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Evaluation of data analysis platforms and compatibility with 
MALDI-TOF imaging mass spectrometry data sets

Gordon T. Luu1,⌑, Alanna R. Condren1,⌑, Lisa Juliane Kahl2, Lars E.P. Dietrich2, Laura M. 
Sanchez1,*

1Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612

2Department of Biological Sciences, Columbia University, New York, NY 10027

Abstract

Imaging mass spectrometry (IMS) has proven to be a useful tool when investigating the spatial 

distributions of metabolites and proteins in a biological system. One of the biggest advantages of 

IMS is the ability to maintain the 3D chemical composition of a sample and analyze in a label free 

manner. However, acquiring the spatial information leads to an increase in data size. Due to the 

increased availability of commercial mass spectrometers capable of IMS, there has been an 

exciting development of different statistical tools that can help decipher the spatial relevance of an 

analyte in a biological sample. To address this need, software packages like SCiLS and the open 

source R package Cardinal have been designed to perform unbiased spectral grouping based on the 

similarity of spectra in an IMS data set. In this note we evaluate SCiLS and Cardinal compatibility 

with MALDI-TOF IMS data sets of the Gram-negative pathogen Pseudomonas aeruginosa PA14. 

Both software were able to perform unsupervised segmentation with similar performance. There 

were a few notable differences which are discussed related to the identification of statistically 

significant features which required optimization of preprocessing steps, region of interest, and 

manual analysis.

Graphical Abstract

SCiLS and Cardinal MSI workflow comparison for MALDI-TOF IMS data sets.
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Introduction

The increase of information gained via the ability to visualize the spatial distribution of 

metabolomic and proteomic systems using imaging mass spectrometry (IMS) has led to a 

surge of publications incorporating this valuable analytical tool in targeted and untargeted 

biological studies.[1] The field of natural products has eagerly incorporated IMS, however, 

these biologically active compounds can elude researchers since they are typically produced 

in low titers, thus requiring high sensitivity for detection. There are several forms of 

ionization techniques that support the acquisition of spatial information from a biological 

sample with one of the most widely utilized techniques being matrix assisted laser 

desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF-IMS).[2] 

Regardless of ionization method for IMS analysis, biological and technical replicates can 

experience experimental variation due to differences in co-crystallization with matrix and 

varying laboratory conditions such as humidity, temperature, and airflow during sample 

preparation and/or data acquisition.[3, 4] Therefore, there is a need for powerful, easy-to-use 

software that is able to analyze IMS data to (1) identify statistically significant low intensity 

features and (2) determine significant differences between treatments or conditions.

Currently, there are several commercial and open-source software packages available to 

analyze IMS data written in a variety of languages in online or offline formats, including but 

not limited to MSiReader, msIQuant, SpectralAnalysis, flexImaging, SCiLS, and Cardinal.

[2, 5–11] Additionally, there are many in-house algorithms used that have not been formally 

adapted into a program. For example, consensus spectra calculated using unbiased peak 

selection and QT clustering were used to identify several significant differentially expressed 

gangliosides (GM1, GM2, and GM3) in 7-week-old wild-type Npc1+/+ and mutant Npc−/− 

mice.[12]

Two programs in particular have been specifically designed to perform spatial segmentation 

on IMS data sets. The first is SCiLS, a commercial software available from Bruker Daltonics 

Inc. that supports vendor-neutral data analysis of IMS data sets. SCiLS is capable of 

multiple sample comparative analyses including designation of p-values to significant 
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features, generation of principal component analyses or box plots identifying variations in 

features from imaging datasets, and visualization of samples in 2D or 3D (supervised 

analysis). Focusing on the spatial component of IMS data sets, SCiLS can mine the data set 

via spatial segmentation (unsupervised analysis) which visually maps out the location of 

similar or different spectra across a biological specimen.[13, 14] SCiLS has proven to be a 

reliable resource to rapidly process and analyze IMS data sets, however, adoption of SCiLS 

into data analysis workflows can be a significant financial investment and the algorithms 

performed during data analysis can be opaque due to the proprietary nature of the software.

Cardinal is an open source R package that has been developed as a preprocessing and 

statistical analysis pipeline with a focus on image segmentation (unsupervised analysis) and 

image classification (supervised analysis).[5] Since its release, Cardinal has made substantial 

improvements, including the implementation of new segmentation algorithms, and has been 

increasingly incorporated into analysis of IMS data (Table S1). While users are expected to 

be able to code in the R programming language, access to documentation and support from 

the developer/community reduces the barrier to implementation compared to low-level 

programming languages such as C/C++.

Since both software packages have proven to successfully perform robust spatial 

segmentation on biologically diverse datasets, we were interested in comparing the two 

packages using the same IMS data sets. SCiLS was exclusively designed for TOF and FT-

ICR IMS data sets whereas Cardinal’s open format structure has allowed for it to be used to 

analyze IMS data sets from a variety of mass spectrometers. Table 1 contains a non-

exhaustive list of each program’s advantages. Here we investigate the similarities and 

differences of segmentation performed by SCiLS and Cardinal and their ability to identify 

statistically significant features in MALDI-TOF IMS data sets of the Gram-negative 

pathogen Pseudomonas aeruginosa PA14. We also evaluate the ability of these workflows to 

segment spectra within light or dark-grown PA14 biofilms due to variation in light exposure 

with the goal of visualizing changes in metabolite production between light and dark growth 

conditions.[15]

Experimental Section

PA14 imaging mass spectrometry experiments

Bacterial culture conditions, growth, and preparation for IMS experiments was performed as 

previously reported with the exception of one dataset that was run with a raster size of 200 

μm rather than 500 μm.[16]

Imaging mass spectrometry on PA14 Δphz colonies grown in the light or dark

PA14 Δphz was grown in LB media for 13 h at 37 °C, shaking at 250 rpm.[17] Cultures 

were then diluted into fresh Lysogeny broth (LB) medium (1:100) and subcultures were 

grown for 2.5 h at 37 °C until mid-exponential growth was reached (OD of ~0.4–0.6 at 500 

nm). Colony agar was composed of 1% tryptone, 1.25% agar mixture (Teknova) and 90 mL 

of autoclaved and cooled agar were poured per 120 mm×120 mm×17 mm plate (Greiner 

Bio-One). Two microliters of subculture were spotted. Plates were stored at 25 °C and at 
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high humidity (+90%) in a Percival CU-22LC9 incubation chamber with pre-installed 

lighting system for four days. Over the 4 d, the colonies were exposed to white light (light 

tubes: Philips F17T8/TL841/ALTO, calibrated to 95 μmol photons m−2 s−1) or kept in the 

same chamber in constant darkness. After 4 d, images of colony biofilms were taken using 

an iPod attached to the ocular of a Zeiss AxioZoom.V16 Fluorescence zoom 

Stereomicroscope. Colony biofilms were shipped overnight in constant darkness for IMS 

analysis and prepared for IMS analysis following the same procedure used for PA14 WT 

experiments described.[16] Data was collected on a MALDI-TOF mass spectrometer 

(Bruker Autoflex LRF Speed) in positive reflectron mode and the following settings were 

used for IMS data acquisition: detector gain: 15.4x; laser power: 73%; range of detection: 

100 Da to 3,500 Da; ion suppression: 50 Da; raster size: 300 μm; shots per raster: 200; laser 

size: large (4).

Data Processing and Unsupervised Segmentation in SciLS

To manually analyze imaging data sets, FlexImaging v.4.1 (Bruker) software was used with 

no post processing steps. Reduced spectra (.dat file) were imported into SCiLS software 

(Bruker, version 2015b) with no baseline removal for statistical analysis. Segmentation was 

performed using the following settings; normalization: RMS, Denoising: weak, and minimal 

interval width: ∓0.2 Da. SCiLS segmentation map was separated into seven groups of 

similar spectra as seen in Figure 1. The same settings were used for segmentation of the 

PA14 light vs dark colonies with the exception of using TIC for normalization.

Data Export to .imzML Format

All acquired IMS data was exported from FlexImaging v4.1 (Bruker) using its built in export 

function. No background subtraction, binning, or processing was performed before export 

(“Export spectra from disk”).

Data Preprocessing and Multivariate Unsupervised Segmentation in Cardinal

Each data set was imported into Cardinal 2.4.0.9000. Normalization, signal smoothing, and 

baseline correction were applied to the individual data sets followed by peak picking, 

alignment, and filtering. All import and processing settings can be found in Table S2. 

Multivariate unsupervised segmentation was performed using the spatial shrunken centroid 

(SSC) algorithm.[18] The spatial neighborhood radius (r) was set to 1, 2, or 3. The number 

starting of segments (k) was set between 2–20 in increments of 2. The shrinkage parameter 

(s) was set between 0–15 in increments of 3. SSC was run with every permutation of these 

three parameters. To find the optimal set of parameters for r, k, and s in each dataset (Table 

S3), a heuristic algorithm based on the criteria described by Bemis et al. was written 

(Supplemental Information).[18] All other spatialShrunkenCentroids parameters were left at 

their default values.

Identifying Statistically Significant Features in SciLS

To identify significant features in each of the three PA14 IMS datasets the “Find 

discriminative plots” feature was used in SCiLS as detailed in Condren et al.[16]
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Identifying Statistically Significant Features in Cardinal

All biological replicate data sets, excluding the partial sample replicate, were imported into 

Cardinal 2.4.0. The metadata in each data set was updated to include region of interest (ROI) 

labels and treatment condition information using an in-house R script utilizing a Spot List 

exported from FlexImaging v4.1 (Bruker). All four data sets were combined into a single 

large data set using Cardinal’s combine function. The combined data set was processed 

using the same workflow as described above with all settings found in Table S2. The 

meansTest function used means based testing to identify features that were differentially 

expressed between conditions by comparing regions of interest (ROIs) belonging to different 

treatment conditions to all other ROIs in the combined data set. The spatialDGMM function 

followed by the segmentationTest function were used to apply univariate unsupervised 

segmentation to each individual feature to determine whether they were differentially 

expressed between conditions by comparing ROIs belonging to different treatment 

conditions to all other ROIs in the combined data set. Ion images of select features were 

generated in Cardinal using a false color scheme with “linear” normalization, “Gaussian” 

image smoothing, and contrast enhancement using histograms applied.

Code Availability

All code for the analysis performed and figures generated using Cardinal as well as details 

of our branch of Cardinal can be found at https://github.com/gtluu/

ims_processing_evaluation. Several in-house functions used during data processing/analysis 

can be found and installed from https://github.com/gtluu/cardinalscripts. Cardinal 

2.4.0.9000, our branch of Cardinal based on Cardinal 2.4.0 containing minor changes, was 

only used for multivariate segmentation and can be found at https://github.com/gtluu/

Cardinal/tree/v2.4.0.9000.

Data Accessibility

Massive accession for raw MALDI-TOF MS data: MSV000084061

Results and Discussion

Spatial Segmentation of P. aeruginosa PA14 IMS Experiments

Determining where to begin when analyzing IMS data sets can be difficult due to their size 

and untargeted nature. Users can manually examine the computationally averaged spectrum 

but this takes a significant amount of time and the analysis is subjective. By utilizing 

software programs such as SCiLS and Cardinal, unsupervised spatial segmentation maps can 

be generated to separate the thousands of spectra composing an imaging data set into 

spectral groups based on feature similarity. This allows the user to rapidly visualize 

differences in their sample and determine if a group of spectra are localized in a biologically 

relevant location. To compare segmentation maps between the two software packages, we 

used the same IMS data sets of Pseudomonas aeruginosa PA14 treated with the biofilm 

inhibiting agent taurolithocholic acid (TLCA; Figure 1).[16] In SCiLS, each spectral group 

is assigned a false color and the user is able to further divide spectral groups to distinguish 

distinct features (Figure 1B). While maintaining the spatial integrity of the IMS data set, 
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SCiLS was able to separate spectra into seven spectral groups: six bacterial associated 

groups (3,693 spectra) and one agar control associated group (1,121 spectra). The 

segmentation also showed distinct localization of spectra correlated to biologically relevant 

spaces such as the interior of the bacterial colony (yellow), the proliferating outer edge 

(teal), and features secreted into the agar (dark blue).

While SCiLS performs a single segmentation and allows the user to interactively determine 

how many segments are present in each data set via a “segmentation tree”, Cardinal’s 

implementation of the SSC algorithm takes an alternative approach. The user initially 

specifies one or multiple sets of parameters and segmentation models for each set of user-

defined parameters are generated. Since a range of parameters must be chosen beforehand, it 

is necessary to be able to determine the optimal set of parameters for generating a 

segmentation model. Thus, a new algorithm was written to determine the optimal values for 

r, k, and s in each data set from a given set of parameters (Supplemental Information). 

Figure 1C shows segmentation performed on the same data set as Figure 1B using the 

optimal parameters identified by this algorithm. SSC was able to segment spectra into ten 

spectral groups: eight bacteria associated groups (3,510 spectra) and two agar control 

associated groups (1,304 spectra). Similarly to SCiLS, the interior of the bacterial colony 

(yellow), proliferating outer edge (yellow-green/green), and features secreted into the agar 

(teal/blue/dark blue) can be distinguished.

The same workflow in SCiLS and Cardinal was applied to four other biological replicates. 

Figure S1 & Figure S2 show two more replicates were imaged using the same raster size of 

500 μm across a full sample. Interestingly, the replicate in Figure S1C had many more 

segments using SSC than our first replicate (Figure 1C). The agar segments in our third 

replicate appeared to be compromised and resulted in less informative segmentation, most 

likely due to the inclusion of a fifth matrix ROI and/or possible artifacts as a result of sample 

preparation that confounded the segmentation algorithms in SCiLS and Cardinal (Figure 

S2B & S2C). Figure S3 shows a fourth replicate imaged at a higher spatial resolution (raster 

size: 200 μm) that showed a similar segmentation pattern to our first replicate, though with a 

higher number of spectral groups in both programs. Figure S4 shows the last replicate in 

which only half of the PA14 control colony was imaged. Again, a similar segmentation 

pattern was seen from this dataset.

Our analyses show that both SCiLS and Cardinal’s SSC algorithms are able to segment 

different data sets with varying spatial resolutions and experimental design in a similar 

capacity. Sample preparation, and to a lesser degree experimental design, are the most 

crucial factors affecting downstream analysis. It should be noted that while a higher spatial 

resolution did not make any major differences in segmentation using this data set, it is more 

computationally expensive to analyze. Therefore, available computational resources should 

also be taken into consideration when designing an IMS experiment.

Identification of Significant Features due to TLCA treatment of P. aeruginosa PA14

Unsupervised segmentation of spectra in an IMS data set is valuable when a researcher is 

interested in the spatial component of particular features, however, segmentation cannot 

differentiate changes in intensity of a specific feature between two conditions. For example, 
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identifying significant differences in metabolite production when P. aeruginosa was treated 

with biofilm inhibitor TLCA could provide insight into how the pathogen responds to 

exogenous stimuli. Thus, we sought to examine the ability of SCiLS and Cardinal to identify 

significant features that were either up- or down-regulated from TLCA treatment. A more 

in-depth description of algorithms used in both programs can be found in the Supplemental 

Information.

In our PA14 IMS experiments, when SCiLS or Cardinal identified a feature that had a higher 

intensity in the PA14 TLCA treated colony, we refer to that feature as up-regulated. When a 

feature was determined to have a higher intensity in the vehicle-treated PA14 control, we 

refer to that feature as down-regulated since the TLCA treated colony had a lower intensity 

of the feature than the PA14 control (Supplemental File 1). To directly compare the two 

software packages, in Figure 2 we highlighted three features which correspond to 

specialized metabolites produced by P. aeruginosa: the phenazines pyocyanin (m/z 211) and 

phenazine-1,6-dicarboxylic acid (m/z 269), and an uncharacterized metabolite (m/z 609). 

These metabolites represent examples of up or down-regulated features and displayed 

various spatial distributions in the bacterial colonies.

SCiLS identified m/z 211 as down-regulated from TLCA treatment whereas m/z 269 and 

m/z 609 were up-regulated (Figure 2B; p<0.05). Thus, SCiLS provides statistical support to 

the argument that TLCA treatment is leading to a downregulation of the P. aeruginosa toxin, 

pyocyanin, which is produced during biofilm formation, colonization, and infection.[19–21] 

It is important to note that among the list of significantly altered features found between the 

ROIs, SCiLS determined m/z 211 and m/z 609 to be significantly altered features, but not 

m/z 269. When re-running the analysis and instructing SCiLS to only compare the pixels 

specific to the bacterial colonies, SCiLS identified m/z 269 as one of several significantly 

altered features (Supplemental File 1). The m/z 269 feature was concentrated within the 

bacterial colony so by analyzing the entire ROI, the overall intensity of the feature was not 

accurate, leading to features such as m/z 269 not being identified as significant. Therefore, 

when mining ROIs for discriminate m/z values, it is important to take into consideration the 

spatial distribution of the analyte of interest. SCiLS offers users the ability to define an 

unlimited number of ROIs post acquisition, allowing for the direct comparison of regions 

within the imaging data set.

Using Cardinal’s meansTest function to compare the entire ROIs between conditions, only 

m/z 609 was identified as up-regulated in PA14 treated with TLCA (Supplemental File 1; p 

< 0.05). Interestingly, while SCiLS only identified m/z 269 when comparing colonies, when 

re-analyzing the data using spatialDGMM followed by segmentationTest, m/z 269 was 

identified by Cardinal as being upregulated in PA14 treated with TLCA even when 

analyzing an entire ROI. Additionally, segmentationTest was able to identify many more 

statistically significant features than meansTest in our combined data set (Supplemental File 

1). Univariate segmentation seemed to be a much more sensitive method for identifying 

significant features, though unique features could be found in analyses from either 

algorithm. Therefore, we recommend users run both algorithms to obtain a more 

comprehensive list of features. Both algorithms in Cardinal were unable to detect m/z 211. 

Since meansTest and segmentationTest usage requires merging multiple replicate data sets, 
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the tolerance parameter in the peakAlignment function must be optimized so that variation/

drift between runs and sample preparation can be properly accounted for. If the tolerance is 

too low, peaks corresponding to the same feature will not be grouped, and if the tolerance is 

too high, peaks corresponding to different features will be grouped together. Users should 

optimize this parameter to the best of their ability. By default, peakAlignment attempts to 

estimate the tolerance, and in this case, its tolerance estimation (4 Da) was too large, 

resulting in a noisy ion image at m/z 211 (Figure 2C). Cardinal is also capable of analyzing 

user defined ROIs post acquisition to compare specific sections of the data set, but users 

must estimate the coordinates of the desired new ROI or define the ROI interactively in 

FlexImaging, export an updated Spot List, and update the metadata using an R script. 

Therefore, a certain level of coding knowledge is required to perform more in-depth 

analyses. The updateMetadata function in our in-house R package cardinalscripts attempts to 

help with defining ROIs and assigning conditions to data sets.

These three features highlight the capabilities and limitations of these two programs to 

identify differences in regulation of specific m/z’s from TLCA treatment and the importance 

of ROI selection when analyzing IMS data sets. This highlights that some manual analysis is 

often inevitable and necessary when analyzing IMS data sets even with these software 

packages.

Spatial Segmentation of Expanding P. aeruginosa PA14 Colonies

P. aeruginosa PA14 alters its biofilm morphology when grown in the dark or light.[15] We 

hypothesized that light exposure may induce changes in specialized metabolism. We 

performed IMS experiments to visualize potential differences in expanding colonies grown 

in the light or dark (Figure S5). To test the spatial segmentation limits of these software 

packages, we used an IMS data set of light- or dark-grown P. aeruginosa colonies to 

determine if SCiLS and Cardinal could segment features within the expanding colonies 

when only a section of the sample was imaged at a higher spatial resolution unlike our other 

WT PA14 data sets.

As observed in our previous experiments, SCiLS was able to differentiate spectra that were 

specific to bacterial metabolites (five groups; 760 spectra) from agar controls (one group; 

415 spectra). Interestingly, within the six groups representing spectra correlated to bacterial 

metabolites, SCiLS successfully grouped spectra that formed patterns along the expanding 

colony that was exposed to light, but less so in a colony that was grown in the dark (Figure 

3B). Through spatial segmentation, SCiLS was capable of visualizing differences in spectral 

groups between the two conditions and promotes that light exposure may alter specialized 

metabolite production within PA14 biofilms.

Segmentation in Cardinal was able to detect the colony and secreted metabolites in both 

colonies, with four groups corresponding to the bacterial colony and secreted metabolites 

(1,084 spectra) and one group corresponding to the agar (384 spectra; Figure 3C). Here we 

can see that secreted metabolites comprising the light blue segment seem to be slightly up-

regulated when PA14 was grown in the dark, which again indicates a change in specialized 

metabolite production. Unlike in SCiLS, there appeared to be no significant difference 

between both conditions. Overall, we found that SCiLS and Cardinal were both able to 
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segment this data set and identify spatial differences of spectra in each region despite the 

relatively small size of the region that was imaged. In the end, the most optimal 

segmentation will depend on the biological question being posed.

Performance of SCiLS and Cardinal

In addition to instrumentation and experimental setup, available computational hardware, 

cost of said hardware, and cost of software are also important considerations in IMS 

experiments due to the multi-dimensional nature of the data acquired. We benchmarked how 

time and resource intensive both programs were during our analyses. All computation was 

done on a desktop with an AMD Ryzen 1600 3.2GHz processor, 32 GB 3000MHz memory, 

and an Inland Professional solid-state drive.

In SCiLS, each task took no longer than several minutes to run, with larger data sets such as 

our 200 μm raster size data set taking longer. We found that the processor and hard drive 

speeds mainly affected computation time. Our workflow in Cardinal took much longer than 

SCiLS (several hours to several days) and showed that having an adequate amount of 

memory was crucial. Most analyses were performed without parallelization due to lack of 

available memory. Since Cardinal is compatible with Unix systems, users can take advantage 

of available in-house, institutional, or commercial servers (i.e. Amazon Web Services) to 

allow for faster data processing/analysis, as servers often provide faster processors and more 

available memory. In both programs, hard drive speed was also a major factor in analysis 

time. While traditional mechanical hard drives are better for data storage due to more 

efficient $/GB, use of solid-state drives was preferred when processing and analyzing data 

due to its ability to read and write data more quickly. Cardinal uses the matter R package 

which allows data to be read from the hard drive as needed to reduce the amount of memory 

used, but consequently, hard drive speed plays a larger role in computational time.[22]

Conclusion

With the steadily growing incorporation of IMS experiments into scientific exploration, 

comes the need to develop new techniques for manual and statistical analysis of big data. 

Thus, software like Bruker’s SCiLS and the R package Cardinal have been designed to 

perform spatial segmentation and statistical analysis on IMS datasets. To evaluate the 

advantages of these two software packages, we tested the segmentation capabilities of 

SCiLS and Cardinal using IMS data sets with varying spatial resolutions from P. aeruginosa 
PA14 and found that both can successfully segment spectra that correspond to distinct zones 

within the bacterial colony and surrounding agar, even when only a partial sample was 

present. Comparing feature intensities between two conditions (no treatment vs TLCA 

treatment of PA14), SCiLS and Cardinal were both able to identify a list of statistically 

significant up- or down-regulated features. Some features were complementary as 

highlighted in Figure 2 and Supplemental File 1. Lastly, we tested the spatial segmentation 

limits of SCiLS and Cardinal to determine if these programs could spatially differentiate 

between metabolite distributions within PA14 colony biofilms grown in the light or dark and 

found that both programs spatially segment differences in specialized metabolite production 

within a PA14 biofilms even when only analyzing a small portion of the sample. It is 
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important that normalization plays a large role in the output of these analyses and we found 

that root mean squared (RMS) works best for large ROI’s (Figure 1 & 2) and total ion count 

(TIC) is best for smaller ROI’s (Figure 3). As summarized in Table 1, we observed several 

advantages to both programs and would consider a listed advantage for one program to be a 

current limitation to the other.

We also presented a novel algorithm implemented through an in-house R function to help 

guide Cardinal users in selecting “optimal” parameters for segmentation maps and 

demonstrated its utility (Figure 1C, 3C, S1C, S2C, S3C, S4C). While our algorithm was able 

to assist in the selection of parameters in our data sets, because our parameter optimization 

algorithm relies on the nature of the “lines” derived from plotting a predicted number of 

segments for a pair of r and k versus s (Figure S6), it is important to pick appropriate ranges 

of parameters when initializing r, k, and s for SSC. During analysis using SSC, it is possible 

that the most optimal parameters for r, k, and s could be absent in the initial vectors, 

preventing their selection. Even when they are present, the parameters selected may be 

mathematically optimal but uninformative depending on the question being posed. For 

example, in our second PA14 replicate, the optimal SSC parameters were even able to show 

a difference between the agar (negative control) and TLCA treated agar (positive control) 

(Figure S1C). Detailed segmentation may be useful to identify minute differences between 

conditions, but it is unnecessary if one is only looking for a general difference between 

regions of interest. Therefore, manual verification of segmentation maps generated from 

each set of parameters should still be performed since our algorithm only seeks to provide a 

recommended set of parameters and not an absolute ‘best’ set. While Cardinal is unable to 

interactively change the number of segments in a segmentation image, in-house R scripts 

can be used to generate a report with images for each segmentation model from SSC.

Overall, we found both software packages to be extremely thorough and efficient in their 

analyses. SCiLS predates Cardinal, having been available since 2014, and has had continual 

commercially available updates every six months to incorporate more features and thereby 

improving analysis and user experience. Meanwhile, Cardinal was released in 2015, and had 

a major update in 2019, and has even been partially adapted into a Galaxy workflow.[23] To 

utilize Cardinal, a certain level of coding knowledge in the R language as well as familiarity 

of open source mass spectrometry data formats is necessary as users may encounter 

situations that require troubleshooting. Although it may have a steep learning curve, 

Cardinal has the advantage of being a cost friendly solution for data structures and 

workflows that can be used to incorporate new algorithms. Cardinal shows much promise in 

its ability to compete with other IMS packages, both current and future.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
SCiLS vs Cardinal SpatialShrunkenCentroids Segmentation of WT PA14 Colonies

(A) Optical image of WT PA14 IMS plate. (B) Segmentation in SCiLS. (C) Segmentation in 

Cardinal using SSC with optimal parameters. Similar segmentation patterns can be seen in 

the bacterial colonies when using SCiLS and Cardinal. However, features secreted into the 

agar further away from the colonies are segmented into more circular segments as opposed 

to the “patchy” segments seen in SCiLS.
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Figure 2: 
Significant features identified through SCiLS and Cardinal SpatialShrunkenCentroids

(A) Optical images of statically significant features (p<0.05). Ion images generated (B) in 

SCiLS and (C) in Cardinal. Both programs identified pyocyanin and the unknown 

metabolites as statistically significant between the two growth conditions (untreated vs 

TLCA-treated), while phenazine-1,6-dicarboxylic acid was only identified as statistically 

significant when analyzing the colony pixels. It should be noted that in Cardinal, pyocyanin 

was identified as m/z 210.9 and phenazine-1,6-dicarboxylic acid was identified as m/z 
270.1, with both values being within a ∓0.2 and ∓0.4 Da tolerance, respectively.
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Figure 3: 
SCiLS vs Cardinal SpatialShrunkenCentroids Segmentation of PA14 Colonies grown in the 

light and dark.

(A) Optical image of IMS plate with PA14 colonies that were exposed to light or grown in 

the dark. Spatial segmentation maps of the PA14 colonies generated in (B) SCiLS and (C) 

Cardinal using SSC with optimized parameters.
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Table 1:

Advantages of SCiLS and Cardinal. The advantage listed by one program should be read as a current 

limitation of the other program.

SCiLS Advantages Cardinal Advantages

No coding experience needed Free and open-source software (FOSS) analysis package

Commercial customer support In-house functions/scripts can be integrated into Cardinal workflows

Analysis can be done on a single biological replicate Source code can be modified for bug fixes or added functionality

Analysis performed on compressed binary data resulting 
in reduced file sizes

Well documented functions and workflows

Easily define custom regions of interest without use of 
other software

Ability to automate analysis queue and generate reports using user written R 
scripts

Much faster processing time Data structures using matter allow for analysis on lower power hardware

Compatible with Windows, Mac OS, and Linux
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