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Complete characterizations of hyperbolic Coxeter groups
with Sierpiński curve boundary

and with Menger curve boundary

by

Daniel Danielski (Wrocław), Michael Kapovich (Davis, CA) and
Jacek Świątkowski (Wrocław)

Abstract. We give complete characterizations (in terms of nerves) of those word
hyperbolic Coxeter groups whose Gromov boundary is homeomorphic to the Sierpiński
curve and to the Menger curve, respectively. The justification is mostly an appropriate
combination of various results from the literature.

0. Introduction

0.1. Overview and context. It is a classical and widely open problem
to characterize those word hyperbolic groups whose Gromov boundary is
homeomorphic to a given topological space. The complete answers (for non-
elementary hyperbolic groups) are known only for the Cantor set (virtually
free groups) and for the circle S1 (cocompact Fuchsian groups). For the
sphere S2 the expected answer is known as Cannon’s conjecture, and it
remains open. Some partial answers are known in restricted frameworks. For
example, Cannon’s conjecture is known to be true for Coxeter groups (we
discuss this issue in more detail in Subsection 1.4). In this paper we deal
with spaces known as the Sierpiński curve and the Menger curve, providing
complete characterizations of word hyperbolic Coxeter groups for which these
spaces appear as Gromov boundaries.

Some partial results in this direction have been presented quite recently
by several authors. For example, P. Dani, M. Haulmark and G. Walsh [6]
have shown that for a word hyperbolic right-angled Coxeter group W whose
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nerve L is 1-dimensional, ∂W is homeomorphic to the Menger curve iff L
is unseparable (i.e. connected, with no separating vertex and no separat-
ing pair of non-adjacent vertices) and non-planar. The third author of the
present paper, in [15], characterized those word hyperbolic Coxeter groups
with Sierpiński curve boundary whose nerves are planar complexes. The first
author [7] provided a sufficient condition for the nerve of a word hyperbolic
right-angled Coxeter group W , which can be applied to nerves of arbitrary
dimension, under which the Gromov boundary ∂W is the Menger curve.

The current paper resulted from an observation (by the second author)
that some results of M. Bourdon and B. Kleiner [4] can be applied to obtain
complete characterizations, as presented below.

0.2. Results. Before presenting our main result we need to recall some
terminology and notation appearing in its statement. The nerve of a Coxeter
system (W,S) is the simplicial complex L = L(W,S) whose vertex set is
identified with S and whose simplices correspond to those subsets T ⊂ S
for which the special subgroup WT is finite. The labelled nerve L• of (W,S)
is the nerve L in which the edges are equipped with labels in such a way
that any edge [s, t] has label equal to the exponent mst from the standard
presentation associated to (W,S) (equivalently, mst is the appropriate entry
of the Coxeter matrix of the system (W,S)). Obviously, the labelled nerve of
a Coxeter system carries the same information as its Coxeter matrix. Note
that the labelled nerve of the direct product of two Coxeter systems is the
simplicial join of the nerves of the two factors, where the labels at the edges
of the joined complexes are preserved, and the labels at all “connecting” edges
(i.e. edges having endpoints in both joined complexes) are equal to 2. We
call such a labelled nerve the labelled join of the labelled nerves of the two
factors. A Coxeter system is called indecomposable if it cannot be expressed
as a direct product of non-trivial Coxeter systems. Observe that a Coxeter
system is indecomposable iff its labelled nerve cannot be expressed as a
labelled join of two non-trivial labelled complexes.

We use the convention of speaking of topological or simplicial properties
of labelled nerves as of the properties of the corresponding underlying un-
labelled nerves. The labelled nerve of a Coxeter system is unseparable if it
is connected, has no separating simplex, no separating pair of non-adjacent
vertices, and no separating labelled suspension (i.e. a full subcomplex which
is the labelled join of a simplex and a doubleton). The concept of unsepara-
bility is useful because of the following characterization of non-existence of
a splitting along a finite or a 2-ended subgroup in a Coxeter group, due to
Mihalik and Tschantz [13]: the group W in a Coxeter system (W,S) has no
non-trivial splitting along a finite or a 2-ended subgroup iff its labelled nerve
is unseparable (see Subsection 1.2 for more details).
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Given a finite simplicial complex K we define its puncture-respecting
cohomological dimension by the formula

pcd(K) := max {n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices of K. This concept is useful
for us due to its role in a formula (by M. Davis) for the virtual cohomological
dimension of a Coxeter group; see Proposition 1.3 below and its proof.

A 3-cycle is a triangulation of the circle S1 consisting of precisely 3 edges.
Our main result is the following.
Theorem 0.1. Let (W,S) be an indecomposable Coxeter system such

that W is infinite word hyperbolic, and let L• be its labelled nerve.

(1) The Gromov boundary ∂W is homeomorphic to the Sierpiński curve iff
L• is unseparable, planar (in particular, not a triangulation of S2), and
not a 3-cycle.

(2) The Gromov boundary ∂W is homeomorphic to the Menger curve iff L•

is unseparable, pcd(L•) = 1, and L• is not planar.

Remarks 0.2. (1) Recall that W is infinite iff its nerve is not a simplex.
Recall also that word hyperbolicity of W has been characterized by G. Mous-
song (see [14], or [9, Theorem 12.6.1]) as follows: W is word hyperbolic iff it
has no affine special subgroup of rank ≥ 3, and no special subgroup which
decomposes as the direct product of two infinite special subgroups.

(2) One of the consequences of the above Moussong’s characterization of
word hyperbolicity is as follows: A word hyperbolic infinite Coxeter group
decomposes (uniquely) into the direct product of an infinite indecomposable
special subgroup (which is also word hyperbolic) and a finite special subgroup
(possibly trivial). This allows one to extend Theorem 0.1 in the obvious
way to Coxeter systems (W,S) which are not necessarily indecomposable.
Namely, the conditions for the nerve L• have to be satisfied up to the labelled
join with a simplex.

(3) The above two remarks show that Theorem 0.1 actually yields a
complete characterization (in terms of Coxeter matrices or labelled nerves)
of those Coxeter systems (W,S) for which W is word hyperbolic and its
Gromov boundary ∂W is homeomorphic to the Sierpiński curve or to the
Menger curve. We skip the straightforward details of such characterizations.

0.3. Plan of the paper. In Section 1 we collect various (rather numer-
ous) preparatory results, and in Section 2 we provide the main line of the
proof of Theorem 0.1 (which is relatively short).

More precisely, here is the structure of Section 1. In Subsection 1.1 we
recall the famous topological characterizations of the Sierpiński curve and of
the Menger curve, due to Whyburn [16] and to Anderson [1], respectively. In
Subsection 1.2 we present a complete characterization (in terms of labelled
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nerves) of those word hyperbolic Coxeter groups whose Gromov boundary is
connected and has no local cut points. As we explain, this characterization is
a more or less direct consequence of the results of Bowditch [5], Davis [8, 9],
and Mihalik and Tschantz [13]. In Subsection 1.3 we present a useful formula
for the topological dimension of the Gromov boundary of a word hyperbolic
Coxeter group, which is due to Davis [8] and Bestvina and Mess [3]. In
Subsection 1.4 we recall a result of Bourdon and Kleiner [4] which confirms
Cannon’s conjecture in the framework of word hyperbolic Coxeter groups.
In Subsection 1.6 we discuss another result which is implicit in [4], namely
that if the Gromov boundary of an indecomposable word hyperbolic Coxeter
group is the Sierpiński curve then the nerve of the corresponding Coxeter
system is a planar simplicial complex. Since the arguments for this fact
provided in [4] are extremely sketchy, we include an extended exposition of
its proof. In particular, in this exposition we refer to some auxiliary result
from combinatorial group theory, which we state and prove in Subsection 1.5,
and for which we could not find an appropriate reference in the literature.

The proof of Theorem 0.1 provided in Section 2 is split into separate
parts concerning the Sierpiński curve and the Menger curve. It uses all the
preparatory results from Section 1.

1. Preliminaries and preparations. In this section we collect various
useful results from the literature (or some more or less direct consequences
of such results), and a few other preparatory observations. We will refer to
all these in our main arguments in Section 2.

1.1. Characterizations of the Sierpiński curve and of the Menger
curve. By a result of Whyburn [16], the Sierpiński curve is the unique
metrizable topological space which is compact, connected, locally connected,
1-dimensional, without local cut points and planar. A somewhat similar re-
sult of Anderson [1] characterizes the Menger curve as the unique compact
metrizable space which is connected, locally connected, 1-dimensional, has
no local cut points, and is nowhere planar (nowhere planarity means that no
open subset of the space is planar).

By referring to the above characterizations, the second author and
B. Kleiner [12] made the following observation.

Proposition 1.1 (M. Kapovich and B. Kleiner [12]). Let G be a word
hyperbolic group, and suppose that its Gromov boundary ∂G is connected,
1-dimensional, and has no local cut points. Then ∂G is homeomorphic either
to the Sierpiński curve or to the Menger curve.

1.2. Connectedness and non-existence of local cut points in the
Gromov boundary ∂W . It is a well known fact that if a hyperbolic group
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is 1-ended then its Gromov boundary is not only connected, but also locally
connected (see e.g. [11, Theorem 7.2]). This allows us to discuss existence of
local cut points in the boundary. As far as this issue is concerned, we have
the following observation, which probably belongs to folklore.

Proposition 1.2. Let (W,S) be a Coxeter system, and let L• be its
labelled nerve. Suppose also that the group W is infinite and word hyperbolic.
Then the Gromov boundary ∂W is connected and has no local cut points iff
L• is unseparable and not a 3-cycle.

Proof. Step 1. Since connectedness of the boundary ∂W is equivalent
to 1-endedness of W , by [9, Theorem 8.7.2] we find that ∂W is connected iff
the nerve L is connected and has no separating simplex.

Step 2. By [9, Theorem 8.7.3], a Coxeter group is 2-ended iff it decom-
poses as the direct product of its infinite dihedral special subgroup and its
finite (possibly trivial) special subgroup. Equivalently, a Coxeter group is
2-ended iff its labelled nerve is either a doubleton or a labelled suspension
(as defined in the introduction).

As a consequence of the above, if the group W is 1-ended, non-existence
of a separating pair of non-adjacent vertices and of a separating labelled
suspension (in L•) means exactly that W does not visually split (in the
sense of Mihalik and Tschantz [13]) over a 2-ended subgroup. More precisely,
this means that W cannot be expressed as an essential free product of its
two special subgroups, amalgamated along a 2-ended special subgroup. It
follows from the main result of [13] that non-existence of a separating pair
of non-adjacent vertices and of a separating labelled suspension in L• is
equivalent to the fact that W does not split along any 2-ended subgroup.

Step 3. By a result of Bowditch [5], the Gromov boundary ∂G of a
1-ended hyperbolic group G has no local cut point iff G has no splitting
along a 2-ended subgroup and is not a cocompact Fuchsian group. By a
result of Davis (see [8, Theorem B] or [9, Theorem 10.9.2]), a Coxeter group
is a cocompact Fuchsian group iff either its nerve is a triangulation of S1

or the group splits as the direct product of a special subgroup with the
nerve S1 and another special subgroup which is finite. It follows from these
two results, and from the conclusion of Step 2, that the Gromov boundary
∂W of a 1-ended word hyperbolic Coxeter group W has no local cut point
iff its labelled nerve L• has no separating pair of non-adjacent vertices, no
separating labelled suspension, and is not a 3-cycle.

Step 4. Proposition 1.2 follows by combining the observations of Steps
1 and 3.

1.3. Topological dimension of the Gromov boundary ∂W . Recall
that given a finite simplicial complex K we have defined (in the introduction)
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its puncture-respecting cohomological dimension by the formula

pcd(K) := max {n : H
n
(K) ̸= 0 or H

n
(K \ σ) ̸= 0 for some σ ∈ S(K)},

where S(K) is the family of all closed simplices of K. The role of this concept
for our considerations is explained by the following observation.

Proposition 1.3. Let (W,S) be a Coxeter system, and let L be its nerve.
Suppose also that the group W is word hyperbolic. Then

dim ∂W = pcd(L).

Proof. Denote by vcd(W ) the virtual cohomological dimension of W . It
follows from results of Mike Davis that vcd(W ) = pcd(L) + 1 (see [9, Corol-
lary 8.5.5]). On the other hand, by a result of M. Bestvina and G. Mess [3],
we have vcd(W ) = dim ∂W + 1, hence the proposition.

1.4. Cannon’s conjecture for Coxeter groups. The following re-
sult has been proved using quite advanced methods by M. Bourdon and
B. Kleiner [4], and its short proof as presented below (indicated by M. Davis)
has also been outlined in the same paper. We include this short proof for
completeness (since our statement, being convenient for our applications, is
not identical to that in [4]), and for the reader’s convenience.

Proposition 1.4. Let (W,S) be an indecomposable Coxeter system, and
let L be its nerve. Suppose also that the group W is word hyperbolic. Then
the following conditions are equivalent:

(1) ∂W ∼= S2,
(2) L is a triangulation of S2,
(3) W acts properly discontinuously and cocompactly, by isometries, as a

reflection group, on the hyperbolic space H3.

Proof. We justify the implications (1)⇒(2)⇒(3)⇒(1).
(1)⇒(2) By the result of M. Bestvina and G. Mess [3, Corollary 1.3(c)], if

∂W ∼= S2 then W is a virtual Poincaré duality group of dimension 3. By the
result of M. Davis [9, Theorem 10.9.2], the nerve L is then a triangulation
of S2 (here we use the assumption of indecomposability).

(2)⇒(3) This implication follows by applying Andreev’s theorem (see [2],
or [9, Theorem 6.10.2]) to the dual polyhedron of the triangulation.

(3)⇒(1) By the assumptions on W in condition (3), we obviously have
∂W = ∂H3, and the implication follows from the fact that ∂H3 ∼= S2.

For the later arguments we only need the implication (1)⇒(2).

1.5. An observation from combinatorial group theory. Let Γ be
an arbitrary group and Hi for 1 ≤ i ≤ n be a collection of (not necessarily
pairwise distinct) subgroups of Γ . In this subsection we describe two group
operations associated to this data, and discuss the relationship between the
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groups obtained by these operations. This observation (Lemma 1.7 below)
will be useful in the argument in Subsection 1.6.

In the next definition we describe the first of the two operations, which
the second author and B. Kleiner call the double of Γ with respect to the
tuple (Hi) (see [12]).

Definition 1.5. Given a group Γ and a finite tuple (Hi) of its subgroups,
the double Γ ⃝⋆ Γ is the fundamental group π1G of the graph of groups G de-
scribed as follows. The underlying graph of G consists of two vertices v and v′

and n edges e1, . . . , en each of which has both v and v′ as its endpoints. The
vertex groups at v and v′ are both identified with Γ while the edge group
at any edge ei is identified with Hi. The structure homomorphisms are all
taken to be the inclusions.

Let Γ = ⟨S | R⟩, and let Γ ′ = ⟨S′ | R′⟩ be a second copy of Γ (given by
the same presentation). Denote by WHi the set of words over S ∪ S−1 that
represent elements of the subgroup Hi, and for a word w over S ∪ S−1 let
w′ be the word over S′ ∪S′−1 obtained from w by replacing each letter with
its counterpart from S′ ∪ S′−1. Note that (e.g. by [10, Definition 7.3]), the
double Γ ⃝⋆ Γ can also be described as follows. Consider an auxilliary group
P = P (Γ, (Hi)) given by the presentation
⟨S ⊔ S′ ⊔ {ui : 1 ≤ i ≤ n} | R ∪R′ ∪ {hiui = uih

′
i : 1 ≤ i ≤ n, hi ∈ WHi}⟩.

Then Γ ⃝⋆ Γ is the subgroup of P consisting of all elements p such that there
exists an expression p = w0ui1w1u

−1
i2

w2 · . . . ·w2m−1u
−1
i2m

w2m for some m ≥ 0

and 1 ≤ ik ≤ n and words wk over S ∪ S−1 and S′ ∪ S′−1 for even and odd
k respectively.

The second of the group operations is given in the following.
Definition 1.6. Given a group Γ = ⟨S | R⟩ and a finite tuple (Hi) of

its subgroups, the mirror double Γ̃ of the group Γ with respect to (Hi) is
the group given by the presentation
Γ̃ := ⟨S ⊔ {si : 1 ≤ i ≤ n} |

R ∪ {s2i = 1 : 1 ≤ i ≤ n} ∪ {hisi = sihi : 1 ≤ i ≤ n, hi ∈ WHi}⟩.
Observe that the mirror double is (up to isomorphism) independent of

the presentation of Γ used in the definition above.
Lemma 1.7. For each group Γ and any finite tuple (Hi) of its subgroups

the double Γ⃝⋆ Γ is isomorphic to an index 2 subgroup of the mirror double Γ̃ .

Remark. The concepts of a double Γ⃝⋆ Γ and a mirror double Γ̃ are well
known e.g. in the context of compact hyperbolic manifolds, M , with non-
empty totally geodesic boundary ∂M . If we take Γ = π1M , and if subgroups
Hi < Γ correspond to the fundamental groups of boundary components, the
double Γ ⃝⋆ Γ is the fundamental group of the double DM of the manifold
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M along ∂M . In the same situation, the mirror double Γ̃ corresponds to
the fundamental group of the orbifold OM with the underlying space M , in
which the local groups at the boundary are the groups of order 2 representing
geometrically local reflections. Since DM is obviously a degree 2 covering
of OM (in the orbifold sense), the assertion of Lemma 1.7 is obvious in this
situation. The full statement of Lemma 1.7 is just a group-theoretic extension
of that observation (which could also be given a geometrical meaning).

Proof of Lemma 1.7. Consider the homomorphism ρ : P → Γ̃ given by
ρ(s) = ρ(s′) = s for each s ∈ S, and ρ(ui) = si for each 1 ≤ i ≤ n. Consider
also the homomorphism σ : Γ̃ → Z2 given by σ(s) = 0 for s ∈ S, and
σ(si) = 1 for 1 ≤ i ≤ n. It suffices to show that ρ restricts to an isomorphism
between Γ ⃝⋆ Γ and kerσ, which is an index 2 subgroup of Γ̃ . It is easy to
check that ρ(Γ ⃝⋆ Γ ) = kerσ, so it remains to show that ρ|Γ⃝⋆Γ is injective.
To this end we introduce the following lift function ℓ : kerσ → Γ ⃝⋆ Γ . For
an element ξ ∈ kerσ and any of its expressions of the form

w0s
ϵ1
i1
w1s

ϵ2
i2
· . . . · w2m−1s

ϵ2m
i2m

w2m

for some (possibly empty) words wi over the alphabet S ∪S−1, ϵj ∈ {−1, 1}
and 1 ≤ ij ≤ n, put ℓ(ξ) := w0ui1w

′
1u

−1
i2

· . . . · w′
2m−1u

−1
i2m

w2m. The map ℓ
is well defined, since it is easy to check that for each word U and each
elementary operation consisting in inserting at an arbitrary place in U (or
deleting) a subword of the form a−1a for some letter a, or a relator (in Γ̃ ) or
inverse of such, resulting in a word Û , the words representing ℓ(U) and ℓ(Û)
in the definition of ℓ differ by an analogous elementary operation (in P ).
Moreover, since we then clearly have ℓ ◦ ρ|Γ⃝⋆Γ = idΓ⃝⋆Γ , we conclude that
ρ|Γ⃝⋆Γ is injective, hence the lemma.

1.6. Planarity of nerves. We recall the following rather easy observa-
tion from [15].

Lemma 1.8 (J. Świątkowski, [15, Lemma 1.3]). If the nerve L of a word
hyperbolic Coxeter group W is a planar complex then the Gromov boundary
∂W is a planar topological space.

The converse implication is not true in general [6], but it does hold in an
important special case. This is the contents of the next result, which appears
implicitly as Corollary 7.5 in [4]. The proof given below is an expansion of
the rather sketchy argument provided in [4].

Proposition 1.9. Let (W,S) be an indecomposable Coxeter system such
that the group W is word hyperbolic. If the Gromov boundary ∂W is hom-
eomorphic to the Sierpiński curve then the nerve L of (W,S) is a planar
simplicial complex.
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Proof. We will embed the group W , as a special subgroup, in some larger
indecomposable and word hyperbolic Coxeter group W̃ such that ∂W̃ ∼= S2.
The assertion will then follow from the implication (1)⇒(2) in Proposi-
tion 1.4.

We start by recalling some facts established in the paper by the second
author and B. Kleiner [12]. First, the Sierpiński curve contains the family
of topologically well distinguished pairwise disjoint subsets homeomorphic
to S1, called peripheral circles. Moreover, in its action on ∂W the group
W maps peripheral circles to peripheral circles. A setwise stabilizer of each
peripheral circle in ∂W , called a peripheral subgroup of W , is a quasi-convex
subgroup of W for which the circle is its limit set, and consequently each such
stabilizer is a cocompact Fuchsian group. The action of W on the family of
peripheral circles in ∂W has finitely many orbits, and thus we have finitely
many conjugacy classes of peripheral subgroups in W .

Claim. Each peripheral subgroup of W is a conjugate of some special
subgroup of W .

To prove the Claim we need some terminology and notation of [4, Sec-
tion 5.1]. For a generator s ∈ S, the wall Ms is the set of setwise s-stabilized
open edges of Cay(W,S) (the Cayley graph of W with respect to the set of
generators S). Then Cay(W,S) \Ms consists of two connected components
H−(Ms) and H+(Ms). For a generator s ∈ S and for an arbitrary element
g ∈ W we consider the reflection r := gsg−1, its wall Mr := gMs and its
components H−(Mr) and H+(Mr) of Cay(W,S) \Mr. The components are
closed and convex subsets of Cay(W,S) and ∂H−(Mr) ∪ ∂H+(Mr) = ∂W ,
∂H−(Mr) ∩ ∂H+(Mr) = ∂Mr and r pointwise stabilizes ∂Mr.

Proof of Claim. In view of [4, Definition 5.4 and Theorem 5.5] it suffices
to show that for each peripheral circle F and each reflection r such that
∂H−(Mr)∩F and ∂H+(Mr)∩F are non-empty, F is setwise stabilized by r.
Since (∂H−(Mr) ∩ F ) ∪ (∂H+(Mr) ∩ F ) = ∂W ∩ F = F , by connectedness
of F ∼= S1, we have ∅ ≠ (H−(∂Mr)∩F )∩ (H+(∂Mr)∩F ) = ∂Mr ∩F . Since
∂Mr is pointwise stabilized by r, we have rF ∩F ̸= ∅, and finally rF = F by
the fact that each element of W maps peripheral circles to peripheral circles.

Coming back to the proof of Proposition 1.9, denote by Hi, 1 ≤ i ≤ n,
a set of representatives of the conjugacy classes of peripheral subgroups of
W consisting of special subgroups of W . For each 1 ≤ i ≤ n, denote by Li

the nerve of Hi, and view it as a subcomplex of the nerve L of W . We will
discuss below the double W⃝⋆ W and the mirror double W̃ of W with respect
to the tuple (Hi) (see Subsection 1.5). As shown in [12], the double W ⃝⋆ W
is a hyperbolic group and its Gromov boundary is homeomorphic to S2.
Observe also that the mirror double W̃ is (isomorphic to) a Coxeter group



10 D. Danielski et al.

with nerve L̃ obtained from the nerve L of W by adding a simplicial cone
over each of the subcomplexes Li. Moreover, since each Hi is a proper special
subgroup of W , indecomposability of W implies indecomposability of W̃ . By
Lemma 1.7, the group W̃ contains W ⃝⋆ W as a subgroup of index 2, and
hence it is also word hyperbolic and its Gromov boundary is homeomorphic
to S2. By Proposition 1.4, L̃ is then a triangulation of S2. Since L is clearly
a proper subcomplex of L̃, it is necessarily planar, which completes the proof
of Proposition 1.9.

2. Proof of the main theorem

2.1. Sierpiński curve boundary. In this subsection we prove part (1)
of Theorem 0.1.

Proof of the implication ⇒. Suppose that ∂W is homeomorphic to the
Sierpiński curve. Then, in view of the fact that the Sierpiński curve is con-
nected and has no local cut points, it follows from Proposition 1.2 that L•

is unseparable and not a 3-cycle. Moreover, by Proposition 1.9, L is then a
planar simplicial complex, which completes the proof.

Proof of the implication ⇐. As any Gromov boundary of a hyperbolic
group, ∂W is a compact metrizable space. Since L is planar, it follows from
Lemma 1.8 that ∂W is a planar space. Since L• is unseparable and not a
3-cycle, it follows from Proposition 1.2 that ∂W is connected, locally con-
nected, and has no local cut point. Finally, it is not hard to see that since L
is planar, connected, has no separating simplex, and does not coincide with
a single simplex, its puncture-respecting cohomological dimension pcd(L) is
equal to 1. Consequently, due to Proposition 1.3, ∂W has topological dimen-
sion 1. Thus, by Whyburn’s characterization recalled in Subsection 1.1, ∂W
is homeomorphic to the Sierpiński curve, as required.

2.2. Menger curve boundary. We now pass to the proof of part (2)
of Theorem 0.1.

Proof of the implication ⇒. Suppose that ∂W is homeomorphic to the
Menger curve. Then, in view of the fact that the Menger curve is connected
and has no local cut points, it follows from Proposition 1.2 that L• is unsep-
arable. Since the Menger curve has topological dimension 1, it follows from
Proposition 1.3 that pcd(L) = 1. Since the Menger curve is not planar, it
follows from Lemma 1.8 that L is not planar either and this completes the
proof of the first implication.

Proof of the implication ⇐. The boundary ∂W is obviously a compact
metrizable space. Since L• is not planar, is not a 3-cycle, and is unseparable,
it follows from Proposition 1.2 that ∂W is connected, locally connected, and
has no local cut point. Since pcd(L) = 1, it follows that ∂W has topological
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dimension 1. In view of the above properties, it follows from Proposition 1.1
that ∂W is homeomorphic either to the Sierpiński curve or to the Menger
curve. However, since L is not planar, Proposition 1.9 shows that ∂W cannot
be homeomorphic to the Sierpiński curve. Consequently, it must be homeo-
morphic to the Menger curve, as required.
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