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Abstract

This study evaluates two interventions for residential water conservation. Compar-
ing households across an enforcement algorithm’s cutoff using a regression discontinuity
design, we find that automated irrigation violation warnings cause substantial water
conservation but also shift some consumption from regulated to unregulated hours
within the week. In contrast, we show using data from a randomized experiment with
the same customers that normative Home Water Reports reduce water use by a much
smaller amount, but that this social pressure is effective during all hours both before
and after automating irrigation policy enforcement. Our findings highlight the merits
of implementing multidimensional conservation programs.
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1 Introduction

Fresh water availability remains one of the most pressing environmental and economic chal-
lenges in many regions around the world. The United Nations forecasts that two-thirds of
the world’s population will live with water stressed conditions by 2025, and that this outlook
will only worsen with climate change.1 At more local levels, concerns are also growing about
cities sinking from over-extracting underground water resources.2 And, as weather patterns
become more erratic and severe droughts more frequent, this will continue to increase the
prevalence of prolonged water shortages such as those recently experienced in California,
other Southwestern states, and in many regions around the world.

In conventional market settings, the response to a severe supply shortage is that prices will
increase and demand will adjust accordingly; however, prices in water markets are rarely set
competitively and governments are typically constrained in implementing Pigouvian remedies
to curtail water consumption (Olmstead et al., 2007). Instead, policymakers rely heavily on
water use regulations such as irrigation restrictions and social pressure – the influence on
people by their peers – to encourage voluntary water conservation.

The efficacy of social pressure is often limited. For instance, many water utilities provide
residential customers with Home Water Reports (HWR) that compare each household’s
water consumption with that of their neighbors. Evaluations of randomized HWR typically
find conservation effects of around two to five percent – certainly not trivial, but far from
adequate to address the magnitude of the shortages (e.g. Ferraro et al., 2011; Ferraro and
Price, 2013; Mitchell and Chesnutt, 2013; Bernedo et al., 2014; Brent et al., 2015; Jessoe
et al., 2019, Forthcoming; Bhanot, Forthcoming). Moreover, Allcott and Kessler (2019) find
that the majority of conservation nudge recipients are unwilling to pay the marginal social
cost of the nudge, which questions the economic efficiency of such policies.

With regulations, the challenge is enforcement. For example, a common form of water
rationing is to restrict outdoor water use to certain days of the week, but the reliance on
violators’ neighbors to be informants means that in practice these restrictions are rarely
enforced.3 However, for water conservation – as in many contexts – technology is advancing

1The United Nations’ forecasts are available at www.un.org/waterforlifedecade/scarcity.shtml.
2Some examples of sinking cities are www.nytimes.com/interactive/2017/02/17/world/americas/mexico-

city-sinking.html and www.nytimes.com/interactive/2017/12/21/world/asia/jakarta-sinking-climate.html.
3For instance, California state reports show that during the recent drought we study, most water agencies

that restricted irrigation never issued a single penalty (CA State Water Board, www.waterboards.ca.gov).
More generally, the poor quality of reporting of violations hinders the scope of regulatory enforcement in
many settings of environmental compliance monitoring (e.g. Evans et al., 2009; Gilpatric et al., 2011).
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rapidly to enable automated detection of violations and enforcement of regulations. Thus,
given the aforementioned limitations, a promising second-best policy to potentially address
water shortages is technology-enforced restrictions on water use.

We examine such a policy in this study, providing the first evaluation to our knowledge
of the effects of automating the enforcement of water conservation regulations. In addition,
we reevaluate a HWR social pressure intervention in the same setting and with the same
customers (Jessoe et al., 2019, Forthcoming), providing for a direct comparison between these
two types of conservation policies as well as an evaluation of their layered effects. Our findings
indicate that automating the enforcement of pre-existing residential irrigation restrictions
has large effects, inducing treated households to curtail their summer water consumption by
about 31 percent. In comparison, we find – consonant with prior WaterSmart studies in the
literature – that HWR reduce household water consumption by about three percent. That is,
the effects of technology-enforced regulations in this context are an order of magnitude larger
than those of the social pressure. Facilitated by novel high-frequency data, we additionally
show that automating enforcement causes households to shift some water consumption into
unregulated time periods, a form of environmental leakage; in contrast, HWR yield water
conservation across the hours of the week.

To empirically arrive at these findings, we use data from WaterSmart Software and a
Southern Californian water utility that measures hourly residential water consumption using
Advanced Metering Infrastructure. In July 2015, the utility tested an innovative approach
to enforcing existing mandatory restrictions by leveraging the smart meter data to automate
detection of irrigation violations and notify offending households. These notices stipulated
fines for continued violation of the pre-existing irrigation policies and made it clear that
violations had been detected by computer algorithms. This pilot program dramatically
increased the scope of enforcement: within one week, the one-time application of automation
increased the share of households that had ever been warned from 4.6 to 39.2 percent.4 We
exploit the algorithmic nature of this strengthened enforcement in a regression discontinuity
design that compares barely-treated households to those whose targeted water use fell just
below the essentially arbitrary cutoff that designated an irrigation violation. Throughout
the post-automation summer water season, we estimate local average treatment effects of
566 gallons saved weekly per household – thirty-one percent of the mean – and that this
overall effect is composed of gross conservation of 756 gallons during irrigation-prohibited

4The notices never state that this was a one-time pilot program testing the algorithm, but to the extent
that some households viewed the warnings as cheap-talk, this implies that our estimates are lower-bounds
of the conservation treatment effects of a more persistent automated enforcement of irrigation restrictions.
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time periods and a gross increase in consumption of 190 gallons when irrigation was allowed.
To directly compare these water conservation effects to those of social pressure, we utilize

a field experiment conducted by WaterSmart Software in partnership with Jessoe et al. (2019,
Forthcoming). The experiment sent HWR to randomly-selected households in the same
city during the months spanning the utility’s automated irrigation enforcement. Using this
randomization to identify intent-to-treat effects, we find – replicating their results – that
HWR reduce average household water consumption by about 78 gallons per week during
the summer water season, roughly three percent of the control group mean and well within
the range of estimates in the sizable literature on HWR. Extrapolating the RD estimates
for the automated enforcement to apply to all treated households (thirty-seven percent of
the sample population), a comparison of the two interventions on a per-treated-household
basis shows that, while the overall effects of HWR are economically significant, the total
conservation induced is about a tenth of the magnitude of that from automated enforcement
of landscape irrigation regulations.

We then build upon this work to explore the layering of the two interventions. By esti-
mating treatment effects in the weeks just before versus just after the automated violation
notices, we find average conservation effects from HWR of 79 gallons per week prior to the
automated enforcement (in May and June) and effects of 78 gallons just after (in July through
October). That is, our evidence is suggestive that the effects of the randomized HWR are
completely invariant to the regime change in irrigation enforcement. We additionally show
that following this heightened enforcement, HWR continue to cause water conservation both
during time periods when irrigation is allowed and during irrigation-prohibited days, includ-
ing among households that are high-volume water consumers (the vast majority of whom
were sent violation notices). This pattern starkly contrasts the increased water use dur-
ing irrigation-allowed periods caused by the automated enforcement. An actionable policy
implication of these collective findings is that, while technology-enforced regulations induce
much greater behavioral change, social pressure serves as an effective simultaneous interven-
tion to obtain additional conservation and mitigate some of the environmental leakage from
asymmetric regulations.

Our study makes three primary contributions to the research literature. Most directly,
we provide the first empirical evidence on automating the enforcement of regulations that
target household resource conservation. The small literature on technology-enforced regu-
lations has focused on automated traffic enforcement for speeding and red light violations,
generally finding mixed evidence of social benefits (Retting et al., 2008; Hu and McCartt,
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2016; Gallagher and Fisher, 2020). The evidence from our study supports the potential for
large conservation benefits by the households targeted by automated enforcement for water
policies, especially given the technological facilitation provided by the rapid growth in smart
water meter deployment.5

Secondly, we join a growing literature on the multi-faceted approach of simultaneously
increasing both social pressure and financial or regulatory incentives to change behavior.
Policymakers regularly employ tactics such as layering strengthened regulations onto height-
ened normative interventions to internalize externalities and promote voluntary contributions
towards public goods (Browne et al., 2020). For example, the United States Forest Service
attempts to reduce forest fires using both extensive prohibitions of risky behaviors – backed
by statutory financial penalties – and large-scale media campaigns of normative messaging
such as “only YOU can prevent wildfires.”6 Prior studies focus on how financial incentives
might interact with social pressure for resource conservation (List et al., 2017; Pellerano
et al., 2017; Gillan, 2018; Ito et al., 2018; Holladay et al., 2019). We build on this literature
by evaluating a context in which strengthened enforcement of existing regulations is imple-
mented concurrently with a widely-used form of social pressure. We also show promising
new results regarding their use in combination.

Finally, our findings serve as novel evidence that a credible threat of fines can substan-
tially influence peoples’ behavior. The threat of financial penalty is used as a primary policy
instrument to back regulations in many settings, particularly so for environmental contexts
such as littering, emissions control, and trespassing in protected areas. Whereas statutory
penalties can readily be changed by policymakers, the expected value of a fine also depends
greatly on the level of enforcement (Becker, 1968). In the setting we study, official restric-
tions and penalties pertaining to irrigation remained unchanged while enforcement increased
from virtually none to essentially complete enforcement. We provide causal evidence that
households are very responsive to this newly-credible threat of financial penalties, in con-
trast to a body of work highlighting relatively minimal sensitivity of water consumption to
changing prices (e.g. Olmstead et al., 2007; Browne et al., 2020). Technological advances are
likely to further enable utilities and governments to automate the enforcement of policies
not only for water conservation, but for many other resources and behaviors as well.

5Forecasts from ABI Research and IHS Markit predict that there will be a global base of 400 million
smart water meters by 2026, one-third of new meter installments (see media coverage of these forecasts
at businesswire.com/news/home/20190801005064/en/400-Million-Smart-Water-Meters-Installed-Worldwide
and technology.informa.com/610487/water-meters-market-to-be-one-third-smart-by-2025).

6cf. U.S. Forest Service messaging at firerestrictions.us and smokeybear.com.

4

https://www.businesswire.com/news/home/20190801005064/en/400-Million-Smart-Water-Meters-Installed-Worldwide
https://technology.informa.com/610487/water-meters-market-to-be-one-third-smart-by-2025
https://firerestrictions.us
https://smokeybear.com


2 Study setting and research design

As in many regions of the world, Southern California has a history of extreme and persistent
variation in precipitation, including regular periods of extended drought conditions (see
Appendix Figure A1). During the most recent drought (2011-2017), water utilities across
California explored a wide variety of conventional and novel approaches to managing water
demand in the face of rapidly shrinking supply. Our paper evaluates two simultaneous policy
interventions for residential water conservation that were implemented in Burbank (Los
Angeles County) by the local utility, Burbank Water and Power (BWP). Methodologically,
we utilize a regression discontinuity design to identify the effects of automating enforcement
of pre-existing landscape irrigation restrictions, and we use a randomized field experiment
to identify the effects of social pressure via Home Water Reports (HWR).

Our primary research focus is on the automated enforcement of day-of-week and time-
of-day outdoor water use restrictions (hereafter, DOWR). Irrigation restrictions have a long
heritage in water conservation and are widely-used across California during droughts.7 Al-
though the social benefits from water conservation do not vary across hours of the week,
there are several institutional and horticultural reasons to impose DOWR.8 Perhaps more
importantly, restricting outdoor irrigation to specific days facilitates enforcement. Prior to
the introduction of “smart” meters that record high-frequency water consumption data using
Automated Metering Infrastructure (AMI), the only method of detecting irrigation violations
was visual inspection by a utility employee or an informant neighbor of the violator. While
DOWR allow informants to focus only on the extensive margin of “wrong day” water use,
enforcement is believed to be quite low – as we provide empirical support for below. BWP’s
use of a computer algorithm to enforce DOWR is highly novel, and ours is the first study to
our knowledge to evaluate automated enforcement of residential water policies.

On May 14, 2015, the Burbank City Council approved the implementation of tighter
restrictions which included limiting outdoor water use to only on Tuesdays and Saturdays
before 9:00 a.m. and after 6:00 p.m.9 Notably, BWP initially enforced these DOWR using
only the conventional method of visual inspection. Then, during the first week of July, the

7See California Water Resources Control Board’s Water Conservation Portal: Conservation Reporting.
www.waterboards.ca.gov/water_issues/programs/conservation_portal/conservation_reporting.html

8DOWR generally prohibit irrigation between a few hours after sunrise and a few hours before sunset,
which minimizes water lost to evaporation (Christiansen, 1942). Furthermore, spacing out the days on which
irrigation is allowed ensures water can be spread efficiently for the benefit of plants. Finally, outdoor water
use comprises a large share of municipal water use and provides the potential to conserve water with minimal
health and safety consequences (California Department of Water Resources, 2013).

9These revised DOWR replaced existing outdoor water use limits in Burbank of three days per week.
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utility conducted a pilot test of a computer algorithm that uses AMI data to automatically
detect DOWR violations. Within one week, the share of single-family residences that had
ever been found in violation jumped from 4.6 percent to 39.5 percent – that is, more than
one-third of Burbank households were sent their first water violation notice in early July, as
shown in Figure 1. These notices (shown in Appendix Figure A2) clearly indicate that the
violations were detected by a computer algorithm, which had not been previously announced.
In addition, the notices reminded customers of the existing fines of $100 for irrigating more
often than twice per week, with fines increasing to $200 and then to $500 for subsequent
violations. The notices do not state whether automated enforcement would continue, and
BWP ultimately used the algorithm only once, so this treatment is best interpreted as being
a shock to household beliefs about detection and enforcement probabilities pertaining to
existing regulations and the associated pecuniary penalties.

To identify the effects of this novel enforcement, we use a regression discontinuity de-
sign based on a cutoff in the algorithm that the BWP employed to determine violations.
Using data from a single week in late June 2015, the noncompliance algorithm estimated
the number of days per week that each household was irrigating, defined by whether the
water meter had flow of more than 125 gallons during any individual hour of the day. For
each household’s third-highest daily peak consumption hour, this arbitrary cutoff of 125
gallons thus forms the basis of our regression discontinuity design. For example, a house-
hold would be assigned to be sent an automated notice if their seven daily peak hours were
{200, 200, 125, 100, 100, 100, 100}, and a household would not be assigned to treatment if
their seven daily peak hours were {200, 200, 124, 100, 100, 100, 100}. Although HWR assign-
ment is not a factor in the algorithm, BWP decided to allow for comparatively more detected
irrigation days per week for both HWR Treatment and Control accounts with “average” or
“efficient” consumption, per the WaterSmart tier categorizations discussed below. Because
we imperfectly observe households’ historical tiers (particularly among the HWR control
group), we assign all households to the running variable based on the third-highest daily
peak consumption hour, which would determine violations under the strictest allowance.
For this reason, we evaluate the automated enforcement using a “fuzzy” RDD.

We additionally evaluate the effects of HWR in Burbank during the same time period,
which provides points of comparison for both overall conservation effects as well as more
nuanced behavioral changes. Acting in partnership with BWP and the Center for Water
and Energy Efficiency at UC Davis (Jessoe et al., 2019, Forthcoming), WaterSmart Software
included nearly 17,000 single-family households in the randomized control study, with the
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timing of initial HWR treatment (by mail or email) rolled out over the monthly water billing
cycle during late April through mid May 2015. Notably, treated households began to receive
HWR at least six weeks prior to the automated enforcement of irrigation restrictions in early
July and continued to receive HWR for at least several months – throughout the October
end of the 2015 summer water season that we include in our empirical analyses.

HWR include several components (see Appendix Figure A3). The primary component is a
normative comparison of the treated household’s water consumption with that of a peer group
of neighboring households with the same number of occupants and similar irrigable area.10

The reports also provide treated households with some potentially water-saving suggestions
(e.g. “Upgrade to a low-flow toilet” or “Reduce showers to 5 minutes”). Some Burbank
HWR also included one of three randomly generated messages, two of which pertain to hot
water use.11 Jessoe et al. (2019) find “that households did not respond to the messaging
or recommendations,” and we also verified that our estimated coefficients of interest are
the same for the pooled three arms as for the random subset receiving only the core HWR
messaging. Broadly, the literature has determined that the social pressure is by far the most
effective component of HWR (and Home Energy Reports), and that the other components
are largely ineffective in the absence of normative peer comparisons (Ferraro et al., 2011;
Ferraro and Price, 2013; Mitchell and Chesnutt, 2013; Allcott and Rogers, 2014; Brent et al.,
2015, 2020; Jessoe et al., 2019, Forthcoming; Bhanot, Forthcoming). We cannot separately
identify effects of each included piece of information and join prior literature in viewing the
overall HWR intervention as the relevant “treatment” from a policymaker’s perspective.

Our research designs allow us to examine the impacts of automated enforcement and
social pressure within a given period across quasi-randomly and randomly assigned groups.
One consideration for this particular setting is the external validity of conclusions drawn
at the height of severe drought in a drought-prone region. Both of these interventions
were introduced into a landscape filled with media coverage and other policies encouraging
water-saving behavior, and BWP was facing threats of State-mandated penalties tied to con-

10HWR do not state the specific thresholds for the qualitative bins, but the “efficient” neighbor benchmark
is based on the 20th percentile of peer group consumption and the “average” benchmark is the 55th percentile.
The reports also provide the gallons per day values corresponding to each of these thresholds.

11These messages are: i) “Surprised by your WaterScore? Your WaterScore compares your use to others in
Burbank who also have X occupants and a similar yard size. Is your household different? Log on to tune your
profile and see adjusted comparisons.”, ii) “Reduce hot water use: Did you know that heating water is the
second most energy intensive activity in your home? Log on for information and offers for the water, energy,
and money saving actions below!”, or iii) “Save hot water, win big! Reduce water use by 24 percent and gas
use by 3 percent in the next 7 months and win one of: a) 25 high-efficiency Whirlpool clothes washers, b)
100 luxurious, efficient Evolve shower heads, or c) A hot water efficiency starter. conserveandwin.com”
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servation targets.12 Although these factors might bias our estimates towards finding smaller
effects, prior research supports that there is ample scope for residential water conservation,
especially for outdoor water use (Castledine et al., 2014; Baker, Forthcoming; Brelsford and
Abbott, 2018; Pratt, 2019; Browne et al., 2020). Moreover, as periods of extended drought
become increasingly common, it is important to study policies during such an event in order
to better understand the effects of related policies within the contexts in which they will be
invoked.

3 Data

Our study primarily uses data sourced from Automated Metering Infrastructure residen-
tial water meters, which provide high-frequency records of household water consumption.
The availability of hourly consumption data avoids the measurement error that is typically
present when trying to map metered water use to the actual timing of consumption. For
municipal utilities, one widely-recognized benefit of AMI is the ability to implement algo-
rithmic detection of water leaks. In addition, the technology facilitates automated detection
of landscape irrigation, as we study. Single-family residential accounts typically do not have
separate meters for irrigation, so utilities (and researchers) are generally unable to identify
irrigation disaggregated from total household water use; however, the flow rate of irrigation
controllers is so large that consumption during an hour with irrigation far exceeds regular
household consumption during any other hour of the week.13 Unlike with smart meters
for electricity, AMI adoption has been relatively rare for household water use historically,
although deployment of the technology exhibits a steep upward time trend.14 Thus, as wa-
ter utilities increasingly install smart meters throughout their jurisdictions, the scope for
applying AMI technology to enforce water policies will continue to steadily grow.

Burbank Water and Power had installed AMI throughout their service area approxi-
mately one year prior to implementing the interventions we study. WaterSmart Software
provided us with data on all single-family residential accounts within BWP’s service terri-
tory in Burbank, California. The city of Burbank has a population of about one-hundred
thousand people, but the Home Water Report program focused on single-family homes with

12California enacted fines of $10,000 per day for water agencies that did not meet mandated conservation
targets (www.mercurynews.com/2015/04/28/water-wasting-fines-of-10000-proposed-by-gov-jerry-brown).

13See an example comparison at www.wsscwater.com/customer-service/rates/water-usage.html.
14In 2015, only about seven million smart meters for water had been installed in the United States,

compared to about 68 million smart electricity meters. (see www.westmonroepartners.com/Insights/White-
Papers/State-of-Advanced-Metering-Infrastructure).
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some irrigable landscape area. We observe hourly water consumption for nearly 17,000
single-family households during April 2014 through October 2015. We collapse these hourly
data to the household-weekly level for our analysis, although we utilize the hourly disaggre-
gation to identify patterns of within-week intertemporal substitution and to provide a deeper
understanding of how and when households respond to the two water conservation policies
that we evaluate.

In addition to data on water consumption, BWP and WaterSmart Software provided us
with data on all Home Water Reports and on violations of irrigation restrictions. We also
incorporate several household-level covariates into our analyses. These control terms were
compiled by WaterSmart Software through property records and inferred when necessary
from other house characteristics; the covariates included are the size and irrigable area of
each residential lot, and each house’s size in square-feet, year of construction, number of
floors, number of bedrooms, and number of bathrooms.

Table 1 presents summary statistics for these variables, as well as demonstrating balance
between the HWR treatment and control groups. By design and as expected with randomiza-
tion across a large sample, implementation of the HWR treatment shows virtually complete
compliance and the two arms are highly-balanced. Prior to the automated enforcement pi-
lot, roughly five percent of sample households had been sent a (non-automated) violation
notice. During the year prior to the interventions (April 2014 through March 2015), average
household water use was about 2,700 gallons per week. The full distribution of this water
consumption is plotted by HWR arm in Appendix Figure A4. As is typical of household
resource consumption, the distribution is skewed and has a long right tail; the standard
deviation is 1,645 gallons and the Pearson’s moment coefficient of skewness is 2.55. For
comparison, during our primary analysis period of late May through October 2015, average
water use by the control group was 2,323 gallons (sd = 1,776).

4 Empirical specifications and results

This section presents our empirical findings. First, we evaluate the impacts of the viola-
tion notices on water usage using a regression discontinuity design based on the computer
algorithm used to automate enforcement. We estimate treatment effects both during hours
when watering was allowed and during hours when irrigation was prohibited, as well as for
total household water consumption. Second, we assess the impact of social pressure using
the randomized Home Water Reports field experiment. We estimate these treatment effects
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both for total consumption and separately for watering-allowed/prohibited hours. Finally,
we examine the layering of the two policies by comparing estimates for the HWR intervention
during weeks just before and just after the automated enforcement of irrigation restrictions.

4.1 Regression discontinuity estimates for automated enforcement

To examine the effects of the automated violation notices on household water consumption,
we use a regression discontinuity design based on an arbitrary cutoff in the algorithm used
to determine irrigation violations (discussed above in Section 2). We do not attempt to dis-
entangle the mechanism(s) for these conservation effects, such as whether it is the pecuniary
incentive from threat of fines or the increased perception of regulatory oversight by the utility
and city. We can only test the reduced-form impact of this policy as it was implemented in
Burbank – and as it could readily be deployed by other jurisdictions.

Before turning to the estimates, we conduct some standard exercises to support the valid-
ity of our RDD. First, we test for manipulation along the running variable, which measures
the distance to the irrigation violation cutoff. Given that the automation of detecting irriga-
tion violations was unprecedented and unannounced, a priori there is no reason for concern.
As shown in Appendix Figure A5, there is some measurement lumpiness from the under-
lying meter technology, but there is no evidence of any asymmetric sorting of households
around the threshold, which visually confirms the results of our statistical implementation
of McCrary’s (2008) test for manipulation. Further supporting the identification strategy,
Appendix Figure A6 demonstrates that there is also smoothness across the threshold in
pre-treatment water consumption along the running variable.

Next, we evaluate treatment compliance. Figure 2 displays the share of households re-
ceiving automated violation notices along the running variable. For visual clarity, Figures 2-4
use bins of 10 gallons for the running variable. The size of the markers corresponds to the
number of households included in each local average. Consistent with the algorithm, zero
households below the threshold received a violation notice; at the threshold, there is a clear
discontinuous jump for receipt of an automated violation notice in the first week of July.
Because of the heterogeneous intensity of treatment across the different consumption tiers,
as discussed earlier, the computer algorithm used by BWP resulted in perfect compliance
below the threshold but not above the cutoff.

Quantitatively, we estimate that households with peak hourly water consumption just
above the 125 gallon threshold are 25.5 percentage points more likely to have received a
violation notice from the water utility relative to households just below the threshold. In
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addition, because households that have higher peak water consumption are more likely to
consume “above average” amounts of water per WaterSmart designation – and are thus more
likely to be assigned to treatment using the stricter allowance – the treatment propensity
increases with the running variable.15 At the right end of the range displayed in Figure 2, we
find that 40 percent of households received a notice, an increasing slope that continues past
the displayed range. Thus, the running variable represents a necessary but not sufficient
condition for a household to be sent an automated violation notice, and this first stage
supports a fuzzy RDD.

Having established the validity of our first-stage, we examine the effects of the auto-
mated enforcement on water use. We start by plotting local averages of post-treatment
water consumption against the running variable. Figure 3 shows total average weekly wa-
ter consumption in gallons; Figure 4(a) shows water consumption during targeted periods
of the week, when irrigation was not allowed; and Figure 4(b) shows water consumption
during hours of the week when irrigation was allowed (Tuesday and Saturday before 9:00
a.m. and after 6:00 p.m.). Average water consumption in these figures is pooled over July-
October 2015, the four-month period immediately following the automated violation notices
treatment and continuing through the end of the statutory local summer water season.

Figure 4(a) shows a substantial discontinuous drop at the threshold in water consumption
during irrigation-restricted periods of the week. In reduced-form, the discontinuity is roughly
200 gallons per household per week, about 14.5 percent of the respective sample mean. For
water consumption during the entire week, in Figure 3 we also find a large drop at the thresh-
old of about 8 percent in reduced-form. This overall conservation is comparatively smaller,
consistent with possible intertemporal substitution in response to the enhanced enforcement
of an asymmetric restriction. Figure 4(b) reinforces evidence for such substitution, showing
that water consumption discontinuously increased during hours of the week when irrigation
was allowed.

We investigate these patterns more formally by estimating nonparametric local linear
regressions of the following form:

WaterUseit = β0 + τAboveCutoffi + f(Peak Water Consumptioni) + εit (1)

In Equation (1), WaterUseit is the quantity of water consumed by household i in week t. This
outcome variable is either the household’s weekly total water consumption or the total con-

15As discussed in Section 2, the algorithm uses “above average” households’ third-highest daily peak hour
during a specific week in late June 2015, but allows more leniency for lower-volume consumers.
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sumption during subsets of hours of the week, such as consumption during irrigation-allowed
hours only. In all regressions, each observation is one household for one week. AboveCutoffi is
an indicator for whether the household’s water use is above the cutoff in the algorithm used to
determine irrigation violations (discussed above in Section 2). f(Peak Water Consumptioni)
is a nonparametric function of the household’s water use that entered into the algorithm and
that is represented as the RDD running variable. εit is a mean-zero idiosyncratic error term.

In addition to presenting reduced-form results using Equation (1), we also estimate local
average treatment effects using nonparametric local linear regressions of the following form:

WaterUseit = β0 + τAutomatedViolationi + f(Peak Water Consumptioni) + εit (2)

Here, AutomatedViolationi is an indicator for whether household i was sent an automated
violation notice due to the enforcement algorithm. Leveraging the RDD framework, we
instrument for AutomatedViolationi using AboveCutoffi to obtain the LATE estimates. Es-
sentially, this re-scales the estimates from Equation (1) by the magnitude of the first-stage
discontinuity. We estimate all RDD specifications using techniques from Calonico et al.
(2014). With their provided statistical software package, we use local linear regressions with
a triangular kernel.

Table 2 reports RD estimates of the effects of irrigation violation notices. Panel [A]
presents reduced-form estimates and Panel [B] presents the local average treatment effects,
which essentially rescale the reduced-form estimates by the estimated magnitude of the first
stage. Each cell in the table presents an RD estimate at the cutoff for automated violation
notices. We use a consistent bandwidth of 80 gallons and compute heteroskedasticity-robust
bias-corrected standard errors using the approach provided by Calonico et al. (2014).16

In Panel [A], we present the reduced-form estimates that correspond to Figures 3 and 4.
Column (3) shows estimates for water consumption during irrigation-prohibited hours of the
week. We find a statistically significant drop of 192.6 gallons per week at the threshold. Some
of this decrease in water consumption, however, is offset by an increase in water consumption
during non-restricted periods within the week. Column (4) shows that water consumption
increased discontinuously at the treatment threshold on average by 48.4 gallons per week
during the irrigation-allowed hours on Tuesdays and Saturdays before 9:00 a.m. or after 6:00
p.m. Thus, the violation notices partly shifted water consumption from irrigation-restricted
times to irrigation-allowed times, showing intertemporal substitution in response to a policy
with (intentionally) partial coverage. Focusing on total weekly water conservation in Column

16Estimates are quantitatively and qualitatively similar when using data-driven “optimal” bandwidths.
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(2), we also find significant effects at the threshold, with total water consumption decreasing
in reduced-form by 144.2 gallons per week.

As displayed in Figure 2, household receipt of violation notices increases substantially
at the threshold. Confirming this visible discontinuous jump, nonparametric RD estimates
indicate an increase of 25.5 percent at the cutoff for automated violation notices. The
estimate is reported in the first column of Panel [A] in Table 2. Given that only one out of
four “barely-eligible” households received the violation notice, it is useful to rescale the RD
estimates so that they can be interpreted as the effect of receiving a violation notice instead
of as a reduced-form estimate of the effects of crossing the arbitrary threshold.

Panel [B] of Table 2 reports RD estimates for local average treatment effects (LATE) of
receiving a violation notice. As expected, the LATE estimates are roughly four times larger
than the reduced-form estimates. The effect of receiving a violation notice is to reduce
post-notice water consumption by 755.8 gallons per week during irrigation-restricted times
of the week. In contrast, water use during irrigation-allowed portions of the week increases
by 189.9 gallons per week. Finally, total weekly water use decreases by 565.9 gallons per
week on average for households sent a violation notice. To place this into perspective, these
estimates imply that automated enforcement decreases household water use by about 31
percent on average, a very economically significant effect.17

In Table 3, we show that these conservation effects persist throughout (at least) the 2015
summer water season. The table presents reduced-form and local average treatment effect
estimates for household weekly water use by month during July, August, September, and
October. While the estimates fluctuate somewhat – as is expected of data on a highly-
variable outcome – there is compelling evidence that estimated impacts of the violation
notices persist for months after the one-time use of automated enforcement.18 While the
largest point estimate is for July, a LATE of 641.3 gallons per week, the estimated LATE
remains at 526.2 gallons in October. Moreover, the estimates for July through October
form a rather tight range between 437.5 and 641.3 gallons per week. As shown in Appendix
Table A1, the treatment effects appear to persist even through the summer of 2016.

On the whole, these results for the effects of automated enforcement of irrigation restric-
17Our estimates for automated enforcement of irrigation policies are substantially larger than those for

conventionally-enforced DOWR (e.g. Hayden and Tsvetanov, 2019). In percentage terms, we find water con-
servation on par with that from subsidizing “Water Smart Landscape” conversion (e.g. Baker, Forthcoming;
Brelsford and Abbott, 2018) or increasing marginal water prices by about 150 percent (Browne et al., 2020).

18While we have no data on specific household behavioral changes, these findings are consistent with an
induced change in irrigation controller settings. Given that (counterfactual) households clearly were not
making similar changes absent the notifications, this potential explanation is interesting in its own right.
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tions are both academically interesting and directly policy-relevant. Following a one-time
application of automated enforcement, it is clear that households respond by significantly
altering consumption patterns. While the aggregate impact on consumption is the most
consequential for addressing water shortages, it is also valuable to understand how these
reductions are achieved, including the evidence of within-week intertemporal substitution.

4.2 Estimated effects of the randomized home water reports

We next examine how social pressure affects water conservation. Our identification strategy
uses a field experiment in which randomly-selected households were provided HWR including
normative social comparisons of water use. Building on previous work by Jessoe et al. (2019,
Forthcoming) that explores the overall effect of the intervention, we primarily focus on time
periods corresponding to features of the automated enforcement of irrigation policy. Of
novel interest, we explore the sensitivity of HWR to the sharp change in enforcement by
estimating treatment effects in the weeks just before versus after the automated irrigation
violation notices.

Figure 5 displays average household-weekly water consumption by month for both the
treatment group that received HWR and the control group that did not. The time range
shown in the figure spans one full year from November 2014 to October 2015, consisting of
three distinct policy regimes. From November 2014 through March 2015 is a “pre-treatments”
regime when neither HWR nor automated enforcement were in effect. HWR-treated house-
holds were sent initial social comparisons during April through May 2015, and the “HWR
only” regime runs from April through June. Then, the automated enforcement was con-
ducted in the first week of July; the “HWR plus automated violations” regime runs from
July through October, concluding the 2015 summer water season. In the pre-treatments
period, there is clearly no difference between the treatment and control groups, which were
defined randomly. As initial HWR were sent in April and May, the AMI data enable us
to see treatment effects immediately: average water use is visibly lower for HWR-treated
households compared to the control group for every month over the experimental period.19

Finally, the magnitude of HWR treatment-control differences appears to remain strikingly
similar in the third regime following the automated enforcement of irrigation restrictions.

We investigate the effects of HWR on water use more formally by estimating regression
19The immediacy of the treatment effect is consistent with Reiss and White (2008), who find that electricity

consumers respond promptly to both price changes and normative appeals. These findings support our use
of May-June as a counterfactual for HWR effects during the “HWR plus automated violations” regime.
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specifications of the following form:

WaterUseit = β0 + γHWRit + µi + ωt + δX ′i + εit (3)

As above in Section 4.1, WaterUseit is the quantity of water consumed by household i in
week t. HWRit indicates whether the household had been randomly-assigned to be sent a
Home Water Report(s). Xi is a vector of household control terms including residential lot
size, irrigable area, and the home’s square footage, year of construction, number of floors,
number of bedrooms, and number of bathrooms. µi and ωt are fixed effects for each household
and week of the sample, respectively. εit is a mean-zero idiosyncratic error term.

Column (1) of Table 4 uses a univariate OLS regression of household-weekly water
consumption on assignment to treatment during the post-treatment period from late-May
through October. In Column (2), we augment this specification with a vector of base-
line controls for residential lot size, irrigable area, and the home’s square footage, year of
construction, number of floors, number of bedrooms, and number of bathrooms. We also
estimate a difference-in-differences specification in Column (3) by adding pre-period data
from January through late May of 2015, including household fixed effects, week of sample
fixed effects, and interacting the assignment to treatment term with a binary indicator for
post-HWR-implementation. For each regression, standard errors in parentheses are two-way
clustered by household and week.20

Across the specifications, we find an average intent-to-treat effect of HWR of about 70
to 80 gallons per household per week. Using the control group sample averages (in the
lower portion of Table 4), the point estimates correspond to an average reduction in water
consumption of 3.1 to 3.4 percent, with a ninety-five percent confidence interval spanning 1.0
to 5.7 percent.21 This finding essentially replicates that of Jessoe et al. (2019, Forthcoming)
using the same field experiment but slightly different measures. Our results also closely
align with evidence on HWR in other jurisdictions (Ferraro et al., 2011; Ferraro and Price,
2013; Mitchell and Chesnutt, 2013; Bernedo et al., 2014; Brent et al., 2015, 2020; Bhanot,
Forthcoming). Whereas the conservation benefits of HWR are qualitatively well-documented,
our study provides a novel point of comparison: we show that automated enforcement of
irrigation restrictions has effects on water consumption that are about ten times as large as

20As our study period includes a fairly small number of weeks, we verified that standard errors are very
similar when clustering only by household.

21If, instead of calculating the percentage treatment effect relative to the randomly-assigned control group,
we compute it using pre-treatment consumption for the treated (from Table 1), these estimates represent a
change of 2.9 percent.
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those of HWR (thirty-one percent versus three percent).
Building on these existing results of the social pressure field experiment, we next explore

how simultaneously using both HWR and automated enforcement policies affects household
water conservation. We explore the layering of the policies in two ways. First, we exam-
ine how water conservation changes as automated enforcement is layered onto the social
comparison policy over time. Second, we focus on how layering the policies changes water
conservation by days of the week, i.e. when outdoor irrigation is allowed or not allowed.22

As discussed just above in the context of Figure 5, the HWR post-treatment period
consists of two regimes. During the six weeks from late May through June of 2015, the
statutory summer watering season under irrigation restrictions was in effect, but it was prior
to automation of the associated regulatory enforcement. Then, during July through October,
the statutory summer watering season under irrigation restrictions remained in effect, but
automated violation notices had been abruptly issued to more than one-third of households
(as shown in Figure 1). We show above that this automated enforcement reduced average
household water consumption by about 31 percent per week. Thus, there was a sharp change
in the enforcement regime while other aspects of the setting and HWR experiment remained
unchanged.23 Empirically, we explore potential policy interactions and behavioral changes by
estimating the effects of randomized HWR on post-treatment water consumption separately
for different periods of time.

In Table 5, we report these regression estimates. Column (1) includes our full HWR
time period of late May through October, directly repeating Table 4’s Column (2) for con-
venience. For this full post-treatment period, we find an intent-to-treat estimate from social
pressure of 78 gallons per week reduction in water use per treated household. The remaining
columns of Table 5 maintain this same specification but vary the included time periods.
In Column (2), we estimate an average reduction of 79 gallons per household-week during
late May through June, prior to the automated enforcement. In Column (3), we estimate a
conservation effect of 78 gallons per week during July through October, following the use of

22In principle, we could test for policy interactions by evaluating the difference in discontinuities across the
HWR Treatment and Control arms. In practice, such an exercise is statically underpowered as there are too
few households near the RD cutoff, particularly among the much smaller Control group. We present results
in Appendix Table A2 for the regression discontinuity estimates using only the sample of HWR-treated
households, showing a very similar pattern as that shown for all households in Table 2.

23Following plans to the tariff structure announced years in advance, water prices changed once near the
beginning of our study period on June 2, 2015. The price change was a relatively small increase of 5.2 cents
per hundred cubic feet (about 748 gallons) for the first consumption tier, with slightly larger increases on
higher tiers. The median May water bill of 8,550 gallons would have increased by only $1.59, inclusive of a
$1.00 increase to the fixed service charge. There were no additional changes during our study period.
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automated enforcement.24 The comparison of these treatment estimates reveals that they are
virtually identical, providing suggestive evidence that the policies may be fully additive.25

The finding also provides some suggestive evidence on the interactions between mechanisms.
Two mechanisms through which HWR theoretically might affect water conservation are by
increasing responsiveness to intrinsic incentives (e.g. moral costs) and by reducing respon-
siveness to extrinsic incentives (e.g. financial costs) via substitution effects. Concerns about
the behavioral response to intrinsic incentives being sensitive to the strength of extrinsic in-
centives have been conjectured in the broader economics literature (e.g. Bénabou and Tirole,
2006; Gneezy et al., 2011; Pellerano et al., 2017), but we do not find evidence of a strong
interaction between the two interventions in this setting.

The remaining two columns of Table 5 explore the effects of HWR for different times
within the week during the post-automation regime. Specifically, Column (4) includes only
hours of the week when irrigation was prohibited and Column (5) includes only hours when
outdoor irrigation was allowed. We find that HWR reduce average water use by 40 gallons per
week during irrigation-prohibited time periods and by 38 gallons per week during irrigation-
allowed time periods. This ubiquity of HWR effects with respect to irrigation permission
starkly contrasts the intertemporal substitution shown earlier for the automated enforcement.
Even though automated enforcement of irrigation regulations has large conservation effects
during irrigation-prohibited periods, it also shifts some water use to non-restricted days of
the week; in contrast, social pressure has a blanketed effect of reducing water use regardless of
irrigation restrictions. These results provide further evidence suggesting that social pressure
works independently of automated enforcement policies for water conservation.

We bolster this evidence by focusing on high-volume water consumers, of which the vast
majority (70 percent) were sent an automated violation notice. Table 6 reports estimates for
the same outcomes as in Table 5 but uses the subset of households who had pre-treatment
water consumption in the top tercile of weekly volume. Of note, 70 percent of these house-
holds were sent an automated violation notice during the first week of July. For these
high-volume consumers, we find even larger and more significant conservation effects from
HWR. In Column (1), we estimate an average intent-to-treat reduction of 164 gallons per
week for the full time period (4.8 percent of the mean). Focusing on time periods before and

24As discussed above, the irrigation policy did not change at this time – only the approach to enforcement.
25In Appendix Table A3, we show that these results remain unchanged when adding additional controls

for weather (temperature and precipitation) and to adding week-of-sample fixed effects. A formal test of the
difference across time periods yields a point estimate of essentially zero. The standard error is small enough
to rule out interactions of larger than a 25 gallons per week reduction or increase, about one-third of the
average treatment effect of the HWR.
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after the automated enforcement intervention, we find similar levels of water conservation:
163 and 165 gallons, respectively. We also find similar levels of water conservation from
HWR during irrigation-prohibited hours (80 gallons per week) as during irrigation-allowed
hours (85 gallons per week).

Finally, we show results in Table 7 in two panels separately for late May through June
and for July through October (2015), across four time blocks within the week: (1) non-
irrigation days between 0:00-9:00 and 18:00-24:00, (2) non-irrigation days between 9:00-
18:00, (3) irrigation days (Tuesday and Saturday) between 0:00-9:00 and 18:00-24:00, and
(4) irrigation days between 9:00-18:00. This decomposition allows us to compare the impact
of HWR on water use for the same set of hours on days when irrigation is permitted and
when irrigation is prohibited. The two panels of the table facilitate making this comparison
before versus after the automated irrigation enforcement.26 Qualitatively, the evidence in
Table 7 shows that HWR treatment effects are concentrated more heavily on non-irrigation
days prior to the automated enforcement, and then the treatment effects moderately shift
to occur during irrigation-allowed periods following the automated enforcement. This shift
is reflected in the statistical (in)significance of the respective coefficients, but is not itself a
statistically significant shift in the composition of treatment effect timing. Overall, this new
table supports that HWR appear to largely operate through a different behavior channel
than that of the automated irrigation enforcement, especially as the HWR effects remain
stable during non-irrigation hours (9:00-18:00) of all days of the week across the two regimes.

On the whole, these findings do not show any evidence of a significant change in HWR
effects from layering the two interventions, and the estimates reported in Tables 6 and 7
serve as a strong further robustness check for additive effects of the two policies. We caveat,
however, that these evaluations are comparisons of behavior by the same people at different
points in time; while total precipitation was very minimal during the periods we study,
there might be seasonality or other time-varying factors determining the response to HWR
treatment. Thus, we view our evidence as only being suggestive that the effectiveness of
social pressure does not appear to vary with the strength of enforcement for regulations
targeting the same or similar behaviors.

26Appendix Table A4 further disaggregates these estimates across 21 time blocks within the week and
shows that, while the conservation from HWR is especially pronounced during irrigation-permitted time
periods, the social pressure reduces water use across the hours of the week.
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5 Conclusions

In this study, we examine both the impacts of automating the enforcement of day-of-week
and time-specific irrigation regulations and of social pressure for water conservation via Home
Water Reports. Using hourly data on household water consumption for a city in Southern
California, we estimate how these two policy interventions affect residential water usage
during an extreme drought.

Using a regression discontinuity design based on the irrigation detection algorithm, we
find that automating the enforcement of existing irrigation policies reduces average water
consumption by approximately 31 percent among targeted households. In comparison, we
find using a randomized field experiment that the social pressure reduces average water
use by about three percent, replicating the findings of Jessoe et al. (2019, Forthcoming).
Extrapolating the RD estimates to apply to all treated households, this implies that the
total water conservation effects of automated enforcement of irrigation restrictions are about
ten-fold those of Home Water Reports on a per-treated-household basis. Exploring how
these respective effects vary across the hours of the week, we show that the automated
enforcement induces intertemporal substitution from irrigation-prohibited to unregulated
periods within the week; in contrast, we find that Home Water Reports cause conservation
during all hours of the week, both before and following the application of automated irrigation
policy enforcement.

Although irrigation regulations and social pressure have both been studied extensively in
the resource conservation literature, our study presents novel findings about the automation
of associated enforcement and the efficacy of these two policies when implemented con-
temporaneously. Given the sparsity of existing literature studying automated enforcement
of public policies, our research demonstrates promising potential for technology-enforced
regulations to dramatically change consumer behaviors. While the city we study used au-
tomated enforcement only once, we find that the conservation effects persist in magnitude
for the duration of summer water season and underlying irrigation policy period. Moreover,
rather than the layering of multiple policies having diminishing marginal returns, these two
interventions appear to yield fully additive conservation effects: Home Water Reports suc-
cessfully encouraged conservation both during time periods when irrigation was allowed and
when irrigation was not allowed, to a similar extent both before and after the application of
automated irrigation policy enforcement.

Our findings speak to a challenging tradeoff faced by utilities and public policymakers.
Automated enforcement of regulations produces meaningful resource conservation in this
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setting, but efficacy is only one consideration. Technology-driven enforcement is imperfect
and somewhat invasive, which incurs complaints from offended utility customers.27 There
is also a potential concern that strengthened enforcement of regulations might reduce peo-
ple’s intrinsic motivation to conserve resources. The evidence from our study suggests this
potential displacement is minimal in practice, perhaps because irrigation policy and social
pressure may work through different behavioral channels. As the technological scope for
automated enforcement of policies continues to rapidly grow, the potential lack of popular
support will need to be carefully balanced against the large potential social benefits from re-
source conservation and other behavioral changes. Our study shows that these policymaking
tradeoffs can reasonably be considered independently of existing or proposed social pressure
interventions.
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Figures and tables

Figure 1: Time series for issued residential irrigation violation notices
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Notes: Figure 1 plots the cumulative share of in-sample households that had ever received an irrigation
violation notice by week. Throughout this period, violations were determined when either a municipal
employee or a neighbor of the offender reported unlawful irrigation to the city. As indicated by the
annotation, the city also implemented an automated algorithmic detection of violations in early July.
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Figure 2: Regression discontinuity design: First stage for automated violation notices
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Notes: Figure 2 plots local averages for the first stage outcome of whether a household received an
automated irrigation violation notice during the first week of July 2015. For clarity, the running variable
uses 10 gallon bins. The size of the markers corresponds to the number of households included in the local
averages. The LOESS curves shown are fit to the underlying microdata separately on each side of the
threshold. Because the running variable represents a necessary but not sufficient condition for a household
to be sent an automated violation notice, the first stage supports a “fuzzy” regression discontinuity design.
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Figure 3: Reduced-form local averages for post-treatment weekly water consumption
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Notes: Figure 3 plots local averages for weekly water consumption during July-October 2015, the period
following the automated violation notices treatment. For clarity, the running variable uses 10 gallon bins.
The size of the markers corresponds to the number of households included in the local averages. The
LOESS curves shown are fit to the underlying microdata separately on each side of the threshold.
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Figure 4: Reduced-form for post-treatment weekly water consumption by hours of the week
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(a) Consumption during hours of the week when irrigation is not allowed
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(b) Consumption during hours of the week when irrigation is allowed
Notes: Figure 4 plots local averages for weekly water consumption during July-October 2015, the period
following the automated violation notices treatment. For clarity, the running variable uses 10 gallon bins.
The size of the markers corresponds to the number of households included in the local averages. The
LOESS curves shown are fit to the underlying microdata separately on each side of the threshold.



Figure 5: Average weekly water consumption by WaterSmart arm across the three regimes
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Notes: Figure 5 plots average weekly residential water consumption by month for each WaterSmart Home
Water Reports treatment arm during November 2014 through October 2015. The dashed vertical lines
indicate the three regimes of policy interventions. HWR were sent to households starting with the April-
May 2015 billing cycle and throughout the end of 2015 (and later). Algorithmic automated notices for
violations of irrigation restrictions were sent to households during the first week of July 2015.
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Table 1: Summary statistics and randomization balance checks

Group means t-tests
(1) (2) (3) (4)

Covariate Control HWR-treated Difference p-value
Number of households 2920 13703
Sent WaterSmart HWR 0 0.9972

Prior water violation 0.0486 0.045 -0.0036 0.41
Lot size (SqFt) 7346 7322 -24 0.74
Irrigable area (SqFt) 3829 3796 -33 0.47
House size (SqFt) 1619 1620 1 0.93
Year built 1945 1945 0 0.86
Number of floors 1.061 1.067 0.006 0.27
Number of bedrooms 2.912 2.919 0.007 0.69
Number of bathrooms 1.929 1.939 0.01 0.59
Weekly water gallons 2734 2721 -13 0.68

Notes: Table 1 shows statistics by WaterSmart Home Water Reports (HWR) treatment
arm for household-level covariates. The first two columns show means by treatment
arm for all households in the randomization sample, Column (3) shows the difference in
means, and Column (4) shows the p-values for t-tests of whether the difference in group
means is significantly different from zero. Initial HWR were sent to treated households
during the billing cycle spanning from mid April through mid May 2015. All outcomes
in the lower panel are determined prior to the randomization and prior to the automated
irrigation restrictions enforcement. For pre-treatment weekly water consumption, we
use each household’s average weekly gallons consumed during April 2014 through March
2015, spanning a full year prior to both treatments.
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Table 2: Regression discontinuity estimates of effects of irrigation violation notice

Weekly water consumption: July-Oct 2015 (gallons)
(1) (2) (3) (4)

First-stage All hours Non-irrig. hours Irrig. hours.

Panel [A]: Reduced-form estimates

Discontinuity 0.2549∗∗∗ -144.2∗∗∗ -192.6∗∗∗ 48.4∗∗∗
(0.0068) (26.1) (21.42) (10.67)

Panel [B]: Local average treatment effects

Discontinuity -565.9∗∗∗ -755.8∗∗∗ 189.9∗∗∗
(106.5) (89.53) (41.29)

Sample mean 0.15 1833 1334 499
Bandwidth (gal) 80 80 80 80
Observations 111,211 111,211 111,211 111,211

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Each cell presents a nonparametric regression discontinuity
estimate at the cutoff for automated violation notices. All regressions use the “rdrobust” software
package developed and provided by Calonico et al. (2014). Heteroskedasticity-robust bias-corrected
standard errors are estimated using the same package. Column (1) provides the estimated first-stage
for automated violation notices. These notices were sent to households during the first week of July
2015. Columns (2) - (4) present estimates for household weekly water consumption during July
through October 2015, the remainder of the legal and technical local summer water season following
the violation notices. Panel [A] shows the reduced-form estimates and Panel [B] shows the estimated
local average treatment effects. Column (2) includes water consumption pooled across all hours of
the week. Column (3) includes consumption only during hours of the week when irrigation was not
legally allowed. Column (4) includes consumption only during hours irrigation was legally allowed:
Tuesdays and Saturdays before 9:00 a.m. or after 6:00 p.m.
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Table 3: RD estimates of effects of irrigation violation notice by month

Weekly water consumption in 2015 (gallons)

Reduced-form LATE
Time period coef. s.e. coef. s.e. obs. bw sample mean

July -163.0∗∗∗ (48.99) -641.3∗∗∗ (202.4) 31,385 80 1890

August -111.0∗ (57.58) -437.5∗ (233.3) 24,735 80 2006

September -159.0∗∗∗ (49.99) -625.2∗∗∗ (205.0) 30,695 80 1793

October -135.7∗∗∗ (51.07) -526.2∗∗ (206.4) 24,396 80 1635

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Each row presents nonparametric regression discontinuity es-
timates at the cutoff for automated violation notices. The outcome variable is total weekly water
consumption. The month for each week is defined based on which month the first day of the week falls
within. All regressions use the “rdrobust” software package developed and provided by Calonico et al.
(2014). Heteroskedasticity-robust bias-corrected standard errors are estimated using the same package.
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Table 4: Estimated effects of randomized WaterSmart Home Water Reports

Weekly water consumption in 2015 (gallons)
Late May - October January - October

(1) (2) (3)
I{HWR} −77.88∗∗∗ −77.67∗∗∗ −68.76∗∗∗

(28.38) (25.62) (17.44)

Household controls No Yes —
Household fixed effects No No Yes
Week of sample FE No No Yes
Control group mean 2323 2323 2217
Num. of households 16,623 16,623 16,623
Observations 391,552 391,552 706,882

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Table 4 presents estimates of the aver-
age intent-to-treat effect of the randomized WaterSmart HWR for weekly water
consumption during 2015 for the month ranges indicated by the column titles.
Home Water Report treated households each had been sent one HWR as of late
May 2015, and monthly reports continued to be sent throughout (and following)
October, the end of the legal and technical local summer water season. The house-
hold control terms in Column (2) include residential lot size, irrigable area, and
the home’s square footage, year of construction, number of floors, number of bed-
rooms, and number of bathrooms. Standard errors in parentheses are two-way
clustered by household and week.
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Table 5: Estimated effects of randomized WaterSmart Home Water Reports by time period

Weekly water consumption in 2015 (gallons)
Late May - Oct Late May - June July - October

(1) (2) (3) (4) (5)
All hours All hours All hours Non-irrig. Irrig.

I{HWR} −77.67∗∗∗ −78.80∗∗∗ −77.51∗∗∗ −39.71∗∗ −37.79∗∗
(25.62) (28.96) (25.57) (18.31) (15.28)

Household controls Yes Yes Yes Yes Yes
Control group mean 2323 2442 2283 1414 869
Num. of households 16,623 16,623 16,623 16,623 16,623
Observations 391,552 99,477 292,075 292,075 292,075

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Table 5 presents estimates of the average intent-to-treat effect of the
randomized WaterSmart HWR for weekly water consumption during 2015 for the time periods indicated by the
column titles. Specifically, Column (1) includes the full 2015 summer treatment period from late May through
October; Column (2) includes only late May through June, before the automated violation notices were sent;
and Columns (3) - (5) includes July through October, after the automated violation notices were sent. Column
(4) includes consumption only during hours of the week when irrigation was not legally allowed. Column (5)
includes consumption only during hours irrigation was legally allowed: Tuesdays and Saturdays before 9:00 a.m.
or after 6:00 p.m. Home Water Report treated households each had been sent one HWR as of late May 2015, and
monthly reports continued to be sent throughout (and following) October, the end of the legal and technical local
summer water season. The household control terms include residential lot size, irrigable area, and the home’s
square footage, year of construction, number of floors, number of bedrooms, and number of bathrooms. Standard
errors in parentheses are two-way clustered by household and week.
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Table 6: Estimated effects of HWR by time period for high-volume consumers

Weekly water consumption in 2015 (gallons)
Late May - Oct Late May - June July - October

(1) (2) (3) (4) (5)
All hours All hours All hours Non-irrig. Irrig.

I{HWR} −163.97∗∗∗ −162.45∗∗∗ −164.79∗∗∗ −79.68∗∗ −85.11∗∗∗
(48.93) (54.97) (49.93) (40.20) (32.15)

Household controls Yes Yes Yes Yes Yes
Control group mean 3572 3832 3483 2060 1423
Num. of households 5,536 5,536 5,536 5,536 5,536
Observations 130,414 33,122 97,292 97,292 97,292

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: This table replicates the specifications in Table 5 for the sub-sample of
households that had pre-treatment water consumption in the top tercile of weekly volume. Of these households,
70 percent were sent an automated violation notice in early July 2015. Specifically, Column (1) includes the
full 2015 summer treatment period from late May through October; Column (2) includes only late May through
June, before the automated violation notices were sent; and Columns (3) - (5) includes July through October,
after the automated violation notices were sent. Column (4) includes consumption only during hours of the week
when irrigation was not legally allowed. Column (5) includes consumption only during hours irrigation was legally
allowed: Tuesdays and Saturdays before 9:00 a.m. or after 6:00 p.m. The household control terms include residential
lot size, irrigable area, and the home’s square footage, year of construction, number of floors, number of bedrooms,
and number of bathrooms. Standard errors in parentheses are two-way clustered by household and week.
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Table 7: Estimated effects of randomized WaterSmart Home Water Reports by time block

Weekly water consumption in 2015 (gallons)
Non- Tuesday and Saturday Tuesday and Saturday
0-9:00/18-24:00 9-18:00 0-9:00/18-24:00 9-18:00

(1) (2) (3) (4)
Panel [A]: Late May - June

I{HWR} −33.97∗∗ −19.88∗∗ −17.33 −7.41∗
(15.43) (8.60) (12.30) (4.40)

Panel [B]: July - October

I{HWR} −19.06 −12.31∗∗ −36.74∗∗ −7.03∗
(11.76) (5.96) (15.10) (3.63)

Household controls Yes Yes Yes Yes
Panel [A] control mean 1001 499 699 245
Panel [B] control mean 744 425 855 218
Num. of households 16,623 16,623 16,623 16,623
Panel [A] observations 99,417 99,417 99,349 99,349
Panel [B] observations 291,855 291,855 291,496 291,496

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Table 7 presents estimates of the average intent-to-treat
effect of the randomized WaterSmart HWR for weekly water consumption during 2015 for the
time blocks within each week indicated by the column titles. Specifically, Column (1) includes the
hours from midnight to 9:00 and 18:00 to midnight on days other than Tuesday and Saturday.
Column (2) includes hours from 9:00-18:00 on days other than Tuesday and Saturday. Column (3)
includes the hours from midnight to 9:00 and 18:00 to midnight on Tuesday and Saturday. Column
(4) includes hours from 9:00-18:00 on Tuesday and Saturday. Panel [A] shows estimates for the
period that includes only late May through June, and Panel [B] shows estimates for the period that
includes only July through October, after the automated violation notices were sent. Throughout
the entire late May through October period, irrigation was allowed only on Tuesdays and Saturday
before 9:00 or after 18:00, i.e. in the hours for Column (3) only. Home Water Report treated
households each had been sent one HWR as of late May 2015, and monthly reports continued
to be sent throughout (and following) October, the end of the legal and technical local summer
water season. The household control terms include residential lot size, irrigable area, and the
home’s square footage, year of construction, number of floors, number of bedrooms, and number
of bathrooms. Standard errors in parentheses are two-way clustered by household and week.
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A Appendix figures and tables

Figure A1: Historical perspective on severity of drought in southern California
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Notes: Appendix Figure A1 plots historical monthly observed drought severity on the Palmer Drought
Severity Index for the hydrological region of Coastal Southern California. Our study period during 2015
lies within the most severe drought on record for the region, but lengthy periods of drought are common.
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Figure A2: Example of an automated irrigation violation notice



Figure A3: Example of a WaterSmart Home Water Report (HWR)



Figure A4: Balance test of pre-treatment water consumption by WaterSmart RCT arm
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Notes: Appendix Figure A4 plots the distributions of average weekly water consumption for in-sample
households during April 2014 through March 2015, prior to both the WaterSmart Home Water Reports
(HWR) and the automated enforcement interventions. The solid line shows the distribution only for
households assigned to the HWR treatment arm, and the dashed line shows only the control group.
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Figure A5: Distribution of households along the regression discontinuity running variable
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Notes: Appendix Figure A5 plots the distribution of households along the running variable used in
our regression discontinuity design, providing a graphical version of the McCrary (2008) bunching test
for manipulation with respect to treatment assignment. Due to heterogeneity in the granularity of
measurement for included water meters, there is significantly more mass at cubic foot (7.48 gallons) and
five cubic feet (37.4 gallons) increments. Importantly, there is no evidence of any excess distributional
mass in the region surrounding the cutoff used for determining automated irrigation violation notices.
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Figure A6: Identification check for pre-treatment consumption along the running variable
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Notes: Appendix Figure A6 plots local averages for weekly water consumption during April 2014 through
March 2015, prior to both the automated enforcement and social comparison interventions. For clarity,
the running variable uses 10 gallon bins. The size of the markers corresponds to the number of households
included in the local averages. The LOESS curves shown are fit to the underlying microdata separately
on each side of the threshold. This identification check shows that pre-treatment water consumption is
smooth across the cutoff used for determining automated irrigation violation notices.
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Table A1: RD estimates of effects of irrigation violation notice by month in 2016

Weekly water consumption in 2016 (gallons)

Reduced-form LATE
Time period coef. s.e. coef. s.e. obs. bw sample mean

July -78.7 (69.91) -311.0 (279.6) 24,017 80 2186

August -109.4 (77.47) -433.8 (310.9) 29,953 80 2189

September -93.8 (61.71) -372.5 (248.5) 23,923 80 1773

July-Sept. -96.0∗∗ (41.68) -380.4∗∗ (167.2) 77,893 80 2060

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Each row presents nonparametric regression discontinuity es-
timates at the cutoff for automated violation notices. The outcome variable is total weekly water
consumption. The month for each week is defined based on which month the first day of the week falls
within. All regressions use the “rdrobust” software package developed and provided by Calonico et al.
(2014). Heteroskedasticity-robust bias-corrected standard errors are estimated using the same package.
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Table A2: RD estimates of effects of irrigation violation notice for HWR-treated sample

Weekly water consumption: July-Oct 2015 (gallons)
(1) (2) (3) (4)

First-stage All hours Non-irrig. hours Irrig. hours.

Panel [A]: Reduced-form estimates

Discontinuity 0.2548∗∗∗ -102.6∗∗∗ -155.4∗∗∗ 52.82∗∗∗
(0.0074) (28.52) (23.48) (11.77)

Panel [B]: Local average treatment effects

Discontinuity -402.7∗∗∗ -610∗∗∗ 207.3∗∗∗
(115) (96.79) (45.49)

Sample mean 0.15 1829 1331 498
Bandwidth (gal) 80 80 80 80
Observations 91,717 91,717 91,717 91,717

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: Each cell presents a nonparametric regression discontinuity
estimate at the cutoff for automated violation notices. All regressions use the “rdrobust” software
package developed and provided by Calonico et al. (2014). Heteroskedasticity-robust bias-corrected
standard errors are estimated using the same package. Column (1) provides the estimated first-stage
for automated violation notices. These notices were sent to households during the first week of July
2015. Columns (2) - (4) present estimates for household weekly water consumption during July
through October 2015, the remainder of the legal and technical local summer water season following
the violation notices. Panel [A] shows the reduced-form estimates and Panel [B] shows the estimated
local average treatment effects. Column (2) includes water consumption pooled across all hours of
the week. Column (3) includes consumption only during hours of the week when irrigation was not
legally allowed. Column (4) includes consumption only during hours irrigation was legally allowed:
Tuesdays and Saturdays before 9:00 a.m. or after 6:00 p.m.
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Table A3: Robustness of estimated effects of randomized WaterSmart HWR by time period

Weekly water consumption in 2015 (gallons)
Late May - Oct Late May - June July - October

(1) (2) (3)
All hours All hours All hours

Panel [A]: Baseline reproducing Table 5

I{HWR} −77.67∗∗∗ −78.80∗∗∗ −77.51∗∗∗
(25.62) (28.96) (25.57)

Panel [B]: Adding weather controls

I{HWR} −77.76∗∗∗ −78.83∗∗∗ −77.72∗∗∗
(25.62) (28.97) (25.57)

Panel [C]: Adding week-of-sample fixed effects

I{HWR} −78.24∗∗∗ −78.85∗∗ −78.03∗∗∗
(25.64) (28.98) (25.59)

Household controls Yes Yes Yes
Control group mean 2323 2442 2283
Num. of households 16,623 16,623 16,623
Observations 391,552 99,477 292,075

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 Notes: see notes for Table 5. Panel [A] replicates
the first three columns of Table 5. Panel [B] adds controls for the weekly total
precipitation, maximum temperature, and minimum temperature. Panel [C] adds
week-of-sample fixed effects.
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Table A4: Estimated effects of Home Water Reports by weekday and time block in 2015

Weekday Time block Irrig. Weekly water consumption in 2015 (gallons)
Allowed Late May - June July - October Diff.

Sunday 00:00−09:00 No −1.74 0.07 1.81
Sunday 09:00−18:00 No −4.12 −2.74 1.38
Sunday 18:00−00:00 No −3.24 −1.51 1.73
Monday 00:00−09:00 No −2.53 −1.50 1.03
Monday 09:00−18:00 No −4.65 −2.00 2.66
Monday 18:00−00:00 No −4.49 −2.25 2.24
Tuesday 00:00−09:00 Yes −6.52 −8.54 −2.02
Tuesday 09:00−18:00 No −4.13 −3.24 0.89
Tuesday 18:00−00:00 Yes −6.92 −12.17 −5.25
Wednesday 00:00−09:00 No −1.97 −4.63 −2.66
Wednesday 09:00−18:00 No −4.09 −3.74 0.36
Wednesday 18:00−00:00 No −1.81 −3.59 −1.78
Thursday 00:00−09:00 No −5.09 −2.42 2.67
Thursday 09:00−18:00 No −2.00 −2.68 −0.68
Thursday 18:00−00:00 No −2.05 −1.38 0.67
Friday 00:00−09:00 No −7.42 −3.04 4.38
Friday 09:00−18:00 No −4.85 −1.38 3.47
Friday 18:00−00:00 No −3.91 0.50 4.41
Saturday 00:00−09:00 Yes −0.54 −4.50 −3.97
Saturday 09:00−18:00 No −3.22 −4.00 −0.78
Saturday 18:00−00:00 Yes −3.05 −12.25 −9.20

Total −78.60 −77.85 0.75

Notes: Table A4 shows the point estimates of the average intent-to-treat effect of the randomized Wa-
terSmart HWR for weekly water consumption during the indicated weekday and time block, separately
by policy regime calendar period during 2015.
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