ) - B.e (s) 

s - s 

I 

Im D,e(s ) 

- s 

(II. 7) 

(II. 8) 
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This is just Chew's equation\9) We have derived the equation step-by-

step in order to call attention to all of the assumptions which are made, 

because at various points in subsequent discussion we shall find it 

necessary to modify nearly all of these assumptions ~27) 

Equation (II. 8) provides a linear integral equation for Nt(s) , 

and Dt(s) is then determined through the equation 

s 
1 

J 
I I 

Dt (s) 
1 I. 

pt(s ) Nt(s) = 1 -- ds (II. 9) 
11 I 

s -- s 
so 

We now check that a solution of (II. 8) satisfies our original equations 

(II. 1) and (II. 2) with B£ (s) = N t {s)/D£ (s) • If the aolution N t (s) 

is real in (s0 , s1 ) we ·see from (II. 9) that 

(II. lO) 

But this relation is entirely equivalent to (II. l) which is just unitarity. 

We emphasize that Nt(s) must be real to justify such an argument be-· 

cause Banerjee (23) has _shown that in certain cases (II. 8) may possess· 

solutions which are· not reaL This situation Will arise, for example, 

in a model problem where B,ep(s) is only approximate and happens to exceed 
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the unitarity limit at s = s1 for some real value of t • In this 

case branch points in t occur at those values for which the unitarity 

limit is exceeded. In the exact problem we have been considering, unitarity 

will always be maintained. 

We now check that equation (II. 2) is satisfied by our solution. 

We see that our solution gives 

t 
p I I I 

l I B£ (s ) p.t(s ) N.t(s ) 
ds 

1{ I 

s - s 
s 

0 

sl I I 

l J 
I pt(s ) Nt(s ) 

1 - - ds 
1{ 

8 - 8 

(II. 11) 

so 

Employing the same reasoning we have used before, we see that the second 

term in (II. 11) is real except for the interval (s0 , s1 ) and more-

over, it vanishes like l/s as s ~ oo. We can thus make the identification 

s 

J 
p I I I 

l ' B£ (s ) P.e(s ) N.t(s ) 
ds 

sl :1{ 
s - s I 

so l J I Im B,e(s ) 
:::: ds (II. 12) 

f 
1{ ,. I s - s 

l I P,e(s ) ~£(s ) 60 
1 -- ds I :1{ 

s - s 
so 
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and equation (II. 2) is verified. 

The derivation of this section is based upon the assumption that 

£ is real. It is simplest to formulate and to solve the equations for 

real £ and the amplitude for complex £ may be determined by analytic 

continuation. We have also assumed that £ is large enough so that there 

are no bound states. In the next section we shall analytically continue 

these equations to smaller £ values and shall verify that equation (II. 8) 

retains its form even though even though equation (II. 2) generally will 

be modified by the addition of bound state poles. 

III. MAXlMAL ANALYTICITY OF THE SECOND DIDREE 

For a fixed energy s, the amplitude B£(s) is holomorphic in 

£ to the right of some line Re £ = M. (It should be noted that, 

in the presence of Mandelstam cuts}24) no fixed boundary for the region 

of holomorphy can be given which is valid for all values of the energy.) 

Assuming no natural boundaries are present in the £-plane, one may 

define Bl(s) for all values of £ in the complex plane by analytic 

continuation. However, it is not certain that the amplitude so defined 

for physical values of £ < M will actually coincide withthe physical 

amplitude. If, for example, there exist spin ~ or spin 1 · particles 

or resonances that do not lie on Regge trajectories, then the interpolated 

amplitude will not coincide with the physical one at these angular momentum 

values. In these cases the physical amplitudes will contain a kronecRer 

delta contribution, which is zero except at angular momenta ~ or 1. 

The parameters of these particles will have to be grafted into the theory 
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and cannot be determined. They will be, in a sense, "elementary" particles. 

Maximal Analyticity of the Second Degree(2l) eliminates the pos-

. sibj_lity of such "elementary" particles by reQuiring that the interpolated 

·and the physical amplitude coincide. Thus all parameters associated 

with particles and resonances which occur at lower angular momentum 

values are to be established by continuation from the holomorphic region 

of high angular momentum. Also other constants, like the one associated 

with the pion-pion s-wave channel are similarly determined. 

Let us make two brief remarks in connection with this principle. 

First, it may be redundant. That is, it may turn out that no non-trivial 

solution to the S-matrix equations exists satisfying analyticity, uni-

tarity in all three channels as well as ·crossing symmetry, which does 

not automatically embody Maximal Analyticity of the Second Degree. To 

prove such a statement, however, may be very difficult, since the theorem 

itself seems rather close to the complete solution of the dynamical problem. 

Meanwhile, this postulate appears to be a very satisfactory and--as we shall 

see--very powerful working hypothesis. To date several calculations as 

well as evidence from experiments appear to support the notion that all 

particles lie on Regge trajectories. 

The second point is simply to note that Maximal Analyticity of the 

S d l b f CDD
(l7) 1 

econ Degree l.Illp.Lles the comp ete a sence o po es. 

We shall now examine our equations in more de·~ail and . show how 

they are to be defined for all £-values using Maximal Analyticity of the 

Second Degree. We shall still work with the exact problem and assume that 
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s1 is less than the threshold for production processes. We shall defer 

until the next section the question of the existence of the solutions of 

these equations in the sense of integral equation theory. 

We begin by examining more carefully the D-function as defined 

earlier,. 

= exp 
I 

ds (III. 1) 

This equation defines the D-function for large angular-momentum 

values, where there are no bound states. Threshold conditions on the 

amplitude dictate that ot(s0 ) must be a integral multiple of~. How­

ever, since we want the D-function as defined in (III.l) to be free of 

zeroes in the absence of bound states, we are led to the convention 

(III. 2) 

for t's sufficiently large that there are no bound states. This estab-

lishes once and for all the phase-shift convention and means that Dt(s) 

has no poles or zeroes at large angular momentum. This convention will 

be shown to correspond to the usual one made in potential scattering. 
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Let us now focus our attention on a particular Regge pole in 

the amplitude which occurs at £ = a(s). This formula may be inverted and 

gives the location s = sR(£) of a pole in the energy plane. If £ 

is large enough so there are no bound states this pole is to be reached 

in the usual manner by analytic continuation in energy through the right­

hand cut from above the real axis (see figUre 1). A companion pole is 

* also located at s = s R(£) reached by coming up through the right-hand 

cut from the bottom. If we designate the residue of such a pole by r(.e), 

we can write in the neighborhood of the pole 

-1 
2i 

,r(.e) 

.en (s - ~(.t)) 

(III. 3) 

Thus 6£(s) is logarithmically singular at s = ~(£) and also at 

* 8 = s R (£) • 

As we decrease the angular momentum, the point sR (£) moves to the 

left·in the energy plane. Finally sR(£) emerges through the branch cut 

onto the physical sheet, representing a bound state. 

Let us now examine D.e(s) as defined by equation (III. 1). We 

may view the integral over 6£ as a contour integration C with·fixed 
I 

endpoints at 8 = 
1 

s0 and s The point 8 is defined as 
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being above the contour (that is, with a small, positive imaginary part). 

Suppose we consider Dt(s) for some particular angular momentum t = t
0

, 

where the phase shift is now singular at sR(£0 ). (See figure 2.) We 

determine the analytic continuation of Dt(s) down through the (s
0 1 s

1
) 

cut by distorting the contour as shown in figure 2. If we allow s to 

approach sR(£0 ) , the contour becomes pinched. It is easy to see if 

we distort the contour C around the branch point in 8£(s) at s = sR(£0 ) 

that as s ~ sR(£0 ) (see figure 3), 

1 --1{ 
s 

I 

ds 

- s 
( 

+211i 
2i 

(III. 4) 

Thus we see explicitly that D£(s) has a zero on the second 

sheet at a position corresponding to the resonance pole. Note, however, 

that we must reach the zeroes of Dt(s) by going through the (s0 , s1 ) 

cut. We may also consider the N-~ction defined by 

The right-hand cut for N£(s) begins at s = s1 • We see from figure 4 

that since the branch point at s = s1 is artificial, B£(s) will 
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have a pole at s = sR(£) whether we continue through the right-hand 

cut of B.t(s) to the left or the right of s1 • Thus when we continue 

along path P the point sR(£0 ) is a pole in N.t(s) , while if we 

continue along path Q , sR(£0 ) is a zero of D.t(s) • Our definition 

of D£(s) with only a finite cut is responsible for putting the pole 

at sR(£0 ) into both N and D • However it should be realized that 

N£(s)/D£(s) has only a simple, not a double pole. 

A similar argument to the one given also applies to the point 

s = s*R(.t), it also being a zero of D.e(s) if.we·continue through 

the (s0 , s
1

) cut from underneath. 

Our process of analytic continuation in £ can now be carried 

further as we decrease .£ • As we approach the value £ = a(s0 ) the 

singularity at sR(£) will approach the physical sheet. The function 

sR(£) is actually itself singular at .e = a(s0 ) but if we give .e 

a small, positive imaginary part in this neighborhood, the point s (£) 
R 

will emerge into the upper half a-plane dragging the contour with it. 

(See figure 5. ) 

It is interesting to study the motion of the singularities at 

sR (.t) and * s R(£) in the neighborhood of .e = a(s0 ) • For this 

purpose, we employ the threshold equation for a(s) given by Baiut and 

Zwanziger~23)_ Recalling that a(s0 ) is real, we write 

(III. 5) 
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where C is real and positive and £ is the pole position. By inverting 

(III. 5) we obtain 

1 
1 a:(s0 )+1/2 

= (t -ca(s0 )) (·-in/, a:(s0 )+1/2 

~(£) 

1 
a:(s0 )+1/2 1 

(III. 6) 

(£ -c a(soll (•in/2) 
a(s

0
)+1/2 

* s R (£·) = 

These equations clearly show that as £ ~ a:(s
0

) from above with a small 

positive imaginary part, the imaginary part of sR(£) goes from negative 

* .to positive while that of s R(t) stays positive and does not change 

sign. This proves that with the path of continuation described the 

~ (t) singularity drags the contour and 

Had we chosen to continue t through t 

* . 
s R ( t) does not interfere. 

= a:(s
0

) with a negative 

* imaginary part, the s R(£) singularity would have distorted the contour. 

We now evaluate Dt(s) for t < et(s0 ) , the integral from 

sR(t) to s
0 

just being over the aiscontinuity of the logarithm, 

I 

ds 

s - s 

(cont.) 
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sl 

8t(•')) . . ~ 1 J I s- sR(.e) X ·exp ·-it ds = 
s - 6 s - 60 

L so 
(III. 7). 

sl 

exp f-; J 
I a.e(s' )l 

ds ' -·J I 
s 

so 

. The zero in D.e(s) is now a bound state since it occurs on the real axis. 

Barticularly interesting is the fact clearly indicated by figure 5 that 

8.e (s0 ) is now equal to 1( • This ensures a canc·ellation 'of the apparent 

pole in D.e(s) at· s = s0 • 

We have focused our attention on one Regge pole but clearly the 

argument is general and for m bound states we shall find that 5.e(s0 ) = ~ . 

By investigat~ng ~ne nigh energy behavior of tfie phase shift we can estab­

lish a relativistic version of Levinson's theorem~2 9) Assuming high 

energy behavior is governed by the Pomeranchuk Regge trajectory in the 

crossed channel one has C~o) 

1 
:r-
.en s 

(III. 8) 
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which is valid for all t 

For any positive energy, the amplitude also vanishes exponentially 

in the limit of large £ as shown by the Froissart-Gribov transform 

which defines B£(s) • Hence we know 

' -----? n7! 
£-+oo 

s positive 

(III. 9) 

where n is an integer. However the convention (III. 2} we have taken 

means n = 0 • Since (III. 6) is good for all t we may conclude 

that 

Re 5 e (s) 0 (III. 10) 

Hence the real part of the phase shift vanishes at infinity and equals 

~ at threshold, m being the number of bound states; this is just the 
(29) 

analogue of Levinson's Theorem from ordinary potential scattering. 

Another important point is that for all values of £, D£(s) 

maintains the normalization 
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1 . 

Let us now investigate the properties of Dt(s) as a function 

of t and .s • First we observe that Dt(s) has a branch point in t 

at t = a(s1 ) which occurs as an endpoint singularity at s1 . in the 

integration over ~ • To see this we expand sR(~) in the neighborhood· 

of t = a(s
1

) , . 

et(s) ~ const. tn [s - s1 - sR (£ - a(s1 )) ] 
s-+s1 

t ~ a(s
1

) 

Thus the s~ngular part of Dt(s) can be written 

I I 

ds tn [s 

(III. 11) · 

(cont.) 
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(III. 12) 

* A similar branch point occurs at £ = a (s1 ) • These two branch points 

occur off the real £ axis and may be connected as shown in figure 6. 

The correct path of continuation from high £ as traced out earlier is 

to stay on the real axis and go through the cut. This cut, of course, 

is entirely spurious. It appears also in Nt(s) but cancels out of the 

full partial~wave amplitude. The proper choice of sheet in the £-plane 

is completely determined by requiring that Dt(s) have the resonance poles 

on its second sheet. 

The distorted contour shown in figure 5 gets dragged to infinity 

as t..., a(oo) and we expect a singularity in general to occur in Dt(s) 

at .e = a(oo) . This point will be discussed in a later section • 

Now let us turn to an examination of the structure of Dp,(s) 

in the s variable. Singularities occur in D,e(s) at s = so and 

s = sl • For s near sl we can expand o t (s) and obtain 

sl 
( 

ds':t£(sl) 
r· l 

J 

Dt(s) ~ r (.e, s) exp i_ 
J I 1( 

s 
s-+sl ,L. 

s . 
from below 0 

(cont.) 



-23-

= r(.t,s) 

~ 

81(s1 ) - i sin 81 (s1 )} 

' ,; 
(III. 13) 

Here r. (£, s) will be unity unless there are bound states in 

which case it will have the form (III. 5) • The constant· c1 is positive. 

If we approach the point s1 from above we have 

r(.e, s) 
s-+s 

1 
from above 

5 11 (s1 )/rc 
(s - s) .1'1 

1 

(III. 14) 

where again c2 is a positive constant. As discussed earlier, our 

definition of D,e(s) assures it will be free from zeroes except for 

bound state zeroes which emerge onto the physical sheet at low £-values. 

This fact is reflected in the positive_character of c2 in (III. 10) 

which enables D,e(s) to connect asymptotically to plus one at infinity 

with no z_eroes above s1 • In figure 7 we sketch· the graph of Re D .t ( s) 

for several values of .t starting at a value for which there are no 

bound states. Note that the value of 5£(s1 ) determines the sign of 
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Re D£(s) as we approach s
1 

from below and also determines the strength 

of the singularity at s
1

. 

Although we have seen how D£(s) is to be defined for lower angular 

momenta by continuation from high £ and also N£(s) through the equation 

N£(s) = B£(s) D£(s) , it remains to find the equation sat1sfied by 

N£(s) for these lower £ values where bound states occur. We shall 

find that N£(s) continues to satisfy (II. 8) even in the case of 

bound states (so long as 5£(s
1

) < n) • One may ask why not just con­

tinue equation (II. 8) in £? The answer is that there may be points 

along our path of continuation where 5£(s
1

) > n and in these cases 

the integral term of the equation will not be defined. The fundamental 

definition of Nt(s) is in terms of B£(s) and Dt(s) , so we begin 

with equation (II. 2) which in the presence of a bound state becomes 

s Jl I 

B.ep(s) 1 I Im B.e(s ) r{.e ~ 
B.e(s) = +- ds + - sR (.e) n s 

s - s 
so 

(III. 15) 

As long as 5.e(s
1

) < n for the particular 2-value we are 

looking at, equation (II. 5) will continue to be valid (if 8.e(s1 ) > n, 

the integral term in (II. 5) willnot converge as one may see from (III. 9) ). 

All the remaining steps of the argument go through (30), equation (II. 7) 

becoming 



51 

1 
( 

I 

' = j ds 
rc 

so 
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I 

ds I + 
s - s 

p I I 

B£ (s ) Im D_g(s ) 

s - .s 

D_g(s). r(.e) 

s - SR (.£) 

Equation (II. 8) then follows. It bas been .crucial to the above 

argument that D_g(s) retain its normalization to unity, its asymptotic 

behavior, and also its original analyticity during. the process of contin-

uation to lower £-values. These facts which were proved in this sectiol1. 

show the manifest way in ·.•:rh;Lch lvi.4Xinlal ~lyticity of the Second Degree 

determines the dynamical equations for lower angular momenta. We .have 

thus also verified that the strip equations of references 9 and 10, 

which are based on (II. 8) , are in correct form for the lower angular 

momenta. values where the strip calculations are to be made. 

The question of what happens to the form of the dynamical equation 

for values of £ with 8£(s
1

) > rc wili be answered in the next section 

where we consider the solutions of the integral equations. 
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IV. SOLUTIONS OF THE INTEGRAL EQUATIONS 

In Section II we derived the Chew equation(9) for Nt(s) 

(see (II. 8)) and we have seen in the previous section that the equation 

continues to be valid when we analytically continue to lower angular 

momenta whenever 8£(s1 ) < ~ . In this section we consider the follow­

ing important ~uestions: (1) Does equation (II. 8) continue to be 

satisfied by Nt(s) for £'s with 8£(s1 ) > ~ ? (2) Can the equa­

tion (II. 8) be reduced to a standard-type integral equation (such as a 

Fredhplm type)? (3) Are the solutions of the :tntegral equation unique? 

We continue to .regard (II. 8) in what follows as an exact equation. 

The answer to question (1) will turn out to be no; for values 

> :rr 1 equation (II. 8) will have to be 

modified. Question (2) has already been partially answered by Chew~32 ) 

He showed that the answer is yes if 8 t ( s1 ) < ~ . 
" 

We shall extend 

his result and show that a solution to the relevant (in some cases modified) 

version of (II. 8) exists for all real £. 

The answer to question (3) is, in general, no. The solutions to 

the integral equations are not always unique. However, once again Max-

. imal Analyticity of the Second Degree comes to the rescue, and \ve shall 

find that requiring a given solution be connected to the solutions for 

high £ removes completely all arbitrariness. Of course this last state~ 

ment must be regarded as obvious if the solutions at high £ are unique. 

Since we have seen in the last section that N£(s) possesses a continuation 

to all £ (i.e. there are no natural boundaries), it follows that if a 
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uni~ue solution exists for a certain range of high £, the solution for 

all £ is uni~uely determined. What is not clear is that the solutions 

of (II. 8) regarded as an integral e~uation for a fixed £-value are 

uni~ue. In fact, as mentioned, this is not true? in general. 

We wish to emphasize the importance of being able to put the 

dynamical e~uation into the form of one of the standard integral e~uation 

types. First, of course, many important, general theorems concerning the 

nature and existence of solutions become accessible from integral e~uation 

theory. Any formulation of the exact problem must of necessity have a 

solution if our basic e~uations are correct--even if the e~uations were 

not standard type integral e~uations. But of overriding practical importance 

is the solubility of the problem when the e~uation and the input are ap-

proximate. Here it is obviously a distinct advantage to have the inte-

gral e~uation in a standard form so we can tell when the approximate prob-

lem has solutions. 

We begin by discussing the solutions of the dynamical e~uations 

for large £ • For sufficiently big £, 5£(sl) < ~·and there are 

no bound states. The important point here is that e~uation (III. 10) 

shows that unless 5£ (s1 ) < 1:C, D_g(s) will b.ave a pole (generally super­

imposed with a branch point) at s = s1 and in this case the dispersion 

relation (II. 5) for D_e(s) would not be valid and hence the dynamical 

e~uation (II. 8) would not be correct. The reason for restriction to 

5£(s
1

) < ~ in the beginning will become clear as we proceed. With 

< 1! 
2 

all conditions are fulfilled in section II · for the deriVa-
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tion of equation (II. 8) and we are faced with finding a solution to t:~is 

integral equation~ 

In equation (II. 2) as s- s
1 

from above the second term has the 

limiting behavior, 

I jl 1 I Im B,e(s ) .Im B£(s1 ) 
ds .tn(s - s

1
) , 

1( 1( 
s - s 

so 

(IV. 1) 

So in order for unitarity to be preserved at s = s
1 

, it follows that 

£n(s
1 

- s) • Thus the kernel of our original 

I 

equation (II. 8) behaves like 
tn(s1 - s ) - £n(s

1 
- s) 

as both s and 
s - s 

s approach s
1 

and is not square integrable or of the Fredholm type. 

Following Chew(32 ) we may recast the problem into the farm of 

two simultaneous integral equations by separating off the singular part of 

the kernel. Using Chew's notatio~32 ) we rewrite equation (II. 8) 

I I I 

ds K,e(s,s ) N.t(s ) 



-29-

(IV. 2) 

where 

I 

' 
.en(s1 - s ) - .en(s - s) 

k
0

(s, s ) 1 (IV. 3) = ' 6 - s 

P.e(s1 ) Im B.e P (s1 ) 2 
f...e "' =· ·sin 8 .e (s1 ) 

The two coupled integral equations are 

0 p t I I ' N.e (s) = B.t (s) + ds K.e(s, s ) N,e(s ) (IV. 4) 

so 

sl 

0 A..e f I I I 

N.e(s) = N.e (s) -2 ds k(s, s ) N.e(s ) (IV. 5) 

" 
so 
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CheW1S procedure(32 ) then consists in the explicit construction of the 
I 

resolvent kernel O,e(s, s ) for eq_uation (IV. 5) such that 

= 
I 

ds (IV. 6) 

With a knowledge 0 .e ( s 1 s 
1 

) (which depends only upon A. .e) 1 N .e 0 ( s) 

may be found as the solution of 

0 p /1 ' I I Q I 

N.e (s) = B.e (s) + ds K.e (s, s ) N.e (s ) 

so 
sl 

I ' If. II II I 

K.e ( s, s ) = r ds K.e (s, s ) o.e(s J s ) (IV. 7) 
) 
so 

With the solving of (IV. 7) 1 N,e(s) may be determined by eq_uation 

(IV. 6) . Chew showed that (IV. 5) possessed a solution for o£(s
1

) 

of the Wiener-Hopf type and that under these conditions (IV. 7) becomes 

< :rc 
2 
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of Fredholm type so N£(s) is completely and uniquely determined\32 ) 

In our case the Chew solution is the one we are interested in 

for large £ < ~ 
2 

Of course, in principle, we may 

just analytically continue the solution so obtained to all £ values 

but in :practice such a continuation :procedure may be difficult. So we 

· now explore how explicitly to obtain N£ (s) for lower £ • The first 

, step is obtaining the solution in the region of £ such that 1t > a£ (s1 ) > ~ . 

We shall see that this m~y be accomplished by analytically continuing the 
I 

resolvent kernel O£(s, s ) in £ • 

To carry out our :program we must review the construction of the 

solution to the Wiener-Ho:pf. equation (IV. 5) which Chew discusses for 

The change of variables 

X = (IV. 8) 

leads to the equ.a.tion 

·oo 

0 "A.£ f I X - X 
I 

nt(x) ::: n.e (x) +- dx I nt(x ) (IV. 9) 
2 

1( X - x· 
- 1 e 

0 
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. obtained by substituting (IV. 8) into eQuation (IV. 5) • The Wiener-Hopf 

technique(33 ) consists now in defining n£+(x) and n£·(x) as follows, 

X > 0 

= 0 X < 0 

X > 0 . 

X < 0 (IV. 10) 

. We may: thus write 

(IV. 11) 

We next adopt for convenience the convention that 

= 0 X < 0 · (IV. 12) 
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Taking the Fourier transform of equation (IV. 9) gives 

2 J _ sin

2

5.e(s1 ) . 

sin 1! i k 
. ' 

. (IV. 13) 

+ - 0 + - 0 where g.e 1 g.e 1 g.e are the Fourier transforms of n.e 1 n,e 1. n.e • 

Both N,e(s) and. D_g(s) are singular·at s = s
1 

(which corresponds 

. here to X = CO) but their ratio. must be regular. at this point. 

N,e(s) must have the same singular behavior as · D,e(s) near s = 

That is, from (III. 10) we conclude that 

const. 

Thus we seek a solution o'f (IV. 9) with the behavior 

n.e(x) 
x:-+co 

Thus 

(IV. 14) 

(IV. 15) 
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This re~uirement on n.e(x) means that g.e+(k) is holomorphic in the 

half-plane Im k > o.e(sl)/~ g.e-(k) is holomorphic in the half-

plane Im k < 1 ; g£ 
0 (k) is holormorphic 'in the half-plane Im k > 0 • 

Furthermore if n£(x) .is well-behaved at x = o, g£+ and g£-(k) 

each vanish as . lkl -+ ro in their half-planes of holomorphy. The ~uan-

tity 

·· u(.e, k) 
sin

2 
o.e(sl) 

= 1 -
sin2 :rc i k 

(IV. l6) 

is holomorphic in the strip 0 < Im k < l • However, it is impor­

. tant to note that . U(£, k) has two zeroes in the strip at 

(IV. 17) 

'l'he Wiener-Hopf method consists in factorizing u(.e,. ~) 

·(IV. 18) 
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in such a way that 0 £+(k) is holomorphic and free from zeroes in some 

upper half-plane and ¢£-(k) is holomorphic and free from zeroes in 

some lower half-plane, the two half-planes being required to overlap in 

a strip which lies inside the region 0 < Im k < l • This strip 

+ 0 
must contain a substrip in which the quantities g£-(k) , g£ (k) are 

+ 
also holomorphic. The functions ¢£-(k) can be chosen such that the 

growth as lkl -+ oo is only algebraic. We then rewrite equation (IV. 13} 

(IV. 19) 

Finally, the product g£ 
0

(k) ¢£ -(k) can be written 

(IV. 20) 

in a manner to be described shortly, Such that. ~£+(k) is holomorphic 

in an upper half-plane, ~£-(k) is a lower half-plane and where the 

two half-planes overlap in the substrip defined above. Thus we may write 

(IV. 21) 
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The left side of (IV. 20) is holomorphic in the upper half-plane and the 

right side is analytic in the lower half-plane and there exists a common 

strip of holomorphy. This means that both sides of (IV. 20) are entire 

functions of k and in fact are equal to some polynomial P(k) . 

In order to proceed further, we must now consider the explicit 
. + 

construction of ¢.e-(k) • We observe that 

where 

U(t, k) 

8 . = 
t 

(IV. 22) 

Each gamma function appearing in equation (IV. 21) has an upper or lower 

half-plane of holomorphy as follows: 

r( -i k) 

r(l + i k) 

Table I 

Region of holomorpny 

Im k > 0 

Im k < i 



-37-

Region of holomorphy 

r(o.e - i k) 

r(1 + B.e + i k) 

r( - i k + 5.e) 

r(1 + i k - 5.e) 

Im k 

Imk 

Imk 

Imk 

r(l + o.e + i k) r(1 - o.e + i k) 

r 2 (1 + i k) 

> 

< 

> 

< 

-i 0 .e 

i (1 + o.e) 

i o_g 

1 (l - 5.e) 

(IV. 23) 

(IV. 24) 

and all functions in·equa.tion (IV. 19) are ho1omorphic in the substrip 
+ o.£ < Im k < 1 - o.e shown in figure 8. Both ¢.£ -(k) approach con-

stants as lkl -+ ro. Let us consider the possibility of homogeneous solu-

tions to our problem where 0 gt (k) = 0 • Then equatio~ (IV. 19) be-

comes 

(IV. 25) 



where P(k) is an entire function of k . 
+ 

and ¢ -(k) approach constants, P(k) must be identically 
+ 

zero and gt-(k) are therefore zero proving that no non-trivial 

homogeneous solution exists. Thus the solution to the inhomogeneous 

problem is unique. 

Suppose we attempt a solution to the problem when 8t(s
1

) > ~ . 

In this case the strip region where all relevant functions must be holo­

morphic is shown in figure 9· The factorization made earlier will not 

work for the strip of figure 9 but it is easy to establish a new factor-

ization 

U(t, ;k..) = 
¢t'+(k) 

,_ 
¢t (k) 

(IV. 26) 

where 

We consider whether a homogeneous solution exist~ in thi~ ease. The only 

difference between this case- a.nd the· one previ.OU!iil;v' ~Qfi81dered is that 
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•+ ¢£ -(z) diverge linearly as lkl ~ oo • This means p(~} of (IV. 24) 

may be a constant, Th~s 

c 
(IV. 27) 

and. 

= c J (IV. 28) 

c 

where C is a con'tollt' inside the strip (see figure 9) • If x > 0 

we can clo.se the contour C. in the lower half-plane and the two zeroes 

'+ of ¢ p, (k) in the strip produce tbe following asymptotic behavior· tor 

n£+(x) 

(IV. 29) 
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Since ot(s1 ) > ~ the second term of (IV. 29) gives the leading and 

physically re~uired asymptotic behavior. Thus it would appear that there 

exists an arbitrariness in the solution for values of t with ot(sl) > ~.·. 

However, as we shall now see, this arbitrariness is completely eliminated 

by Maximal Analyticity of the Second Degree. The solution (IV. 25) may 

be continued in t to a region where ot(s1 ) < ~ and e~uation (IV. 26) 

still gives the asymptotic behavior of the solution. Now, however, since 

ot (s1 ) < ~ , the first term of (IV. 26) gives tre leading behavior 

which violates the physical re~uirement established earlier that 

What can we conclude from this result? First, we see that an 

apparent arbitrariness in the solution of the dynamical e~uations when 

t is such that pt(s1 ) > ~ is deceptive. That is, one cannot, in 

general, add to the inhomogeneous solution obtained when ot(s1 ) > ! 
2 

an arbitrary multiple of the homogeneous solution. Such a solution will 

not be correctly linked to higher angular momenta in accordance with 

Maximal Analyticity of the Second Degree. What occUrs is that the inhomogeneous 

solution for o£(s1 ) > ~ must be modified by adding a uni~uely de-

termined multiple of the homogeneous solution so that the right asymp-

totic behavior is obtained when the amplitude is continued to £-values 

1! 
< 2. In this manner, the apparent arbitrariness in the 

solution is completely removed. 

In practice it will not be necessary to carry out explicitly 



the steps just indicated to determine the solutions for o£(sl) > ~ . 

It is simpler just to analytically continue the solutions which are 

. uniquely determined for 5 p, ( s1 ) • 1( 
<: 2 . This is accomplished by ana-

I 

lytically continuing the resolvent kernel ep, (x, x ) • We now show that 

this kernel can be so continued and that the solution determined for 

o
2 

(s
1

) > ~ meets all physical requirements. We return then to a 

consideration of equation (IV. 19) and solutions in the strip region 

indicated in figure 8. 

To achieve the break-up of gp,0 (k) ¢;,-(k) give:ro. in (IV. 20) 

we recall that the product is holomorphic in the strip 1 - o£(s1 ) > Im k > 0. 

We then write a Cauchy integral for g£
0

(k) ¢;,-(k) with k in this strip 

(see figure 8) • The result is 

1 
2:n:i J 

c 

' dk I 

k - k 

1 
== 2:n:i 

+oo+i€ 

J I 

dk 

k - k 
-oo+i€ 

I 

dk 0 I - I 

g£ (k ) ¢;, (k ) 
k k 

(IV. 30) 

The asymptotic behavior of g£ 0 (k) ¢;, -(k) as lkl -+ ro ensures that 
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these integrals converge and we may identify 

CO+i€ 

n/ (k) = 1 -21ri 
f I 

dk 

.k .. k 

0 I .. I 

g.e (k )¢,e (k) 

-co+i€ 

Tl,e- (k) 

1 !Eli:>t'1' -8£ -iE 

= ~: 2rl 
I . 

dk 

k ... k 

0 I .. I 
g .e (k ) ¢,e (k ) 

-co+l-o ,e-ie 

(IV. 31) 
. (~) 

Each side of (IV. 21) vanishes identically (see Chew ) and we have 

co+i€ 

f 
I 

dk 
I 

k - k 

-oo+iE 

(IV. 32) 

+ n,e (x) = 1 

\(2; 
(IV. 33) 
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The contour C runs through the strip 5£ < Im k < 1 - 5£ • We note 
. + 

from equation (IV. 32) that g£ (k) has a pole at k = i 5£ coming 

from a zero of ¢£+(k) at that point; the integral factor is holomorphic 

for Im k > 0 • If we deform contour C around the pole at k = i b£ 

conclude that 

-~~ exp fo.ex1 
x-+co 

(IV. 34) 

Furthermore, equations (IV. 32) and (IV. 33) may be analytically continued 

1 in £ into the region where 5£ >. 2 . ·We must deform contour C 

during this process, keeping it always above the rising pole at k .= i 5£ i 

We see that the asymptotic behavior (IV. 34) persists which meets the 

physical requirement and the solution for 5 i > ~ is thus uniquely 

determined by this procedure.· 
I. 

We now examine the resolvent kernel e£(x,x ) for the solution 

. 1 
with 5£ > 2 ·. 

oo+iE 

f 1 Idk -ikx 1 f et(x, X ) - e 
·-y2; 2rti ¢.e+(k) 

c -co+iE 

(cont.) 
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I I I 
dk ik X. I I 

1 e ¢£ (k ) 
k - k 

35.) 

I 

The · k integration may be performed by closing the. contour in the 
. . 

upper half-plane, and computing the residues of the poles in the integrand. 

For our purposes we shall only need to consider the first two poles which 
I I 

occur in the integrand at· k = i(l -. 5.£) and k· = k 1 which will 

enable us to determine the asymptotic properties of the kernel. Thus 

1 
2rei 

+ 

oo+i€ 

f t 
dk 
I 

k - k 
-·oo+i€ 

• I 

I I 

ik X e 
I 

¢ .t- (k 
1

) . Rl eikx · ¢ .e- (k) 

(5,e·l)x • . 1 

e Res ¢ .e ~ (k = i(l - 5 .e)) 

i(l - 5£) - k 
(IV. 36) 

The k integration may be performed by closing the contour C in the 
I 

lower half~plane if x > x and remembering that C lies above 
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k = We keep the "two leading poles at k = i 5 

" 
and k =. i(l- o.e) which give the asymptotic behavior l...n x1 with 

x fixed 

I I · I 

et(x, x ) . t::j. a1 exp [o.e(x - x )] + a2 exp [o.ex + (o.e - 1) x ] · 

(IV. 37) 

where a1 and a2 are constants. In a similar way we may make the cal­
l 

culation assuming x > x j in this case we must close the C contour 

above for the first term and the second term remains unchanged. Keeping 

' ' the leading poles which give the asymptotic behavior in x with fixed 
I 

x ·< x , we obtain 

I I I I I 

et(x, .x ) t::j a1 exp[ (1 - o;.)(x - x )] + a2 exp[o.ex + (o.e ':" 1) x ] 

(IV. 38) . 

Summarizing 

I 

exp [(o.e - 1) x ) 
I 

x -+oo 

x fixed 
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I 

x fixed (IV. 39) 

I 

Expressing the kernel again in terms of s and s , the corres-

ponding result is 

I 

6 -+s 
1 

6·fixed 

I 

6 fixed. 

-o 
(6

1 
- s) ~ 

These are the same limits which were established.. by Chew(32 ) in the 

(IV. 4o) · 

. 1 case ot < 2 . Now we wish to verify that equation ·(IV. 7) is essen-

tially Fredhom so that a complete and unique solution to the problem exists. 
I 

We must examine the kernel· K (s, s ) of (IV. 7) which is given by 

I I J K~ (s, s ) ~ . 
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In the dangerous r_egion 

IV 

- 8 ) - (81 • s) tn(s1 - s) 
I! 

8 - s 

1 . 

II t I 

8 1 s .... s
1 

(IV. 38) 
(28) From this we deduce (see Banerjee· ) 

I I 

K,e (s, s ) 
£n(s

1 
- s) 

---5£ 
! 

(s1 - s ) (IV. 39) 

1 For B J, > 2 , . the kernel as it stands is not square integrable, but 

by setting 

(IV. 40) 
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. (28) 

where € > 0 as Ba.ner jee suggests we achieve a square integrable 
.• "' 0 

kernel in the equation determining N .e (s) so the problem is solved."· 

(We have already shown in section II that a solution for N and D 

determines a solution to the original problem). 

Finally, we must discuss solutions to the dynamical equations 

when o.e(s
1

) > n • For convenience let us assume that ~ ~ > o.e(s1 ) > ~~ 

the modifications.. which we make in this case being easily generalized. 

When o.e(s1) > n , equation (III. 10) indicates that D.e(s) no longer 

possesses a siniple branch cut but ha.s a-pole.at s
1

; superimposed upon 

a branch point. This means that equation (II. 5) is no longer true, 

nor is (II. 8) correct. The simplest procedure for dealing with this 
. . ...,· . 

situation cons_ists in defining a new function D,e(s) defiJled by 

= . (s - s1 ) exp ' ds (IV. 41) 

We must now retrace the steps-leading to the formulation of equation (II. 8) 

in section II. First we observe that the asymptotic behavior of. D.e(s) 

is given by 

D.t(s)' > s + c1 (.e) 

s-+00 (IV. 42). 
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sl 

1 r I I 

where cl (.e). = - ds o.e(s ) - s n: I 1 
.-
so 

Thus the dispersion relation for D.e(s) which replaces (II. 5) is 

jl "' I 

n.e<~> 1 I Im D.e(s ) 
= s + c1 (.t) + -· ds (IV. 43) n: s - s 

so 

We also define N.e(s) = B.e(s) D.e(s) where B.e(s) still satisfies 

equation (II. 2) · 

sl 

D.e(s) I 
I 

;.., p "' I Im B.e(s ) 
(IV. 44) N.e(s) = B.e (s) D.e(s) + ds 

J!, 
s ":' s. 

so 

Remembering the asymptotic behavior for D.e(s) we may make the iden­

tification, 



D _e.(s) 
1{ 

sl 

J 
so 

1 
lfS 

I 

ds 
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Im B,e(s) ·1 

' = --1{ 
s - s 

I . 'I 

ds Im B£(s ) 

sl 

r p I "' I 

I B.£ (s ) Im D£(s ) 

I ds ... , 
s - s 

so 

(IV. 45) 

We combine equations (IV. 43) - (IV. 45) to arrive at the integral 

equation for N.£(s) 1 

p I p 
1 B£ (s ) - B£ (s) 

ds · ~ 

s - s 

(IV. 46) 

This equation for N.£(s) may now be solved according to the techniques 

discussed earlier in this section to yield a unique solution. The in-
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homogeneous part of the e~uation has been modified by the presence of 

two functions of £, c
1
(t) and c

2
(£) • From the point of view of the 

integral e~uation they are to be regarded as given ~uantities and they 

may be determined through their defining e~uations (see (IV. 42) and 

(IV. 45)) by analytic continuation from large £ • Thus the problem 

again h~s no indeterminancy when Maximal Analyticity of the Second Degree 

is enforced. 

Although it seems highly unlikely in practice that we shall ever be 

called upon to solve equation (IV. 46) , still for certain general dis­

cussions (such as the one to be given in section VI), it is exceedingly 

helpful to know that regardless of the value of o£(s1 ) , N£(s) continues. 

to be the unique solution of an integral e~uation of essentially the same 

form. 

The results of this section may be summed up in the following way: 

it is always possible to formulate for real £ an integral equation for 

the amplitude of a standard type, whose solution is unique and which obeys 

Maximal Analyticity of the Second Degree. 

Vv CROSSING SYMMETRIC REGGE REPRESENTATION 

AND THE STRIP APPROXIMATION 

We now discuss the dynamical equations ~ithin the framework of 

a specific model, namely the strip approximation as formulated in CJ. 

Our object here will be to examine the Crossing Symmetric Regge representation 

which is the basis for the strip approximation to see that it conforms 

to all reasonable physical requirements and that it is consistent with .. 

the basic approximation scheme. The object of the strip approximation is 
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to determine an approximate representation for 
p 

B£ (s) in equation 

(II. 8) " One reason for discussing the strip approximation at this 

point is to provide a concrete example for discussing the asymptotic 

behavio~ of Regge parameters in section VI. 

Having already shown in previous sections that our basic equati. on 

can be given meaning in the exact case and that it is an integral equation 

of the combined Wiener-Hopf-Fredholm type, the steps which follow merely 

approximate the exact version of the equation. The advantage of this 

point of view is that we shall immediately be able to compare the exact 

and approximate statements of the problem to see that the approximate 

cases also possess unique mathematical solutions. · 

The input of our problem B.e :i?(s) is determined by S-matt-ix 

elements in the t and u channels (using the usual Mandelstam variables), 

the.inelastic amplitudes in the s-channel, and the elastic s-channel 

amplitudes insofar as they contribute to the left-hand cut. The elastic 

scattering amplitude in the s-channel is then computed from this informa-

tion by means of the dynamical equation (II. 8). All the needed informa-

tion for our input just listed is never in practice at our disposal. In 

fact it often occurs that some of the S-matrix elements we require in the' 

t . and u channels are identical to those we are proposing to compute 

in the s-channel. This situation gives us the famous "bootstrap" pheno-

menon whereby the input amplitudes generate themselves. The dynamical 

content of the theory results from requiring the input and output amplitudes 

to coincide. 
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In this strange arrangement, we know neither the answer or the 

input but hope to find them both by requiring self-consistency. In 

practice, this is achieved by first finding a simple representation for 

the important'part of in terms of a few parameters or unknown 

functions, then doing the calculation and determining the parameters or 

unknown functions at the end by requiring agreement of the computed 

amplitude with the input. 

Representing by a few leading Regge pole terms in the 

t and u channels appears to be the best parameterization of the in-

put yet discovered •. These terms include the effects of resonances in the 

crossed-channels which dominate the nearby portion of the left-hand cut 

.J!.illS correctly characterizing. the asymptotic behavior on the left and 

right hand cuts~ Most previous calculations have been content with 

representing correctly only the nearby part of the left-hand cut, and 

:ignor.ilig inelastic effects (such as keeping our term of a polynomjal 

expansion in the crossed channel as was proposed in the original work 

by Chew and Mandelstam (l)) • Even admitting that the Regge parameterization 

is desirable, there is still the question remaining of what form the 

Regge ~epresen~ation should take. We shall examine here the one proposed 

by CJ and compare it with one suggested earlier by Khuri~34) 
What we seek is an approximate representation of the full ampli-

tude of the form 



A(s,t,u) ~ L 
i 

+ 

+ 
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(V. 1) 

where we nave a sum over the leading Regge pole terms in the s,t, and 

u channels respectively. (The si,j,k are signature factors and we have 

used the notation in CJ.) The strip regions 1!1 which the various terms 

of (V. 1) are assumed to dominate the ani.pJ itude are shown in .figure lO. 

These regions include the low energy range of all three channels and 

the high en~rgy domain near the forward and backward directions.. The 

companion diagram .figure 1.1. shows the corresponding regions where the 

Mandelstam double spectral functions are dominated by Regge pole terms. 

Our 
p 

B,e · (s) input.is to be determined by the t and u Regge terms 

from (V. 1) as well as the left-hand cut·contribution from the s term. 

We now list the desired properties of our Regge representation 

(v. 1) • 
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1) Near the resonances in each channel the expression should go over 

to the usual Breit-Wigner form with the correct position and width. 

This means that, in the angular momentum plane there should be a pole 

at £ = a(s,t, .or u) in the amplitude with ~he correct residue 

13(s,t1 or u) • 

2) Each Regge term; should give the correct asymptotic behavior in the . 

strip region in which it dominates. For example, the s-channel term 
a. (s) 

must have a behavior c.(s) t ~ as t ~co, where the power and the 
~ 

coefficient are correct. 

3) No spurious poles are permitted in the £-plane to the right of 

Re £ = Spurious poles which approach the physical region are 

obviously unwanted and have the effect of distorting the left hand cut. 

4) Each Regge term should satisfy the Mandelstam representation with a 

double-spectral-function characteristic of the strip region in which it 

dominates. (See figure ll.) 

5) Each Regge term should- vanish asymptotj.cally in a direction perpen-

dicular to its strip. Thus a · s-channel Regge term gives the asymptotic 

behavior of the amplitude as t ~ co, but is required to vanish as 

s ~co. This requirement is very important if we are to avoid double-

co~ting in (V. 1) and also if-we are to be. certain that the part of the 

amplitude neglected in (V. 1) is small. This requirement means that 

a Regge term will contribute asymptotically in a direction perpendicular 

to its strip no more .strongly than the background term of a Sommerfeld-

Watson transform. 
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In order to establish the representation (V. l) satisfying 

properties l) through 5) we shall assume: a) the partial wave ampli-

tude in each of the three channels is meromorphic with only Regge poles to 

the right of Re .£ · = - ~; b) the actual residues of the Regge poles, 

~' vanish asymptotically at least as fast as the inverse square-root of 

energy, to within logarithmic factors;c) in-order for the specific 

representation we discuss to satisfy requirement 3),· all Regge poles 

which reach the right half .£-plane must restrict their movement in the 

.£-plane to the right of Re .£ = d) both r (the reduced 

residue) and a are real analytic functionscut'from threshold to +oo. 

It may be possible to invent a representation (V. l) which 

dispenses with assumption c),however it appears quite possible in the 

C.J model that the equation will actually· generate solutions having, 

property c ) •. 

We now show that the representation given in CJ has the properties 
tl 

required •. We look at Ri (s, t) defined by 

t 
R. 

1 (s,t) 
J. 

i 

dt 
I 

t - t 

I 2 
p ( ) (-1 - t /2q ) 
.ai s s 

(V. 2) 
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where y.(s) is the actual residue 
~ 

a:. (s) 
2 ~ 

[)i(s) 9-ivided by (qs ) and 

q 
2 = s/4 -: 1 . s Equation (V. 2), ~s it stands, is well-defined for 

a.(s) < o, and is to be determined in other regions by analytic con-
~ t 

tinuation. We see immediately by inspection that Ri 1 (s,t) satisfies 

property (4), having a double-spectral-function with asymptotes s = s
0

, 

t = tl 

Using the dispersion relation for Legendre functions of complex 

order, we may rewrite equation. (V. 2) 

1 
fi -

2 

( 
X { -~ 

( sin " a1 (s J . 

a:i (s). 

[ g,: i ( s ) + 1 ] y i ( s ) ( - qs 2 ) 

+ dz 
I 

(v. 3) 

The ·:first term in (V. 3) is just the orc1inary Regge pole formula 

which then has a pole in the angular momentun1 at P, = a: . ~ s ) with 
~ 

the correct residue, [3. (s) • As is well-la10wn, the first term also 
~ 

possesses.ll,~'spurious:pole i:n:.::the £-!.Plane a.t £,,= -a:i(s) -1, but 

as long as we make assumption (c) it will never reach the right half 

£-plane. The integral term in (V. 3) has for' fixed s, an asymptotic 



t expansion consisting of integral powers of 1/t. This means that this 

term can have at worst, a sequence of fixed poles in the £-plane at the 

. negative integers. Properties (1) and (3) are thus verified. 

Asymptotic behavior in t for fixed s is clearly governed by 

the first term of (V. 3) and has the correct form required by property (2) • 

For the asymptotic properties perpendicular to the strip we must 

look at the second term of (V. 3), which for large s and fixed t diverges 

at the lower limit of integration. In this neighborhoOd, we can write 

and thus 

1 

I 
·. t 

-1---2 
2q 

s 

const. 

I 

dz 
z 

I az' 

tl 
-l--

2q 2 
s 

I 

p ( ) (z ) 
ai s 

s-+oo 
+1+-t_. 

2 2 qs t fixed 

I I 

.en.(z. + 1) 
t 

z +1+--2 
2q . 

s 

2 c<. .en s (v. 4) 
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tl 2 
Ri (s,t) ~ canst. ~i(s) tn s (v. 5) 

S-l(l) 

t fixed 

With assumption (b) , this. establishes property (5) • 

We now wish to verify that equation (V. 1) constitutes a good 
-

, approximation to the amplitude in the sense that the remainder of the 

amplitude (presumably depending almost exclusively on portions of the 

double-spectral_function not shaded in Figure 12) vanishes asymptoticallY. 

in each direction at least as fast as. the inverse square root of the 

energy-variable. ~is fact follows from assumption (a) ~ 

To carry out the proof, we break the amplitude up into the 

contributions coming from each double-spectral-function. We consider 

Ast(s,t) arising from the (s,t) double-spectral-function. The partial­

waveamplitudes which result from Ast (~, t) by projection in the s and 

t channels possess the same Regge poles in those channels as the full 

amplitude A(s,t) • ·We now perform a Sommerfeld-Watson transformation. 

on.Ast(s,t) in the t channel; when this' is accomplished we replace 
s 

the ordinary Regge pole term with Rj 1 (t,s), incorporating the difference 

into the background. Thus we write(35) 
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(v. 6) 

the first term on the right representing the t background term • 

. Asymptotically in s, we may write 

.< 
. "' 

const. 
. -y;- (v. 7) 

t fixed 

We can now perform a Sommerfeld-Watson,transformation of (V. 6) in the 

s-channel~a.11clc:r.·ecalling' the asY1llptotic ·t-beha·vior of the second term 

sl 
R. (t,s) 

J 
---:;:. (V. 8) 

s fixed 

'we see that with assumption (b) this t'erm can be identified as an s-channel 

background term. Finally, therefore, we 1nay write 
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(v. 6) 

where the first term on the right of (V. 6) must vanish asymptotically 

the inverse square root in either s or t. An identical argument 

may be carried out for the segments of A(s,t) coming from the other 

two··double-spectral-functions and the validity of the representation 

(v. 1) is established. 

·· Khuri (34) has recently proposed an alternate Regge pole formula · 

to equation (V. 2) • The two formulas differ in an· important way and we 

now wish to compare them. The link between (V. 2) and the Khuri 

formula is most easily established by replacing 
I 

by its asymptotic expansion in t 

1 Assuming ai(s_). >. -- we have 
2. . 

Pa. (s) .. in (v. 2) 
J. 

tl 
R. (s,t) 

J. 

a. (s) 
1 2 J. 

= 2- [20!.(s) + 1] r.(s) (-q ) . 
J. J. s 

00 

I 

dt 

a. (s)-n. 
00 , I J. 

L c (s) (' -t2 \ . 
n = 0 n 2qs } 

I 

t - t 
(v. 7) 
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. t 

"' 1 Khuri's Regge term, R. (s,t) results from taking only a finite number 
J. 

of terms in (V. 7) determined by the maximum excursion of ai(s) for 

rea1 s. Specifically, Khuri drops those terms which decrease at infinity 
I 

at least as fast as the inverse s~uare-root of t for all real values of 

s. The correct asymptotic t-behavior is clearly preserved in this case 

and the pole term is correctly present satisfying our properties (1) and 

(2) • 

The important difference between (V. 7) and (V. 2) is in the 

asymptotic s-behavior~34 ) .. E~uation (V. 7) contains the feature that the 

asymptotic s-behavior depends as follows upon the number of terms N 

which are retained in the sum: 

"' tl 
R. (s,t) 

J. 

t- fixed 

canst. 

N-ai(s) 
2 

t3i (s) c~s ) , (V. 8) 

We have neglected here the cn(s) which modify the answer by no more than 

a square-root factor of s. 

In order to satisfy property (5) , and also the condition that the 

remaind.er of the amplitude after the Khuri terms are removed vanishes 

in all directions like the background term, ·we must make different 

assumptions about the asymptotic behavior of the ~i(s) than were made 

in (b) • · _$:pP.~~ifica.llyi' in the:··lG.11.:rrLcase j;he l3
1
(f;) must generally vanish 
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more strongly, the precise power re~uired depending upon the maximum 

rightward excursion of the Regge pole ai(s) • This is the heart of the 

distinction between the two approaches, namely, a difference in the assump­

tions about the asymptotic behavior of the residues. 

We find no reason to support the notion that the asymptotic 

behavior of the residues is linked to the number of resonances or bound 

states produced by a given Regge trajectory, and so we tend to favor 

assumption (b) made in CJ, and the use of expression (V. 2) • The es-

.· timates given in the next section of the asymptotic behavior of the 

Regge parameters based upon the dynamical e~uations also appear to support 

assumption (b) • Although a potential theory argument on this point 

· must be considered weak, we note that in the case of non-relativistic 

potential scattering there is no correlation between the asymptotic 

behavior of the residue and the rightward excursion of the Regge trajectory. 

VI. ASYMPI'OTIC BEHAVIOR OF REGGE PARAMETERS 

The dynamical equations we are discussing are particularly conven­

ient for determining Regge trajectories t = a(s) through solution of 

the e~uation 

(VI. 1) 

This can be solved for s < s0 where all ~uantities involved are real. 
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Having determined a(s) , the residue may then be calculated. In fact 

the self-consistency requirement of the bootstrap calculation mentioned 

in the previous section is satisfied by matching the Regge parameters 

which go into• determining 
p 

B.e (s) with those computed using (VI. 1). 

Of immediate interest is the question of the asymptotic behavior of 

trajectories and residues. 

We have seen in the previous section that a consideration of 

this point is quite important in attempting to set up a practical boot-

strap calculation based on the dynamical equations. We now wish to ask 

what general statements can be made on this question both in model problems 

and in the exact case. 

We shall see that not too much can be said on this matter but just 

asking the question will lead us to some important insights into the dyn~ 

· amical equations. 

First, we shall discuss the asymptotic behavior of a(s) which 

is determined by the solutions of (VI. 1) as s -+ oo • We know D.e ~ 1 

as s ~· oo, so it appears reasonable that if the top-lying traj~ctories 

approach distinct limits as s ~ oo, this lb1:l.t must be a fixed infinite-

type £.;.singularity of D.e(s) • To illustrate we considerthe model case 

of CJ where the mechanism of a fixed simple pole in .e is discussed. In 

this case we can write for D.e(s) 

I 

= 1+ 1 I 

ds r(s ,.e) 
I 

s .l. s 
(VI. 2) rc[.e -·a(oo)] 
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where r(s,£) is regular at £ = a(oo) Solving equation (VI. 1) 

in the high~energy limit gives 

a(s) "'a(oo) = d/s + terms of order. l/s2 

sl 

1 J I I 

d = ds r(s , a(oo )) (VI. 3) 
1{ 

s 
0 

It is argued in CJ that the fL~ed poles which occur arise from the 

Fredholm character of the basic ~quati~n· (II. 8). (Actually the Fredholm 

part of (II. 8) is given by (IV. 7) .) In this problem it is important 

to note that the kernel is actually a function of the eigen-parameter · £, 

rather than being a simple, multiplicative factor. In regions where 
I 

K£(s,s ) is locally an analytic function of' t, this cannot change the. 
I I 

nature of the eigenvalue problem for K£ (s,s ) can be expanded in these 

regions.to give, in a neighborhood, the usual, linear.dependence on £. 

This analytic dependence of the kernel on the parameter £, however, 

modifies the solution as a function of £ from what would be expected 

in the usual Fredholm case and it becomes ~n important problem to study 

the singularities o~ the>.:· kernel in £ • In the standard case the eigen-:­

. parameter simply multiplies the kernel and the.solution possesses poles. 
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in the £-plane given by the zeroes of the Fredholm determinant, which is 

a holomorphic f~ction. These poles possess no point of accumulation in 

the finite plane. 
I I 

In our case, the kernel K£ (s,s ) will generally possess poles 

as well as branch points and the above pictUre becomes considerably 

more complicated. Near fixed poles of the kernel in £, we expect an 

accumulation of Fredholm poles since the kernel becomes :unbounded in 

such a neighborhood. :Branch points in the kernel may be transmitted more . 

or less directly to the solution or such singularities may be modified 

in the process depending on the singularity-type. In any event the singular-
I I 

ity structure of the kernel K£ (s,s ) in £ will clearly play an 

important role in determining the nature of the dynamical solutions and 

as already discussed we also expect it to play a central role in deter­

mining the asymptotic behavior of the Regge parameters. 
I I 

The Fredholm kernel K£ (s,s ) bas essentially the same singular-
p 

i ty structure as B .e ( s) does in the .e -plane and we shall begin our 

discussion by locating some of the important singularities of 
p 

B.z (s). 

We shall begin with the model case because it is somewhat simpler. As 

shown in CJ, if the residues vani.sh ·sufficiently fast at infinity the leading 

singularity will be. a pole at £ = -1. This fixed pole is related to the 

Gribov-Pomeranchuk phenomenohJ~1d occurs as result of a pole in the left-

hand cut discontinuity. In the case considered where the residues vanish 

strongly at infinity, this is the only relevant singularity. The unbounded 
' 

character of the· function near £ = -1 is expected to produce an accu-
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mulation point for Fredholm poles and if these poles are distinct we may 

focus ~ur attention on the one standing farthest to the right at £ = a(oo). 

The pole produced in the solution of the integral e~uation for N£(s) 

is carried over to D£(s) by the.relation 

= 1 ~ l 
l! 

I 

ds (VI. 4) 
s - s 

If we assume a simple pole at £ = a(oo) , the situation of e~uation 

(VI •. 2) is produced and the asymptotic. behavior (VI. 3) is found for 

a(s). Note that the Fredholm pole occurs in both N and D, thereby 

cancelling out in the complete amplitude •. This is as it should be, for· 
> 

the complete amplitude has no fixed pole at £ = a ( oo ) • . We also point 

out that B£p(s) is, in the mOdel case,, regular at £ - a(oo) • To 

determine the corresponding asymptotic b.ehavior for the reduced residue 

y(s) we use the fact 

y(s) 
Na(s) (s) 

= uciO.i(s) . 

d£ £ = a(s) (VI. 5) 
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We can expand both N and D in a Laurent series about t = a(oo) 1 

r (s) co 
= .1 + t _n a(oo) + n ~~ o (VI. 6) 

Ifr,(s) ~ N n 
= t _ a(oo) + L, f (s) [t- a(oo)] •' 

n = 0 n 
(VI. 7) 

For.our purposes it will be convenient to write the equation for Nt(s) as 

I 

ds 
s - s 

(VI. 8) 

Thus inserting (VI. 7) into (VI. 8) 

I 

ds I 

s - s 

(cont.) 



00 

... ; ~ [t -o:(ro)]n 

n = 0 

i 

ds 

p I ( I N I 

B£ (s ) P£ s ) fn (s ) 
I 

s - s 

(VI. 9) 

The functions B£ p(s) and pl(s) also have expansions about the point· 

.t = o:(oo ): 

p 
00 ·. 

bn(s)[£ - o:(ro).]n B£ (s) = n~ o· 
(VI. 10) 

00 

p~(s) I pn(s) 
. . n 

= [t -o:(ro)] 

n = 0 

Substituting t ·= o:(s) into (VI. 9), we keep the leading behavior in 

s as s ~ oo. We find the first term of (VI. 9) vanishes because 

Da(s)(s) = 0, giving 

1 c 
s:rc a(s) -a(oo) 
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(VI. 11) 

We also have 

d.D.e(s) rD(s) 
co 

= L . D 
[o:(s) - o:(co) )n-1 

d.£ 2 + n f (s) 
[o:(s) - o:(oo)] n = 0 . n 

l.e=a(s) 

(VI. 12) 

~ 

rD(s) 

2 
s-+oo 

[o:(s) - o:(oo)] 

const. 
s 

Recalling (VI. 3) we .have finally 



-71-

r(s) ;:: 
const. 

s (VI. 13) 

Now we ask to what extent considerations like the foregoing can 

be expanded to include the exact equations. First of all, in the exact 

case we expect to find a singular behavior for a(s) in the neighborhood 

of s = oo due to the branch point. However, with a simple pole at 

.e = a(oo) in _D,e(s), equation (VI. 2) shows it would be inconsistent 

to have anything but inverse integral powers of s . in the asymptotic 

behavior of a(s) • One is naturally led to ask if multiple poles could 

develop at .e = a(oo) in our Fredholm equation. The answer to the 
I 

question is apparently yes because the kernel K,e(s,s ) is not symmetrical. 

When the kernel is not symmetrical there is no assurance it can be diagon-

. alized and such a failure provides the opportunity for multiple poles. 

'to OCCUr. 

We can illustrate the occurr.ence-of multiple poles for non-

symme~rical kernels by- reference to a· simple example in line~r algebraic 

equations.' Consid:ar the linear equations 
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~ = y+Lx 

L: 
(1 1'\ 

= 1
\0 lj (VI. 14) 

This equation is readily seen to have a double eigenvalue for A = 11 

but there is only one eigen vector (l' . Thus L cannot be diagonalized 
o/ 

and the solution to (V. 3) has a double. pole when A = 1 . Because of. 

the complete correspondence which exists between systems of linear alge-

braic and li'il;iledholm integral equations, we may infer that the above result 

is quite general and we may expect to find, for the case of non-symmetric 

. kernels, kth order Fredholm polesf37) 

. . th 
In the case of. k order poles, reasoningsimiiar to that leading 

to equation {VI. 3) gives 

o:(s) -o:(oo) = const. 

1 

(-s)- k (VI. 15) 

In the model problem already di~cussed, the Fredholm kernel is 

also non-symmetrical and we may ask if kth order Fredholm poles may 

occur also in this case. There appears no reason to exclude this pos-
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sibility, in general, and if it occurs the asymptotic behavior of r(s) 

is again the same as for a(s) , 

r(s) 

1 

const. ( -s)- k (VI. 16) 

In order for any of the previous reasoning an asymptotic behavior 

to be valid, Btp(s) --that is, the Fredholm kernel--must be regular 

at £. · = a(oo) , permitting a Laurent expansion of the solution about 

p 
this point. In the model case, it is true that B£ (s) is regular at 

£ = · a(oo) , but we shall see that for the exact case Btp(s) is generally 

singu;Lar at £ = a(oo) • However, by modifying our equation in this 

latter case we shall be able to reinstate the asymptotic arguments for 

a(s) ·but the same modification:will cause the r(s) asymptotic prediction 

to slip away from us. 

We now list the prominent singularities of B£ p{s) in ~he £-plane 

(in the exact problem) • 

(a) Similarly to Dt(s) , Btp(s) has branch points at £ = a(s) 

* and t = a (s1 ) as shown in figure 12 • The branch cut is indicated 

as well as the physical £ sheet. A Regge trajectory is shown for 

- oo ~ s ~- oo • Much the same as before with Nt(s) , we see that 
p 

B£ (s) contains the Regge pole on the physical t sheet if s > s1 

but does not contain it if s < s1 • 
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(b) The fixed Gribov-Bomeranchuk pole(36) at £ - l is 

present in 
p 

B£ (s) • In a sense this singularity is independent of the 

other singularities which arise in association with right-hand energy cut 

and it occurs on .both sides of the cut in £ shown in figure 12. 

(c) The M~ndel9tam cuts(24 ) which arise from the enforcement of · 

unitarity beyond the inelastic threshold at s s
1 

will be present 

p 
in B£ (s) • We return to. a discussion of this point later·. 

(d) In general 
p 

B£ (s) will have a fixed singularity at = a(oo) . 

We turn now to a discussion of the singularity at £ = a(oo), 

which is of crucial importance to the arguments presented so far in this 

section~ The presence of such a singularity means that neither the 

kernel nor the inhomogeneous term of our Fredholm equation possess Taylor 

expansions about this point, invalidating our previous arguments about 

the asymptotic beba vi or of a( s) ·• (As po:in ted out earlier, the model case 

is still all right because in this case is not singular at = a( co)). 

To see the presence of the singularity at £ = a(ro ) we consider equation 

(III. 10 ), 

sl 
I 

!'" 
Im B.e(s ) p l i I r(.e) 

B.e(s) = B£ (s) +- J · ds + 
- sR(£) 1( s s - s 

so. 

(VI. 17) 

where 



--75-

r (.e) = 
·. 'Y ( sR (£)) 

I 

a (sR(.e)) 

. The complete amplitude B .e ( s) will be regular at .e = a (co ) and so 

will the second term in (VI. 17) , which is only singular at .e = a(s1) 
' . . * 
and .e = a (s1) . The last term of (VI. 17) will, however, generally 

be singular at .e = a(oo) 1 the singularity-type depending upon the 
p 

asymptotic behavior of r(s) • This requires that B.e (s) have a com-
p 

pensating singularity in order that B 0 (s) be regular. Let us suppose 
"' 

in accordance with the earlier discussed multiple-pole mechanism that 

( const. 
8R £) ~ . k 

.e~(oo) [£ - a(ro)] 

where K is a positive integer. 

Then it follows that 

.e~(oo) 

k+l 
const. [.e -a(oo)] 

(VI. 18) 

(VI. 19) 
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]£ r(s) behaves at infinity as 

r(s) _ __...,. con st. 
p 

s 

where P is an arbitrary, real power then 

.t-10:( 00) 

So. finally we have 

. kP 
const. [.e - a(oo)] 

· kP 1 const. [.t - a(oo)] -

(VI. 20) 

(VI. 21) 

(VI. 22) 

Thus generally (VI. 22) arid.also the kernel will be singular at 

.t = a(oo) and we are prevented from making an asymptotic argument 

for r(s) • We note here, however, a certain self-consistency of the 
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model problem. In this case we know by construction that B£p(s) is 

regular at £. = a(oo) and equation (VI. 16) indicates that P = mk 

where m is a positive integer. Thus (VI. 22) is also regular in the 

model case and the machanism is consistent. 

Going back to the exact case, we can avoid a singularity in the 

. kernel at £ = a ( ro ) by defining 

(VI. 23) 

which is regular at £ = a(ro). The integral equation (II. 8) for 

can be derived where is replaced by 
"' p . 
B£ (s) • Now, 

:however, 
"' p . 
B£ (s) possesses the Regge pole at £ = a(s) on the 

physical £ sheet below s1 and the first term of (VI. 8) no longer 

vanishes when we set £ = a(s) • · Therefore, the asymptotic arguments 

for .r(s) cannot be carried through. This if:!, really no.surprise. It is 

the asymptotic behavior of r(s) which is responsible for the singu­

larity in· B£p(s) at £ = a(oo) and it can. hardly be a matter of 

astonishment that eliminating the singularity at £ = · a( ro ) in the 

kernel also eliminates our ability to predict the asymptotic behavior of 

r (s) • 

We should point out that our basic dynamical equation, as well 

as all the arguments of this section, may not hold for values of 1 
£ < ,; 2 



The point is that an infinite number of Regge poles appear along the line 

Re £ = l - 2 .when s = This phenomenon is a threshold effect 

discussed by Gribov and. Pomeranchuk and arises from an infinite pile-up 

of Landau singularities~39 >. It means there are an infinite number of 

zeroes for D£(s) at threshold. For £ 1 < - 2 the equations may still 

. have meaning, but one carmot be sure. For one thing the threshold 

behavior for the amplitude is not well understood for £ 1' 
< - 2. 

Be that as it may, there is the possibility mentioned earlier 

that the leading traject·ories may very well terminate to the right of 

· Re £ · = 
1 . 

- 2 , an assumption which we have made before iri the previous 

section. Only detailed dynamical calculations can answer this question. 

We return finally to a brief discussion of the· effect of Mandelstam· 

.::uts on the asymptotic arguments given here. Mandelstam has shown that 

when one attempts to enforce unitarity in the inelast~c region, cuts in 

the angular-momentum plane are produced which move with ener~(24>. 

This means that our function B£p(s) will have branch points in t 

(and alternatively, branch points in the energy plane which move with 

t ) • These cuts bad no opportunity to appear in the model case but .would 

be present in the exact problem. 

An important characteristic of these branch cuts in angular-momentum 

is that they force the Gribov-Pomeranchuk essential singularities onto 

unphysical sheets in the t-plane. Although a canplete :formulation o:f the 

dynamical equations in the presence of cuts is still lacking, one might 

still conjecture that since the essential singularities are still present, 
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the mechanism discussed here involving Fredholm poles might still produce 

the accumulation of Regge poles in these neighborhoods. Thus a model 

which correctly incorporates the Mandelstam cuts might still give essen-

' tially the same asymptotic behavior for trajectories and residues de-

rived here. 

However, a more detailed understanding of the cuts, the Gribov-Pom-

eranchuk singularities and the connection of these phenomena with problems 

involving spin seems requisite before the dynamical problem can be further 

advanced. 
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s-plane 

MU-32622 

Fig. 1. Resonance pole on unphysical sheet of energy plane as a 

function of angular momentum. 
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s'-plane 
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Fig. 2. D-fUnction defined by contour integral over phase shift. 
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Fig. 3· Zeros of D-function corresponding to resonance poles. 
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Fig. 4. Two paths or continuation to resonance pole in B1(s) • 
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MU-32626 

Fig. 5· Transition of resonance pole to bound state as angular 

momentum is decreased. 



!-plane 

MU-32627 

Fig. 6. Branch cut appearing in N l:illd D • 
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Fig. 7• Real D./s) plotted for the cases:' 

(a) No resonances or bound states and e.t<s1) < 'J(/2 ' 

(b) One resonance and e.t(s1) < 'Jf/2 ' 

(c) One resonance and e.t( s~) > 'Jf/2 j and 

(d) Bound s.tate and e.t(s1) < 'J(/2 • 
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MU-32629 

Fig. 8. Substrip of holomorphy for Fourier transforms when 

a_e<s1 ) < 1C/2 • 
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Fig •. 9. Subs trip of holomorphy of Fourieir transforms when 

8l(s1 ) > ~/2 • 
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Fig. 10. Region of validity of strip approximation. 



-93-

MU-32632 

Fig. 11. Regions where Regge terms dominate the double-spectral 

· functions. 
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Fig. 12. Singularity structure of Bl(P)(s) in the angular­

momentum plane. 
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