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ARTICLE

Splicing-specific transcriptome-wide association
uncovers genetic mechanisms for schizophrenia

Jonatan L. Hervoso,1 Kofi Amoah,1 Jack Dodson,1 Mudra Choudhury,1 Arjun Bhattacharya,2

Giovanni Quinones-Valdez,3 Bogdan Pasaniuc,1,2,4,5,* and Xinshu Xiao1,3,*
Summary
Recent studies have highlighted the essential role of RNA splicing, a key mechanism of alternative RNA processing, in establishing con-

nections between genetic variations and disease. Genetic loci influencing RNA splicing variations show considerable influence on com-

plex traits, possibly surpassing those affecting total gene expression. Dysregulated RNA splicing has emerged as a major potential

contributor to neurological and psychiatric disorders, likely due to the exceptionally high prevalence of alternatively spliced genes in

the human brain. Nevertheless, establishing direct associations between genetically altered splicing and complex traits has remained

an enduring challenge. We introduce Spliced-Transcriptome-Wide Associations (SpliTWAS) to integrate alternative splicing information

with genome-wide association studies to pinpoint genes linked to traits through exon splicing events. We applied SpliTWAS to two

schizophrenia (SCZ) RNA-sequencing datasets, BrainGVEX and CommonMind, revealing 137 and 88 trait-associated exons (in 84

and 67 genes), respectively. Enriched biological functions in the associated gene sets converged on neuronal function and development,

immune cell activation, and cellular transport, which are highly relevant to SCZ. SpliTWAS variants impacted RNA-binding protein

binding sites, revealing potential disruption of RNA-protein interactions affecting splicing. We extended the probabilistic fine-mapping

method FOCUS to the exon level, identifying 36 genes and 48 exons as putatively causal for SCZ. We highlight VPS45 and APOPT1,

where splicing of specific exons was associated with disease risk, eluding detection by conventional gene expression analysis. Collec-

tively, this study supports the substantial role of alternative splicing in shaping the genetic basis of SCZ, providing a valuable approach

for future investigations in this area.
Introduction

Understanding the molecular mechanisms that underlie

genetic associations identified through genome-wide asso-

ciation studies (GWASs) remains a major challenge despite

substantial efforts invested in this area. Genetic variants

linked to complex traits often reside within large blocks

of linkage disequilibrium (LD) in non-coding regions, mak-

ing it difficult to determine causal variants and their func-

tional implications. Approaches that integrate GWASs

with transcriptomic studies, such as transcriptome-wide

association studies (TWASs), enabled significant advances

in prioritizing candidate causal genes and tissues underly-

ing GWAS loci.1–7 However, these efforts focused on total

gene expression not investigating other molecular mecha-

nisms, such as alternative splicing, that can regulate RNA

processing and alter total gene expression levels, all of

which may be influenced by genetic variants and

contribute to disease risks.8–10 Genetic regulation of alter-

native splicing and other RNA processing steps can

broaden our understanding of GWAS risk loci.

Alternative splicing refers to the alternative inclusion of

exons, sometimes introns, in the mature mRNA.11 Over

90% of human genes undergo alternative splicing, result-

ing in multiple transcript isoforms from the same gene lo-
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cus.12 As a result, multiple protein-coding and non-coding

transcripts can be generated from the same gene, expand-

ing the complexity and diversity of both the transcriptome

and proteome. Alternative splicing is highly tissue specific;

in particular, the brain expresses the most alternatively

spliced genes of all human tissues, likely contributing to

the complexity of this organ.13 RNA splicing is tightly

regulated by a combination of trans-acting factors and

cis-regulatory elements. Approximately half of the

required information14 for exon recognition during

splicing is determined by the consensus 50 and 30 splice
sites. Exons and introns contain auxiliary splicing ele-

ments of 6–8 nucleotides that either enhance or repress

the use of associated splice sites,14 with existing studies

showing an enrichment of these auxiliary elements near

exon-intron boundaries. However, our current under-

standing of cis-acting splicing elements remains incom-

plete. Given its regulation by cis-elements, splicing can

be significantly altered by genetic variations. Indeed, it

has been estimated that around 35% of disease-causing

point mutations disrupt splicing, over a third of which

reside in consensus splice sites and known exonic or in-

tronic auxiliary splicing elements.15–17 Splicing quantita-

tive trait loci studies have discovered that genetic variants

that alter splicing ratios are associated with phenotypic
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traits to an equal or even greater degree than those that

affect gene expression.10 Variants affecting splicing are

notably different from those affecting gene expression,

representing a unique set of genetic variants that have

not been thoroughly studied yet in relationship with dis-

ease risk.

Although the most-often used approach to infer rela-

tionships between genetic variants and splicing is quanti-

tative trait loci (QTL)-based methods,10,18 allele-specific

RNA processing can also be used to capture genetically

modulated splicing events.9,19,20 In addition, machine-

learning-based methods have been developed to predict

the impact of genetic variants on splicing.8,21 These

methods greatly facilitated a better understanding of

RNA regulation, specifically the genetic regulation of

RNA splicing. However, the above approaches focus on

linking genotypes to the molecular phenotypes of splicing

and cannot directly infer the disease relevance of such

relationships. To fill in this gap, we propose SpliTWAS,

a framework that associates the genetically driven

complexity of alternative RNA processing to disease. We

applied SpliTWAS to two different RNA-sequencing

(RNA-seq) datasets together with large-scale GWASs to

characterize the role of genetically driven alternative

splicing in schizophrenia (SCZ). We discovered splicing-

specific SCZ associations missed by traditional TWAS ap-

proaches at both gene and exon levels. SpliTWAS identified

more SCZ-associated genes in comparison with conven-

tional TWAS, with a small overlap, emphasizing the

distinctive role of splicing in genetic associations. The as-

sociations provided further insight into how the dysregula-

tion of RNA splicing caused by genetic variants may

contribute to the pathogenesis of SCZ.
Material and methods

Datasets
In this study, we utilized two datasets from the PsychENCODE con-

sortium, BrainGVEX and CommonMind (CMC) (https://www.

synapse.org, BrainGVEX [syn3270015], CMC [syn22344687]).

Postmortem human brain samples (dorsolateral prefrontal cortex

[DLPFC]) were collected. RNA-seq and genotype data were gener-

ated independently by each participating site and subsequently un-

derwent unified processing by a central analysis core (https://www.

synapse.org/). For both datasets, individuals were selected based on

their ancestry and availability of both RNA-seq and genotype data.

Only individuals from European ancestry were included to avoid

the confounding effects of genetic architectures. A total of 769 sam-

ples were finally retained (344 from BrainGVEX, 425 from CMC).

CMC had an almost even split between cases and controls with

214 controls and 211 SCZ individuals, with 173 females and 252

males and an overallmean age of 68 years. BrainGVEXhad a higher

proportion of cases than controls with 91 cases and 253 controls, a

distribution in gender of 111 females and 213males with an overall

mean age of 65 years. Genotype data from whole genome

sequencing was further processed with PLINK v1.9, removing var-

iants with Hardy-Weinberg equilibrium (HWE) p < 10�6, minor

allele frequency (MAF)< 0.01, or missingness rate >0.05, and
1574 The American Journal of Human Genetics 111, 1573–1587, Aug
removing samples with missingness rate >0.1 across typed

variants or missingness rate >0.5 on any individual chromosome.

For GWAS summary statistics, we utilized the Psychiatric Genomics

Consortium (PGC) SCZ GWAS, number of cases ¼ 34,241 and

number of controls ¼ 45,604. LD information was obtained from

the 1000 Genomes European reference.

PSI calculation and processing
Alternative splicing was quantified via the percent-spliced-in (PSI)

value of each exon. PSI indicates the degree of exon inclusion in

the transcript population of a gene, summarizing alternative

splicing events across individual exons without prior knowledge

of the underlying composition of the transcripts. Our approach

uses the PSI calculation as defined in Schafer et al.22 Generally,

PSI is calculated based on two read categories, inclusion reads

(IRs) and exclusion reads (ERs). IR is a read that overlaps the

exon of interest completely or by a minimum number of nucleo-

tides (i.e., overhang, 8 by default). An ER is a read that fully

skips the exon. Minimum cutoffs for the reads are IR þ ER R 10

or IR R 2.

The IR and ER counts were then normalized based on the length

of the exon, overhang and read, as follows:

NER ¼ ER

ReadLength � 2 � overhang

NIR ¼ IR

ReadLengthþ ExonLength � 2 � overhang :

PSI was then calculated as

PSI ¼ NIR

NIRþNER
:

Following the calculation of PSI, we further eliminated any

exons that did not have a PSI value at least 40% of samples due

to poor read coverage and that had little to no variation across in-

dividuals (SD% 0.005 of PSI value). Next, we imputed missing PSI

values for each exon as the mean of the computed PSIs across all

samples.

S-value transformation
PSI values typically follow a bimodal distribution centered around

0 and 1, which violates the assumption of a Gaussian distribution

made by the regression schemes (below). To address this problem,

we conducted a logit transformation on the PSI values, naming the

transformed metric S values. The transformation is as follows:

Si ¼ log2

�
PSIi

1þ a � PSIi

�

where a ¼ 0.001, in order to accommodate cases where PSI was 1.

Additionally, all PSI values of 0 were replaced with alpha to avoid

improper mathematical operations.

Predictive models of alternative splicing
We first surveyed the cis-heritability of alternative splicing for in-

dividual exons. SNP heritability estimation assesses the maximum

theoretically possible accuracy of linear prediction based on a cor-

responding set of SNPs. In order to perform heritability estima-

tion, we first harmonized the SNPs between the GWAS summary

statistics, LD reference panel, and genotype data. Second, we re-

gressed the following covariates (age, pH, RNA integrity number

[RIN], sex, post-mortem interval [PMI], and 15 genotype principal
ust 8, 2024
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components [PCs]) against the S values. Heritability estimation

was then performed using the restricted maximum likelihood

(REML) algorithm implemented in GCTA. In line with previous

studies,1,2,23 heritability estimates were allowed to converge

outside the expected 0–1 variance bounds to achieve unbiased

mean estimates. The candidate genomic window for heritability

estimation was defined as the exon plus a cis-window surrounding

it (1,10, or 100 kb). Only exons with positive heritability estimates

and a nominal p value < 0.05 were deemed heritable. Following

heritability estimation, SNPs within the heritability window (cis-

SNPs) were utilized to build predictive models of S values by using

the following prediction schemes: top1 or top cis-expression QTL

(eQTL), best linear unbiased prediction (BLUP), bayesian sparse

linear mixed model (BSLMM), least absolute shrinkage and selec-

tion operator (LASSO), and elastic net models. Top1 or top cis-

eQTL utilizes only the single most significantly associated SNP

in the training set as the predictor. BLUP estimates the causal effect

sizes of all SNPs in the locus jointly using a single variance compo-

nent. BSLMM estimates the underlying effect size distribution and

then fits all SNPs in the window jointly. Each model’s prediction

accuracy was evaluated by a 5-fold cross validation in a random

sampling of the top 1,000 most heritable exons. R2 between the

predicted and true S values was used to determine accuracy,

models with an R2 % 0.01 were filtered out and the remaining

were used to perform summary-based imputation.

Alternative splicing imputation and association testing

with summary statistics
Summary-based imputation allows us to perform splicing-trait as-

sociations with a significant gain in statistical power, compared to

associations at individual level, due to the large sample size used to

derive summary statistics. Imputation on GWAS summary statis-

tics was performed using the ImpG-Summary algorithm, as used

in FUSION.1,24 The imputation was carried out as follows, let Z

be a vector of standardized effects sizes (Z scores) of SNP-trait asso-

ciations obtained from the GWAS summary statistics at a given lo-

cus. Then the Z score of the imputed exon usage, for each exon, is

a linear combination of the elements of Z and W, where W is the

vector of weights for each SNP obtained in the heritability estima-

tion. It follows that the imputed Z score between exon usage and

trait (WZ) has varianceW
P
s;s
WT ; therefore, we used WZ�

W
P
s;s

WT

�1=2 as

the imputation Z score of the cis-genetic effect on the trait. Ss,s

was obtained from the European 1000 Genomes LD reference

panel. Exons were considered significantly associated with the

trait at a Bonferroni-corrected p value < 0.05. Additionally, we

deemed genes with at least one significantly associated exon as

having a significant splicing-trait association.

Following the association tests, all significant results were sub-

ject to a joint analysis to determine which exons provide indepen-

dent signals and which ones were being driven by shared genetic

predictors. Additionally, we performed conditional analysis where

GWAS associations were conditioned on significant SpliTWAS

exon associations to determine how much of the GWAS associa-

tion signal remained after the splicing association was removed.

Fine mapping features
To fine map the genetic features, we implemented a modified

approach of the probabilistic fine-mapping procedure, FOCUS.

Traditionally, gene-level association statistics from TWAS are

used to create TWAS-significant regions, where multiple associa-
The American
tions are present, which span large genomic regions due to the

large heritability windows (e.g., �1 Mb). For SpliTWAS associa-

tions, one of the main assumptions is that the relevant variants

and features are in much closer proximity than in the case of

gene expression. Therefore, we built our risk regions for fine map-

ping using a510 kb heritability window to the associated genes. If

the window overlapped with another significantly associated

gene, the regions were combined and extended, an approach

akin to building LD blocks. Once the risk regions were built,

FOCUS was applied using the exon-splicing association statistics

for each gene within the defined risk region. The association statis-

tics were used regardless of significance level. Using posterior in-

clusion probabilities (PIPs) from the FOCUS results, credible

gene sets were computed by generalizing the concept of credible

SNP sets from SNP fine mapping.25,26 We computed the 90% cred-

ible set for each of the risk regions of association, with the fine-

mapped feature being exons. Similarly to our approach with

gene level associations, a gene was deemed as putative causal if

it possessed at least one fine-mapped exon.
Enrichment of SNPs within RBP binding sites and

binding levels
To determine the enrichment of splicing-trait-associated SNPs in

RNA-binding protein (RBP) binding sites, we overlapped the SNPs

with RBP binding peaks of 150 RBPs generated by the ENCODE con-

sortium using enhanced crosslinking and immunoprecipitation

(eCLIP) data fromHepG2 and K562 cell lines.27 To ameliorate ascer-

tainment bias, we sampled at random the same number of control

SNPs as cis-SNPs with their MAF and distance to transcription start

site (TSS) matched with the SNPs in the query. The sampling strat-

egy was repeated 1,000 times to reach an empirical distribution of

the number of control SNPs overlappingwith eachRBP. Fold enrich-

ment for each RBP was computed as the ratio between the propor-

tion of overlapping associated SNPs over the proportion of overlap-

ping control SNPs. Wilcoxon’s signed-rank test was then used to

assess whether the splicing-associated SNPs proportion was signifi-

cantly greater than the control SNPs proportion.

Furthermore, we investigated the effect of each cis-SNP on RBP-

RNA interaction. To this avail, we used the DeepRiPe method, a

multitask and multimodal deep neural network approach trained

via cross-linking immunoprecipitation (CLIP) data. SNPs for this

analysis were selected if they fell within 5500 bases from either

of the splice sites of the associated exons. We then calculated

the difference between the DeepRipe-predicted binding scores of

the reference and variant allele. This difference is denoted by:

D ¼ absðVariantscore � ReferencescoreÞ

As controls, similar to the analysis for RBP binding enrichment,

we matched the investigated SNPs with control SNPs and selected

the same number of control SNPs as cis-SNPs. This procedure was

repeated 1,000 times. Wilcoxon’s signed-rank test was then used

to determine whether the binding disruption by splicing-associ-

ated SNPs was significantly higher than that of control SNPs.
GO analysis
To investigate the relevance of the associated genes in biological

processes, gene ontology (GO) analysis was performed using asso-

ciated gene sets for BrainGVEX and CMC independently. To ac-

count for tissue-specific expression for each query gene, a random

control gene was chosen to match gene expression level and gene

length (510% relative to that of query gene). For each query and
Journal of Human Genetics 111, 1573–1587, August 8, 2024 1575



control gene, their respective gene ontology termwas downloaded

from Ensembl via biomaRt. A Gaussian distribution was fit to each

ontology term by sampling 10,000 sets of control genes. The

enrichment p value of the gene ontology term from the query

genes was calculated using this distribution. Terms were deemed

significant based on a false discovery rate (FDR) <0.05 cutoff.

We then applied rrvgo to the significant GO terms to group

them by semantic similarity (using default parameters). rrvgo as-

signs parent terms to each group based on the GO term that has

the most significant enrichment p value. Groups with five or

more GO terms were then selected and visualized accordingly.
Results

Overview of SpliTWAS

SpliTWAS examines alternative splicing patterns to identify

splicing-trait associations, which are then fine mapped at

both the gene and exon levels. The degree of alternative

splicing of an exon is quantified through PSI,22 which

indicates the level of exon inclusion in the transcript popu-

lation of a gene, allowing an exon-centric view of the

transcriptome. The SpliTWAS workflow begins with the

calculation of PSI via RNA-seq reads including or excluding

an exon (Figure 1A). PSI values are then logit-transformed to

yield an S value, similar to the transformation performed for

methylation values,28 which better alignswith theGaussian

distribution assumptions made by downstream steps. The S

value is then corrected for covariates, such as age, sex, PMI,

and RIN. In order to infer the genetic components of

splicing, heritability estimates are calculated using the

REML algorithm implemented in GCTA for each exon29

(see material and methods). Next, SpliTWAS builds predic-

tive models of alternative splicing (i.e., S value) for each

exon using a local window centered around each exon.Mul-

tiple types of models are constructed (see material and

methods) and model performance was assessed via 5-fold

cross-validation, requiring an adjusted R2 > 0.1 between

the observed and predicted exon usage, the best model is

then chosen for imputation.

Exon imputation models are then used to impute alter-

native splicing into GWAS data to estimate the association

between splicing and the trait of interest (Figure 1A). If in-

dividual-level genotypes are available, splicing can be

directly modeled based on the genotypes, and imputed

into the GWAS associations. If only GWAS summary statis-

tics are available, imputation is performed using a refer-

ence panel of alternative splicing predictive models. The

estimated association between alternative splicing and

trait is represented as a linear combination of SNP-trait

standardized effects sizes and splicing-related weights per

SNP, while accounting for LD among SNPs1 (see material

and methods). The linear combination of weights and Z

scores of individual SNPs results in a singular Z score for

the splicing-trait association. Multiple hypothesis testing

is accounted for and corrected through family-wise error

control. Significant associations are then subject to a

probabilistic fine-mapping strategy where the correlation
1576 The American Journal of Human Genetics 111, 1573–1587, Aug
among associations is used to assign a probability for

each exon in the risk region to explain the observed

association signal.30 Thus, by leveraging the unique bio-

logical signal of alternative splicing, SpliTWAS is able to

identify disease-relevant trait-associations at the exon level

that would have been obfuscated by traditional TWAS

approaches.

Application of SpliTWAS to RNA-seq of brain samples in

SCZ cohorts

In this study, the SpliTWAS framework was applied to two

different RNA-seq datasets, BrainGVEX and CMC. For each

dataset, RNA-seq from frozen DLPFC samples was used for

PSI quantification, and genotype information was used to

prune out individuals of non-European ancestry. A total of

344 and 425 samples were retained for the BrainGVEX and

CMC cohorts, respectively. Each dataset was used to build

predictive models of alternative splicing. The models were

then integrated with summary statistics from the PGC SCZ

GWAS,31 derived from 79,845 individuals (34,241 cases

and 45,604 controls).

Predictive models were built through cis-SNPs, which

were defined as SNPs that reside close to the predicted tar-

gets, in our case, exons. Traditionally, a 500 kb or 1 Mb

window was used to define cis-SNPs for TWAS. However,

known cis-regulatory elements of splicing are typically

located relatively close to the 30 and 50 splice sites (ss) of

their target exons.32 To determine a more suitable window

size, we first applied SpliTWAS to the BrainGVEX dataset

using three different window sizes flanking exons, 1, 10,

and 100 kb, respectively (Table S1). We then investigated

the distance of lead SNPs with respect to the 30 and 50 ss
of exons for each window size. As shown in Figures 1B

and S1, lead SNPs were enriched in regions close to the 30

and 50 ss. This splice site enrichment relative to the prox-

imal intronic regions was most prominent for the 10 kb

window size (Figure 1B), although results from the three

alternative window sizes followed the same trend

(Figure S1). Importantly, since splice sites are the most

crucial cis-elements for splicing, the SNP enrichment

near the splice sites supports the biological relevance of

the genetic signal captured in our models.

Next, we asked if the alternative window sizes were

equivalent in capturing predictive and association sig-

nals. To this end, we compared the number of predictive

models as well as the correlation of Z scores of associa-

tions across the different windows. This analysis showed

that the overall Z scores were correlated significantly

across all three windows for commonly identified

splicing events (Figure 1C), suggesting that most of the

signal is captured even with a small window size (1 kb)

for these events. Nonetheless, the 1-kb window size

yielded a smaller number of overall predictive models

(Figure S2). Interestingly, using 10-kb windows did not

significantly reduce the number of heritable exons,

mean heritability, or predictive models compared to

100-kb windows (Figures S2 and S3). Thus, we chose to
ust 8, 2024
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Figure 1. SpliTWAS overview and heritability window evaluation
(A) Schematic of the spliTWAS framework, exon-level alternative splicing quantification, training of predictive models based on cis-ge-
netic locus, and the indirect estimation of association between predicted alternative splicing and trait at the exon level.
(B) Enrichment of trait-associated SNPs relative to the 30 and 50 splice sites (10 kb heritability window).
(C) Correlation of Z scores of nominal associations (p < 0.05) using the 10 or 1 kb window.
(D) Similar to (C) but for the 10 vs. 100 kb window.
use a window size of 10 kb hereafter, as it captures the

most amount of signal without introducing considerable

noise from distal SNPs. Furthermore, when comparing

heritability estimates from GCTA and LDAK, we found
The American
a significant degree of correlation. Similarly, we observed

a significant correlation between the heritability esti-

mates and the R2 of the predictive models across both

methods (Figure S4).
Journal of Human Genetics 111, 1573–1587, August 8, 2024 1577



Figure 2. SpliTWAS identifies many exons and genes enriched in relevant biological pathways to SCZ
(A) Genome-wide splicing association results using both the BrainGVEX and CMC datasets imputed into the PGC SCZ GWAS summary
statistics. Significant results are colored according to datasets and each dot represents an exon.
(B) Number of significant associations per dataset and shared associations by the two datasets at the exon and gene level. Genes with at
least one significantly associated exon are included.
(C) Gene ontology (GO) analysis of the significantly associated genes obtained via the BrainGVEX data. GO terms were pruned and clus-
tered using rrvgo; statistical significance for enrichment of each term is displayed as the radius of the lollipop.
(D) Similar to (C) but for the CMC data.
SpliTWAS identified exons and genes with relevance

to SCZ

Overall, we tested �270,000 exons, of which 19,361 and

17,149 were heritable, and 12,860 and 6,682 passed the

5-fold cross-validation cutoff for the BrainGVEX and

CMC datasets, respectively (Table S1). All exons that

passed the cross-validation cutoff underwent association

testing with SCZ (Figure 2A). 137 and 88 trait-associated

exons (in 84 and 67 genes) reached genome-wide signifi-

cance level (Bonferroni-corrected p value <0.05) in the

BrainGVEX and the CMC datasets (Figure 2B; Table S2).

Among the trait-associated exons or genes, 13 exons and

24 genes were shared between the two cohorts (p ¼ 0.036

and p ¼ 0.006, hypergeometric test) (Figure 2B). Thirty-

seven SpliTWAS-associated genes overlap a catalog of 321

high-confidence SCZ risk genes, which were discovered

through gene regulatory networks and a deep-learning
1578 The American Journal of Human Genetics 111, 1573–1587, Aug
approach.33 Interestingly, perhaps unsurprisingly, while a

smaller proportion of trait-associated exons were shared

between the two datasets, a higher proportion of shared

genes (containing different trait-associated exons) was

observed, indicating that trait-associated splicing may

affect multiple exons of a gene. While the CMC cohort

had a larger sample size, a lower number of genome-wide

associations was identified both at the exon and gene

levels. Comparing both the R2 performance and the overall

Z score distribution between both cohorts, we observed

that the BrainGVEX models outperformed the CMC

models in both metrics (Figure S5). This difference is likely

due to a higher degree of heterogeneity among samples in

the CMC cohort.

We next examined the biological functions enriched in

the SpliTWAS genes. Both sets showed enrichment in GO

terms related to neuronal function and development,
ust 8, 2024



immune cell activation and regulation, cellular transport,

and metabolic processes (Figures 2C and 2D). Specifically,

MDA-5 signaling, IL-10 regulation, T cell, and B cell activa-

tion are known to contribute to inflammation and im-

mune dysregulation, which are important aspects of

SCZ.34–38 Ras proteins have been shown to be crucial for

regulating neuronal morphology, axon guidance, and

dendritic spine formation.39–42 Additionally, proper regu-

lation of apoptosis is crucial during neurodevelopment

for sculpting neuronal circuits and eliminating excess or

aberrant neurons.43,44 The combined disruption of

apoptotic regulation and Ras proteins impact neuronal

connectivity, synaptic plasticity, and overall brain develop-

ment. In addition, cellular transport is also critical

to neurodevelopment, abnormalities of which during

critical periods of neurodevelopment may lead to altered

synaptic connections, cellular metabolism, organelle func-

tion, and neuronal connectivity.45–50 Together, these re-

sults provide evidence that genetically modulated RNA

splicing events identified by SpliTWASmay have close rele-

vance to SCZ.

SpliTWAS uncovered more biologically plausible

associations than TWAS

Next, we examined whether splicing-driven trait associa-

tions provide unique signals relative to the traditional

TWAS analysis. For comparison between the two ap-

proaches, we focused on the BrainGVEX cohort. To enable

a fair comparison, we used a window size of 100 kb for

both approaches. We first examined the possible existence

of test statistic inflation.23,51 The quantile-quantile plots of

trait-association p valuesdidnot showsignificantdifferences

between SpliTWAS and TWAS (Figure 3A). We also observed

similar inflation values, lambdaGC and bacon,51 of the p

values for the two methods (Figure 3A), indicating that the

test statistic of SpliTWAS is not inflated compared to TWAS.

Although their p value distributions were not signifi-

cantly different, SpliTWAS captured a higher number of

genes with significant associations than TWAS (91 vs. 38)

and a slightly higher number of associations due to the

larger heritability window (100 kb). (Figure 3B). Note

that the significance cutoff was the same for the two

methods (Bonferroni-corrected p < 0.05). Additionally,

we compared the standardized effect sizes (Z scores) for

shared genes in SpliTWAS and TWAS associations at a nom-

inal p value <0.05. A significant positive correlation was

observed for the set of genes with concordant direction

(Figure S6A) indicating that splicing changes may drive

gene expression associations detected by TWAS, at least

for some genes. Similarly, we see that some genes have

opposite directions in their effect sizes, suggesting a

different effect depending on the molecular phenotype

surveyed. Thus, investigating genetic associations via

SpliTWAS provides a refined view of the genetic basis

of SCZ.

We next evaluated the overlap of trait associations

discovered by SpliTWAS and TWAS. Among the 89 GWAS
The American
risk loci for SCZ, SpliTWAS identified 41 gene associations

for 19 (�21%) risk loci, while TWAS identified associations

for 19 genes and 12 (�13.4%) loci (Figure 3C). Thus,

SpliTWAS explained more GWAS risk loci than TWAS.

Interestingly, 10 risk loci were shared between SpliTWAS

and TWAS-based associations, which is a significant over-

lap (p ¼ 0.0076, hypergeometric test). For these loci, it is

possible that both gene expression and splicing contribute

independently to disease risk. Alternatively, due to the

relatedness of the two molecular traits, some of these loci

may be primarily driven by one molecular process, for

example, splicing, which affects the observed values of

gene expression. Indeed, the latter may be true for four

risk loci where the same gene was detected with significant

association by both TWAS and SpliTWAS. Additionally,

although only a small number of GO terms were enriched

among TWAS-uncovered genes (Figure S7), similar pro-

cesses (related to metabolic and cellular transport) were

found for SpliTWAS genes. Together, these results support

the significance of examining contributions to GWAS risk

loci from multiple molecular perspectives.

For completeness we also compared SpliTWAS to an

exon-expression TWAS (exonTWAS); exonTWAS is similar

to a conventional TWAS but utilizes exon expression as

the molecular phenotype (see material and methods). In

addition, we compared SpliTWAS to LeafCutter paired

with FUSION as an alternative method based on splicing.

As expected, the overlap between associated genes identi-

fied by SpliTWAS and TWAS was small, whereas a larger

overlap was observed between genes from SpliTWAS and

exonTWAS and between exonTWAS and conventional

TWAS (Figure 3D). These observations indicate that exon

expression is substantially confounded by gene expression

levels. In comparison, PSI values represent a normalized

metric that is less correlated with gene expression and

therefore more appropriate to quantify and study splicing

(Figure S8). Similarly, there was a large overlap between

SpliTWAS results and LeafCutter compared to TWAS,

with both splicing-based approaches having a significantly

higher number of associated genes (Figure S9). Interest-

ingly, the overlap of associated genes identified by both

splicing methods is significant but lower than expected,

with more genes being uniquely associated to each

method than shared. Overall, the above results showed

that SpliTWAS captured independent signals relative to

general gene/exon expression, revealing unique and signif-

icant contributions of alternative splicing to SCZ risk.

SpliTWAS variants are likely to disrupt protein-RNA

interactions

It is well established that pre-mRNA splicing is regulated by

a myriad of cis-elements interacting with trans-factors, pri-

marily RBPs. Thus, to investigate the potential role of RBPs

in disrupting trait-associated exons, we extracted variants

from significantly associated exons. The variants were

then matched to random controls (material and methods).

Using eCLIP-seq data of 150 RBPs generated by the
Journal of Human Genetics 111, 1573–1587, August 8, 2024 1579
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Figure 3. SpliTWAS uncovers more trait associations than TWAS without higher inflation
(A) Q-Q plot of test statistics for all tested exons in SpliTWAS and genes in TWAS.
(B) Miami plot of associations for SpliTWAS and TWAS, respectively; cutoff represents Bonferroni-corrected p < 0.05.
(C) Overlap between SpliTWAS significant associations and GWAS risk loci.
(D) Overlap between SpliTWAS, exon-TWAS, and TWAS.
ENCODE consortium,49 we overlapped both the query var-

iants and the matched controls to the binding sites of the

150 RBPs. We observed significant fold enrichment of

trait-associated variants overlapping the binding sites of

36 RBPs when compared to the matched controls (material

and methods; Figures 4A and 4B). The top RBPs, such

as SUB1 and PUM1, are known to affect splicing.52–56 Curi-

ously, the most highly enriched protein, APOBEC3C, is

best known for DNA editing with potential roles in RNA

editing.57,58 It is likely that the C to U RNA editing by

APOBEC3C may lead to changes in RNA sequence and

subsequent alternative splicing patterns. Alternatively,

APOBEC3C may be a splicing factor resulting from its

RNA binding capacity.
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As a control, we compared the fold enrichment of all

RBPs overlapping SpliTWAS-identified SNPs and those re-

sulting from conventional TWAS analysis. SNPs obtained

from SpliTWAS showed a significantly higher mean fold

enrichment than those from TWAS (Figure 4C). This obser-

vation confirms the expectation that SpliTWAS-identified

variants are enriched with those involved in splicing regu-

lation, often executed by RBPs, whereas TWAS-identified

variants likely reflect regulation at the level of transcrip-

tion (and/or RNA stability).

As an alternative approach, we examined the potential

impact of SpliTWAS variants on RBP binding using the

DeepRiPe method, a multitask and multimodal deep

neural network approach trained via CLIP data.59 To
ust 8, 2024



Figure 4. SpliTWAS-associated variants
potentially disrupt protein-RNA interac-
tions
(A) Enrichment of SpliTWAS variants in RBP
binding sites relative to random control
SNPs.
(B) Overlap of significantly enriched RBPs
between the two cohorts.
(C) Fold enrichment of SpliTWAS and TWAS
SNPs across RBP binding peaks. Wilcoxon’s
signed-rank test was used to determine sta-
tistical significance.
quantify whether a SNP disrupts the binding of a specific

RBP, we calculated the difference between the DeepRiPe-

predicted binding scores of the reference and variant

allele, which is denoted as delta binding (material and

methods). Compared to random controls, SpliTWAS var-

iants from the BrainGVEX and CMC datasets signifi-

cantly disrupted 16 and 13 RBP binding, respectively,

with 12 RBPs common to the two cohorts (Figures S10

and S11; Table S3). Among the significant RBPs, NKRF

is a transcriptional repressor that binds to specific DNA

sequences and regulates gene expression.60 While it is

primarily associated with transcriptional regulation, it

has been reported to interact with splicing factors and

influence alternative splicing events.61,62 DDX3X is an

RNA helicase involved in RNA splicing, translation,

and other RNA-related processes.63–67 Dysregulation

of DDX3X has been associated with altered gene expres-

sion of synaptic proteins and synaptic dysfunction.68

Together, the above results show that trait-associated var-

iants may be enriched with functional ones that alter

RBP-RNA interactions.

SpliTWAS highlights the role of splicing in SCZ

We next sought to infer putative causal genes and exons

for SCZ based on the genome-wide association signals

from SpliTWAS. For this purpose, we used FOCUS (fine

mapping of causal gene sets) that leverages the correlation

structure between associations due to LD and the predic-

tion weights between the genetics and molecular traits.30

FOCUS estimates sets of genes that contain the causal

genes. We adapted FOCUS to perform fine mapping at

an exon level and utilized the alternative splicing predic-

tion weights to explain SpliTWAS-associated signals

(Figure 5A). We applied FOCUS to the 84 and 67 genes
The American Journal of Human Gen
with at least one significant trait-asso-

ciated exon for BrainGVEX and

CMC, respectively. Using the esti-

mated PIPs, credible gene sets at a

90% confidence level were computed,

yielding a total of 19 and 15 credible

sets, including 33 and 26 putative ca-

sual exons in 22 and 19 genes, respec-

tively (Figure 5B; 48 exons and 36

genes total combining the two data-
sets). Furthermore, 11 of the 19 and 5 of the 15 credible

sets contained a single putative causal gene, providing a

much more refined look into alternative splicing-trait as-

sociation (Figure 5C).

We highlight two examples with significant exon-trait

associations that are not captured by gene expression.

First, we detected a significant association with the exons

of VPS45 (Figure 6A), which encodes a protein involved in

intracellular trafficking and membrane fusion processes.

It functions in the endosomal sorting pathway and is

essential for proper vesicle transport.69–71 The endosomal

network regulates synaptic vesicle pools, receptor endocy-

tosis, recycling, and degradation. Disruptions in endo-

cytic trafficking can greatly impact postsynaptic function

and plasticity.48,72–75 Interestingly, when we conditioned

the GWAS association on risk variants driving splicing of

the exons in VPS45, we observed that the signal was

largely abolished, suggesting that the original association

was exclusively explained by splicing of the highlighted

exon 5 (green) (Figure 6A). Consistent with the above

data, splicing levels of the exon showed differences in

samples with differing genotypes, while there is no

observable stratification for gene expression (Figures 6B

and 6C).

Similarly, we identified a strong disease association of

multiple exons in APOPT1, a gene encoding a mitochon-

drial protein that induces apoptotic cell death.76,77

Recent evidence has linked mitochondrial dysfunction

and apoptosis with SCZ and other neuropsychiatric disor-

ders.49,78–80 In the case of APOPT1, we also observed an

almost complete elimination of GWAS signal when con-

ditioning on splicing of the associated exons (Figure

6D). Furthermore, both exons showed splicing differ-

ences according to genotype, suggesting that they may
etics 111, 1573–1587, August 8, 2024 1581



Figure 5. Fine mapping on the exon level
(A) Schematic of the fine-mapping approach
to examine the correlation between exon-
level SpliTWAS associations within a gene
body.
(B) Number of fine-mapped exons and genes
for each cohort.
(C) Number of credible sets (90% confidence
level) with multiple genes and a single puta-
tive causal gene.
be regulated concordantly (Figures 6E and 6F). In

contrast, APOPT1 expression did not change depending

on genotype. The above refined look at associations

captured by SpliTWAS further demonstrates that splicing

is a large contributor to the GWAS signal of the risk re-

gion, which would be otherwise missed by traditional

TWAS approaches.
Discussion

We present SpliTWAS, an approach that integrates alterna-

tive splicing information with genetics-trait associations to

identify genes associated with a trait through specific exon

splicing events. Furthermore, we extend the application of

FOCUS30 toward an exon-centric approach to probabilisti-

cally fine map exons and genes. This framework is appli-

cable to any complex trait but particularly is useful for

those associated with abundant occurrences of alternative

splicing.

Previous studies have shed light on the critical role

of alternative splicing as a fundamental molecular mecha-

nism contributing to the complexity of traits, offering in-

sights beyond gene expression levels.4,9,10,18 Unfortu-

nately, quantifying isoforms using short-read RNA-seq

poses computational and technical challenges, leading to

limitations in accuracy and consistency across different

analytical approaches. Importantly, isoform-based ana-

lyses often fail to establish direct connections with splicing

regulatory mechanisms since investigations into splicing

regulation necessitate a granular examination of individ-

ual exons and splicing events.

Additionally, studies utilizing LeafCutter intron

excision events, paired with methods such as FUSION

and S-PrediXcan, represent an alternative approach

for splicing-based TWAS. However, intron excision rate

may not be easily interpretable toward alternative

splicing mechanisms. In addition, these approaches

typically include 500 kb or 1 Mb heritability windows

and standardized and quantile-normalized data to satisfy
1582 The American Journal of Human Genetics 111, 1573–1587, August 8, 2024
the assumption of a Gaussian distribu-

tion made by the linear regression

schemes. In contrast, SpliTWAS uti-

lizes PSI, a widely used splicing metric

that is directly related to levels

of alternative splicing. In addition,
SpliTWAS affords the advantage of using heritability win-

dows that are much closer to the cis-regulatory elements

of splicing, which are typically located close to the 30 and
50 splice sites of target exons. Furthermore, we apply a

logit transformation to the PSI values, inspired by

the methylation field, which helps ameliorate the hetero-

scedasticity of the PSI values, while preserving the

relationship between nearby values and providing a suit-

able distribution for the regression analysis within the

framework.

Another advantage of SpliTWAS also stems from its

exon-centric nature. By centering on exonic regions, our

approach circumvents the requirement for prior knowl-

edge regarding the specific composition of transcripts.22

This feature enables the detection of genetically driven

splicing events that would otherwise be obscured if relying

solely on gene or isoform expression analyses or intron-

centric approaches. Furthermore, by integrating alterna-

tive splicing models with GWAS, we directly infer a

biologically interpretable relationship between genetically

influenced exon splicing patterns and complex traits.

Thus, SpliTWAS can offer valuable unique insights into

the molecular mechanisms underlying the interplay be-

tween genetic variations, splicing regulation, and pheno-

typic outcomes.

The application of SpliTWAS to SCZ data has provided

compelling evidence supporting the involvement of

splicing regulation as a candidate mechanism underlying

certain disease-associated loci. Our findings not only vali-

dated known SCZ disease genes31,33,36,75 but also uncov-

ered potential targets that contribute to our understand-

ing of SCZ pathogenesis. Notably, genes such as VPS45

and APOPT1, with established functions highly relevant

to SCZ, emerged as previously undiscovered candidates

associated with the disease. These findings emphasize

the application of SpliTWAS in identifying genetic vari-

ants and regulatory mechanisms that may have remained

elusive using conventional approaches.

Furthermore, our analysis reveals that splicing events

associated with SCZ exhibited enrichment in pathways



Figure 6. SpliTWAS implicates specific exons of VPS45 and APOPT1 with SCZ
(A) Conditional analysis of the PGC SCZ GWAS on the splicing effect of the highlighted (green) exon. Gray dots represent the original
GWAS signal. Blue dots represent the signal conditioned on the splicing association.
(B) Top: S values of the exon highlighted in (A) (green) in samples with different genotypes at the SpliTWAS-associated variant. Bottom:
expression (RPKM) of VPS45 in samples with different genotypes at the SpliTWAS-associated variant.
(C) Example read distribution plots for the highlighted exon in A (green) in 3 samples with different genotypes at the SpliTWAS-asso-
ciated variant.
(D–F) Similar to (A–C) but for exons 10 and 11 of APOPT1.
related to cellular transport, neuronal development, and

immune responses.34,35,43–46 These pathways have been

extensively implicated in the pathophysiology of SCZ, re-
The American
inforcing the notion that these processes play critical roles

in disease development and progression. Connecting to

the disruption of multiple RNA regulators, we provided
Journal of Human Genetics 111, 1573–1587, August 8, 2024 1583



prioritization of genetic variants and regulatory mecha-

nisms driving the observed genetic associations.

While SpliTWAS enables the exploration of connections

between splicing and complex traits, it is not without

limitations. Like many other genome-wide association

strategies, SpliTWAS focuses on common variants without

capturing the potential impact of rare variants on disease

susceptibility. Given that splicing patterns can exhibit tis-

sue-specific variations, establishing biologically meaning-

ful associations via SpliTWAS requires RNA-seq data from

tissues relevant to the trait of interest. Furthermore, it’s

worth noting that, in certain instances, the presence of

high correlation among exon associations within the

same gene can pose challenges in pinpointing the causal

exon responsible for the associated traits. Efforts in ac-

counting for these correlations at a gene level have

recently been published and could be applied at the exon

level.81,82 Lastly, using an out-of-sample LD panel could

potentially lead to inflated type 1 error; recent works

have also started to tackle this issue.25,26

In summary, our method, SpliTWAS, establishes connec-

tions between genetics, splicing dysregulation, and

complex traits, providing valuable insights into the genetic

basis and underlying molecular mechanisms of SCZ.

Furthermore, SpliTWAS is generally applicable for investi-

gating diverse traits and enables opportunities to unveil

molecular mechanisms underlying other complex traits.
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