UC Irvine UC Irvine Previously Published Works

Title

Low-temperature 9Be spin relaxation in superconducting UBe13

Permalink

<https://escholarship.org/uc/item/2bp9174c>

Journal Journal of Magnetism and Magnetic Materials, 63(C)

ISSN 0304-8853

Authors

MacLaughlin, DE Lan, MD Tien, C [et al.](https://escholarship.org/uc/item/2bp9174c#author)

Publication Date 1987

DOI

10.1016/0304-8853(87)90634-2

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, availalbe at <https://creativecommons.org/licenses/by/4.0/>

Peer reviewed

LOW-TEMPERATURE 9Be SPIN RELAXATION IN SUPERCONDUCTING UBela

DE MacLAUGHLIN,*MD LAN,+C TIEN,*JM MOORE,+WG CLARK,+Z FISK,* JL SMITH[#] and **HR** OTT^{||}

Department o[Physics, Umverstty of Cah[orma, Rwerstde, CA 92521, USA

The dependence of the ⁹Be spin-lattice relaxation rate $1/T_1$ on magnetic field has been measured in the heavy-fermion superconductor UBe₁₃ at temperatures well below T_c . A crossover between relaxation via spin diffusion to mixed-state vortex cores $(H > 6 kOe)$ and to paramagnetic impurities $(H < 6 kOe)$ is inferred

1. Introduction 2. Results

Nuclear spin-lattice relaxation studies of the heavy-fermion superconductors UBe_{13} [1,2] and CeCu₂S₁₂ [3] have yielded evidence for unconventional Cooper pairing in these exotic materi**als In both systems the spin-lattice relaxation** rate $1/T_1$ varies as T^3 over a considerable range of temperatures In the case of UBe₁₃, however, the spin-lattice relaxation rate $1/T_1$ deviates from the $T³$ law at lower temperatures, and varies as $T³$ below \approx 150 mK [2] It is obviously desirable to determine whether this deviation is extrinsic, e g due to paramagnetic impurities, or is an intrinsic **feature of the superconducting state We report m** this paper field-cycling ⁹Be spin-lattice relaxation measurements in superconducting UBe₁₃ over a wide magnetic field range $(20 \text{ Oe} < H < 15 \text{ kOe})$ **at two temperatures (67 and 147 mK), which were undertaken to clarify further the anomalous** relaxation behavior described above

- Supported by US NSF grant no DMR-8413730 and the UC Rwerslde Academic Senate Committee on **Research**
- Department of Physics and Sohd Science Center, Umversity of California, Los Angeles, CA 90024, USA Supported by US NSF grant no ,DMR-8409390 and **the** UCLA Academic Senate Commlltee on **Research**
- [‡] Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA Work performed **under the auspices of the US Department** of Energy
- ¹ Laboratorium fur Festkorperphysik, ETH-Honggerberg, CH-8093 Zurich, Switzerland Supported by **the** Schweizerische Nationalfonds zur Forderung der Wissen**schafthchen** Forschung

0304-8853/87/\$03 50 O Elsevier Science Publishers B V (North-Holland Phystcs Pubhshmg **Division)**

The field dependence of $1/T_1$ between 20 Oe **and 16 kOe ts gtven m fig l at temperatures of 67** and 147 mK For high fields $(H>6kOe)$ $1/T_1$ **approaches a lmear variation in H, whereas at** low fields the relation $1/T_1 \propto H^{-1/2}$ is an ap**proximate fit to the data over more than two** decades of field variation Here it can also be **seen that, at least for these two temperatures,** $1/T_1$ varies essentially linearly with temperature **at constant field We now consider the origins of these features**

Fig 1 Field dependence of ⁹Be spin-lattice relaxation rate $1/T_1$ at temperatures of 67 mK (x) and 147 mK (\bullet) A rough **value for the field above which saturation** of paramagnetic impurities would be expected $(\mu_B H \approx k_B T)$ is indicated by the arrow The straight lines indicate power laws $H^{-1/2}$ and H^1 as labeled

2 1 High-field regime

Previous nuclear spin-lattice studies of conventional superconductors in the mixed state [4] revealed a breakdown of the actwated behavior $[5]$ expected for relaxation by quasiparticle excitations over the BCS energy gap The excess relaxation rate varied linearly with both temperature and applied field, as m the present case The mechanism suggested [4] for this breakdown invokes low-lying excitations $[6]$ in Abrikosov vortex cores (of radius \approx the superconducting coherence length ξ), with energies similar to normal-state excitations, together with transfer of spin energy by spin diffusion between core and bulk nuclei If spin diffusion is fast $(DH/\Phi_0 \ge 1/T_1$, where D is the spin diffusion constant and Φ_0 is the flux quantum), the order of magnitude of the observed spin-lattice rate is given by [7]

$$
1/T_1 \approx (H/\Phi_0) \xi^2 / T_{1n} + [1 - (H/\Phi_0) \xi^2] / T_{1s}, \quad (1)
$$

where T_1 , is the relaxation time due to superconducting excitations, l e far from cores At low temperatures T_{1s} becomes very long, and the first term dominates

This picture accounts for the low-temperature relaxation behavior in UBe_{13} at high fields (fig. 1) The temperature and field dependences $(1/T_1 \propto HT)$ are consistent with the first term of eq (1), and the observed ratio $(1/T_1)_{obs}/(1/T_1)_n \approx$ 25 at 15 kOe yields $\xi = 350~\text{\AA}$ at $T/T_c \approx 0.1$ This is in satisfactory agreement with the value of 140 Å derived from critical field measurements [8], considering the approximate nature of eq (1) and the unusual behavior of the critical field

2 2 Low-field reg:me

Here the relaxation is clearly dominated by a different mechanism We consider as a candidate for this mechanism relaxation via nuclear spin diffusion to dilute paramagnetic impurities These are postulated to be present at some low concentration, too low to cause appreciable pair breaking [9] or other perturbation of the superconductivity. The inpurities will, however, couple to nuclei via dipolar or indirect hyperfine

interactions $[10,11]$ All these mechanisms yield a direct relaxation rate $1/T_1(r)$ of a nucleus a distance r from an impurity at the origin which is given, in the absence of spin diffusion, by

$$
1/T_1(r) = K/r^6 \,,\tag{2}
$$

after angular dependences, RKKY sinusoidal variations (cos $2k_F r$), etc, have been averaged over McHenry et al [11] have reviewed these coupling mechanisms, which involve either longitudinal or transverse fluctuations of the impurity electron spin The impurity spin polarization $B_t(x)$ and the transverse and longitudinal correlation times $\tau_{\rm cT}$, $\tau_{\rm cL}$ of the fluctuations enter m the form [11]

$$
K \propto [B_J(x)/x] \frac{\tau_{\rm cT}}{1 + (\gamma_J \tau_{\rm cT})^2 H^2}
$$

(transverse fluxts) (3a)

or

$$
K \propto (dB_J/dx) \frac{\tau_{\rm cl.}}{1 + (\gamma_I \tau_{\rm cl.})^2 H^2}
$$

(longitudinal fluxs), (3b)

depending on the mechanism Here γ_l and γ_l are the impurity and nuclear gyromagnetic ratios, respectively, and $B_I(x)$, $x = g_I \mu_B H/k_B T$, is the Brillomn function appropriate to the impurity moment It is likely that longitudinal fluctuations will dominate the relaxation, since $\gamma_I \gg \gamma_I$

According to this model several relaxation regimes can be distinguished, dependmg on the relative strengths of K and the nuclear spin diffusion constant D [10] One of these, the so-called diffusion-limited regime, yields a relaxation rate

$$
(1/T_1)_{\rm dl} = (4\pi/3)NcD^{3/4}K^{1/4},\qquad(4)
$$

where N is the density of impurity sites per unit volume and c is the impurity concentration We can therefore account for the low-field relaxation field dependence $1/T_1 \propto H^{-1/2}$ if (a) the impurity relaxation is in the diffusion-limited regime, and (b) the longitudinal impurity correlation time τ_{cL} is long, so that $\gamma_I \tau_{cL} H \ge 1$

2 3 Temperature dependence

The observed temperature dependence m the high-field regime follows naturally from the normal-like quasiparticle excitations in vortex cores which, as m the normal state, give rise to a linear temperature dependence of the relaxation rate $(1/T_1)_n \propto T$

The temperature dependence m the low-field regime, on the other hand, must arise from a temperature dependence of the longitudinal Impurity-spin fluctuation rate $1/\tau_{\text{cL}}$, D and all other factors in K are temperature independent for low fields If $1/\tau_{\text{cl}}$ is due to relaxation by bulk superconducting quasiparticle excitations, then it might obey the same power law as the nuclear relaxation rate $1/T_1$ at higher temperature $1/\tau_{\rm cL} \propto T^3$ (We note, however, that ESR measurements in the normal state of UBe_{13} doped with 4f paramagnetic impurities $[12]$ do not yield the hnewldth enhancement expected from relaxation by heavy electrons In the slowfluctuation limit $K \propto 1/\tau_{cL}$, and therefore $(1/T_1)_{\rm dl} \propto T^{3/4}$ This would not be distinguishable from a linear temperature dependence m the data of fig 1

2 4 Crossover from low to htgh field

The observed relaxation rate should then be the sum of eq (1) [with negligible $1/T_{1s}$] and eq (4) This is of the form

$$
1/T_1 = AH^{-1/2} + BH,
$$
 (5)

if there is no field dependence other than that discussed above If matched to the low- and high-field data of fig 1 , eq (5) lies above the data m the crossover region The dependence of eqs (3) on $B_I(x)$ cannot be neglected, however, at the low temperatures of these measurements $\mu_B H$ and $k_{\rm B}T$ are roughly equal in the vicinity of the field indicated by the arrow in fig 1 Above this field the impurity spins are saturated, and both $B_f(x)/x$ and dB_f/dx decrease [as $1/x$ and $exp(-2x)$, respectively] Such a decrease would rapidly remove the diffusion-limited component of the observed relaxation

3. Conclusion

We have found an unexpected nonmonotonic dependence of the ⁹Be spin-lattice relaxation rate on applied field in UBe_{13} well below the superconducting transition temperature The most conventional explanation ascribes the high-field regime to relaxation by spin diffusion to vortex cores, and the low-field relaxation is attributed to spin diffusion to paramagnetic impurities in a particular (diffusion-limited) relaxation regime Other speculatwe features, such as a second band of (hght) nonsuperconductmg electrons, an excess of low-lying quasiparticle excitations, or a hne of phase transitions at \approx 6 kOe, do not seem to be required

The authors are grateful to C T Murayama for help with the low-temperature measurements

References

- [1] D E MacLaughlin, C Tien, W G Clark, M D Lan, Z Fisk, J L Smith and H R Ott, Phys Rev Lett 53 (1984) 1833
- [2] C Tlen, DE MacLaughhn, MD Lan, WG Clark Z Fisk, J L Smith and H R Ott, Physica 135B (1985) 14
- [3] Y Kitaoka, K Ueda, T Kohara, K Asayama, Y Onuki and T Komatsubara, J Magn Magn Mat 52 (1985) 341
- [4] B G Silbernagel, M Weger and J E Wernick, Phys Rev Lett 17 (1966) 384
- [5] LC Hebel and CP Shchter, Phys Rev 113 (1959) **1504**
- [6] C Caroli, P G de Gennes, and J Matricon, Phys Lett 9 (1964) 307
- [7] I B Goldberg and M Weger, J Phys Soc Japan 24 (1968) 1279
- [8] M B Maple, J W Chen, S E Lambert, Z Fisk, J L Smith, H R Ott, J S Brooks and M J Naughton, Phys Rev Lett 54 (1985) 477
- [9] A A Abnkosov and L P Gor'kov, Sov Phys JETP 12 (1961) 1243
- [10] IJ Lowe and D Tse, Phys Rev 166 (1968) 279
- [11] M R McHenry, B G Silbernagel and J H Wernick, Phys Rev B5 (1972) 2958, also M R McHenry, Ph D thesis, University of California, Santa Barbara (1971), unpubhshed
- [12] F Gandra, S Schultz, S B Oseroff, Z Fisk and J L Smith, Phys Rev Lett 55 (1985) 2719