UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Emulation of SystemC Applications for Portable FPGA Binaries

Permalink
https://escholarship.org/uc/item/2br29333

Author
Sirowy, Scott Spencer

Publication Date
2010

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2br29333
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Emulation of SystemC Applications for Portable FPBiAaries

A Dissertation submitted in partial satisfaction

of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Scott Spencer Sirowy

June 2010

Dissertation Committee:
Dr. Frank Vahid, Chairperson
Dr. Tony Givargis
Dr. Sheldon X.-D. Tan

Copyright by
Scott Spencer Sirowy
2010

The Dissertation of Scott Spencer Sirowy is appdove

Committee Cpairson

University of California, Riverside

ABSTRACT OF THE DISSERTATION

Emulation of SystemC Applications for Portable FPBiAaries
by
Scott Spencer Sirowy
Doctor of Philosophy, Graduate Program in Comp8taence
University of California, Riverside, June 2010
Dr. Frank Vahid, Chairperson
As FPGAs become more common in mainstream genarpbpe computing

platforms, capturing and distributing high-performa implementations of applications
on FPGAs will become increasingly important. Everhie presence of C-based synthesis
tools for FPGAs, designers continue to implemermtliegtions as circuits, due in large
part to allow for capture of clever spatial, citeleivel implementation features leading to
superior performance and efficiency. We demonstiagefeasibility of a spatial form of
FPGA application capture that offers portabilityvadtages for FPGA applications
unseen with current FPGA binary formats. We denratestthe portability of such a
distribution by developing a fast on-chip emulatfcmmework that performs transparent
optimizations, allowing spatially-captured FPGA Bggtions to immediatelyrun on
FPGA platforms without costly and hard-to-use sgsittYmapping tool flows, and
sometimes faster than PC-based execution. We degeleral dynamic and transparent
optimization techniques, includingst-in-time compilationbytecode acceleratiorand

just-in-time synthesithat take advantage of a platform’s available ueses, resulting in

orders of magnitude performance improvement ovemab emulation techniques and

PC-based execution.

Table of Contents

(@4 =T o] (=] i 1
(@4 gF=T o] (=] PP 11
2.1 OVEIVIEW ...ttt mmmt et e e e e e e e e e e e e s e bbbttt e et e e e e e e e e s s annnnne 11
2.2 (O LS (o] O | (o U1 £ PRSP 11
221 OVEIVIEW ...ttt 4441ttt ettt e e e e e e e e e e e e eeeanene e 11
2.2.2 A Motivating EXample — SOriNgcccciieiieeiiiiiiiiiee e 15
2.2.3 Study Methodologycooeiiiiieecece e 16
224 Example — Gaussian Noise Generator .. et enrnn e eeeeennnnneeeeennnennnees 21
2.2.5 Example — Molecular Dynamics Slmulator crrrrnnnnnnnns 270
2.2.6 Example - Cellular Learning Automata- BasedIEt\vonary Computlng 29
2.2.7 AV T = bq o =T 1 0= | £ 31
2.3 Other Related WOrK ... 37
2.3.1 C-based SYNthesiS TOOIS e eeeeeeeeea e e e e e e eeeeeeeeeeeseanannens 37
2.3.2 Parallel LangUAagEScevuveiiiiiiiieeeeeeeeeeeeeeeeeetin e e e e e e e e e anaaeas 38
2.3.3 POrabIlity.....cco oo 38
2.4 Requirements of a Language for Spatial Capture..........cccceeeeevveeeeeeeenennnn. 39
24.1 POSIX ittt ettt e e e e e e e e e e e 41
2.4.2 Other Thread-Based Approaches........ccccceeeiciiiiiiiiii e eee e 43
2.4.3 SYSIEMC ...t n s 44
(@ T o] (=] SO 47
3.1 OVEBIVIBW ...ttt ettt ettt bbb s e e e e e e e e e e e e eeeeeeeeeaneeeeeeennees 47
3.2 Related WOIKcooiieeieeeei e 50
3.3 SystemC-0on-a-Chip COMPONENTScomeeeeeeeiiiiiiiiiiaaae e e e e e eeeeeeeeeaeens 15
3.3.1 SystemC Bytecode COMPIIEN.........uvueuceeieeeeeiieeeeeeeeerr e 51
3.3.2 SystemC Bytecode FOrmatoooo oo 53
3.33 USB Download INterfacecccuvviumieieiiiiiiiieeeee e 57
3.34 SystemC Emulation ENQINEuuieeieeriiiiiiiiiiie e 58
I o q 01T 41T | £ PSSR 61
(@4 gF=T o] (=] o PP PPSPPP 65
A1 OVEIVIEW..oiiiiiiiiiie e eeeees ettt et et e e e e e e e e e e e e s s s s e neeee e e e e e e e e s 65
4.2 RElAtEA WOIK ... e e e e 68
4.3 Online SystemC Emulation ArchiteCture....ceeecoeeeeeeeeeeeeeiiiieieeeienn 70
43.1 Base Architecture with Acceleration ENgQIiNES..........ccoooeeeeeiiiiiiiiininnne 70
4.3.2 KEINEI BYPASSevvvviriiiiiiiiisie e s ceeeeeesiass s s e e e e e eeeeaeaeeeeeaasnsssnnnn s nnaannes 72
4.4 Online Acceleration ASSIgNMENTcooeeiieiiiiiiiieeeeeei e 73
4.4.1 Problem Definition.........coooiiiiiiieeeeee e 73
4.4.2 Communication OVerheadcooooiiieeeeiiiiiiiiee e 76
4.5 ONliNE HEUNSTICS ...eviiiiiiiiiiieieee ettt e e e e e e e 76
45.1 Upper and Lower BOUNSoooiieeeeeeiiiiiiiiiiiieee e eeeeeeieennd 6.7

Vi

45.2 Accelerator StatiC ASSIGNMENL......... .o eeeeeeeeeeeeiiiiiiiniaeaaeaeaaans 7.7

45.3 Greedy HEUNSHICccooee e 77
45.4 AJQOregate GaiNuuuueuiiiii ettt aeaeees 78
4.6 01T 4 =T 79
4.6.1 FrameEWOIK oo 79
4.6.2 EVAIUALION ..ot 81
(@4 gF=T o] (=] gl X PP PR PP 84
5.1 OVEIVIEW ... iiiiiii ittt emmmmt et e e e e e e e e e e e s e s bbbttt e et et e e e e e e s s e nnnne 84
5.2 RElAtE WOIK ... e e e e 86
5.3 EXperimental SEIUP.........cooiiiiiieies e s s e e e e e e e e e e e e e e e eeeeeaeaeen e 87
5.4 Just-in-Time Compilation of SYStemCcccoeeiiiiiiiii 89
54.1 (0] 2] o] =[] o 1S 89
5.4.2 JIT Compilation with Dedicated JIT Memory Besgescc......... 91
5.4.3 Emulation Memory Controller............occeeeeeiiiiee e, 94
(@4 gF=T o] (=] g PR PP 98
B.1 OVBIVIEBW ..ottt e e e e e sttt ettt eeeeeesaannnnne 98
6.2 RElAtEA WOIK ... e e e 99
6.3 JUSE-IN-TIME SYNTNESIS......uviireeen s e e e e e e e e eeeeee et e e e eneaaeeas 101
6.3.1 Server-Side Synthesis Framework...... .o, 101
6.3.2 Decompilation and SYNthesSIS.........cccveeveeiiieiiiiiiiiiee e, 104
6.3.3 SystemC-on-a-Chip Architectural SUPPOrt.............cooevviiiieiiiiinnnnnn. 105
O o q 0=] 1= | £ 108
(@4 gF=T o] (=] o AP PTRT 111
7.1 OVRIVIEW .ttt ettt e e e e e e e e ettt s et e e e e e e e e e s s nnnnnne 111
7.2 SystemC for Synchronized Physiological Models............cccccceeiiiinnnnnn. 115
7.3 Related WOIKcooiiieiieei e 118
7.4 Time-Controllable Digital Mockup EXECULIONcoovviiiiiiiiniiiiiinnnennn. 119
7.5 EXPEIMENTS ...eiiiiiiiiie et s e e e e e e e e e e e e e e e e eeeeee s e rennnneeennne 121
(O gF=T o] (=] gt PP 126
8.1 OVEIVIEW ... iiiii ittt ettt e e e e e e e e e e ettt e e e e e e e e e s s nnaae 126
8.2 RElAtEA WOIK ...t e e eeeeeneeeeees 127
8.3 SystemC-on-a-Chip Softwareooviceeeeeeeeeeeeeee e 129
8.3.1 Using the SystemC Bytecode COMPIlEr ..o oooiiiieiiiiiiiiiieeenn 129
8.3.2 Downloading SystemC to Development Platfarm........................... 131
8.4 Spatial and Time-Oriented Programmingcccccccceeereeeeeeeeeeeeeeeeeeeeiiinnnnens 132
8.4.1 COUISE PlAN ..cooiiiiiiiii e ettt 132
8.4.2 SaMPIE LaDS ... 133
(@ g F=T o] (=] S 134
9.1 SUMIMABIY ...ttt e e e ettt e e e e ettt e e e e e e e eaaa e e e e e ernmnn e e e e 134
9.2 Remaining ChallenNgesuuuiiiieeeeeeicie e 137

Vii

List of Figures

Figure 1: FPGAs enable parallel computation. (apétiply-accumulate computation,
requiring perhaps 30-100 clock cycles on a microgssor (b) but just 1 or 2 clock

(ool (=TS0 1= U T o = SR 2
Figure 2: Although temporally-oriented algorithmsC can be synthesized to a variety
of circuits trading off size and performance, malgyer circuits representing spatially-
oriented algorithms are not reasonably derivaldenftemporally-oriented algorithms. 12
Figure 3: C is for circuits: Some circuits mightl$e captured in a form of C code that
is synthesizable back to the original circuit; s@@hode would provide tremendous
portability advantages over other circuit repre8BONSccoovviieeeeiiiininees 16
Figure 4: Study methodology. We modeled each dirouC (when possible). We then
performed the following transformations and optiatians in the order shown,

representing a “standard” synthesis tool, and ofeskwhether the original circuit was

=TT 0) V=T (=0 (R PRSPPI 19
Figure 5: Circuit for a Gaussian NOISE geNEratOL w......covvviieiiiiiiiiiiiiiaaee e eeeaeenns 22
Figure 6: Spatial C code for Gaussian NoiSe gedieraLl.............cccuvvvriviiiiiinieeeeeeeeenn. 23

Figure 7: Control/data flow graph for C-level Gaaasnoise generator functions (a)

main, (b) doStagel, (c) doStage2, (d) doStage3(ggrabStages.ccccoeeeeevvviiieeennn. 24

viii

Figure 8: Datapaths after scheduling, resourceatiion, and binding for (a) doStagel,
(b) doStage2, (c) doStage3, (d) doStage3, (e) before pipelining, and (f) main after
pipelining. Note the similarity with FIQUIe 5. ... 25
Figure 9: Molecular dynamics accelerator. (a) Cmdealculating nonbonded forces. (b)
Custom circuit utilizing a divided pipeline to regulatency penalty. (c) The synthesized
pipeline differs from the custom circuit by utiligj a single pipeline. The synthesized
circuit must stall due to a single memory, redudim@ughput...........cccooeeeiiiiiiiinninnee. 1.2
Figure 10: The proposed custom CLA-EC circuit cstsg of a ring of (a) custom CLA-
EC cells and (b) C pseudocode that synthesizas &naost identical parallel circuit
(code for cell internals iS OMIttE). ..o eeee e 30
Figure 11: 82% of the studied circuits publishedcCCM were re-derivable from C,
meaning they could be captured in some form of € shat a synthesis tool could be
expected to synthesize the same or similar cusEsIgM.ccovvvviiieeiriiiiiieneem 32
Figure 12: Comparison of original custom circuigssus circuits synthesized from
derived sequential code representations: (a) Naethxecution time and (b)
Normalized area (slices) Both metrics are normdlipevalues for the original custom

(o] 1 (o1 || ST PP PPPPPPP 35
Figure 13: Pipelined Binary Tree [94]. Each levpémates concurrently, taking the
pattern and address information from the previewsll and passing information to the
next level. Such a design cannot readily be capgtur a sequential language, and

requires explicit parallel constructs to captunedortable distribution 40

Figure 14: Snippet of POSIX-based implementatioord level of the pipelined binary
tree and how levels are connected and how they conuaie.occoeeeevveeeiiinnnnne 42
Figure 15: Snippet of SystemC implementation aheel of the pipelined binary tree and
how multiple levels are CONNECLEA.o 45
Figure 16: SystemC-on-a-Chip allows a designentalate SystemC descriptions on
various supported development platforms. Emulagioaibles early prototyping and
interaction with real peripherals and 1/0, whildueing the need for advanced
coMPIlation and SYNNESIS. ...cceeviiiiiueiis o s e e e e e e e ettt eeeee e e e e e e e e e 48
Figure 17: SystemC bytecode compiler: (a) Thee3y&t bytecode compiler builds on
PINAPA, a SystemC front-end tool, and uses a cuSgstemC bytecode backend; (b)
Sample code generation during the first phaseeBystemC bytecode back end......... 52
Figure 18: SystemC bytecode format. Each prosedsscribed by a number of MIPS-
like instructions, with additional instructions abfor SystemC specifics, like reading
signals, extracting Dit raNQgES, E1C.uireaareiiiiiiiiieeee e eeeee e 55
Figure 19: USB interface. The user copies Systegt€cbde to a USB flash drive, plugs
the drive into a platform and pushes a button—tadgrm then begins emulating the

Y A1 (=10 4 (O 0 [T ol 1] 01 o] o FA PSPPI 56
Figure 20: Basic emulation engine. The emulatiogir@consists of a hybrid event-
driven kernel to allow a variety of different cittimplementations. Circuits can also
take advantage of a range of standard periphenalsading lights, buttons, a UART, and

INPUL aNd OULPUL MEIMOIIES.iiiiiiiiieet s e e eeeetttttaea s s s e e e e e e e eaeeeeeeeesnnenneeeesssennnnns 59

Figure 21: SystemC-on-a-Chip circuit interface. Bneulation engine supports access to
multiple peripherals, including buttons, LEDsS, andmory.cccooooovviiiiiiiieneiiiiinnnnn. 60
Figure 22: SystemC-on-a-Chip prototypes. Each sysliéfered in size, processor,
memory, and number of emulation accelerators, &cth eould run the same SystemC
bytecode for a given SystemC deSCrPtioN. ...cccccaeeiiiiiiie e 61
Figure 23: SystemC experiments. (a) SystemC cadenfage Edge Detection. The code
took only minutes to create and compile before dpeunt on a Virtex4. (b) Edge
Detection running on a Virtex4. We connected tlgmnory output to a frame buffer to
See the results 0N @ VGA SCIEEN. i ceeeeeeeieie et 62
Figure 24: Emulation accelerators. The emulatimsebkerator consists of a multicycle
MIPs-like datapath than can execute one instrugti@bout 3-4 cycles, almost 100X
faster than executing the same instructions irbdse emulator.cccceeeeeeees 6.. 6
Figure 25: SystemC in-system emulation: (a) Inesysemulation of a description

allows testing with real 1/0, thus creating dynanest bench input vectors that cannot be
analyzed statically. (b) Sample image processistesy that invokes several different
filters depending on the input. (c) Statically maygpeach process to either software or
an acceleration engine results in widely variedimes for different input sequences. (d)
Dynamically mapping SystemC processes in respangetinput sequence results in
higher performance emulation for all input sequenCe...............oooeiiiiiiiiiiiieee e 67
Figure 26: SystemC emulation platform. A limitatiof the SystemC emulation platform
is that the acceleration engines and the System&keithin the emulation platform are

connected via a single bus structure, therebyiagatbottleneck for shared memory

Xi

usage when multiple processes, (p2, p3) are scheduled in parallel, hindering

(01 (0] 8 1 7= (o TR 70
Figure 27: SystemC acceleration engines: (a) latestnucture. (b) Direct connection of
two SystemC acceleration engines using a kernedds/ponnection. In some situations,
bypassing the bus and SystemC kernel can leadndisant performance benefits for a
given SYSteMOC AeSCIIPLION.iiiii oottt e e e e e e e e e e e e e e eeeeeeeeeeeseennnes 71
Figure 28: Emulation runtime results of image fihg, lung, and radiosity examples
emulated on two different emulation platformsG performs up to 9x faster than
software-only emulation, and 5x faster thastatically preloadedpproach. 80
Figure 29: Emulation runtimes without and with karbypass using the AG heuristic on
the image processing examples. Kernel-bypass-athabielations performed on average
11% better than without kernel bypass, and up 86 #0some examples. 82
Figure 30: While the performance of the base SyStemulation engine is acceptable
for some applications, for others it is not (astdn-time compiling the SystemC
bytecode to the emulator’'s memory improves perfoicegb), but can be made to be

competitive with custom implementations if the eatidn engine is mad#T aware(c).

Figure 31: The JIT/architecture COdeSIigN PrOCESS........uuurrrriiiriieeaeeeeeeeeeeeeeeeeeieeeee 86
Figure 32: Experimental Prototypes. (a) The Virtek& 10t implementation connected
to a large screen buffer for testing image proogsapplications. (b) A summary of each
experimental system. Each version was built witth @ithout dedicated hardware to

improve the impact of just-in-time compilation detSystemC bytecode. 88

Xii

Figure 33: Results of our initial profiling of ti8&ystemC bytecode emulator.................. 89
Figure 34: Modifications to the SystemC emulatiogiae that increase the utility of
just-in-time compilation. The new SystemC emulagmgine supports a local memory
bus with a dedicated JIT memory and a static signale for fast access to commonly
executed software operations (a). The new System@ation engine also has a
dedicatecemulation memory controllewhich offloads costly memory updates from
software, and magnifies the impact of just-in-ticeenpilationccccoeeeiiiiiiiiiiinnnnns 91
Figure 35: JIT compilation with dedicated JIT resms performed 4X faster than the
base SystemC emulation platform, yet still fell glud native software implementations
(o) VA= (011 01T e K0) PP UUPPPPPPPPUPRPTRR 93
Figure 36: JIT Compilation with JIT Aware Resourspgeds execution by 10X
compared to base emulation, and by 2.5X compardtiltoompilation without the same
FESOUICES. .uuueiitin ettt e ettt e eeeaa s oo £+ 222444 et e et et ek e e e e e a e e e eea e e e e smaeaeeeenn s eennnn s eeennnaaaes 96
Figure 37: Just-in-Time Synthesis of SystemC appbas leads to natively executing
applications that can run orders of magnitude fakn baseline simulation and several
times faster than PC SIMUIALION.in e eee e e e e eeeeenes 99
Figure 38: Just-in-Time Synthesis SystemC-on-a-@aimework. (a) The server
responds to requests from SystemC-on-a-Chip ptafdhat require native execution
speeds. (b) The serveecompileshe SystemC bytecode, recovers the high-level

information, and synthesizes a circuit tuned ta ghatform’s available resources. 103

Xiii

Figure 39: Just-in-Time Synthesis Architectural Sap. The partially-reconfigurable
region multiplexes the use of the input and outpnd can override the execution of the
emulator oNCe ProgrammMEd.oeuuuuuuiimmeriiiirr e e e e e e e e e e e eeeeeeeebesnnnaaeeeennnn 106
Figure 40: Speedups compared to base SystemC émnuiat some common image
processing filters. Factoring out the time requi@dynthesize the SystemC application,
just-in-time synthesis is almost 14,000X fastentbase emulation, and 30X faster than
PC SIMUIBLION. ...ttt ettt e e e e e e e e e e e s e e e e e e e e e eeee s 109
Figure 41: Approaches to integrating an embedde&ateavith the physical environment
during design: (a) system model, (b) physical ma¢Ka) digital mockup................... 112
Figure 42: Digital mock-up platform: (a) The bypassthod of integration taps directly
into the digital information packets that indic#ite data/control values to/from the
device sensors/actuators, (b) the method matchidsvaee-in-the-loop approaches used
in industrial practicefigure courtesy of Boeing, 2009............coooviiiiiiiiiiiiiiiiiinineeenn. 14
Figure 43: Capturing physiological models in Sgste (a) Portion of a mathematical
model of the human lung. (b) Description of the elad SystemC. (c) Description using
POSIX threads. The POSIX threads approach regumelementing explicit lock-
stepping mechanisms that detract from the modedidability................ccccccoooerinnnnnnin. 116
Figure 44: Time-Controllable Debugging. In contitastraditional instruction

granularity debugging, time granularity debuggitigves a developer to monitor system
variables by explicitly controlling simulated time................ccoooiiiiiiiiiiiiees 121

Figure 45: SystemC Implementation of a two-compartt respiratory system digital

Xiv

Figure 46: SystemC Digital Mockup Implementatiam®nary. Both respiration models
were obtained from the NSR Physiome Project andusdgnconverted to concurrently
executing SystemC implementationsS.ccccocveeeiiiiiiiiiii e 124
Figure 47: Medical device(ventilator) and digmabckup(lung) prototype setup. (a)The

digital mockup can be time-controlled using a sienPC-based debug interface. (b)The

digital mockup and ventilator communicating digfal...........ccccooeeiiiiiiiiiiiiiiiiiiiinn, 125
Figure 48: SystemC-on-a-Chip in the clasSroOMcoovviiiiiiiiiiiiii e, 126
Figure 49: Windows-based interface for programn8ggtemC-on-a-Chip................ 129
Figure 50: Remote Compilation for SystemC-0on-apChi..........cccevviiiiiiieiiiiiiieiiiiiinns 130

Figure 51: Time Oriented and Spatial Programmiitg ®ystemC. We have developed a
complete set of labs and materials to complemenuase in spatial and time-oriented

PrOGIAIMIMING. ... eeeeeeeeeeeeeeeeeetttetae mmmmmm e e et e e et eesaeebas e a s s e e e e e eeeaeeeeanaeaaeeeeeeeesnnssnnnnns 132

XV

Chapter 1

Introduction

FPGAs (field-programmable gate arrays) supportva fioem of software whose order of

magnitude speedups can enable a class of new kigbrmance embedded applications
not otherwise feasible. However, unlike micropreoesoftware, two problems severely
limit FPGA adoption, and thus prevent the appearavica range of useful embedded
applications. The first problem is that of a higklyecialized design process for FPGAs
that differs greatly from microprocessor softwaresign, a problem that has been
intensively studied by researchers and for whichmroercial solutions are beginning to
appear. The second problem is that FPGA binariepsently intricately coupled with

specific FPGA devices, and cannot be ported aategiges or migrated to newer device
versions the way that microprocessor binaries can.

FPGAs implement circuits, characterized throughirtispatial connectivity:

component A is connected to B, which is conneate@,tetc. Each component computes

Figure 1: FPGAs enable parallel computation. (a) A multipbeumulate computation, requiring perhaps 30-166kcl
cycles on a microprocessor (b) but just 1 or 2lclyales on an FPGA.

MO|| co| [M1 cl M9 c9

foriin 0 to 9 loop I I v ¥
a=a + c[i]*M[i] N * *
end loop; l T
+ v
() L

+

v

(b) a

in parallel with all the other components, of which there maytfiousands. In contrast,
microprocessors implement sequential programsackenized by theiserial ordering of
computations as a sequence of instructions. legarallelism, from the task level down
to the bit level, that contributes to FPGAs exewytcertain computations orders of
magnitude faster than microprocessors

Figure 1 illustrates a computation involving 10 tiplications and additions,
which might require 30 to 100 clock cycles to execon a microprocessor, but could
execute in just 1 or 2 clock cycles on an FPGArnbwgh resources existed. Many
embedded system applications are especially anmerniabtomputation speedup from
FPGAs. For example, an image processing applicatiag search a camera-provided
image for specific objects, such as a tank, a perso even a specific person’s face.
Algorithms for such applications may identicallyasgh local image portions and then
hierarchically compose results — those local sear@$sks are typically highly-

parallelizable, and hence image processing algostimay execute hundreds of times

faster on an FPGA than on a microprocessor. Likewmsghly parallelizable subtasks
exist in other common embedded applications thatlite processing streams of video,
audio, speech, and other data. Sample domainsgdm¢tlevision set-top boxes, security
cameras, medical imaging and diagnosis equipmentiraband detection systems at
locations like airports or borders, fingerprint @gaoition, speech understanding, and a
wide range of military applications. Extensive poas work has shown the speedup
advantages of FPGA, typically 10x to 100x, for alevrange of embedded applications
[REFS]. Such order-of-magnitude speedups may rsbtje a change in speed, but rather
a “change in kind,” as von Neumann originally dés=dl the impact of computers over
existing desktop calculators, enabling applicatiomst before possible (i.e., the
applications enabled by a computer’'s speed farezkcategorization as that of merely a
fast desktop calculator).

One recognized problem preventing FPGA adoptiothés different, and more
complex, design flow for FPGAs compared to that faicroprocessors. The typical
design flow requires FPGA users to describe theetksircuit in a hardware description
language (HDL), such as VHDL or Verilog, and to ggpecial FPGA-vendor-provided
compilers (known as synthesis tools) that convddil_Hlescriptions to device-specific
FPGA binaries. In contrast, microprocessor useizeit“standard” programming
languages like C, C++, or Java, and utilize roligh-quality compilers and integrated
development environments (IDEs) typically developgdhird-party vendors who often
specialize in such tools. The massive microproceBacdware, applications, and tools

industries, whose importance need not be statece baen strongly catalyzed by the

separation of architecture from function enabled tbg concept of microprocessor
instruction sets, enablingstandard microprocessor binanA standard microprocessor
binary is a binary written using instructions ofiastruction set, such as an x86 or ARM
processor instruction set, that can execute orriatyaof existing and evolving versions
of a microprocessor, leading to benefits and intioua in the creation of architectures,
tools, and applications.

Today, software for FPGAs do@&®t benefit from the standard binary concept.
Instead, software is compiled by FPGA-vendor-predidools (typically for free as a
means of selling hardware devices), into a progrnyebinary that is intricately bound to a
specific device. A vendor may offer dozens or heddrof different devices — Xilinx for
example presently supports approximately 100 dsviéebinary created for one device
cannot run on any other device. The situation hashpevelopment of architecture,
software, and tools, and thus the widespread udeP@As for embedded computing
platforms.

It's natural to ask why industry has not alreadyeleped a standard binary
concept, if the concept would be so useful. In,fact do believe that such a concept
would eventually begin to evolve over the coming-200 year period, with small
bitstream portability techniques accumulating istonething akin to a standard binary.
The lack of portable binaries is becoming recoghias a problem hampering FPGA
adoption. For example, an FPGA panel at Supercangpu005 noted: “Most
applications outlive the hardware. If one is gotoginvest in an [FPGA] accelerator,

what are the options when the accelerator is otesdlé’s a very real issue” [110].

Extensive discussions regularly appear in the nemsggcomp.arch.fpga, and designers
have organized to try to make FPGA internal architees more open (e.g., [109]).

A standard binary concept for FPGAs will certaimygur performance and size
overhead compared to the current desktop FPGA C#ioach. Yet, a standard binary
concept for FPGAs may catalyze the FPGA hardwapliaations, and tools industries,
similar to how it catalyzes the microprocessor diomahus compensating for the
incurred overhead. Furthermore, a standard bimarfFPGAs that seamlessly integrates
with that for microprocessors, may catalyze incoagion of FPGAs into the massive
established microprocessor industry, whose hardemagesoftware revenues and number
of application developers tower over those for FBG# two orders of magnitude. The
net result would be the widespread use of FPGAgeaslly in embedded systems,
whose applications are particularly amenable to APspeedup, and hence the
appearance of high-performance embedded applicatioat would otherwise not be
developed due to the difficulty of utilizing FPGAs.

We envision opportunities for a portable FPGA dhsttion format that rides on
the success of the “write once, run everywhere’gmmming paradigm of interpreted
languages like Java and C#, wherein a designemumpta design in a high level
language, andny computing platform that supports a virtual machimethat language
can execute that application. At the expense dfainperformance, virtual machine
technology (like Java’'s JVM) enables great porighiland is promising as the

foundation for a portable FPGA binary. We introduoels and techniques for an

emulation framework that allows for portable FPG#any execution which we call
SystemC-on-a-Chip

This dissertation can logically be broken into éhmdistinct sections. The first
section only includes Chapter 2, and investigapegtial programming and the proper
programming constructs and requirements to famlita standard FPGA distribution
format, and the reasons for choosing SystemC asssilpe distribution language. The
second section comprises Chapters 3, 4, 5, anddédescribes tools, frameworks, and
experiments to enable the emulation of applicatd@&sgeloped in SystemC. Finally, the
last section, comprising Chapters 7 and 8, invatigdditional uses of the SystemC-on-
a-Chip framework.

In Chapter 2, we present an investigation into fgveper constructs and
languages required to facilitate a portable diatrdn format for FPGA-based
applications. We present a study entitled “C is @rcuits” that closely studied 70
custom-created, clever circuits and attempted fmuca those circuits in a sequential
language such that a standard C-to-gates syntioesisould recreate the original custom
circuit. Our study complements the question askgdriany researchers on whether
sequential code (like C) can be analyzed and tagewlinto a high performance circuit.
Our study showed that while many custom-createcuits could actually be captured
using a sequential language, others could not Isebditranslated and relied on explicit
parallel concepts. Of those that could be trandlate a sequential language, many
required a radical algorithm change to facilitaymteesis. We thus determined that a

portable distribution format would require badmporalandspatialconstructs. We then

investigate the requirements of a language suitdbie spatial capture of FPGA
applications. We investigate the feasibility of ngsipopular parallel programming
frameworks like POSIX, MPI, and RTOS'’s, but condubat the SystemC language best
captures the temporal and spatial concepts requifeal standard FPGA distribution
format.

In Chapter 3, we introduc&ystemC-on-a-Chjpa framework that allows a
designer to capture applications in SystemC anc hHhemimmediatelyrun on any
platform that supports the SystemC emulation endge introduce the newly developed
SystemC bytecode (analogous to Java bytecodegnarieermediate representation of the
SystemC application that preserves both the terhpamd spatial features of the
application. The SystemC bytecode facilitates dgibe representation of the SystemC
application that can run any platform assuming &y§t bytecode support. The SystemC
bytecode is supported by tgstemC Emulation Engin€he SystemC emulation engine
can run on any development platform that supportmsic interface of a number of
different peripherals, memories, and internal congmts. The SystemC emulation
engine’s core is 8ystemC emulation kerndlhe SystemC emulation kernel consists of a
lean event-driven kernel, a virtual machine to exethe SystemC bytecode instructions,
and hooks and access to the development platfquaripheral set. We demonstrate the
usefulness of the SystemC-on-a-Chip framework byeldping several complete
SystemC-on-a-Chip platforms, highlighting that wgt SystemC applications follows
the same “Write once, run anywhere” programmingaggm made popular by

interpreted languages like Java and C#.

In Chapter 4, we show that for the common case evtiex SystemC-on-a-Chip is
running on an FPGA, we can achieve substantialdgge®ver a baseline emulation
engine by intelligently taking advantage of avad#aBbPGA resources. We introduce
SystemC bytecode acceleratospecial coprocessors that can execute the SystemC
bytecode natively. SystemC bytecode acceleratoes implemented using available
FPGA resources, and can be numerous, allowing @& application to effectively to
run in parallel (compared to being a parallel setioh). The SystemC bytecode
accelerators can improve SystemC emulation exatbtyoapproximately 2X. We further
demonstrate that the SystemC emulation engine cke nmtelligent choices about how
best to effectively utilize the SystemC bytecodeeterators. We define th®nline
Emulation Acceleratioproblem and demonstrate that we can achieve 20xowement
over the baseline SystemC emulation engine. Withaexvailable FPGA resources, we
also show that we can create custom interconnetisn@ the SystemC bytecode
accelerators. Such custom interconnects can efédgtbypassthe SystemC emulation
kernel, and result in additional performance imgroent.

Unfortunately not all platforms benefit from thesoeirces required to instantiate
multiple SystemC bytecode accelerators. In Chapteve address this issue a software-
based improvements thaist-in-time compile the SystemC bytecode to the native
processor upon which the SystemC emulation engmeunning. Using minimal
resources, we modify the SystemC-on-a-Chip framkworbeJIT Aware allowing the
just-in-time compiled code to execute from residentall, fast memories. OUHT

Aware framework includes a JIT Aware Memory, and custagid for maintaining

emulation signal and event queues. Such modificatioesult in speedups of
approximately 10X compared to a baseline emulatingine, and at near comparable
speeds to the same application developed for ttreenalatform.

In Chapter 6, we demonstrate just-in-time synthedgisSystemC applications
running on the SystemC-on-a-Chip framework. Judtame synthesis is a transparent
process(to the SystemC application designer anbetd®systemC emulation engine) that
synthesizes, place and routes, and maps the dri§ysiemC application to a native
implementation that fully takes advantage of thetfpkm’s available resources. Just-in-
time synthesis of SystemC application results deos of magnitude speedup of SystemC
applications compared to executing natively on $hestemC emulation engine, and
several times faster than simulating the SystenglliGgtion on a desktop PC.

In Chapter 7, we describe the utility of using 8ystemC-on-a-Chip framework
for digital physiological model development. We derstratetime-controllabledebug
features, allowing a physiological model desigreerdebug using the concept time.
This is contrast to traditional debug approaches tbquire debugging at the instruction
level. While instruction level debugging makessefor traditional sequential programs,
time-leveldebugging provides powerful mechanisms to the aligihysiological model
designer not possible with more traditional apphesc

In Chapter 8, we demonstrate tools and materiafulifor teaching a course on
spatial programming with SystemC. We develop @ljreavailable Windows-based

framework to compile, connect, and download Systetasriptions to popular teaching

development platforms. We also present possiblerseoumaterials, including web
materials, and course lessons.

We demonstrate the feasibility of using SystemCaagortable distribution
language for FPGA applications. We demonstrate pbeability of such a portable
distribution by developing a fast SystemC emulatiommework that transparently
optimizes the SystemC application, allowing Systeapgplications tammediatelyrun

without costly and hard-to-use synthesis/mappig ftows.

10

Chapter 2

Spatial Algorithms

2.1 Overview

As FPGAs become more common in mainstream genarpbpe computing platforms,
distributing high-performance implementations oplagations on FPGAs will become
increasingly important. We present a study enti@ed for Circuitsthat shows that while
many manually created circuits can be captured se@uential language like C for
portability purposes, often those implementationsuld still benefit from explicit
parallel concepts. We then investigate the requerémfor a language for spatial capture

of FPGA applications, and conclude that System(Sfg such requirements.

2.2 Cs for Circuits

2.2.1 Overview

It is now well-established that many sequentiabatgms captured in a language like C
can be synthesized to exceptionally fast circuitsfield-programmable gates arrays.

Numerous FPGA synthesis tools exist [39][49][57#LOwith commercial offerings

11

Figure 2: Although temporally-oriented algorithms in C candynthesized to a variety of circuits tradingsife and
performance, many clever circuits representingialpabriented algorithms are not reasonably ddsiggrom
temporally-oriented algorithms.

quicksort(array, left, right)

{
/I quicksort C code

2

[1 sorted| [1 sorte]
vV V

Merge

v =

[2 sorted] [2 sortel]

beginning to appear [24][25][76], and commerciampaiting platforms increasingly
supporting FPGAs [77][119]. Capturing algorithms@ncode (or a similar sequential
language, which for simplicity we’ll refer to asd@@de henceforth) provides tremendous
portability advantages, as code can be compiled tmicroprocessor, or synthesized
entirely or partially to FPGAs available on a coripg platform. Yet, designers still
often conceptualize and capture applications asiitidesigns, rather than as C code.
While this situation is partly explained by the atdlely nascent state of FPGA
compilation tools, a significant contributor is @lghe radically different computation
model provided by C than by circuits. The sequémitruction model of C is oriented to
time-ordered execution of instructions, while citslware oriented to spatial connectivity
of concurrently-executing components.

In contrast to the advent of compilers causing ragbe coding to be almost

entirely replaced by C coding, where both codindest were temporally oriented, the

12

sharp distinction between temporal and spatial risolikely means that spatial models
will persist in some form despite continued matoratof C-based FPGA synthesis.
Spatial models, such as circuits, possess tremsendegrees of design freedom. Much
human ingenuity often underlies the design of bmtstom circuits and what are known
as “hardware algorithms,” which often look radigallifferent from sequential code

algorithms designed to solve the same problem. dise “hardware algorithms” is a
misnomer in the era of FPGAS, which implement gtecas software, we use the term
“circuit-based algorithms”). Figure 2 shows thatilela standard synthesis tool might be
able to generate a number of different circuiteedasn the temporally-oriented Quicksort
algorithm, no amount of transformations would Heely to discover a systolic array

circuit implementation for fast sorting.

Although circuits represent an important applicatmapture method, capturing
applications as circuits suffers from limited poitey. A circuit, captured at the netlist
level or even at the register-transfer level, cameadily be adapted to FPGAs differing
in their capacities or hard core resources, nor coepiled to execute on a
microprocessor. Improved portability could increa® present usefulness of an
application across platforms, while also increastagongevity. In contrast to a circuit,
an algorithm captured in C code has much portgbilt code can be synthesized to
FPGAs of differing capacities and hard core resesirthrough transformations like loop
unrolling and through scheduling, allocation, bimgliand technology mapping. C code
can even be partitioned among a microprocessoiF&IA, or run on a microprocessor

(or several microprocessors) without any FPGAdlat a

13

We therefore asked the following question:

To what extent can human-designed circuit impleatemts of an application
be captured in a form of C code that can be expetiebe synthesized back to

the same human-designed circuit?

Note that this question has a subtle but criticlebnce from most past research that
instead seeks to convert arexisting sequential algorithm to a circuit
[39][43][49][64][104][126][129] — research that ey has much utility. To the best of
our knowledge, the above question has not beewrthjiraddressed by the codesign or
synthesis communities.

Several previous works are related to the ques8att.[130] provides guidelines
for C coders to yield improved circuits. HaubelB8]J&ormally analyzes a high-level
description’s flexibility, meaning the extent to wh the description can be synthesized
to a wide variety of circuits.

Other works are also related. Work on reverse easging of circuits [40][59] has
focused on obtaining low-level behavioral modelss Boolean equations or finite-state
machines, for retargeting to different silicon teclogies. Those works are not intended
for targeting microprocessors. Early hardware/safevpartitioning work moved non-
critical circuit functionality from circuits to mroprocessor code [58]. SystemC [46],
involving libraries and macros added to C++, alldarstemporal and spatial concepts to
be captured in a single C++ description.

Of course, circuit designers who use synthesisstogdjularly use knowledge of

synthesis techniques when writing behavioral (egpjster-transfer-level) descriptions,

14

such as writing a for loop that can easily be datbl Likewise, parallel architecture
programmers write simpler code (e.g., loops) thagvk compilers will transform to

parallel code. The question we seek to answer takegit techniques to a higher level,
and differs from parallel programming techniquegha finer granularity of parallelism
offered by FPGAs compared to more standard paaitlitectures.

None of the above works explicitly addresses whe#xasting circuits can be
captured in a temporal language. Answering thisstjore is relevant to the FPGA and
codesign communities, to determine the extent tehvl® code can be used to distribute
circuit-based algorithms to different compute matis — algorithms that today are

commonly captured and distributed as circuit orsteg-transfer-level designs.

2.2.2 A Motivating Example — Sorting

There are numerous factors a designer must consitien implementing a sorting
algorithm, including data set size, data orderang now more recently, the platform on
which the algorithm will run.

A software designer targeting a microprocessorfqgiat might use a classic
temporal sorting algorithm, such as Quicksort[@#jjch recursively divides the data into
sets greater than and less than a selected pivoanitrast, a designer targeting an FPGA
might approach the problem differently, instead/irggy on spatial constructs to capture
the notion of sorting. The designer might use st@dic Mergesort [154] or Bitonic sort
[17], representing highly-parallel, pipelined sngimethods, which cannot reasonably be

expected to be derived from a Quicksort algorithynabhy FPGA compiler (Figure 2).

15

Figure 3: C is for circuits: Some circuits might still beptared in a form of C code that is synthesizablkkha the
original circuit; such C code would provide tremend portability advantages over other circuit repreations

Queue 16_u,16_s,1_1,1 2,2 1,2 2,4 1
42,8 1,82

Split(16_u.dequeue, 16_u.dequeue, 1_1,1
C COde? |::> stagel = Merge(1_1.dequeue, 1_2.deque
Split(16_u.dequeue, 16_u.dequet

stagel += Merge(1_1.dequell_2.dequeue)
Split(stagel, 2_1,2_:

Tempora ~ Vo

' Spatial

N unsorte:

Manual
Capture

N unsorte:

Same circuit
ad — >|lsortvﬂ|1vsortel|
custom circuit
Merge
Split Split
[2 sorte(] | 2 sorte] [2 sortel] | 2 sorte]

Those methods are radically different than the mnapQuicksort algorithm, even though
they accomplish the same task.

Unfortunately, a systolic Mergesort circuit represeion is typically not portable,
often distributed as a bitstream or at best, soone fof netlist. The lack of portability
forces distributors to design not only differentcaits for different data set sizes, but also
for different FPGA sizes and families, which coelakily number in the hundreds. Figure
3 illustrates the portability benefits of capturicigcuits as C code, showing that if we can
capture the systolic Mergesort circuitsameform of C code that could be synthesized to
the original circuit, we would have a more robusstribution format, capable of being

run on a wide range of platforms.

2.2.3 Study Methodology

16

To investigate whether circuits designed for FPQAght be captured and
synthesized from C code, we examined all papera Bix years of the IEEE Symposium
on Field-Programmable Custom Computing MachinesQAC001-2006), a forum for
presentation of clever human-designed circuits FBIGAs (among other topics). We
found 70 papers that focused on description of oeeuit-based algorithms or clever
circuit implementations of standard algorithmsgome application. After estimating that
each example would require 2-3 days of investigatiee decided to investigate in-depth
half of those circuits. We pseudo-randomly chosedihbset of 35 circuits to investigate
by sorting the 70 circuit papers according to tla@pearance in the proceedings, starting
from oldest to newest. We chose every other pageinfestigation — we explain this to
make clear that the circuits were not handpickeseteon their suitability for C code
representation.

We then strove to find C code descriptions for tiveuits that would compile
back to the same circuit. The goal of the study teasnd any C description that would
compile to the human-designed circuit. Specifigatlhe claim is not that all functionally
equivalent C algorithms would compile to that citc®nly one is needed, and that one
would be used to distribute the circuit-based atgor. Furthermore, the goal is not to
automate the derivation of the C code from theudydout merely to determine if a
competent designer could capture his/her circull tode if necessary.

If we were able to capture the circuit in C codat twould synthesize back to the

same circuit, we classified the circuit as-tlerivable from C

17

Note that if we failed to classify the circuit as-derivable from Canother C
algorithm for the application likely exists that wid synthesize to some other circuit with
the same functionality, just not the same circsittttee human-designed one. That other
circuit would likely have slower performance.

We further sub-categorized the circuits that wentbto bere-derivable from Gas
either synthesizable fromtémporally-oriented C’or “spatially-oriented C” We define
“temporally-oriented C"as the obvious algorithm that most simply captuteddesired
behavior of the application (e.g., what we feethe most “natural” algorithm). If we
failed to find such a C algorithm, we next tried dapture the circuit’'s unique spatial
features, through careful use of subroutines amgdpsuch that a reasonable FPGA
synthesis tool should yield the original circuitagg While noting whether circuits were
captured intemporally-orientedand spatially-oriented Cwas not the main point of the
study, the distinction does provide some notiorthaf effort required by designers to
capture their circuit in C code, with spatially@med C being harder to write.
Furthermore, the distinction also shows the ext@nthe cleverness of the human-
designed circuit, with those derivable from the tgplg-oriented C rather than

temporally-oriented C likely exhibiting more comypler novel circuit design features.

18

Because FPGA synthesis tools are still maturing @redently differ widely, we did not
simply run the C algorithm through one particulaolt Instead, we defined the
transformations and optimizations that could beeetgd in a mature “standard”
synthesis tool. The reader may thus determine fan/Herself whether the
transformations are “standard” enough to be apphgdsynthesis tools. To perform
synthesis, we followed the methodology shown inukgég4. If we were able to capture
the circuit in C, we converted that C code intocoatmol/data flow graph. We optimized
the graph by performing the following optimizatioms the order shown: function
inlining, loop unrolling, predication, constant pegation, dead code elimination, and
Figure 4: Study methodology. We modeled each circuit in Cempossible). We then performed the following

transformations and optimizations in the order shawpresenting a “standard” synthesis tool, arskoked whether the
original circuit was recovered.

Same

circuit? }' Capture circuit in ¢

If not,

modify C

and repeat ¢ “Standard” synthesis

51 Function Inlinin
CDFG 22. Loop Unrolling
o 3. Predication

1

1

1

1

i

N |
Optlmlzatld:>4 Constant 1
- !
|

1

1

. iPropagation
5. Dead Code
Resource Elimination
' . 6. Code Haoistin
SChedu“m .. :
\ |
1

19

code hoisting — straightforward optimizations thatld be reasonably implemented in
any compilation tool. We performed definition-usealysis to verify that regions of a
circuit could be pipelined straightforwardly. We ripemed resource allocation by
allocating a resource for every operation in th@afttav graph. We could have used a
more conservative resource allocation, but mosthef circuits we investigated were
pipelined, and therefore would not allow sharingegources. We scheduled the graph
using resource-constrained list scheduling, insgrtegisters between each stage of the
dataflow graph. Again, we could have used a moresexwative pipelining approach to
save area, but we were interested in maximizingkcfeequency. Next, we converted the
scheduled graph into a structural VHDL represeotathat we then synthesized using
Xilinx ISE.

Designers typically define a custom memory intesféo best serve the custom
circuit, yet our defined standard synthesis tooésdmot involve synthesis of custom
memory interfaces. Since this work concentratecapturing the compute aspect of
custom circuits in C, and not the memory interfage,assume that the synthesis tool is
provided with information for each circuit from vehi the tool can synthesize a custom
interface similar to that in the custom circuit.tée work will involve developing
mechanisms for providing custom interface inform@tias well as synthesis
transformations to generate custom interfaces

Most of the custom circuits used a standard menmigrface consisting of one
dual-ported memory, which allows one port for regdand one for writing. This kind of

memory interface allows for block transfers andy&rtransfers, similar to many DMAs.

20

Some circuits implemented streaming data from bipenemories, while others did not
use external memory.

For each example, we targeted the specific FPGA @sieeach of the custom
circuits in their original papers. Although we cdutave compared both the original
circuit and synthesized circuit on newer FPGA fedarive felt such comparison might be
unfair if the custom circuits were designed basedh® characteristics of the original

FPGA fabric.

2.2.4 Example — Gaussian Noise Generator

Figure 5 shows the custom circuit in [88] for a &san noise generator. The circuit
consists of four pipeline stages. The first stagbkzes linear feedback shift registers
(LFSRs) to generate a 32-bit and 18-bit random rerm&orresponding tal and u2.
Stage 2 uses the random numbers from the previmys as input to the illustrated
functions, which consist of square root, sine, mesiand log functions. Stage 3 adds
every two consecutive results from stage 2. Theutiimplements this functionality by
delaying one input for a cycle using a register trah adding the output of the register
with the output from the previous stage. This bufiig results in a delay to the pipeline,
potentially causing an output to be generated e?epycles. Stage 4 multiplexes the
results from stage 3 to the output of the noiseegeor. By adding a register to the right
input of the multiplexor, the circuit generates amput every cycle, instead of two

outputs every two cycles.

21

Figure 5: Circuit for a Gaussian noise generator.

Stage: | Linear Feedback ShiRegisters|

noise

We first tried to determine if the circuit wag-derivable from temporally-
oriented C The natural temporal C uses a loop that exech&ebehavior of stages 1 and
2 twice to generate two samples for the accumuiizye in stage 3. FPGA synthesis tools
would replicate the circuit used in each iteratafrthe loop, increasing the area of the
circuit without improving performance. We next ttieo determine if the circuit wag-
derivable from spatially-oriented.@igure 6 shows a portion of the C code to model t
Gaussian noise generator circuit in Figure 5. Theo@e utilizes a single function to
describe each pipeline stage of the custom cirdinie output is stored into the array
noise[]. To handle outputting to an array, we modified tloele for stage 4 to store the
two noise samples to two memory locations, as agbds multiplexing the output to a
single location. As we will show, this code is dydized to the same stage 4 circuit
shown in Figure 5. For simplicity, the C code uBeating point arithmetic as opposed to
the fixed-point arithmetic in the custom circuithél fixed-point code is similar, with the

main difference being that the code uses logacal operations to remove unused bits of

22

Figure 6: Spatial C code for Gaussian noise generator.

inline float rand0_1() {
return rand()/((float) RAND_MAX+1);

inline Stagel doStagel() {
Stagel result;
result.ul = rand0_1();
result.u2 = rand0_1();
return result;

inline Stage2 doStage?2(float ul, float u2) {

Stage2 result;
float f_ul, g1_u2, g2_u2;

f_ul =sqgrt(-log(ul));

gl u2 =sin(2*M_PI*u2);
g2_u2 = cos(2*M_PI*u2);
result.x1 =f ul*gl_u2;
result.x2 = f_ul*g2_u2;

return result;

inline Stage3 doStage3(float x1, float x2') {

static float acc1=0.0, acc2=0.0;
Stage3 result;

result.x1 = accl + x1;
result.x2 = acc2 + x2;
accl =x1;

acc2 = x2;

return result;

inline void doStage4(int i, int j,
float x1, float x2') {
noise[i] = stage3.x1;
noise[j] = stage3.x2;
int main() {

Stagel stagel; Stage?2 stage2; Stage3 stage3;
unsigned int 1=0;

while (1) {
stagel = doStagel();
stage2 = doStage2(stagel.ul, stagel.u2);
stage3 = doStage3(stage2.x1, stage2.x2);
doStage4(i, i+1%NUM_SAMPLES,
stage3.x1, stage3.x2);
i = (i+2)%NUM_SAMPLES;

return O;

the random numbers, essentially specifying thelwodteach number to be 32 bits fdk
and 18 bits fou2.
The control and data flow graphs generated durymghesis for each function of

the C code are shown in Figure 7. Figure 7(a) shibscontrol flow graph fomain(),

23

Figure 7: Control/data flow graph for C-level Gaussian najseerator functions (a) main, (b) doStagel, (clags,
(d) doStage3, and (e) doStage4.

main()
dost agel(doStagel() doStage2()
rand(rand() u2 ul u2
doSt age2() v v
ul w2 91(u2) f(ul) go(u2)
¥ ¥
doSt age3() (b) t t
(a) doSt age4() (C) x1 x2
doStage3() doStage4()
acclxl acc2 x2
¥ X ¥ x1 X2
+ +

v VoY
@) acer atco (e) noise[i] noise(j]

where each function call has a corresponding nodba graph. For simplicity, we have
omitted the control flow node for the code usedupmlate the variable Figure 7(b)
shows the data flow graph for functidoStagel()We omit the control flow graph for
this function, and all other functions, becausedteesponding graphs consist of only a
single node. The data flow graph for stage 1 assigndom numbers to the two outputs
of the function. Although not shown, the data flgnaph also contains operations to
constrain the random numbers to values betweendOlaifrigure 7(c) and Figure 7(d)
show the data flow graphs for tleStage2(Jand doStage3(functions. The data flow
graph fordoStage4()shown in Figure 7(e), produces two outputs irttefathe single
output from Figure 5.

Figure 8 shows the circuits for each data flow gr&mr each C function after
synthesis performs scheduling, resource allocatma, binding. For stage 1, shown in
Figure 8(a), synthesis maps the random number gtnmsrto LFSRs. Figure 8(b) shows

the circuit for stage 2, for which synthesis ugkzapproximation techniques to map the

24

Figure 8: Datapaths after scheduling, resource allocatiod bamding for (a) doStagel, (b) doStage2, (c) dg&3a(d)
doStage3, (e) main before pipelining, and (f) nadter pipelining. Note the similarity with Figure 5

doStagel() doStage?2() doStage3()
ul u2
A gll(—_'—IUZ)) @) E& éﬂ
*/ N -
(a) ® 3 3 () v ¥
doStage4() main() main() - pipelined

[-:-

Do\ 7 gl(u2) f(ul) 92(u2)

noisel] 91(U2) f(u1) gzl__l(_llJz)
(d) T \ / N7
[acc]
P %:l
H
v v
+ +

noise(]

functions in stage 2 onto the same resources wsa@dgroximate these functions in the
custom design. Unlike in the custom circuit, schieduduring synthesis is likely to insert
registers between the approximation circuits ared rttultipliers in order to reduce the
critical path length. For stage 3, shown in Figfe), synthesis mapscclandacc2onto
registers because the outputs from this stage s again as inputs. Stage 4, shown in
Figure 8(d), multiplexes the two outputs from thatad flow graph for this stage.
Synthesis adds the multiplexor because the oufputs the data flow graph are written
to memory, which in this case is a shared resowitteonly a single port. To allow both
inputs to be written to memory, synthesis delaysii2 one cycle using a register while

the circuit storex1.

25

To optimize the circuit, synthesis can inline dltlwe functions for each stage into
the main function and then perform code hoistinghtuve the code for each stage into a
single control flow node, which is possible sinbere exists no control in each function.
The resulting data flow graph for this single cohtrode is shown in Figure 8(e). During
scheduling, synthesis will insert a register athelavel of the data flow graph, as shown
in Figure 8(f). Note the similarity of the circuit Figure 8(f) with the custom circuit
shown in Figure 5. The only difference in the swsiked circuit is the addition of
registers before the multipliers — an addition thay actually improve performance
compared to the custom circuit.

The throughput of the synthesized circuit is ideadtito the custom circuit, with
each circuit producing a noise sample each cyche Tatency of each pipeline is
different, but this latency only determines whea ithtial output from the circuit is valid.
We point out that under certain situations, the tiwrouits are likely to differ in other
ways. For example, if the target architecture 2é8i a dual-ported memory or a memory
with sufficient bandwidth to simultaneously stoneot results, then stage 4 of the
synthesized circuit will not contain the multiplexar buffer register. This architectural
difference does not affect throughput, but doecaftiming, resulting in two noise
samples every two cycles. To our knowledge, symhesinot guarantee the same timing
as the custom circuit due to the lack of timingomfation in the C code. However, the
timing difference after synthesis does not appedetcritical.

Thus, we classify this circuit as re-derivable fr@gpatially-oriented) C.

26

Figure 9: Molecular dynamics accelerator. (a) Code for calitng) nonbonded forces. (b) Custom circuit utiligendivided
pipeline to reduce latency penalty. (c) The syriteebpipeline differs from the custom circuit byliaing a single pipeline. The

synthesized circuit must stall due to a single ducing throughput.
foreach atom i do y gle myne g gnhp

ri = positionOBMIi] pOSltIOnOBMU forceOBM[]
fi = forceOBMIi]
n=0 Latenc positionOBM([], forceOBM[

foreach neighbor j of i do i i
if |ri—rj| <rc then Plpelmel Ipl ¢
rj‘: positionOBM[!] pipe"nel
fij = calcNBF(ri, rj)
forceRA

pL+p

fi = fi + fij
fj = forceOBM[j]

forceRAM[n] = fj — fij Pipeline2 p2

ennd_ n+l Max throughput
oy 1 output every 2 cycles
o el forceRA
orceOBMI[I] = fi Latency penalty: pl+p
. b f in forceRAM d Max throughput

oreach fj in force R 1 output per cycle

force0BM(j] =i (@) Latency penalty: p (b) (c)

end
end

2.2.5 Example — Molecular Dynamics Simulator

Scrofano [118] creates a custom FPGA acceleratomfdecular dynamics simulations.
The authors identify the nonbonded-forces calontetias the most time consuming
region of the simulation and provide a custom dirfar those calculations.

Figure 9(a) shows the pseudocode implemented bgukm circuit. For each
atom, the inner loop calculates the forces fromheagighbor of the atom. The code
stores the forces in the arrdgrceRAM which the following loop stores into the
forceOBMarray.

Figure 9(b) shows a high-level view of the customtwt for the inner loop.
Scrofano utilizes two separate on-board memori@&\MDto store thepositionOBMarray
and theforceOBM array. Utilizing two memories allows the circud simultaneously
stream position and force data without stallingeréfiore achieving a maximum
throughput of one force calculation per cycle. $amo implements théorceRAMarray

in on-chip memory to minimize the amount of readevmode switches that would be

27

required if the forces were stored back immediateltheforceOBMarray. To optimize
the datapath, the authors divided the pipeline tato pipelines separated by a FIFO.
Dividing the pipeline reduced the latency penalitgttwas incurred every time the inner
loop executed. The first pipeline generates oufpster than the second pipeline and
therefore only the latency of the second pipeliag & significant effect on performance.
If we used C code based on the pseudocode in Fifa)eto try and model the
custom circuit, the inner loop becomes a fully piped circuit that streams in the force
and position data. Synthesis maps tbheceRAM array onto block RAMs, which is
possible due to the small size of the array, raguih a single pipeline that performs the
same operations as the two pipelines in the cusiocnit. To our knowledge, there is
presently no common synthesis technique that autcatis divides a pipeline as is done
in the custom circuit. Such a technique may be iplessrequiring analysis to best
determine the placement and size of the buffer. Bing a single pipeline, the
synthesized circuit incurs a larger latency penaligh time the inner loop executes, as
shown in Figure 9(c). The designer might insteadatl the FPGA synthesis tool by
altering the C code in Figure 9(a) to model thefdauthat separates the two pipelines.
This might be accomplished by inserting a functeail to enqueue the intermediate
result of the first pipeline and dequeuing a resulthe input of the second pipeline. Of
course, this relies on a model of a buffer the FRG@Apiler can recognize. By modeling
the spatial constructs of the circuit, an FPGA wwolld be able to effectively recover the

original circuit.

28

Another important difference when using the temlppi@iented code in Figure
9(a) is that the synthesized circuit uses a singdenory for input. When synthesizing
code to a specific architecture, the synthesis toakt use the appropriate memory
architecture, which we assume to be a single affi-otemory. Therefore, the synthesized
circuit must read the position and force arraysnfra single memory, which does not
provide sufficient bandwidth to execute the pipeliwvithout stalls. Therefore, the
synthesized circuit has a lower throughput, ouipgtia force calculation every two
cycles. If enough on-chip RAM existed to store bathays, or the synthesis tool could
stream data into two on-chip memories fast enotiggn the synthesized circuit could
perform similarly to the designer-specified circuit

Thus, we classify the molecular dynamics circuiteslerivable from (spatially-

oriented) C

2.2.6 Example - Cellular Learning Automata-Based Evoludiy
Computing
In [62], Hariri et al. proposed a custom architeettor cellular learning automata
based evolutionary computing (CLA-EC). This arcttisee consists of a ring of cells,
each of which stores a genome. The architecturedohn cell is shown in
Figure 10(a). Each cell consists of multiple leagnautomata (LA) that determine
a new genome. The update circuit replaces theiegigenome with the new genome if

the fitness value of the new genome is better. Mhgrity function uses the genome of

29

Figure 10: The proposed custom CLA-EC circuit consisting oifhg of (a) custom CLA-EC cells and (b) C pseudaxtitht
synthesizes to an almost identical parallel cirfeode for cell internals is omitted).

Bl - Cell cells[MAX_CELLS]:

: : int main() {
|3L> Majority | Genome |<—| Updatel? for (i=0; i < MAX_CELLS; i++)
rightE generateNewGenome(i);
- : updateGenomes();

New Genomg }return 0;

void updateGenomes(}{

NITYNITY NI for(i=0; i<MAX_CELLS: i++)
(a) : cells[i].genome = cells[i].newGenome;

Beceeececsssseeccssssssscccssssssscccssssssccccssscns } (b)

the left and right neighbor cells to generate @icément signals that guide the learning
automata.

An abbreviated version of the C code we used toahibe CLA-EC is shown in

Figure 10(b). This code iterates over some maxinpassible number of cells,
which is based on the input size. For each gelherateNewGenomeifnplements the
behavior of the majority function, learning automatnd the update function. The
generateNewGenomefinction updates the new genome if the new genisnimetter,
otherwise the function sets new genome equal to d¢hk genome. Because
generateNewGenome(pnly modifies a single cell, the loop containingnet
generateNewGenomei{)nction has no loop-carried dependencies, allgvaynthesis to
parallelize the function calls by performing fumctiinlining, loop unrolling, predication,
and code hoisting.

After the generateNewGenomelgop completesupdateGenomes()pdates the
genome for each cell with the new genome determimedhe generateNewGenome()

function calls. By modifying the genome of eachl,céle updateGenomes(gunction

30

creates a dependency with tpenerateNewGenomd()nction, which uses the genome as
input. To handle this dependency, synthesis sthegenome in a register. The resulting
circuit is almost identical to the custom circditie only difference is the addition of a
multiplexor before the new genome register thdiegiselects the output of the learning
automata or the output of the genome register.

The simplicity of the C code in Figure 10(b) sudgethat this implementation
may also be the most natural way of writing theliappon in C. We classify the cellular

automata circuit as readitg-derivable from (temporally-oriented). C

2.2.7 More Experiments

We described several examples from the FCCM lieeatnd our attempts to capture
those designs in some form of standard C code. W\ebriefly highlight several other
randomly selected examples before summarizingtseBul the entire examined set.

Tripp [138] designed a circuit to implement a langetropolitan traffic simulation
(RoadTraffic). Each cell computed car velocities and positibased on a specific rule
set imposed by the designers which reflected realdwtraffic conditions. When we
focused on the computational aspect of each cethéennetwork, we found the traffic
design to be readilglerivable from (temporally-oriented) C.

Bogdonav [19] designed a systolic array structaresdlve matrix calculations
using Gaussian eliminatiorEljmination). The authors in fact modified a temporally-
oriented algorithm to achieve their circuit desigiWe also found the circuit to be-

derivable from Ccode. We decided to model the Gaussian eliminataaulation with

31

Figure 11: 82% of the studied circuits published in FCCM weralerivable from C, meaning they could be captime
some form of C such that a synthesis tool couldxpected to synthesize the same or similar custsigd.

_Year of Publication

Design

Re-derivatoten C? Method/Reason

2001 3D Vec. Normalization Yes Spatial, if oelialgorithms can be specified
2001 Efficient CAM No Uses dynamic FPGA rogtin

2001 Automated Sensor Yes Temporal, floatingtpe fixed point

2001 Regular Expression Yes Spatial, creativenections of one-bit flip flops
2002 Hyperspectral Image Yes Spatial, datadezorg

2002 Machine Vision Yes Spatial, custom pigatin

2002 RC4 Yes Temporal, straightforward implatagon

2002 Set Covering Yes Spatial, data structimesasy hw implementation
2002 Template Matching Yes Spatial, heavy nicalifons to original algorithm
2002 Triangle Mesh Yes Spatial, custom encodaigeme

2003 Congruential Sieves Yes Temporal, stréoghtrd translation

2003 Content Scanning Yes Temporal

2003 F.P and Square Yes Spatial

2003 Gaussian Noise Yes Spatial, requires sheofispatial C constructs
2003 TRNG No Requires sampling a high frequerack for noise
2004 3D FDTD Method Yes Spatial

2004 Deep Packet Filter No Requires knowledgenderlying FPGA

2004 Online Floating Point No Online algorithwvariable length buffers

2004 Molecular Dynamics Yes Spatial

2004 Pattern Matching Yes Spatial

2004 Seismic Migration Yes Spatial

2004 Software Deceleration No Use a uP foratshe

2004 V.M Window No Specific timing schemes lepented

2005 Data Mining Yes Spatial

2005 Cell Automata Yes Temporal

2005 Particle Graphics Yes Spatial

2005 Radiosity Yes Temporal

2005 Transient Waves Yes Spatial

2005 Road Traffic Yes Temporal

2006 All Pairs Shortest Path Yes Spatial

2006 Apriori Data Mining Yes Spatial

2006 Molecular Dynamics Yes Spatial, defineasafe memories, custom pipeline
2006 Gaussian Elimination Yes Spatial

2006 Radiation Dose Yes Temporal

2006 Random Variates Yes Spatial

Totals: 82% of the circuits were re-derivable from C

spatially-oriented Ccode to ensure synthesis transformations woulovescthe original

systolic array structure.

Krueger [86] designed a floating point unit to ada streaming numbers. The

design incorporated variable delays, which we werteable to capture in either temporal

or spatial C. We classified their designrest re-derivable from CWe again point out

that there do exist C algorithms for this applioatthat would synthesize smmecircuit

— just not to the particular published circuit.

32

Figure 11 summarizes all the designs studied. Asrdeed earlier, we identified
70 custom circuit designs published in the lastyaars of the IEEE Symposium on
Field-Programmable Custom Computing Machines, ofclwhwe chose every other
circuit to study in depth, totaling 35 custom citalesigns. Of the 35 designs, 29 of the
designs, or 82%, were found to feederivable from COf the 29 circuitge-derivable
from C 9 of those, or 25% of all 35 circuits, were captlin temporally-orientedC.
Again, this means these designs could have bedtemwin natural high level code, and
we could have reasonably expected a synthesiddaeicover the circuit, without much
human effort at the circuit level. We note thatadfit of being able to capture the circuit
astemporally-oriented Gs that if the platform on which the circuit ruhappens to be a
microprocessor, the code may be able to run atar its best performance, because the
algorithm may be the same algorithm one would hawéten if initially targeting a
MiCroprocessor.

20 of the circuits, or 57%, were re-derivable fr@rwere captured ispatially-
orientedC code. There were several common reasons why grdbad to be described
in spatially-orientedC as opposed to the more natutr@mporally-orientedalgorithm.
Custom circuit designs often employed a combinatbrspatial techniques, including
intricate pipelining, custom buffering, advancednmoey hierarchies, and systolic array
connectivity, none of which could reasonably baleeived from the standard synthesis
techniques.

For 17% of the circuits, we were unable to captheecircuit in any form of C

code that would be synthesized back to that circddames-Roxby et. al [80] proposed

33

logic-centric systems in which they added micropssors to the design to make
effective use of the cache hierarchy, a techniqat reasonably describable using
standard C constructs. Several circuits [86][15l]zed low level cores that made re-
deriving from C difficult. Others [145] implementedcuits that relied on precise timing,
which is also difficult to capture in C. One circ{81] took advantage of the dynamic
reconfigurability of the FPGA to implement dynammuting, a technique clearly not
supported by standard C constructs.

In summary, 82% of the circuit designs publishedaiforum for circuit-based
algorithms could be captured in some form of steshda such that a synthesis tool
supporting a basic set of transformations couldvecthe circuit from that C code.

Figure 12(a) compares the performance of the cuskesigned circuits and the
circuits synthesized from the C code for several tlhé examined circuits. All
performances are normalized to the performanceh@fcustom-designed circuits. For
each example shown, the performance of the syagesircuit was either identical to
the custom circuit or slightly slower than the acust circuit. Had we modeled the
molecular dynamics circuit with the original temalbpseudocode shown in Figure 9(a),
the synthesized circuit would have been 2.3x slowhars performance decrease would
have been caused by the inability of synthesisptit & pipeline into smaller pipelines
that communicate using FIFOs. By modeling the mdbrcdynamics circuit with custom
spatially-oriented Gcode, synthesis is able to generate a nearlyicmaircuit.

Figure 12(b) compares the area, in slices, of §mhgsized circuits and the

custom circuits. On average, the synthesized ¢gaequired only6% more slices. This

34

Figure 12: Comparison of original custom circuits versus dicgynthesized from derived sequential code
representations(a) Normalized xecution time and (b) Normalized ardia€s) Both metrics are normalized to values for
' "7 Jstom circuit.

5 @ Custom 2
4 , 15
3 W Synthesized '
2

1

0

O Custom

| Synthesized

extra area was used by multiplexors and other [ige that synthesis was unable to
remove, and by additional pipeline registers.

advantage of describing a circuit in C is that thecan be distributed to different
platforms having different amounts of FPGAs, andFRGA synthesis tool could thus
allocate more or less resources for the applicatigtmout requiring a designer to
distribute a new circuit. In this section, we egtienthe changes in performance for each
application when being implemented on both a smaliel larger FPGA than the ones
used in the previous section.

A larger FPGA for the Gaussian noise generator @voobdt improve the
performance of calculating a single noise sampléwwould allow for more samples to be
generated per cycle by replicating the circuit seM@mes. While the ability to replicate a
circuit is not unique to writing the circuit in Gt certainly makes the task easier.
Alternatively, a larger FPGA could be used to imyaréhe accuracy of the approximation
circuits.

For the molecular dynamics simulator, a larger FR$®Ald potentially eliminate

the memory bottlenecks of the synthesized desfgnldrge portion of the input could be

35

stored in on-chip memory, then synthesis couldteréae same, or even an improved
memory architecture compared to the custom ciréndreased on-chip memory could
provide sufficient bandwidth to read multiple pasis and forces, improving the
throughput of the pipeline to several force caltates per cycle.

For a larger FPGACLA-EC potentially would achieve significant performance
improvements compared to software, due to thetghdi implement more cells on the
same device. In [86], the authors show an appraeiyndinear speedup compared to
software when increasing the number of cells. Basetheir results, an FPGA with twice
the capacity would result in an approximate 2x dppeAlternatively, a larger FPGA for
CLA-ECwould allow the circuit to determine an improvedut for a given run time.

For the Gaussian Elimination circuit, a larger FP@#uld not improve the
performance of the custom circuit for existing masizes. However, a larger FPGA
would enable circuits for larger matrices, imprayiperformance by at least 2x for a
matrix that would not fit in a smaller FPGA.

Similarly, a larger FPGA size for the metropolitaaffic simulationwouldenable
simulations of larger road networks.

For the online floating point unit, additional resces would not improve
performance because the parallelism of the hardsdmmited by non-constant bounded
loops that cannot be unrolled.

For smaller FPGAs, the C code for each applicatmmd be synthesized by the
FPGA to use fewer resources. In fact, every examyptept the Gaussian noise generator

could be implemented with a datapath consistingndy a multiplier, an adder, a register

36

file, and a corresponding amount of steering logite performance of these smaller
circuits would be slower than the pipelined implata¢ions of the original circuits, but
the C representation would still provide a coriegtlementation. For the Gaussian noise
generator, the C representation would synthesize ¢ocuit as long as the FPGA had
enough resources to implement the sine, cosinaregaot, and log functions.
Furthermore, every example could be implementenieiynton a microprocessor,
at the obvious cost of slowdown. We leave examitihegextent of that slowdown, and
partitioning among microprocessor and FPGA, foufetwork. However, because 25%
of the examined circuits could be captured temporally-oriented Ccode, the
microprocessor performance of these captured tsrcis likely comparable to
corresponding software-oriented implementationg;esihese implementations are likely

to be similar.

2.3 Other Related Work

2.3.1 C-based Synthesis Tools

There is a growing community that seeks to congristing sequential algorithms into
structures suitable for FPGA implementation. NuraerBPGA synthesis tools exist, with
several commercial offerings beginning to appédast offerings extend the C language
with parallel constructs or compiler-specific praagrthat aid in exposing parallelism and
pipelining opportunities. Other efforts [106][14<omatically attempt to extract as
much parallelism and pipelining opportunities, wetstill allowing the original C code to

compile for a traditional CPU.

37

2.3.2 Parallel Languages

There are a number of models of computation amiiticapture methods. Brown [21]
shows that a parallel model of computation requireschine primitive units, control

constructs, communication mechanisms, and synchatan mechanisms. Circuits are
usually captured in a hardware description langu&dil) like Verilog [141], or VHDL

[142], although circuits can also be captured usiigematics.

2.3.3 Portability

There has been previous work in capturing appboati and circuits to increase
portability. Andrews and Anderson [3][4] focus omeating operating system and
middleware abstractions that extend across thewsaedsoftware boundary, enabling a
designer to create applications for hybrid platfermith one executable. Levine [91]
describes hybrid architectures with a single, ti@nsable executable. They argue that an
executable described for a queue machine (conwédraestack machine) makes runtime
optimizations to a specialized FPGA fabric feasiliMoore [100] describes writing
applications that dynamically bind at runtime toaefigurable hardware for the purposes
of portability. Similar to Andrews and Andersonse tauthors develop hardware/software
abstractions by writing middleware layers that wllapplication software to utilize
reconfigurable DSP cores. Vuletic [146] proposaeysiem-level virtualization layer and

a hardware-agnostic programming paradigm to hiddgyim details from the application

38

designer and lead to more portable circuit appboat Lysecky and Stitt [93][131]
showed that a temporally-based binary could pantbe used as part of a standard
FPGA binary approach. They introdud&arp Processors Warp processors can
dynamically profile, extract, and synthesize cormagiohally expensive temporal kernels
into fast FPGA circuits. Their approach makes FRG® flows completely transparent,

and result in application speedups up to 10X, araatgy savings of up 80%.

2.4 Requirements of a Language for Spatial Capture

C is for Circuits demonstrated that sequential leggs possess many constructs that
would form part of a viable distribution format fBPGA applications. In some cases, the
sequential programming constructs (sequential unstns, function calls, etc) were
sufficient to capture an FPGA application. In maonther cases, the sequential
programming model was limited, forcing awkward iewplentations, or at worst not
being able to capture the same behavior. For tli@AF&pplications that were difficult or
impossible to capture using only a sequential @egning model, we identified several
programming constructs that would have made sugleimentations feasible, or simpler
to capture. One requirement is the ability to gigticonnect two components together
through the use of a specified interface. Anotleguirement is the ability to control
precise timing synchronization between spatiallynrexted components. The third
requirement is that the language should be abbetexecuted on both a microprocessor

and an FPGA. Such a language requirement will delsequential constructs found in a

39

Figure 13: Pipelined Binary Tree [94]. Each level operatesceorently, taking the pattern and address inforomafiom
the previous level, and passing information tortbet level. Such a design cannot readily be captur a sequential
language, and requires explicit parallel constrtesapture for portable distribution

Current pattern

Memory
1 pattern

Level 1 logic

c Memory

Level 2 [lo 2 pattern

- Memory
- logic
Level 2 [o 4 pattern

k

Coge{ oo

2" pattern

Level n

language like C, with the addition of spatial aiding constructs found in explicitly
parallel languages like VHDL and Verilog.

For illustrative purposes, we use the pipelinedityrtree, developed by Lysecky
[94] to guide decisions on which parallel programghmodel best suits the constructs
required for such a portable distribution formagufe 13 shows an n-level pipelined
binary tree, a high throughput circuit for the pattcounting problem. Target patterns are
stored in the tree in breadth-first order. Thetfiesel (root) contains only one pattern, the
second level contains two patterns, the third foafterns, the fourth eight patterns, and
so on. Each level consists of control logic andesmory to store the patterns, and another
memory of the same size (not shown in the figusenaintain pattern counts. Each level
operates concurrently, taking information from tipeevious level, and sending

information to the next level.

40

Level 1 receives the current pattern and comparesthe target pattern. If equal,
level 1's logic increments the count associated hitat target pattern. If less, the logic
passes the pattern to level 2, informing level btk in its left node (because in a binary
tree, if the pattern is less than the root, theardeproceeds down the left sub-tree) — in
particular, by telling level 2 to look at addresdfQyreater, level 1 tells level 2 to look in
address 1. Level 2 then compares the pattern hatharget pattern located in the address
it received from level 1 (while level 1 meanwhil®pesses the next incoming pattern). If
equal, level 2’s logic increments the count asdediavith that target pattern. If less, level
2 appends a 0 to the address, so if the addres®,whe new address is 00; if it was 1,
the new address is 10. If greater, level 2 appanti$o the address, yielding either 01 or
11. Subsequent levels operate similarly, eithereimenting their count, or appending O
or 1 to the address as they pass the address texiidevel. The pipelined binary tree is
unique in the sense that it's an explicitjyarallel algorithm which dedicated
interconnections, precise timing, and that whicmnod readily be captured in a

sequential language like C for distribution purgose

241 POSIX

One popular method for implementing parallel baspglications is to use the POSIX-
based approach. POSIX is a thread-based libraggtiag C-based languages that allows
a designer to capture parallel programs with agdieed set of library function calls to
create, spawn, and join parallel computations @sses) together. POSIX-based

programming represents a possible method for cagtuFPGA-based applications

41

Figure 14: Snippet of POSIX-based implementation of one lef¢he pipelined binary tree and how levels arensmted

and how they communicate.

unsigned char levell_pattern;
unsigned char levell_address;
unsigned char levell_enable;

unsigned char level2_pattern;
unsigned char level2_address;
unsigned char level2_enable;

sem_t timestep_done,computeLevellDone;
sem_t levell_pattern, levell_address, levell_enable

void * computeLevell(void * arg) {

static TPM[2];
TPM[0] = 10;
TPM[1] = 20;

while (1) {
sem_wait(×tep_done);
sem_wait(&levell_pattern);
sem_wait(&levell_address);
sem_wait(&levell_enable);

sem_t level2_pattern, level2_address, level2_enable)
/lactual behavior of levell

level2_pattern = levell_pattern;

void * ClockTick(void * arg) { if(levell_pattern == TPM[levell_address]){

while(1){ level2_address = (levell_address << 1) | 1
sem_wait(&computeLevelODone);
sem_wait(&computeLevellDone); else{
sem_wait(&computeLevel2Done); level2_address = (levell_address << 1) | 0
sem_post(×tep_done); }
} } if(levell_pattern == TPM[levell_address]){
level2_enable = 0;
int main(){
pthread_t timeStepFunction; else{
pthread_t computelevelo; level2_enable = 1;
pthread_t computelevell; }

pthread_t computelevel2;
sem_post(&level2_pattern);

sem_post(&level2_address);
sem_post(&level2_enable);
sem_post(&computelLevellDone);

pthread_create(&computelevel0);
pthread_create(&computelevell);
pthread_create(&computelevel2);
pthread_create(&timeStepFunction); }
pthread_join(computelevelO, NULL);
pthread_join(computelevell, NULL);
pthread_join(computelevel2, NULL);
pthread_join(timeStepFunction, NULL);

return O;

because the combination of parallel constructsm(frBOSIX) and the sequential
constructs (from the C-based language) seem tohntlagcrequirements needed of many
FPGA based applications.

Figure 14 shows the earlier described pipeline@utyitree implemented using a
POSIX-based approach. The implementation works, buffers from several
disadvantages. Because the pipelined binary tresefile from precisely timed

communication in which every level is speaking withe next level every cycle,

42

modeling such behavior using a thread-based appr@adifficult, hard to read, and

difficult to extend. As shown in the figure, thesdmer must explicitly create a new
thread that manages global time. Also, the POSIgterelies on using a complicated
set of locks and semaphores to guard the globalanespace from being incorrectly

written to and/or read from. Whereas one hallmaakkt bf FPGA-based circuits is the
precisely-timed communication between concurremthgcuting components, POSIX-
based approaches typically benefit most coarse agnwation mechanisms, and begin to
suffer both in performance and robustness as tlpdementation tries to capture finer

grained communication granularity.

2.4.2 Other Thread-Based Approaches

There are other thread-based approaches we cagidera possible portable distribution
format for FPGA-based applications. The MessagesiRgsInterface (MPI) [97]
represents one such approach. In contrast to &RkHSed approach which uses shared
memory to communicate among concurrently executbognponents, concurrently
executing in MPIl-based applications pass explickssages to each other, both
synchronously and asynchronously. MPIl-based appesacwork well for large
distributed systems, but still don’t match the mely timed communication model often
seen of FPGA applications.

Real-time operating system (RTOS’s) represent arfigrained approach,
allowing the user to time at some granularity tleziqul at which parallel processes

should execute, but still fall shy of the precisgtged communication required of many

43

FPGA applications. For instance, while an RTOS inajlow the designer to specify that
a set of processes execute every millisecond, guehularity is often insufficient, and
there is usually no guarantee as to the orderine®xecution of the processes, which

could lead to incorrect behavior.

243 SystemC

Another method for capturing FPGA applicationsoisise SystemC. SystemC is a set of
libraries that seeks to bridge the gap between HBmd the standard programming
language C++, by achieving HDL functionality usidt+ objects, thus enabling a
designer to describe a complete system, includoth bequential program behavior and
circuit behavior, in a single language environmé&mngure 15 shows the same pipelined
binary tree captured using SystemC. The SystemChadeis attractive, allowing a
designer to capture concurrently executing compenesing well known C++ practices
(class creation, templates, etc) while still allogvifor precisely timed communication
because each component be “clocked” by a globa@kdbat manages simulated time,

and need not be explicitly introduced into the gesi

44

Figure 15: Snippet of SystemC implementation of a level ofpiipelined binary tree and how multiple levels are

connected

class LEVELL: public sc_module {
public:
sc_in<sc_uint<8> > p_i; //pattern
sc_in<sc_uint<1>> A_i; //address
sc_in<bool> cen_i; /lchip enab
sc_in_clk clock; /linput clock

Explicit ports foi

SC_out<sc_uint<8>>p_o; //pattern connecting

Sc_out<sc_uint<2>> A _o; //address

sc_out<bool> cen_o; /lchip enab@eoncurrently
. executlng

/I Tell SystemC this is a SystemC module

SC_HAS_PROCESS(LEVEL1); ~components

int TPM[2];
int CM[2];

int address;

/I Constructor, declare concurrent processes here
LEVEL1(sc_module_name n) : sc_module(n) {
SC_METHOD (computeLevell);
sensitive << clock.pos();
CMI0] = 0; CM[1] = 0;
TPMIO] = 8; TPM[1] = 24;

void computeLevell() {

p_o.write(p_i.read()); //pattern is passithr

address = A_i.read().to_int();

if(p_i.read().to_int() > TPM[address]){
A_o.write(sc_uint<2>((A_i.read(), true)));

else{
A_o.write(concat(A_i.read(), false));

}

if(p_i.read().to_int() == TPM[addre:
cen_o.write(false);

else{
if(cen_i.read() == true){
cen_o.write(true);

elsef{
cen_o.write(false);

}
}

}

class BIN_TREE: public sc_module {
public:
Sc_in<sc_uint<8> > p_i; //pattern
sc_in<bool> A_i; //address
sc_in<bool> cen_i; /lchip enable
sc_in_clk clock; /linput clock

SC_out<sc_uint<8>>p_o; //pattern
sc_out<sc_uint<5>> A_o; //address
sc_out<bool> cen_o; /Ichip enable

/I Tell SystemC this is a SystemC module
SC_HAS_PROCESS(BIN_TREE);

/I Constructor, declare concurrent processes here
BIN_TREE(sc_module_name n) :
sc_module(n), bintree0("level0"),
bintreel("levell"),
bintree2("level2"), bintree3("level3"),
bintree4("leveld™) {

//0th LEVEL)
bintree0.p_i(p_i); Interc_onnectlons
bintree0.A_i(A_i); are s|mp|e and

bintree0.cen_i(cen_i);
bintree0.clock(clock); natural

bintree0.p_o(pattern_s01);
bintree0.A_o(address_small)
bintree0.cen_o(chipEnable_g01);

/IFIRST LEVEL
bintreel.p_i(pattern_s01);
bintreel.A_i(address_small)
bintreel.cen_i(chipEnable_
bintreel.clock(clock);

1);

bintreel.p_o(pattern_s12);
bintreel.A_o(address_medium);
bintreel.cen_o(chipEnable_s12);

Use temporally-oriented
code to implement
internal behavior

We have chosen to use SystemC as distribution foforaseveral reasons.
SystemC allows for the spatial connection of corentty executing components, the

ability to precisely time the communication betweeultiple components, and the ability

45

describe the behavior of components using tempeaaiénted constructs. Additionally,

the SystemcC libraries are freely available and bgeg more widely adopted.

46

Chapter 3

SystemC-on-a-Chip Framework

3.1 Overview

SystemC [133] represents a digital system desoripproach based on C++. SystemC
uses object-oriented features of C++ to enablerge®ns that include features common
in previous hardware description languages (HDksgh as creation of components,
instantiation and connection of components to faancircuit, and precisely-timed
communication and execution among concurrently-atkeg components, all using
existing C++ syntax. Regular C++ code can be immluth descriptions, and SystemC
also provides a thread library, thus supportingcdpson of both the “software”
(sequential instructions coupled with parallel #u®) and “hardware” (circuit) parts of an
entire system in a single description language.

While a SystemC description can be executed on doPG&imulation purposes
before eventually synthesizing the description to ASIC, FPGA, or board-level
customized implementation, in-system SystemC emanatwherein the executing

description would interact with physical inputs andputs (I/O), would also be useful.

47

In-system emulation is common for embedded proess3dough slower than a
custom implementation, emulation enables earlygbyptng, and benefits from real I/O
rather than fabricated 1/0 in simulation, whoseatimm can be difficult and time-
consuming while still not matching the complexitydanuances of real I/O. Emulation
can be especially useful for SystemC, as illustrate Figure 16, due to the fact that
synthesis tools can be expensive (compared to derspimay only run on limited PC
platforms and be challenging to install (especiatly lower-end PCs), may be
unpredictable with respect to circuit size/speedtawl runtime, often require long
runtimes (such as hours or days), may not supoticplar target devices or platforms,

and can only synthesize the parts of the codeemritbr synthesis. The main tradeoff is

Figure 16: SystemC-on-a-Chip allows a designer to emulatée8yS descriptions on various supported development
platforms. Emulation enables early prototyping amdraction with real peripherals and 1/O, whildueing the need for

1
Each development platform:
1

1
1
might require System Compilation .
rewrites or redesi — I:> !
1

bit

_
or binary

files DT VEIOP

SystemC

Description => Compilation E>

-

Developmen

Increased design time and complexity

48

that emulation is typically much slower than natplatform execution. Another tradeoff
is that the emulation engine must be present arget platform, but this is a one-time
task, which may be done by the platform’s develspar by platform users (such as
teaching assistants in an educational setting).

For education, where system execution speed malyenattop priority, emulation
may be entirely sufficient, such as when describéngnicroprocessor system as is
commonly done in computer architecture coursesyevhach descriptions may never be
intended for synthesis, but execution on a physatform is desired. In fact, for some
systems (in education settings or otherwise), etiomanay be fast enough to serve as a
final implementation, obviating the need for symsike akin to virtual machines
sometimes being sufficient for executing processaecode such as Java bytecode. For
example, a “human reaction timer” system may ingabeveral interacting components
interfacing with buttons, LEDs, and LCDs, with e@ation speed being fast enough to
interact with all these items. In such cases, ®yStailtimately represents a parallel
programming approach such as an approach usingtb&ads, with the added benefit
of supporting circuit-style spatial connectivityutbthe drawback of not (presently)
supporting real-time scheduling as in a real-tirperating system approach.

We introduce an approach to SystemC emulation, i@ several parts. We
created a compiler to convert SystemC to a newcbye format that we developed,
which possesses MIPS-like instructions supplementgtth new SystemC-specific
instructions that convey spatial and timing infotima. We developed an emulation

engine that can run on a microprocessor on a dewedat platform and that executes the

49

SystemC bytecode while interacting with 1/O andti@pal) peripherals (frame buffers,

UART, etc.). Because portability is important ire tapproach, we introduce a USB flash-
drive method for programming, wherein the compgenerated textual bytecode file is
copied to a USB flash-drive, which is then readhsy development platform and just-in-
time translated to the machine-level bytecode usgdhe emulation engine. For the
common situation where the emulation engine is @manted on (or with access to) an
FPGA, we developed FPGA-based custom emulationlexeters that substantially

increase the emulation speed, enabling SystemQigarspeeds comparable to middle-

to-high-end PCs.

3.2 Related Work

There has been research in the field of hardwanélation for verification and
testing, including the BEE reconfigurable platfof27], and network-on-chip emulation
platforms [52]. Nakamura [105] describes a hardysafevare verification platform that
uses shared register communication between a macesnulator and FPGA emulator.
Benini [15] describes virtual in-circuit emulatiah SystemC circuits for co-verification
and timing accurate prototyping. Rissa [116] eatds the emulation speeds of several
SystemC models compared to standard HDL models.

Much research has involved virtualization [92][124]ith several commercial
products developed in response to the need foalplervirtual machines. VMware [147]
and the open source product Xen [153] concentmnatdeveloping virtual machines that

allow the end-user to run multiple operating systetoncurrently. The Java Virtual

50

Machine [127] allows the programmer to write op@gtsystem independent code, and
tools like DOS Box and console emulators allow tiser to run legacy applications in
modern operating systems. Fornaciari [47] exteridsalization to FPGA platforms,
giving the application designer a virtual view of BPGA that is then physically mapped
via operating system functionality. Virtualizatibas also been used to abstract complex

microcontroller details from the beginning embeddgstems student [123].

3.3 SystemC-on-a-Chip Components

The SystemC-on-a-Chip platform consists of four rmparts, including a SystemC
bytecode compiler, a new intermediate SystemC bgedormat, a portable USB flash

drive download interface, and an emulation engine.

3.3.1 SystemC Bytecode Compiler

We considered several options to achieve in-systemlation of SystemC descriptions.
One approach was to port the publicly availablet&y€ libraries to each development
platform, and add support for /O and peripheraénaction. Such an approach would
allow the same SystemC binary to run on any supgatevelopment platform, including

standard PCs. Also, the SystemC circuit would ratively on the development

platform’s microprocessor. However, the SystemQaliles are large and require OS
support, thus limiting the number of platforms tbatild support the SystemC-on-a-Chip

framework. Furthermore, the SystemC librariesailsimulation kernel into the circuit

51

Figure 17: SystemC bytecode compiler: (a) The SystemC byecompiler builds on PINAPA, a SystemC front-end
tool, and uses a custom SystemC bytecode backen8ample code generation during the first phasheoBystemC
bytecode back end.

Pinaps

SystemC Bytecode Compilpr//sample System --sample System!

1= === Z- === I /lcode -
Pinapa Front Enlt i=y+5; Agys??ld;z 5
AST . 2 = x[i] * x[i-lé LW $3 0($1)
System(Lin® I SUBI$4 $11
Descriptio /Imore code LW $5 0($4)

MULT $6 $3 $5

SystemC
bytecode

Register
(a) Generation Allocation #D\ (b)

executable, increasing the size of the executatdenaaking testing multiple SystemC

descriptions quickly more difficult.

Another option was to decompile the SystemC exé&beit@xtract the circuit, and
retarget that circuit for a custom emulation framngky The decompilation approach
separates the circuit from the simulation kernikbwes testing multiple circuits quickly,
and potentially a smaller circuit executable. Atom emulation framework also allows
smaller development platforms to take advantaganefystem SystemC emulation.
However, decompilation is difficult, and solutiotisat operate at the source SystemC
level seemed more feasible.

The option that we chose was to directly operatenfiSystemC source code to
produce bytecode, as shown in Figure 17. Our SyStewmpiler builds upon the

PINAPA tool [102]. Originally intended as a front-end foircuit verification tools,

52

PINAPA provides acc compiler front-end to SystemC circuits that extsag circuit’s
spatial and architectural features from the Systel@€&ription.

The PINAPA front-end performs two operations on tBgstemC program.
PINAPA uses a modified version of tigec compiler to extract behavioral information
about each process and component in the circuget®rate the corresponding abstract
syntax trees (AST), and uses a modified SystemQieketo extract the circuit's
architectural features, like ports, signals, anatiagpconnectivity. Finally, PINAPAinks
the architectural description (ELAB) to each comgat's AST to form the intermediate
output.

We created a custom two-pass back-end to the PINA®Apiler that accepts
PINAPA’'s AST+ELAB output and generates SystemC bgtie. The first pass traverses
each ELAB component's AST. The first pass inlinasxikary functions, flattens
hierarchical descriptions, and generates initiadt&nC bytecode assuming an infinite
amount of available registers, shown in Figure L7T{lhe second pass performs a linear
scan register allocation [114] on the first paspouto constrain the intermediate code to
a fixed number of registers. The output of the stEgiallocation pass is a readable text

file of the SystemC description in SystemC bytecode

3.3.2 SystemC Bytecode Format

The SystemC-on-a-Chip platform accepts a bytecedsion of the SystemC description,
and not a traditional SystemC binary, nor the Sw€lesource code. A traditional

SystemC binary includes much more information tisaactually required to emulate the

53

application, including constructs to support obj@eented C++ programming, and the
simulation kernel. SystemC source code separagesitttuit from the simulation kernel,
but requires compiler support on each developmé&ttopm. Similar to Java bytecode
and a Java Virtual Machine, an intermediate Systdmtécode format separates the
SystemC description behavior from the simulatiomnkg doesn’'t require a platform
compiler, and can run on any development platfdrat supports the SystemC bytecode
format.

The format of the SystemC bytecode is shown in feigil8. The SystemC
bytecode is a flattened version of the original t&ye&C description. The SystemC
bytecode compiler flattens the SystemC descriptommore efficiently emulate the
SystemC bytecode. A Systensircuit is composed of a list of signaénd a list of
processesA signal is a wire or set of wires that connects indepergentnning
processesand is defined by a signal name and bit widthpracessis a behavioral
description of a circuit entity. A processdefined by &ensitivity lista list of signals the
process is sensitive to, and a list of sequentisiructions which define the process’s

behavior.

54

Figure 18: SystemC bytecode format. Each process is deschpa number of MIPS-like instructions, with adfital
instructions added for SystemC specifics, like negdignals, extracting bit ranges, etc.

circuit: signals processes
signals: signal or
signals signal
processes : process
processes process
signal : SIGNAL NAME COLON NUMBER
process : PROCESS seivity_list code
sensitivity _list: NAME or
sensitivity_list NAME
COMMA
code: instruction or
code instruction

instruction:

SRL or SLL or SLLV or SRLV

or MULT or MFLO or ADD Computation
or SUBor AND or ORor ADDI instructions

or ANDI or ORIl or XORI
or SUBI or LWor SW

or Jor JRor BEQor BNE Control
or BLE or BGT or BLT or BGE instructions

or WRITE or CONCAT or WAIT ¢ specific

or BIT or RANGE or READ }SystemC-
or END instructions

A process is captured as a sequence of sequenstligtions. The SystemC
bytecode instructions are a derivative subset e BMPS RISC register machine
instruction set [67], shown in the bottom half afjiire 18. We also considered targeting
virtual stack or queue machines. The Java VirtualciMne [127] executes bytecode
instructions intended for a stack machine, and EXgcutes bytecode instructions for a
gueue machine. Proponents of stack and queue lbgsecbde formats argue that the
stack/queue bytecode can more efficiently run eirtaal machine because the operands

are implied. Other studies [37] have shown thatatieantages of stack machines aren’t

55

Figure 19: USB interface. The user copies SystemC bytecodd46B flash drive, plugs the drive into a platform
and pushes a button—the platform then begins eingldie SystemC description.

Plug the USB flash Push the button to start

drive into the the SystemC emulation
development platform

as clear. The authors show the bytecode targetedrds a register machine can be
competitive with stack machine code, and usualBults in more compact code. An
additional advantage is that register bytecode asemeadable, potentially allowing a
student to write bytecode in the absence of a 8yStbytecode compiler.

SystemC bytecode format supports three differergedy of instructions:
computation/memory instructions, control instrunfp and SystemC-specific
instructions. The computation and control instruasi are derived from the MIPS
instruction set [67]. We chose the RISC MIPS ingion set because the SystemC
bytecode is easy to generate, because a RISC-basddtor can be efficient [37], and
because the code is understandable to the beginsimdent. We also chose a
representative subset of the MIPS instructions thald allow specifying all circuits

described in the synthesizable subset of Systend([13

56

We added a number of SystemC-specific instructioriee base MIPS instruction
set, including theBIT, RANGE, READ, WRITE, and WARStructions. TheBIT and
RANGEInstructions extract either one bit or a range itd rom a given register. The
READ and WRITE instructions allow a process to read and writenaligy much as the
process can load or store values to memory. WedatlgeSystemC-specific instructions
to more efficiently execute frequently occurrings@&mC primitives and function calls.
Most of the SystemC-specific instructions coulddaeen implemented as a sequence of
the basic computation instructions except for th&lWinstruction. TheWAIT instruction
allows a SystemC description to wait a fixed numtfesimulated time steps. The WAIT
statement is the only supported feature that doe¢daliow the synthesizable SystemC
guidelines, but allows designers to test their &y applications with custom bytecode
test benches. ThEND instruction instructs the emulation engine that@cpss is done

executing.

3.3.3 USB Download Interface

Our SystemC-on-a-Chip platform supports USB prognamy via a USB flash drive,
rather than a traditional hardware programmer oBW&ble. A traditional hardware
programmer requires non-volatile memory and a reabtev chip, greatly limiting the
number of supportable development platforms. Aaraditive programming approach is
to program a device in-system using a USB cablehilé\eliminating the need for a
programming device, such an approach still requare€ every time a designer wishes to

load a new SystemC description.

57

Instead, we chose a USB flash drive programmingagah, illustrated in Figure
19. A user (such as a student) copies the desiystei®C description (in bytecode
format) onto a USB drive as a file, plugs the dinv® the SystemC-on-a-Chip platform,
and presses a button on the platform that downldaelprogram from the flash drive to
the internal emulation engine. The approach elitem#he need for non-volatile memory
in the development platform. The approach enaldasihg and changing circuits by
inserting and swapping flash drives, enabling marebility and portability. The
approach also matches current usage schemes falap@pectronic devices, allowing a
beginning student to start programming with miningfort, and using a familiar
paradigm. The cost is that the SystemC-on-a-Clagfgrim must contain an internal USB

flash drive reader.

3.3.4 SystemC Emulation Engine

The basic emulation engine supports SystemC by&eaitten or generated for the
synthesizable subset of SystemC. We currently atosapport higher level features of
SystemC like transaction level and system level efind because we are presently
targeting SystemC descriptions that could eventualh natively on an FPGA. Figure
20(a) shows the architecture of the basic emularagine.

The basic emulation is driven by a processing tloae runs a lean, event-driven
simulation kernel [48]. Figure 20(b) shows the pkmode for the event-driven kernel.
For each time step, the event-driven kernel preseasqueue of ready-to-r@wents An

eventis placed on the queue when a signal value is eddand that signal is on the

58

Figure 20: Basic emulation engine. The emulation engine sssif a hybrid event-driven kernel to allow a ggyiof
different circuit implementations. Circuits canatake advantage of a range of standard periphénalading lights,
buttons, a UART, and input and output memories.

Event kernel

Emulation
* Engi hile(1){
w
Memor __-¥| nextTimeStep = 0;
Proces || __---- while(nextTimeStep){
<—»|[Event Kernel | i If(!ggﬁ:e:E(Tpty()){
[Bytecode VM | while(!done
Standard Memory priecode VM JIT . prcfcessE)\{/entQueue();
Peripherak >)—i AR }
S update();
support { |r’\1/|structi01 usB | >~ }
emor ~. else{ .
A nextTimeStep = 1;
}
Memor }
1

Memory 2
e event kernel processes eve
each time step, updates signal
values and event triggers, and
(a updates the time step (b

sensitivity list of a process. Each time step migtrisist of multipledeltatime steps, in
which a process may execute multiple times duritigha step. After each delta step, the
event kernel updates the signal values, and placgsew sensitive processes onto the
event queue.

The signal’s values are located on the system &sgnal Memory JandSignal
Memory 2.Processes and peripherals writeSignal Memory land read fronSignal
Memory 2 After each delta step, the event kernel copiesctintents oSignal Memory 1
to Signal Memory 2The advantage of putting the signal memories onbie is that
peripherals have easy access to the signal valms, gives access to emulation
accelerators. The disadvantage is that multiplgperals might try to access the signal
memories at the same time as the event kernekiblpthe bus, and degrading emulation

efficiency.

59

Figure 21: SystemC-on-a-Chip circuit interface. The emulagoigine supports access to multiple peripheratfyding
buttons, LEDs, and memory.

Cloc —| SystemC > LED
Resi—»| —> uart

Butto -\ ~—> Input Mem
uart Input Mem
Inpu Output Mem
Memo Output Mem

The event-driven kernel calls a bytecode virtuathim@eto execute each event in
the event queue. Théytecode virtual machinesupports the SystemC bytecode
instruction set described in the previous secti&akh process is allocated an instruction
memory, register file, and local data memory. Tiveual machine also contains proper
hooks to communicate with the standard peripherel HO set. We designed the
bytecode virtual machine using standard techniduoes [124] to increase the efficiency
of execution.

The emulation engine supports platform 1/O and ghexial access. The set of
peripherals includes buttons, LEDs, UART, and inaatl output memories. We chose
the peripherals to be a representative subset ophmzals that most development
platforms could support. For development platforwith a larger set of peripherals,
emulation designers could easily add extra supptwt. basic emulation engine supports
SystemC descriptions that implement the interfduave in Figure 21. The description
writer does not have to follow the standard integfebut the standard interface provides a

convenient mapping between description’s signatstha available peripherals.

60

3.4 Experiments

We built two complete SystemC-on-a-Chip platfornas\d implemented dozens of
SystemC descriptions to demonstrate the appli¢ghfi in-system SystemC emulation.
The systems we built are summarized in Figure 22 Qlatform used the Virtex4 MI403
FPGA development board, and the other used a $paEaFPGA development board.
On the Virtex4 ML403 FPGA, we built the emulationgane on a PowerPC processor
and used the PLB bus framework to access /O amghmzals. On the Spartan 3E
FPGA, we built the emulation engine on a Microblaa#-core processor, using the OPB
bus framework to access peripherals and 1/0O. Th&uation memory, stack, and heap
for the PowerPC based basic emulation engine westoged in SRAM. In contrast, the
instruction memory, stack, and heap for the Micaabtbased system were all located in
on-chip BRAM. Due to limited BRAM resources, somgst®emC descriptions would not

run on the Microblaze-based platform. No SRAM esdsbn the Spartan 3E platform.

Figure 22: SystemC-on-a-Chip prototypes. Each system differesize, processor, memory, and number of emuiatio
accelerators, but each could run the same SystgneCdue for a given SystemC description.

of
Developmen Main Bus Memory emulation
Platform Processol Platform| Location| zccelerator
Xilinx Virtex4
MI403 FPGA | PowerPC| PLB | SRAM 2
Xilinx .
Spartan3E Microblazgd OPB BRAM 1
FPGA

61

Figure 23: SystemC experiments. (a) SystemC code for Image Batection. The code took only minutes to craatk
compile before being put on a Virtex4. (b) Edgeda#bn running on a Virtex4. We connected the mgmooitput to a
frame buffer to see the results on a VGA screen.

class ED(E_DETECTOR : public sc_module
/Isignal declarations

EDGE_DETECTOR() {
SC_method(mainComp);
sensitive << dataReady;

SC_method(getPixel);
sensitive << clock.pos();

void getPixel(){
&étaReady.write(l);

void mainComp(){
inti, j;
for#i =0;i<3;i++){
or(j = 0; j < 3; j++{
sumX = sumX + mem.read()*GX]i][j]

}

(a) SystemC Snippet etore © buring

We implemented a number of different circuits inst8ynC, including an edge
detector, encryption/decryption applications, vasicgtate machines, and several smaller
combinational logic components to exercise theren8ystemC bytecode set. We
implemented the edge detector with two communigagirocesses in about 200 lines of
SystemC. The encryption/decryption units requirbdua 300 lines of SystemC, and
consisted of five processes. One of the combinatiocomponents, a structural
implementation of a 32-bit adder, required 500 diré SystemC and consisted of 66
processes. The SystemC bytecode compiler compéett example in seconds, and
generated between 50-2000 bytecode instructiommré&i23(a) shows a snippet of the
SystemC source code for the edge detection cirdine edge detection circuit was
written with two processes, one process to gathe pata from the input memory, and
one process to perform the edge detection and butpuhe output memory. We

configured each platform to use the output memarya drame buffer, allowing visual

62

inspection of the output on a VGA screen (FiguréhP3 The edge detection circuit could

process a 128x128 image in approximately 30 secondthe base emulation engine.
While slow, in an early prototyping scenario, orairclassroom setting, such times might
be acceptable. We also compared the edge detexstauit running on the SystemC-on-

a-Chip platforms to the same SystemC circuit dpson running on an Intel-based PC
running at 2 GHz. The SystemC edge detection ¢itook 0.5 seconds to complete the
same 128x128 image.

We compared a variety of SystemC descriptions drase SystemC-on-a-Chip
platform on both the Virtex4 MI403 platform and the Spartan 3E platform to running a
native application on the underlying platform andPC simulation. On the Spartan 3E
development platform, the Microblaze system cloaswaalf the speed of the PowerPC
on the Virtex4, but fetched memory more efficienince the Microblaze had a
dedicated bus to the BRAM instruction memory. Incakes, the basic emulation engine
executed the SystemC descriptions ~100X slower tharexecuting an implementation
of the application on the native platform and ud@®0X slower than PC simulation. If
we normalize for clock speed since the PC is rumsieveral orders of magnitude faster
than the Xilinx platforms, the performance is conagde. In all cases, the SystemC
bytecode was portable, allowing us to write thet&y< application once, and run on
any of the supported platforms. The basic emulatiogine has the advantage that many
smaller development platforms could still suppdg software (like the Spartan 3E

implementation), enabling in-system SystemC emutator less capable systems, or for

63

systems without FPGA resources. In future chapteve, seek techniques and

architectural enhancements to improve the perfocmanbase SystemC emulation.

64

Chapter 4

SystemC Bytecode Accelerators

4.1 Overview

For the common situation where the SystemC-on-@-@latform is implemented on an
FPGA, we've developed emulation accelerators thhstntially increase the SystemC
emulation speed. Figure 24(a) shows multiple ernariaaccelerators connected to the
basic emulation engine. Each emulation acceleratts in parallel to the other emulation
accelerators and the main emulation processorr&2d(b) shows the internals of one of
the emulation accelerators. The emulation accelerabnsists of a small SystemC
bytecode processor and bus steering logic. Thecbglte processor is a modified multi-
cycle MIPS datapath, with connections to a regifiterand local data memory. The
emulation accelerator can complete most instrustior8-4 cycles, with the exception of
the READ instruction, which has a nondeterministtecution time since the accelerator
must read data from the system bus. The emulaticelerator is configured as a master
on the system bus to allow the accelerator to egabwrite the emulation engine’s signal
memories independent from the emulation procesand as a slave to allow the

emulation processor to command the start of its@xen.

65

Figure 24: Emulation accelerators. The emulation acceleraaosists of a multicycle MIPs-like datapath than execute
one instruction in about 3-4 cycles, almost 1003tdathan executing the same instructions in tise leaulator.

Emulation

4 Engine

Register File

Bus,

" Datapath

R
accelerators '
e
1
-
R L o o e - 1
mulation accelerators conn (b)

(@)

to the system bus, and have
master access to all the system
peripherals

The number of emulation accelerators can saubistly increase the
performance of the SystemC emulation since eacHadio accelerator runs in parallel.
The emulation accelerators do contend for the sigmamories, but typical SystemC
behavioral descriptions only read/write signalshat start and end of their descriptions.
The advantages of emulation accelerators incremskeasize of the SystemC processes
increase since the emulation accelerator can exdeytiecode instructions orders of
magnitude faster than the basic emulation engime G&ere are tradeoffs though.
Assuming circuit emulation doesn’t require fast @ak@n, the FPGA area required to
implement emulation accelerators could be alloc&bedther circuitry, including more
advanced peripherals or 1/0O. Also, smaller proadsscriptions may not benefit much
from emulation acceleration, or other SystemC ett@cutimes might be perfectly

acceptable in without acceleration.

66

Figure 25: SystemC in-system emulatioa) In-system emulation of a description allows tegtivith real I/O, thus
creating dynamic test bench input vectors that cabe analyzed staticallyb) Sample image processing system that
invokes several different filters depending on itmgut. (c) Statically mapping each process to either softveairan
acceleration engine results in widely varied ruesnfor different input sequencéd) Dynamically mapping SystemC
processes in response to the input sequence rashitsher performance emulation for all input seqces.

Image processing

1
1
i
class '
IMAGE_PROCES 1
SING : public :> Sharp m ' (C)
sc_module { | ! Static
1

é/esigl;arglﬂons ______________________ ! Output Sequence Mapping
(b)
Syste Systen 5
INpu 5 L /o |
', [FPGA ., ElEEE
,—IJ L %utput Sequence
<+ Memory | |[¢—»
_rrrr SystemC (d)
—> Kernel A > '
Inp g Dynamic
J'LI'I_I'LI'I_I'LI'IJ& vy 4 Output Sequence | Mapping
i I I, - .
I = [Acceleratior Al‘zcnceifg%“o' >\ [ul.s[mB]E[M]
<«—p| | Engine: gine .
(a) Output Sequence
SystemC In-System Emulation put Seq >
Runtimq

Dynamically responding to unique/v
input sequences and mapping

SystemC processes to available
SystemC acceleration engines
results in higher performance
SystemC emulation.

Because the SystemC emulation engine benefits ftommecting to real I/O
compared to modeled I/0O, shown in Figure 25(a andahother potential drawback of
SystemC in-system emulation is that the orderingg\wdnts on the event queue is not
known before runtime, making some existing staticeteration techniques like queue
reordering [82] and process splitting [103] lesedfve. Figure 25(c and d) shows how
two different input sequences into a SystemC enmraimage processing system can
generate two different output sequences, of whidlg an adaptive mapping of processes

to acceleration engines can guarantee higher emlgerformance. The SystemC

67

emulation framework allows for dynamic decisionsvdiether to execute a process’
bytecode on the microprocessor SystemC kernef twad and execute that bytecode on
an acceleration engine. However, acceleration esgiare limited, and loading
acceleration engines involves time overhead, sd teisions should be made so as to
minimize total execution time.

Thus, a problem exists as to how to efficientlylizgi the finite number of
SystemC acceleration engines to execute a dyndynadanging event-driven SystemC
emulation event queue such that the total emuldtrae is minimized. We define the
online SystemC emulation acceleratigroblem, and apply online heuristics to

dynamically improve the performance of SystemC etiah.

4.2 Related Work

Improving the performance of event-driven simulasidcnas been extensively researched.
Much research has concentrated on developing phfesimeworks for general event-
driven simulation. Fujimoto [51] presents a comgretive survey of several parallel
simulation techniques. Jefferson [82] analyzes thiéical paths of event-driven
simulations, and discusses techniques to achiepersttical speedups in simulation.
Das [36] discusses adaptive protocols for paralfaulations.

Other work has focused on specifically improvingt®mC simulations. Naguib
[103] automatically splits SystemC processes tegeunnecessary wake up calls to the
SystemC event kernel. Perez [111] creates an gregomimplementation of the SystemC

kernel that utilizes acyclic scheduling. Wang [148gs compiled simulation to eliminate

68

unnecessary evaluations, and to improve simuldima. Our work focuses on dynamic
SystemC emulation (rather than static SystemC sitiom) whose behavior requires
dynamic scheduling techniques to improve perforreanc

Another area of research combines both of the abppeoaches to parallelize the
SystemCsimulationkernel. Chopard [30] and Combes [32] show howxiataa humber
of constraints on the event queue makes feasiplrallel SystemC event-driven kernel.
Chandran [26] identifies methods to execute thete®yS kernel on simultaneous
multiprocessor machines for faster performance. Wonk utilizes FPGA resources to
accelerate the execution of SystemC processesgioehperformance emulation.

Dynamic load balancing has been studied extensivelyprevious works
[61][78][98]. The idea of dynamic load balancingtisat migrating processes across a
network from high load hosts to lower load hosta canimize application execution
time despite overhead in migrating processes betweecessors. Our online SystemC
emulation acceleration problem can be consideresbecial case of dynamic load
balancing with heterogeneous processing units aidrhigration overheads.

Dynamic system optimizations have also been thesfo¢ much research. Balarin
[6] presents a survey of real-time embedded systeheduling, which classifies the
problem into static scheduling and dynamic schedulDanne [35] introduced real-time
scheduling algorithms for periodic applicationsan FPGA. Ghiasi [53] uses the task
graph model to reorder task execution offline taimize reconfiguration overhead.
Huang and Vahid [72][73] develop new online heuwsstfor managing FPGA

coprocessors in a dynamic environment. Noguera][J08posed dynamic run-time

69

hardware/software scheduling techniques for FPGAphasizing dynamic concurrent
task scheduling. Steiger [128] proposed the usa i@&configurable operating system to
manage dynamically incoming tasks and online sdimagiproblem. Our work applies

these dynamic techniques to improve the performah&ystemC emulation.

4.3 Online SystemC Emulation Architecture

4.3.1 Base Architecture with Acceleration Engines

A SystemC emulation architecture enables the ei@tof SystemC descriptions on real
platforms without the need to synthesize/map ferghrticular platform, by executing an
intermediate form of SystemC calleglystemC bytecode Figure 26 shows a basic

SystemC emulation platform. The platform consigta main processor that executes the

Figure 26: SystemC emulation platform. A limitation of thesBsmC emulation platform is that the acceleratiogirees
and the SystemC kernel within the emulation platfare connected via a single bus structure, thecebgting a
bottleneck for shared memory usage when multiplecesses p(l, p2, p3) are scheduled in parallel, hindering
performance.

Syste Syste
M< 3/ FPGA m
S
emC Memory | [«
| [=
<+ , A A A A —>
«, Sy RV BN
hal jt \,', ---------------- 7\ > (¢—>»
| : <>
<+ |Accelergtio >
<« [Engin
ging p2 <>
| <>

70

Figure 27: SystemC acceleration enginga) Internal structure(b) Direct connection of two SystemC acceleration
engines using a kernel bypass connection. In satuatisns, bypassing the bus and SystemC kernelleath to
significant performance benefits for a given Systedescription.

Systen
< a 3 >
\ 4
Acceleration Enging (a Acceleration Engine
1] Core Acceleration Engine i
Signal Cach¢ '} — : Signal Cache
i (| REgister| | —
1 Bus, File 1 »
4—: start, RISC ! 4 l—
'| 1oad [€™Datapath !
_N . 1 .
1| logic p) LOCE , >
—> s
H 1
A linluietuieteieteiet : """"""" :

Kernel Bypass Config

|
The direct connectionsétween the core Signals to the main datapath to
acceleration engine and the adjacent signalcommunicate with the signal
cache allow the two acceleration engines tocache and not the system bus
communicate without using a shared bus When configured properly
memory

SystemC kernel, which is a combination of a virtomechine and event-driven kernel.
The SystemC kernel connects to the platform’s perals (memories, lights, buttons,
timers, general 1/O) through a shared bus, allovair®ystemC description full access to a
variety of peripherals.

For the common situation where the emulation engineplemented on (or with
access to) an FPGA, the SystemC kernel can offfmadess emulation to a SystemC
acceleration engineAn acceleration engine, shown in Figure 27(a), sta®f a MIPS-
like datapath, communicates with the SystemC keri@einemory-mapped registers, and

executes SystemC bytecode orders of magnitude taste the SystemC kernel.

71

4.3.2 Kernel Bypass

We observed that the SystemC emulation platfornsgsses a memory bottleneck when
both the main emulation kernel and the SystemCla@aten engines attempt to read and
write the shared signal memories, as highlighte&figure 26. To mitigate the memory
bottleneck, we introducekernel bypass connectionsyhich are direct one-way
connections between neighboring accelerators that dhe SystemC accelerators to
communicate without having to read and write theilues to shared memories on the
system bus. Figure 27(b) shows the kernel bypashitacture for two SystemC
accelerators. An additional advantage of kernelbgpconnections is that the emulation
kernel also reduces some overhead of maintainiegetrent queue since the writing
accelerator can directly flag the reading accetertd start execution once the writing
accelerator is done.

To facilitate direct communication between two iigring accelerators, we add
a SystemC kernel-controlled configuration registed small signal cache. 8ignal
cacheis a small memory data structure that holds aasigientifier, the signal’s value,
and a valid bit. If an accelerator is configured ie a kernel bypass reade¢he
acceleration engine will instead first look for gral value in signal cache prior to
fetching the value from the signal memory on the. l&imilarly, if a SystemC accelerator
is configured as a kernel bypass writer, the SyStemccelerator will write to the
connected accelerator’s signal cache by sendingigmal’'s ID and its current valui
contrast to the system bus which can take teng/dés, the signal cache allows one-

cycle signal writing and retrieval. For each siatatl time step, a utilized kernel bypass

72

connection can save between tens and hundredscl#scylepending on the number of
signals written to and read from.

The signal cache size is currently limited to tegnals. If two processes
communicate with more than ten signals, the twa@sses must communicate through
the bus-connected signal memories. Processes ¢mamngnicate with more than ten
signals can still see some speedup because tenarshavrites to the system bus are

eliminated every simulated time step.

4.4 Online Acceleration Assignment

441 Problem Definition

We define theOnline SystemC emulation acceleratfgmoblem as follows. Given are:

- A process set P = {p1, p2, p3, ..pn} containihg t processes that comprise a
given SystemC description.

- A set of execution times Tp = {tpl, tp2, tp3,..n}pontaining the execution
time of each process i running on the SystemC dtevithout communication overhead.

- A set of execution times Tc = {tcl, tc2, tc3cn}t for each process i when
running on a SystemC acceleration engine; the tidesiot include communication
overhead.

- A set of sizes S ={sl ,s2, s3,..., sn} giving #ee of each process i in terms of
number of bytecode instructions..

- The total number of acceleration engines AE ie tBystemC emulation

framework.

73

- The time to load one instruction into a SystentCeteration engine TR.. The
total time to load an acceleration engine with pesci can be thus be written as: loading

time(i) = TR*si

The online SystemC emulation acceleration problenstnsatisfy the following
constraints:

- Processes running on the SystemC kernel andeadbeleration engines may
run in parallel, unless that process is the samegss i. For instance, in the queue <p2,
pl, pl, pl, p3>, the three instances of pl mustudgesequentially, but p2 and the first
instance of p1 can run in parallel.

- The SystemC kernel cannot be interrupted to rypnoaess when the SystemC
kernel is loading a process onto an acceleratiginenor when the SystemC kernel is

itself running a process.

We define several additional constraints to theinenlSystemC emulation
acceleration problem that take advantage of thebeunof kernel bypass connections

within the SystemC emulation framework:

- A set O of process pairs (Oi, Oj) that satisfg ttondition that all of the inputs

into Oj are outputs from Oi. These process pairslmadetermined statically and sent to

the SystemC kernel at download time

74

- Number of kernel bypass connections: The numbkemel bypass connections
in the SystemC emulation platform

- Kernel bypass connection pairs: For each Kergplbs connection, there exists
two acceleration engines AEi and AEj that the catina is made up of

- Number of signal connections between each prquas£Oi, Oj)

The dynamic input to the problem is an event gu@usuch as<p2, p1, p4, p2,
pl, pl....>that lists and orders the process instances uinabm the platform for a given
time step.

The Online SystemC Emulation Acceleration problendefined as an online
problem: For each process in the event queue, asitygknowledge oprior andcurrent
processes in the queue, determine whether to lbatl process into a SystemC
acceleration engine, such that the time for émtire event queue (including future
instances of the process in the queue) is minimi2&then a process is already loaded
into a SystemC acceleration engine, we refer tqtbeess as beirgcceleration engine
resident Thecurrent processs the process that at a given time is to be exeauext and
for which the acceleration engine load determimatiust be made. Thus, the solution to
the online SystemC emulation acceleration problemsists of an acceleration engine
management decision for each process instanceeiretent queue. Each decision is
either: load, don't load, or already loaded. Faleaision to load, the decision also lists a

process that must be unloaded to make room faneleprocess being loaded.

75

4.4.2 Communication Overhead

The SystemC accelerators communicate with the B8yStékernel through memory
mapped registers argignal memorieswhich store the current and next values of each
signal in the SystemC description. We use queulmepry [55] to estimate average
memory access delay, and model memory contentiadhéoil/M/1 queue. The processes
in the SystemC kernel and in the SystemC acceberangines generate memory access

requests througREADandWRITEbytecode instructions. We define the following:

- Random memory access rate: The random memorgscate is the number of
times a process i reads from memory, whdrés the memory access rate of running
process i.

- Bus service ratat. The bus service rate is the number of requestsytbtem bus
can process in a second. E.g. Assuming a 100Mhzomebus, one access takes 20
cycles, squ=5M/s.

- Average delay: The average delay is the numbecyofes for one memory
access. According to queuing theory, average delagne access is DA u(u-1)).

- System delay: delay =D

4.5 Online Heuristics

45.1 Upper and Lower Bounds

An upper bound on total execution time can be datexrd by running every process on

the SystemC kernel. A lower bound can be determimecdssuming every process is

76

preloaded onto an infinite set of existing SysteatCeleration engines, and considering

communication overhead, referred to asltiimite Accelerators.

4.5.2 Accelerator Static Assignment

To see the advantage of dynamically loading bytecad the SystemC
acceleration engines for higher performance enaratwe compare to atatically
preloadedapproach, which assumes the SystemC acceleratgnes are initially loaded
with one process’s bytecode each, and are notdetbduring runtime. At the beginning
of SystemC emulation, the SystemC kernel assigds aeceleration engine a process to
always execute when an instance arrives on thet euenie. The acceleration engines are
loaded with the processes that have the largestdspepotentialtpi-tci). Compared to
dynamic techniques, the benefits of static accilerassignment are one-time
acceleration engine loading, and a simpler emulagieent kernel. The drawbacks are
that there might only be a few acceleration engiaad running the rest of the SystemC
processes on the software SystemC kernel couldobgputationally expensive. An
alternative method for static assignment would Haa®n to utilize profile information to
predict which processes execute most frequentlywd¥er, due to simulation

complexity, profiling information was not available

45.3 Greedy Heuristic

A greedy heuristic can be defined that always Iaaéscurrent process into a SystemC

acceleration engine before executing. If the pregsacceleration engine residenhe

77

SystemC kernel just instructs the SystemC accéderatngine to begin executing.
Otherwise, the SystemC kernel randomly choosesdlarSystemC acceleration engine to
load the process’ bytecode instructions. In theedhst all the SystemC acceleration
engines are busy running, the emulation kernelwalit until the one of the acceleration
engines becomes idle. The time complexity of theedy heuristic i©(1). However, the
greedy heuristic may incur lots of loading overhemte it loads a SystemC acceleration
engine with bytecode on every execution. Furthes,greedy heuristic attempts to use all
the available acceleration engines, which increabes amount of communication

overhead on the system bus.

45.4 Aggregate Gain

We use the aggregate gain (AG) heuristic introduced72] to address the online
SystemC emulation acceleration problem. The AG ibgor uses the history of
application executions to attempt to predict futexecutions and hence to predict when
reconfiguration overhead is worthwhile. The AG hs&lic considers reconfiguration and
communication overhead. The basic idea of AG i$ # maintain an aggregate gain
table for each process type running in the sysfidm. gain is the time saved by running
the process instance with the accelerator. The g tgets updated when a new process
arrives. The AG table shows which processes mak& nfathe gains by running in the
SystemC acceleration engine.

Sequences of processes on the event queue oftebiteteémporal locality—

recently-executed processes are more likely to e the near future than are

78

processes from long ago. A fading factas introduced to refresh the AG tableis
adaptive to the average loading time. The intuittbrthe loading, replacement and wait
decision is to make the total gain of the accel@natngine resident processes high. Thus
the load, replace and wait decisions will be maadlg @ the decision would not decrease
the total gain resident processes.

We can alter the AG heuristic to support the adddl kernel bypass feature. The
modified AG heuristic treats tightly coupled proses as one large process. The large
process takes multiple acceleration engines andsseme the acceleration engines of the
large process must be loaded together. The logthoement, and wait policies of the

large process are similar to the definitions igiodl AG heuristic.

4.6 Experiments
46.1 Framework

We developed a simulator in C++ to test our heiggstand applied the simulator to
several SystemC descriptions. We also fully impleteeé two SystemC emulation
platforms, one on a Xilinx Virtex4 MI403 developmeplatform, and one on a Xilinx

Virtex5 vIx110t development platform. The System@rriels ran on a PowerPC and
Microblaze processor respectively, both operatihd@MHz. The SystemC kernels
communicate to the acceleration engines and theofeke peripherals through the PLB
bus. The average memory access time is 40 cycles. SystemC kernel uses a
handshaking protocol over the PLB bus to commuaieatd load instructions into each

of the acceleration engines. The total time to l@ate instruction TR) onto an

79

Figure 28: Emulation runtime results of image filtering, lungnd radiosity examples emulated on two different
emulation platforms AG performs up to 9x faster than software-only emafgtand 5x faster thanssatically preloaded
approach.

Software-only Statically Greedy
. . preloaded |:|
|:| AG . Lower bound

515(490(

3000
2500 +
2000 +
1500 +
1000

500

Millseconds

48 — 32
Virtex MI403 Virtex5 VLX110t
(1 Accelerator) (3 Accelerators)

acceleration engine is approximately three microsds. The Virtex4 MI403
development platform could hold one acceleratiogire and the Virtex5 vIx110t
development platform could hold three. For two bé taccelerators in the Virtex5
vIx110t, we connected them for kernel-bypassed ledadgxecution. One accelerator was
configured as a reader, and one was configuredva#texr. We chose this configuration
because many of the image processing SystemC tsimmgipped to this architecture well.
The kernel bypass circuitry only consumed a fewdned more slices than the core
acceleration engine. The SystemC emulation kermel written in approximately 2500
lines of C code. The online heuristics consistedrdy a few hundred lines of code.

We applied our heuristics to an image filteringtsgs (including a blur filter, an
emboss filter, a sharpen filter, and several imgletations of edge detection), a digital

lung model [107], and a reconfigurable radiositgide [7]. We wrote the image filters,

80

lung model, and reconfigurable radiosity desigisystemC, capturing each design using
multiple processes. We modeled several dynamicasimeEnin which the image filters,
lung model, and radiosity design might be used.

For all experiments, because sequences involve s@méom ordering, we
generated 20 sequences, and report the arithmetrage. The heuristic runtimes were

negligible.

4.6.2 Evaluation

Figure 29 shows total execution times of a suit&ydgtemC image processing, lung, and
radiosity descriptions running on Virtex4 MI403 avinitex5 vIx110t implementations of
the SystemC emulation framework without the kelmglass mechanism enabled.

For the Virtex4 MI403 implementation, thstatically preloadedaccelerator
approach yielded ~1.5x speedup compared to softardgeemulation (i.e., only running
on the SystemC kernel and no acceleration engifé®.greedy heuristic results in a
slowdown of 50% compared to software-only emulati®his is because thgreedy
attempts to reconfigure the accelerators withouasteration of the high reconfiguration
cost of downloading new bytecode instructions. @gepamicAG approach yields more
speedup. The execution tind&s obtains over software-only emulation and a sthyica
preloaded approach is 3.5x and 2.3x respectivelyperforms approximately 7x faster
than thegreedyheuristic.

For the Virtex5 vIx110t implementation, thstatically preloadedaccelerator

approach yielded ~1.75x speedup compared to sofmrdyeemulation. Compared to the

81

Figure 29: Emulation runtimes without and with kernel bypassng the AG heuristic on the image processing
examples. Kernel-bypass-enabled emulations perfbroneaverage 11% better than without kernel bypasd,up to
20% in some examples.

. Without kernel bypass . With kernel bypass

16
14 |

12]

10

Sobel Blur Sharpen Sobel2 Lung Radiosity

Virtex4 MI403 implementation which only had one alerator, the nominal speedup
achieved with the Virtex5's three accelerators wasxpected, and could have resulted
due to a poor mapping between processes to adoekerarhe penalty could also have
been due to increased communication costs on steraybus. Thgreedyheuristic was
again about 50% slower than software-only emulatiecause of the high cost to reload
the acceleration engines with new bytecode insomst TheAG heuristic performed 9x,
5x, and 18x better thasoftware-only emulatignstatically preloaded and greedy
solutions respectively. Th&G heuristic takes the accelerator reloading cost aticount
and thus decided not to reload the acceleratony ¢vee there was a new process on the
event queue.

Comparing with thelnfinite Acceleratorslower bound (i.e., all processes are
accelerated and without the need to reload thecbgteinstructions onto the accelerator)

shows that the AG heuristic obtains execution timesaverage within 15x slower on a

82

platform with one accelerator because of the hmgding time, and 8x slower on a
platform with three accelerators of this lower bdumhe lower bound solution does not
need to contend with the high reconfiguration tithe other heuristics do. Future work
could look into modifying the architecture for deased reconfiguration times.

Figure 29 shows the effect of enabling a kernelasgpconnection between two
accelerators on the Virtex5 vIx110t emulation mati (the Virtex4 MI403 could only
hold one acceleration engine, so kernel bypass neasapplicable). On average, the
SystemC examples improved their speedup by 1BMr and Sobel2achieved 20%
speedup with kernel bypass because they containfv gorocesses that had heavy
communication. Other examples like theng and Radiosityonly improved by a few
percent. This was because the inter-communicateiwden processes was light. More

kernel bypass connections could increase perforenBpenore significant gains.

83

Chapter 5

Just-in-Time Compilation of SystemC

5.1 Overview

The previous two chapters detailed the SystemC-Ghip framework, enabling portable
execution of SystemC applications on any platfone supports the SystemC emulation
engine, and SystemC accelerators and kernel bypaslsanisms that could substantially
increase the performance of SystemC emulation wjthamic system optimizations.
However, the acceleration engines require FPGAuress. We take a different approach
to speedup, wherein we just-in-time compile the t&y€ bytecode into native
instructions of the soft-core processor, as showkigure 30(b). Just-in-time compilation
has been used with wide success to speed up echwatemercial applications in the
CLR format (from C#) and Java bytecode, for PC-tgdatforms [83]. Our work is the
first JIT approach for an FPGA soft-core processor.

More significantly, however, is that JIT for an FRGoft-core processor provides
even more optimization possibilities than JIT fotraditional processor. The reason is
because the soft-core processor architecture cahdreged. As such, we could carry out

an iterative process, whereby after creating atialndIT compiler, we could analyze

84

Figure 30: While the performance of the base SystemC emulatngine is acceptable for some applications, toers it
is not (a). Just-in-time compiling the SystemC bygtie to the emulator's memory improves performgbgebut can be
made to be competitive with custom implementatibtise emulation engine is madéT aware(c).

(b) Regular JI

Systen —— \ Sl)gten
SystemC Applicatio I/O ,’
<« , \ >
class
IMAGE_PROCESSIN | Emulator Emulator -
G : public sc_module «—> \
/Isignal declarations <> _ - .
EDGE DETECTOR(> JIT-Aware | | |
. .
\\ 3= I
(a) Base)
Emulation , c) JIT withJIT-aware
SystemC Emulation Ee)source
Engine

w/ JIT-Aware

Base Emulatio

—_————

For some applications, J
with JIT aware resources
can result in performance
comparable to custom
implementations

Execution
Time

system performance to detect the new performantteebeck. We could then change the
processor architecture in order to alleviate thattléneck, modify the JIT compilation

accordingly, and repeat until no further improvetsemere found, as shown in Figure 31.
The resulting JIT compilation, with the architeeuwontaining JIT-aware resources as
illustrated in Figure 16(c), showed substantialtfer speedups over the original JIT

compilation.

85

Figure 31: The JIT/architecture codesign process.

v

JIT compiler
creation

Y

Architecture
refinement

v

5.2 Related Work

There has been much previous work in the fieldyofagnic binary translation and just-in-
time compilation to improve the performance of w@aite interpretation. Of the many
techniques to improve execution of Java bytecodst-ip-time compilation often
improves execution runtimes to near native sped&$. [The Transmeta Crusoe
processor [38] dynamically translates x86 code inadive VLIW instructions for
improved performance and reduced power. Other tacthres, like accumulation-based
computer architectures [84], have also benefitedmfrjust-in-time compilation
techniques. Gligor [54] used dynamic binary tramsia to improve the speed and
flexibility of MPSoC simulations.

There has been an increased amount of work doingpt@ve virtualized software
execution with supporting hardware. Adams [2] pr#s a survey of techniques for
improving x86 virtualization execution, discussingpth software and hardware
optimizations. Rosenblum [117] discusses the adggn of hardware-level virtual

machines, and the need to make them as fast,egffj@nd transparent as possible. Enzler

86

[45] uses reconfigurable arrays to virtualize haaddy Bauer [12] uses reconfigurable

arrays to improve the execution time of event-driganulation.

5.3 Experimental Setup

For the upcoming experiments in this paper, wet lbaike complete SystemC-on-a-Chip
platforms, each with differing memory subsystem lengentations, and differing
performance profiles. We built one system on anXilSpartan 3E FPGA platform that
required that the SystemC engine reside in DRAM orgmWVe built a SystemC engine
on an SRAM-based memory structure on the Virtex4(08| development platform.
Finally, we implemented the SystemC emulation ea@n a larger Virtex5 vIx110t, and
shown in Figure 32(a). The Virtex5 implementatidsoaexecuted from a large SRAM.
To highlight the benefits of the new emulation aetture changes, we built two
versions of each platform, one with the dedicatest-in-time emulation architecture
changes, and one without. Each system is brieflpnsarized in Figure 32(b). The
emulation architectures were described using apmately 10,000 lines of VHDL. We
wrote the SystemC emulation using approximatelh0@,llnes of C. The emulation
architectures were built using Xilinx ISE 11, ahe software was compiled using Xilinx

EDK 11.

87

Figure 32: Experimental Prototype&) The Virtex5 vix110t implementation connected tlarge screen buffer for testing
image processing application&) A summary of each experimental system. Each versas built with and without
dedicated hardware to improve the impact of judirite compilation of the SystemC bytecode.

Developme | Main

nt Platforn | Process Memory

Xilinx . Emulation Engine| DRAM
Spartan3E Microblaze

FPGA JIT Memory BRAM
Xilin Virtexa B owerPC Emulation Enginel SRAM
MI403 FPGA JIT Memory BRAM
Xilinx Virtex5 . Emulation Enginel SRAM
vIX110t Microblaze

JIT Memory BRAM

(b)

We picked a variety of benchmarks to test our Sy€tgust-in-time compilation
approach. The benchmarks range from image procgsgiplications like Sobel edge
detection to encryption algorithms like an A5/leatn cipher. We carefully chose
applications with varied amounts of complexity to® where just-in-time compilation
for SystemC excels and where it doesn’t. To compaespeed of the JIT compiled code
with an “upper bound,” we rewrote each benchmarkatiy in C code (not SystemC),
performing a manual scheduling of processes sooasliminate the need for the
scheduling done in the SystemC simulation kernee T descriptions are less intuitive
than the SystemC descriptions, and the parallalisthe application is less exposed, but
the C descriptions provide an upper bound as to fasivthe SystemC bytecode could
possibly execute on a Microblaze—essentially, thedde strips away all SystemC
overhead and describes just the application codecthpiled the C descriptions directly
to Microblaze machine code using the Xilinx toot&ldhe highest levels of optimization

(O3). We refer to this implementation retive software

88

5.4 Just-in-Time Compilation of SystemC

We began by profiling the SystemC emulator’s exeoutor the benchmarks. Figure 33
shows, which clearly show that the virtual machieecuting on the Microblaze
contributes to most of the execution time, name&$o7 the other contributors relate to
architectural features. The virtual machine’s daanite is due to each bytecode
instruction requiring dozens of Microblaze instrans to execute. Just-in-time
compilation from bytecode instructions directly Microblaze instructions should thus
greatly decrease that time, because almost alleBy3tbytecode instructions can be

translated to just 1 or 2 Microblaze instructions.

5.4.1 Compilation

Just-in-time compilation from the SystemC bytecotte the target platform is

Figure 33: Results of our initial profiling of the SystemCtbgode emulator.

%

@ Virtual Machine

W Signal Queue
Maintenance

O Event Queue
Maintenance

O Updating
Memories

89

straightforward. The SystemC just-in-time compdatprocess consists of three analysis
phases and three translation passes. The firdyssghase determines how many
instructions each source SystemC bytecode insbructvill require in the target
architecture. The second analysis phase determitésh bytecode registers depend
upon values from previous executions of the pracBss third analysis phase determines
which register conventions might be violated byvebji translated code — for instance,
any registers that must be saved across functitssfaould not be overwritten.

The first translation pass directly copies bytecanlgtructions to appropriate
locations in the JIT memory, which can be calcaddtem the information gleaned in the
first analysis phase. The second pass translatds legecode instruction, which also
requires information from the first analysis phéserecalculate relative branches). The
third pass adds a function prologue and epilogiensure compliance with the emulation
engine and architecture register conventions, winzfuires the information from the

latter two analysis phases.

90

Figure 34: Modifications to the SystemC emulation engine thatease the utility of just-in-time compilatiofhe new
SystemC emulation engine supports a local memosywith a dedicated JIT memory and a static signalig for fast
access to commonly executed software operafmnsThe new SystemC emulation engine also has aatedic
emulation memory controllewhich offloads costly memory updates from sofyand magnifies the impact of just-in-
time compilation

SystemC Emulation Engine

Original A) B el Fast dedicated
Memory — Local Memory Bus ~| memories directly
Input |—p ! 4 4 —1__ connected to local
put | Proces | 1 @ — - o
«—> 1 A4 A 4 mlgmory us
' | signal Queug | JIT Memory relieve processor
Momory ! ¢ shaspl
Outort Le_s. ! vy rom going throug
P — ! slower peripheral
nstructiol
<« Memory : v bt
1
UART > 1]
' Emulation
Memory Memory Memory controller
i Controller connectglirectly to

Read Signal
signal memories

and signal queue,
allowing for single
cycle and parallel

updates

(b)

5.4.2 JIT Compilation with Dedicated JIT Memory Resources

Unfortunately, straightforward just-in-time transbe often results in unimpressive
performance improvements. There are a numberasbres for this, but perhaps the most
obvious is the emulation memory architecture. €h#dre emulation engine requires a
large instruction memory, heap, and stack, and doedend itself easily to small, fast
memories (which are often very limited, and somesmmon-existent) Thus, the
emulation engine usually resides in a larger, stomvemory (e.g., DRAM, or SRAM).
Naively placing the native code resulting from justime compilation back into this
same memory shows performance improvement, butirtisovement will be greatly

hampered by memory latency.

91

We observed that since the native code returnethdyust-in-time compilation
process is much smaller than the emulation engeeded to execute bytecode, the
SystemC emulation engine would benefit from usirgmell fast memory dedicated for
storing the just-in-time compiled native code, heven in Figure 34(a). The dedicated
JIT memory directly connects to the base System@ekevia a local memory bus, can
hold small amounts of natively translated Systeno@e¢ and can execute orders of
magnitude faster than the original interpreted &y& bytecode. The just-in-time
compiled code is also several times faster tharskased code executed from the original
slower memory.

We implemented the just-in-time compilation rousine approximately 1,500
lines of C. For our experiments, we assume the &mukan just-in-time compile the
entire SystemC application to the dedicated just-in-timemory. Of course, assuming
enough just-in-time memory isn’t necessarily a ¢@nst as the emulator can fall back
on just-in-time compiling the SystemC bytecodehe karger, slower memory resources
and still see performance improvement. For eachmele the emulator just-in-time
compiles the SystemC circuit to the dedicated mgrmaor to emulation execution. The
time required to just-in-time compile is a one-tikwst, and runs in milliseconds, even
for large System C applications. Future work migivestigate methods for just-in-time

compiling dynamically as the SystemC applicatioruisning.

92

Figure 35: JIT compilation with dedicated JIT resources panfed 4X faster than the base SystemC emulation
platform, yet still fell short of native softwarmplementations by another 10X.

O Base Emulation

50.00 - B JIT Compile (Same Memory)
40.00 H || [I:IJIT.Complle (Dedicated JIT)
30.00 [| [| O Native SW

Execution Time (normalized)

Application

Figure 35 shows the advantages of using just-ie-tcompilation for SystemC
emulation on the Virtex5 development platform fonamber of SystemC applications.
For each example, we compare just-in-time compitatio an implementation of the
SystemC emulation engine implemented entirely irADRWe also compare the just-in-
time compiled version to an implementation of tipplecation running natively on the
development platform. The results for the SpartBnaBd Virtex 4 SystemC emulation
implementations were similar to the Virtex5 implartagion. Figure 35 shows results
running JIT compilation using dedicated JIT memaeegources compared a more
straightforward approach using the platform’s ndrregources. On average (geometric
mean), JIT compilation with dedicated resourcesea®s approximately 4X speedup
compared to base emulation, and 1.6X speedup ceahpajust-in-time compiling to the
emulator's same memory resources. For computdlyonmtensive SystemC
applications, like the digital timer, just-in-timeompiling to dedicated JIT memory

resources resulted in over 100X speedup. For qthHies the electronic lock, the

93

speedups we less impressive. While still achievirigX speedup, the electronic lock
lacked computationally challenging routines, megrother components of the SystemC

emulator became a new bottleneck.

5.4.3 Emulation Memory Controller

Dedicated just-in-time memories improved the penfance of SystemC emulation by
over 4X on average. However, the improved perfoceastill fell short of the software
running natively on the development platform by 10¥hile this can partly be explained
by the different software implementations requifed the native platform (sequential
implementation) compared to the original System@l@mentation (structural and spatial
implementation), a more concerning factor was therlzead the emulation engine
incurred managing queue and memory resources semwe correctness of the SystemC
application, shown in Figure 33.

To facilitate the described just-in-time compilatidgechniques, we introduce
several additional architectural changes to the IBstemC emulation engine, shown in
Figure 34. The new architectural changes addreseethaining 27% of the software time
spent concerned with updating the read and wrgeatimemories, and maintaining the
signal and event queues, and thus greaten the ingfaceplacing the just-in-time
compiled SystemC bytecode with the interpreted addbe SystemC virtual machine.

The first change to the SystemC emulation engirtieasaddition of dedicated fast
memory connected directly to the processor to actha newsignal queueOriginal

implementations dynamically managed the signal guewaking unnecessary low-level

94

memory allocation calls. We observed that the signaue is bound in size by the size of
the read and write signal memories, and thus dddidat a statically created memory
would mitigate the effect of dynamic signal queuanagement. We also observed that
instead ofenqueuein@nddequeuingsignals to and from the signal queue, the emulation
engine only needed to store a signal identifieduceng the overhead on the bus to which
the signal queue is attached to the processor.

We further observed thasignal queue maintenanc€l5%) and updating
memories(7%) were a series of interleaving function calsttworked with highly
dependent data (updating the write and read sigrahories involved enqueuing the
signals that changed values), we could offloaddlsks of updating the memoriasdthe
maintenance of the signal queue to a dedicaeudlation memory controllerOn
completion of a delta time step, the emulation eadiernel commands the emulation
memory controller to update the signal memories pogulate the signal queue. The
emulation memory controller iterates over the wsignal memory, finds any signals that
have been updated, updates the read memory sighi&, \and adds the updated signal to
the signal queue. The actions can be pipelined&ning that the emulation memory
controller can check, update, and enqueue evenalksig the system in one pass. For a
typical SystemC application with 40-50 signals, #raulation memory controller can
finish updating all signals in 40-50 cycles. Thssim contrast to a software approach

which requires high hundreds-thousands of cyclethi® same SystemC application.

95

Figure 36: JIT Compilation with JIT Aware Resources speedscaiion by 10X compared to base emulation, and. By 2
compared to JIT compilation without the same resesir

60 O No JIT Aware Resources
] B With JIT Aware Resources

30 - O Native SW
20
10 | b) . -

0 ,

Dedicated just-in-time memory resources improvequerance, but are limited
by software calls to manage queue and memory ressur-ortunately, for FPGA
platforms the software can be replaced by a deslicaignal queue and memory
controller, which can update the signal queue &edsignal memories in tens of cycles
(compared with hundreds to thousands). Figure fwshthe effect of including the
dedicated JIT aware resources into the SystemCatimlarchitecture. The results are
again shown using the Virtex5 vIx110t as the exang@velopment platform. The results
compared just-in-time compilation running in dedéchJIT memory resources with and
without the additional JIT Aware resources. On ager just-in-time compilation with
JIT Aware Resources improved execution times by t6Xpared to the base emulation
architecture, and by 2.5X compared to JIT compmitatwithout JIT aware resources.
Again, for computationally demanding applicatiod$T compilation with JIT Aware

resources could actually attain better executioresi than the native application. This is

96

due to the fact the computationally demanding Sy€teapplication now runs in local
fast BRAM memories, and the native application| stkecutes in slower memory
resources. For other applications, the speedupdsiite as dramatic, but JIT compilation

with JIT Aware resources comes with 4X of nativelagation execution on average.

97

Chapter 6

Just-in-Time Synthesis of SystemC

6.1 Overview

The performance of SystemC emulation can be imgfgreatly using online bytecode
acceleration and just-in-time compilation technigueut still pales in comparison to the
potential of native FPGA implementations. While ®ysC bytecode accelerators are
able to expose some of the parallelism presertterSystemC application, each process
is still executedemporally greatly limiting opportunities for high-performas FPGA
speedups (and the reason the SystemC applicatight inave been written in the first
place).

Analogous to Java-like approaches where just-ietoompilation can improve
application execution times by orders of magnitbglea translation of the bytecode to
native platform instructions, the availability oPGA resources on platforms that support
the SystemC-on-a-Chip framework lend themselvdsetng utilized for native execution
of the SystemC application.. Figure 37 illustrajast-in-time synthesis of SystemC

applications to a native FPGA implementation.

98

Figure 37: Just-in-Time Synthesis of SystemC applicationsdeachatively executing applications that can run
orders of magnitude faster than baseline simulaimhseveral times faster than PC simulation

SystemC Application

: After some time, just-in-
waee proce| [nitially, SystemC synthesis creates a parallel,

SSING : public . . ” . . _ .
sc._module { application immediately natively-executing

IIsignal E
declarations runs on SyStemC emU|at|

\ engine, but slow

implementation, resulting in
dramatic speedups

Systen

Deve%ent Platform S/)gten ESysten Devejopment Platform Systen
/O '

I/O l

<+ <>

Emulator

Memor Emulator

1331

<>
<>
‘>
<>

PIETLe

Peripheral

Before

After

We introduce a transparent, server-side just-iretsgnthesis framework to the
SystemC-on-a-Chip framework that can override saféwemulation of SystemC
applications and instead execute the applicatidivelg, yielding orders of magnitude
speedups improvement over software emulation, astéf performance than native PC
simulation. We demonstrate the usefulness of tlaendwork by developing a full

prototype for the Xilinx Virtex4 MI403 developmebbard using partial reconfiguration.

6.2 Related Work

There has been a large body of work devoted tordpitation. Many efforts used

decompilation to port legacy binaries to updatedngoter architectures, to convert

99

binaries between two different languages, and toud@nt and maintain applications

written in assembly. Software developers have ats decompilation as a debugging
tool for assembly code, by recovering a high-leegresentation that is easier to check
for errors. A more complete treatment of decomjaitaican be found in [31]. We use

decompilation techniques for synthesis first preablsy Stitt [131].

Increasingly powerful FPGA platforms (and more Usdbols) have made partial
reconfiguration more attractive and the subjeanath research. Horta [71] describes the
use of dynamic plug-ins for FPGAs with partial mime reconfiguration support. Forin
[132] uses partial reconfiguration to create aneesible MIPS-like processor called
eMips. Emmert [44] uses partial reconfigurationfiault tolerance purposes.

Approaches for dynamic software optimization andaby translation have been
proposed to maintain binary compatibility, to redwmompilation time, and to perform
runtime optimizations. Dynamo [10] is a dynamiciopzation approach that profiles an
application during execution to determine frequeaths, optimizes the code for those
paths, and stores the optimized code in a specanfent cache. When software
execution reaches a frequent path, the microprocegdches instructions from the
fragment cache to execute the optimized code. FX2ZB dynamically translates x86
binaries into Alpha binaries by first emulating thyeplication and profiling to determine
frequent regions that should be translated to eathipha instructions. BOA [56]
dynamically translates PowerPC instructions int@lgen microinstructions that can be
more easily pipelined and scheduled in parallel.AB&lso detects frequent paths,

performs path-specific optimizations, and translgtaths from PowerPC code into native

100

VLIW code. The 1A-32 execution layer for the Itamumicroprocessor uses software to
convert IA-32 instructions into native Itanium ingttions [11]. Warp processing
[93][94][129][131] has demonstrated the feasibildf performing binary synthesis at
runtime, allowing binary synthesis to also take adage of runtime information to

optimize hardware.

6.3 Just-in-Time Synthesis

6.3.1 Server-Side Synthesis Framework

We investigated two options for synthesizing Sy&fempplications native platform
execution. One option is to utilize another localgessor within the SystemC-on-a-Chip
framework to perform synthesis, place and routd, mapping for the platform. Lysecky
and Stitt [93][94][131] showed that the computasittyy complex algorithms used by
synthesis and place and route can be made leaglet@uun on a small Arm7 processor.
However, they assumed a simple architecture mod#l & much-reduced complexity
FPGA platform. Modern FPGAs are so complex thay tliemder on-chip synthesis with a
small embedded processor infeasible, and instepdreepowerful computing platforms
to perform the synthesis process.

Another option is to use an external server to querfthe complex synthesis
process. The server-side approach requires am@tteonnection, but this is plausible as
most modern FPGAs platforms have existing intergennectivity, or can be
programmed to have such behavior. Figure 38(awshserver-side synthesis for

SystemC-on-a-Chip. A SystemC application initiatlyns on the platform using the

101

emulation techniques described in previous chaptérsadditional performance is
required, the emulation engine sends the curremtgcuting SystemC bytecode through
the internet connection to a remote server. Theotenserver converts the SystemC
bytecode to a circuit representation, performs lsgis, place and route, and mapping,
and finally sends the updated bit stream back éd/IRGA platform. The new bit stream
overrides execution of the emulation engine, anecetes as a native implementation.
The server approach is not limited to an exterealate server. The approach also works
in the case where an FPGA platform is directly emted to a PC platform, like Intel's
QuickAssist Technology, in which case the PC cafopa synthesis externally.

There are several advantages to performing symsthHesiSystemC applications
running on SystemC-on-a-Chip. The first is perfanoe After some initial time spent
sending the SystemC bytecode to the server to beeced, synthesized, and sent back,
the SystemC application can potentially run ordefsmagnitude faster than when
running the base SystemC emulation engine, andfatger than simulating the same
SystemC application on a desktop PC. The secondnsalye is the synthesis process is
completely transparent to the SystemC applicatiesigher. The SystemC application
designer does not to need to use costly, difficutig hard-to-use synthesis flows that
often differ greatly from traditional compilatiofofvs (of which the SystemC-on-a-Chip
flow follows). Instead, the SystemC applicatioomediatelyruns on the emulator using a
more traditional compiler, and if needed, will tsparently synthesize itself to a circuit

that takes advantage of the available FPGA reseurce

102

Figure 38: Just-in-Time Synthesis SystemC-on-a-Chip framewdal The server responds to requests from
SystemC-on-a-Chip platforms that require nativecaken speeds. (b) The sendacompileshe SystemC
bytecode, recovers the high-level information, apcthesizes a circuit tuned to that platform’s kkde resources.

| [Emulator ‘
f Memo EmulatOf 1
»

&
<«

1]

/ HW Generatiom

| SystemC Bytecode _|

v v
ontrol Floyy | Data Flow
nalysis Analysis
¥ ¥
[Scheduling]
¥
| RTL VHDL Code _|
v

[RTL Synthesis]

»

Peripheral

ERR N

SystemC
Emulation
Engine 1

<
< Ll

Emulator
SystemC 4 [Memo -<—>
Emulation -
«—>

v

[Partial Bit stream}
Generatio

(b))

v
- Send back updated bit stream

Engine 2

Peripheral

There are also a several disadvantages to thersadeejust-in-time synthesis
approach. One disadvantage is that the serversyidihesis approach can be slow. In
extreme cases, the server may finish generatingti@enplatformafter the emulated
circuit has finished executing. Synthesis, place anute, and mapping are complicated
NP complete problems, and often require extenggeurces (and time) to complete. For
such situations, the SystemC-on-a-Chip platform ldiowt be able to take advantage of
the native implementation. The server-side appraachbe beneficial for long-running
SystemC applications or scenarios where a Systepplication repeatedly executes.

While the first execution instance may not take aadage of the newly-created native

103

bitstream, repeated executions could immediatdly talvantage, resulting in on average

high performance SystemC execution. Such casesnehdo a server-side approach.

6.3.2 Decompilation and Synthesis

The server-side synthesis framework requires mathodecover high-level information
from the SystemC bytecode in order to generate gh-péerformance circuit. With
modifications, we use Stitt's binary synthesis/dapdation [131] tools to recover and
generate RTL VHDL for the SystemC application. Shomwm Figure 38(b), the
decompilation tools perform dataflow and controlflanalysis, scheduling, and generate
RTL VHDL to input into commercial synthesis andgdand route tools.

The decompilation tools required some modificationBe major modification
required modifying the tools to accept a binarye (8ystemC bytecode) that already has
explicit parallel constructs, and maintain thosenstoucts through the optimization
process. For instance, if a SystemC application wwd$en using two explicit processes
with custom communication, the decompilation towlast preserve those connections,
while still correctly optimizing the behavior of &a process. A more complete
description of the optimizations performed by tleea@mpiler can be found in [131].

The output of the decompilation framework is RTL MH The VHDL is input
into a commercial synthesis tool framework thategates a partial bit stream. The partial
bit stream is finally sent back to the SystemC-eDkgp framework, the bit stream is

downloaded, and begins execution as a custom ingrigton.

104

6.3.3 SystemC-on-a-Chip Architectural Support

We considered two options on how best to overideemulation engine once synthesis
has completed. The first option is to create ayfelistom bit stream that completely
erases the emulation engine architecture and tadk#sol of all of the platform resources
once downloaded. This approach has the advantagetiib SystemC application has
access to 100% of the resources on the chip, gpotgntial for a higher performance
implementation. One disadvantage is the platfornmstmaiore the emulation engine
framework in memory for additional uses of the folah, or be forced to download the
original bit stream for future uses. Another disaabage is there is the possibility that the
synthesis job cannot create a custom bit streanthBoapplication, possibly due to area
constraints, timing constraints, etc. in which cdsenight be more advantageous to
synthesizepart of the SystemC application to a custom implemenatand leave the
rest to run on the emulation engine.

We chose an approach where the SystemC emulatgnesremains persistent on
the development platform, and is overridden atriglet time by ajust-in-time synthesis
architecture supported by partial reconfiguration, and shownFigure 39. For the
common case where the SystemC-on-a-Chip framewsrkexecuting on an FPGA
platform, a portion of the FPGA platform is now deded to be a partially-
reconfigurable region called thest-in-time synthesisupport section. The just-in-time
synthesis support section statically interfacesh® emulation engine, and to a static
multiplexor that multiplexes the control of the put peripherals. On platform

initialization, the just-in-time synthesis supp@tmostly blank, with the exception of a

105

Figure 39: Just-in-Time Synthesis Architectural Support. Thetiplly-reconfigurable region multiplexes the wse
the input and output, and can override the exegutfdhe emulator once programmed.

Development Platform

NN NANNEENE

v Input Peripherals v
Emulation Engine Just-in-Time Synthesis Support

Partially Reconfigurable

Interface Region

<« »

Select who
controls outputs

Output Peripheralt;

On initialization, just-in-time region is empty, dwontrols the
mux to allow the emulation engine control of thépou
peripherals. After, the new bitstream changes the b
controlling the mux, giving the just-in-time region

few control bits that control the multiplexor toadse the emulation engine as having
sole control over the output peripherals, andriglthe emulation engine the just-in-time
synthesis section is empty.

The SystemC emulation engine sends a request sethier-side synthesis tool to
create a custom implementation. The server-sidéhegis tool is aware of the partially-
reconfigurable configuration, and not only syntkesia custom implementation of the
SystemC application, but also generates small pie€eontrol logic that interface with
the SystemC emulation engine, and which switchrobiof the output peripherals to the

just-in-time synthesis region.

106

The interface between the SystemC emulation enginé the just-in-time
synthesis region serves several purposes. Thaditstinstruct the emulation engine that
the just-in-time synthesis region is ready to exe¢thus stopping the emulation engine).
The second purpose is to transfer a notion of steteeen the emulated application, and
the newly-created custom implementation ready to iu the just-in-time synthesis
region. Without a transfer of state, the newly-tadacustom implementation must begin
running, and lose the potential for starting whigre emulated application left off. The
just-in-time synthesis region also uses the interta tell the emulation engine whether it
is emulating all or part of the SystemC applicatiirthe just-in-time synthesis region is
executing the entire SystemC application, the ijjudime synthesis region will take
complete control over the output peripherals, asd ainimally communicate with the
emulation engine. If it is only executing part bétSystemC application, the just-in-time
synthesis region registers the correct SystemCepr®ss into the emulation engine so as
to maintain correctness, and to instruct the enmmaengine to use the custom
implementations of the desired SystemC processes.

Using the partially-reconfigurable approach, thest8,C emulation engine can
persist in the background, potentially allowing ettfsystemC applications to run as a
custom implementation uses the partially reconfigle region. The approach also
allows the server-side synthesis tools to selegtigigoose how best to use the SystemC-
on-a-Chip platform, either creating full custom siens of the SystemC applications, or
only synthesizing parts, and emulating the reste Ttadeoffs include performance,

complexity of the design, and how many applicatithes SystemC-on-a-Chip framework

107

can independently support. One disadvantage ofaghpsoach (compared to deleting the
emulation engine) is the emulation engine itselfossuming resources that might best

be used by a custom implementation of the SysteppGcation.

6.4 Experiments

We built a full prototyping framework to test andndonstrate the usefulness of
the just-in-time server-side synthesis framework $gstemC-on-a-Chip. We built our
prototype using the Xilinx Virtex4 MI403 developmémard. We used the 9.2 series of
Xilinx’s ISE, EDK, and PlanAhead tools to implemehné partially reconfigurable region
for just-in-time synthesis support. We implementiee architectural support for just-in-
time synthesis using an additional several huntinesd of VHDL (mostly for bus macro
instantiation), and a two hundred lines of C fa @mulation engine.

We built the server-side framework by modifying t&i binary synthesis
framework to support SystemC bytecode. The orignahry synthesis tool was written
using approximately 30,000 lines of code; the aoal SystemC bytecode support
required approximately 2,000 extra lines of codw®. dur experiments, we synthesize the
entire SystemC application, and leave deciding best to synthesize only parts of the
SystemC application to future work. The binary &wsis tools generated RTL-level
HDL code that served as input into Xilinx’s ISE aRthnAhead tools for synthesis,
placement, routing, and partial bit stream genematiCurrently the server-side

framework only supports one synthesis requesttae, but will be augmented to allow

108

Figure 40: Speedups compared to base SystemC emulation fe& sommon image processing filters. Factoring
out the time required to synthesize the Systemdicgtion, just-in-time synthesis is almost 14,00@Xter than
base emulation, and 30X faster than PC simulation

100000
13,998
10000 —
1000 429 —
100
7.3
10
3.3
1 | l
Just-in-Time Online PC Simulation Just-in-Time
Compilation Acceleration Synthesis

for multiple requests in the future. The serveegigcompilation framework was built on
a 2GHz PC using 2GB RAM.

We implemented a suite of image processing apmitatin SystemC, including
an edge detector, an emboss filter, and a shampeiltar. Each image processing
algorithm was implemented using various numberngro€esses to test the correctness of
the decompilation framework, and its ability to geate the high performance circuit
implementations given different SystemC implemeatst. Each SystemC application
was written using the synthesizable subset of &ySteguaranteeing the decompilation
framework could create a circuit. Future work mightestigate decompiling a less-
constrained version of SystemC bytecode

Figure 40 shows a comparison of the speedups athiby online emulation
acceleration, just-in-time compilation, PC simuwati and just-in-time synthesis

compared to base SystemC emulation. The data sh®veor only one of the image

109

filters. The data for the other image filters waswsimilar. As shown in earlier chapters,
just-in-time compilation earns modest speedups evatpto base SystemC emulation.
PC simulation is approximately 400x faster thanebasulation, but part of this speedup
is due to the disparate clock speeds between thé¢rirhing at 2 GHz) and the base
emulation engine (running at 100 MHz). After justtime synthesis, the native SystemC
application runs approximately 14,000x faster tlhase emulation and approximately
30x faster than PC simulation. The speedup oveb#se emulation engine is due to a
completely parallel implementation the server adafor each implementation, the
server side decompilation framework was able tovecand create the same circuit that
we hand-created from the same SystemC applicatiarst-in-time synthesis was 30x
faster than PC simulation because the SystemCecapipin on the PC itself is wrapped
within a simulation kernel that causes slowdowne TH,000x performance improvement
does assume synthesis took zero time. In all tbases, the decompilation and synthesis
process took approximately 20-30 minutes. In thpaeicular cases, the SystemC
application still ran on the emulation engine utiigé new bit stream was created. Once
bit stream generation finished, there was a ndbieequantitative and visual difference in

how fast the SystemC-on-a-Chip performed.

110

Chapter 7

Controlling Time with SystemC Emulation

7.1 Overview

Emulation of SystemC applications allow for porgabkecution over a variety of devices
and platforms, saving time and programming eff@amd allowing a designer the
opportunity to create a device-independent FPGAiedmn. An additional advantage of
emulation is the power to start, stop, and cortiroke. Controlling time might allow a
designer to debug a SystemC application in-systgwmg access to internal variables,
signals, and state of the SystemC application asinhing and connected to real
peripherals. Such control might be beneficial inumnber of domains. We will use the
development of physiological models for medical idevesting as a case study into the
usefulness of time-controllable SystemC emulation.

Medical device software is commonly developed using of several approaches.
One approach involves modeling on a PC, shown guirigi 41(a). A designer develops
models for both a medical device, such as a pacemak ventilator, and for the
physiological system with which the device intesactuch as a heart or lung. Such a

modeling approach supports rapid device softwamngbs, supports simulations that

111

Figure 41: Approaches to integrating an embedded device Witphysical environment during
design: (a) system model, (b) physical mockupdigital mockup

L

=
Modeling environment (e.g., Matlab, VisSim) gj%\
\ " ; al
@ Lung Ventilator \'2%/
model mode ‘

hysical environment model Device

(b)
Analog
connection|

$XILINX
© Lung
model Digital
57 connectiong
b el
Digital lungs mockup Ventilator device

execute faster (or slower) than real-time, and @s/quotential safety issues that could
arise when interacting with an actual physical eyst

A second approach, used after or instead of theetlmgd approach, runs the
medical device software on the actual medical adgw¢ehich is connected to a physical
mockup on the physiological system. Physical mosktgnge from simple structures,
such as a balloon representing a lung, to compatgmechanical parts that dynamically
react [Michigan Instruments], that can be set tmmia range of conditions, and whose
internal sensors can be interfaced to a computearfalysis and debugging.

One disadvantage of interfacing to off-the-shelygptal mockups is the inability

to adapt to new features, especially features asityemimicked via mechanical means.

112

For example, a future ventilator may sense humareigeed nitric oxide concentrations
(recently discovered to be significant in respiratgsues [120]) and adapt the output gas
mix in response. However, no existing computerizathanical test lung generates nitric
oxide, nor is it clear how to create one.

An alternative is to connect the actual medicaliceto a digital mockup of the
physiological system. Aigital mockupis a behavioral model that emulates the physical
system. In such a case, the medical device sadtesegcutes as if it were interacting with
a physiological system, but in fact all interactiesnthrough a digital interface, as in
Figure 41(c). We consider a digital mockup platfowith a sensor/actuator bypass
method of integration [122] as shown in Figure 32{@nder this scheme, the digital
mockup taps directly into the information packetattcarry the control and data bits to
and from the device’s sensors and actuators. Tgneaddmockup includes models of the
physiological system, of the physical connectioasMeen the device and physiological
system, and of the sensors and actuators. A sgpgy\wsystem coordinates execution of
the digital mockup and medical device. The senstu&or bypass method is in harmony
with methods used in industrial “hardware-in-thegd practice today, shown in Figure
42(b). Digital mockups combine the flexibility anfster-than-real-time execution
benefits of PC simulation models with the advantagé developing software on an
actual medical device. Digital mockups are alsoeptilly less costly than physical

mockups, which can cost tens of thousands of &ollar

113

However, no common methodology exists for creatliggtal mockups. Towards
this end, we sought to develop a general approachimhe-controllable digital mockup
execution. Digital mockups can be implemented tghoa variety of methods and on a
variety of different platforms, trading off perfoamce, complexity, size, and accuracy.
While a medical device software developer may rudigital mockup directly on the
physical development platform for increased perfmmoe and/or accuracy, another
approach is to run the digital mockup on topvotualized platformlike an in-circuit
emulator. By varying the rate at which the digitackup generates samples, the digital
mockup can still run faster than or in real-timeimterface with the medical device
software under test. A virtualized environment edso provide built-in and unobtrusive
debug capabilities, allowing the designer to stsfart, and step through the digital

mockup to examine important system variables. TiHealized environment can exploit

Figure 42: Digital mock-up platform: (a) The bypass methodndégration taps directly into the digital inforrzat
packets that indicate the data/control valuesdpifthe device sensors/actuators, (b) the methodhesthardware-in-
the-loop approaches used in industrial pracfigei(e courtesy of Boeing, 2009

C——— ——Actuator
Physical

gggnomena
Senso

Input/output
digital leads

Actual physical
Catellie operatin
in a lat

"

‘ 12 Bt Network Hui

Embedded device
— pacemaker,
engine control uni

Proce;sqrs/FPG A ’ .
inside

(a) (b)

114

the digital mockup’s explicit notion of a simulatéidhe step, allowing the designer to
monitor the mockup usingime-controllabledebug For example, a medical device
software developer may wish to step through a wihgdmng that just coughed one time
step at a time (physiological models are defineddmpute the next system values in
time based on alelta time parameter), observing subtle differences in pressurd
volume in the digital lung that might not easily ddeserved when running in real-time.
We describe aime-controllable SystemC-on-a-Chip framework that allows a
medical device software developer to interface alioa device to a SystemC-based
digital mockup, and start, stop, profile, and adwarexecution using explicit time-
granularized debug commands. This is contrastec tmore traditional debugging
approach, where debugging is performed atiis&ruction granularity, and which does
not include an explicit notion of time. A time-grdarized approach is generally more
useful for physiological digital mockups, and piaes a more powerful abstraction for

developing and testing medical device software.

7.2 SystemC for Synchronized Physiological Models

There are a number of approaches to capturingraptementing physiological systems
models. Physiological systems are usually firstdeted using systems (hundreds or
thousands) of partial and ordinary differential &gpns. The model can then be captured
for PC execution using a particular programminggleage, typically an expressive

mathematical language like MML, Matlab, or VisSim.

115

Figure 43: Capturing physiological models in SystemC. (a)tiBorof a mathematical model of the human lung. (b)

Description of the model in SystemC. (c) Descriptising POSIX threads. The POSIX threads approemlhires
implementing explicit lock-stepping mechanisms tietiract from the model’s readability.

Cbr

= Qr/ Vir
(a) For :

= (Rir— Ry / Ror

dQbr/dt = k5 * (Cair + Cor) + Fanv * (Canv — Gor)

(b) (c)

Class model : public sc_module {
sc_in_clk clock;

integrator Q_integ;

sc_signal<sc_uint<32> > Qbr, Qbr_t;
sc_signal<sc_uint<32> > Cbr, Fbr;

SC_CTOR {
Q_integ.clock(clock);
Q_integ.func(Qbr_t);
Q_integ.dt(dt);
Q_integ.out(Qbr);

SC_METHOD(cbr_func);
sensitive << clock;
SC_METHOD(fbr_func);
sensitive << clock;
SC_METHOD(gbr_t_func);
sensitive << clock;

}

void cbr_func(void) {
Cbr = Qbr / Vbr;

}
void fbr_func(void) {
Fbr = (Pair — Pbr) / Rbr;

}
void gbr_t_func(void) {
Qbr_t = Fbr * (Cair + Chr) +\
Falv * (Calv — Cbr);

SystemC
implementation myc
closer to the

Extraneous codé to
implement
synchronous locksteps
detract from actual
model

int cbr,fbr,qbr_t;
sem_t timestep_done,cbr_done;
sem_t fbr_done,qgbr_t_done;

void * Cbr(void * arg) {
while (1) {
sem_wait(×tep_done);
cbr = Qbr/ Vbr;
sem_post(&cbr_done);

}

void * Fbr(void * arg) {
while(1) {
sem_wait(×tep_done);
fbr = (Pair — Pbr) / Rbr;
sem_post(&fbr_done);

}

void * Qbr_t(void * arg) {

while(1) {
sem_wait(×tep_done);
sem_wait(&cbr_done);
sem_wait(&fbr_done);
gbr_t = fbr*(Cair + cbr) +

Falv*(Calv — cbr);

sem_post(&qbr_t_done);

}

void * ClockTick(void * arg) {
while(1){
sem_wait(&qgbr_t_done);
sem_post(&cbr_done);
sem_post(&fbr_done);
sem_post(&qbr_t_done);
sem_post(×tep_done);
}
}

int main(){
pthread_t pCbr;
pthread_t pFbr;
pthread_t pQbr_t;

pthread_create(&pCbr);
pthread_create(&pFbr);
pthread_create(&pQbr_t);
pthread_join(pCbr, NULL);
pthread_join(pFbr, NULL);
pthread_join(pQbr_t, NULL);

return O;

116

Another method to capturing physiological systenmsdets is to use SystemC.
SystemC is a set of libraries built on top of the+tdanguage that provides an event-
driven simulation kernel, allowing a designer tonsiate a number of concurrently
executing processes, and which supports preciseBdt communication based on
simulated time. SystemC is a natural fit for capimiphysiological systems models for a
number of reasons. The equations that represestt phgsiological systems are naturally
expressed as a number of concurrently executiegaotnected processes that execute in
lockstep. Digital physiological mockups implemented SystemC have the added
advantage that freely available SystemC simulagowironments exist that enable
comprehensive PC testing. Further, the developerwaSystemC on a real development
platform using an in-circuit emulation approachell&ystemC-on-a-ChifSirowy], with
the advantage that the SystemC-based digital moekaputes with real peripherals, and
with real devices, like medical device platforms.

While solutions can be implemented in other pargl®gramming paradigms
like POSIX threads or Java threads that also opendth precise timing constraints,
physiological models are more naturally represente®ystemC, where lock-stepped
execution is an intrinsic part of the language. ¥st8mC description can require less
code, is more readable, and is also more extendilgare 43(a) shows a portion of a
human lung model captured with three interconneetpghtions. Figure 43(b) shows the
SystemC description and Figure 43(c) shows a maditional POSIX-based parallel
programming description of the model. The POSDédas approach requires describing

explicit tightly-coupled, time lock-stepping meclsms that make the description more

117

difficult to read, maintain, and extend. Additiolyakhere is no clear way to step through
a POSIX implementation at the simulated time lewathout further introducing

extraneous code into the model. Matlab can alsoemadnumber of interconnected
equations using a mathematical approach, but IB8IR and Java descriptions, Matlab
does not support explicit timing constructs, andudging is still performed using

standard instruction-granularity debug features.

7.3 Related Work

Pimentel and Tirat-Gefen [112] developed real-tidigital mockups that interfaced to
medical devices by connecting symmetric D/A (digitaanalog) and A/D (analog-to-
digital) cards to each side. Previous work by Wyo[122] focused on modest
modifications to the medical device hardware anithwswe such that a digital mockup
could be connected directly. Sirowy’s approacH atibws the addition of D/A and A/D
attachments, but with the added advantage of atigwi designer to completely stay in
the digital domain, and to accommodate situatiohere D/A or A/D conversions are
complex (e.g., in the case of gas generation osisgp Other researchers have
developed real-time physiological models [20] watiocus on describing the necessary
architectures to achieve real-time.

Several research efforts have emphasized creatmj cataloging detailed
physiological models [79][107][135]. Those modelse atargeted for PC-based

simulation, yet could be used as a basis for digiackups. Further, many physiological

118

models are highly complex, often requiring hourslays to simulate a few seconds [96].
Our initial focus is on real-time digital mockups.

There has been much work in the domain of synchabioin mechanisms for
distributed systems. Lamport [87] describes methimderder events in a distributed
system. Kopetz [85] also specifies clock synchratimn methods, but describes
techniques used for a more general network topoldgycontrast, our system consists of
only two directly connected components, and thus ssmpler synchronization problem
because uncertainties in a general network needenobnsidered

There have been some efforts that focus on makmeg &an explicit first class
entity when designing and programming systems. [B8¢ calls for the need to bring
time to the forefront of programming languages aratlels, especially with the rise in
cyber physical systems research. Lee [89] presetdsonomy detailing several timing
properties that should be explicitly expressed ingmmming languages for timing
oriented behaviors. Benini [14] develops methods performing time granularity
debugging by calculating time through knowledgethef system’s clock speed and the

number of cycles between breakpoints

7.4 Time-Controllable Digital Mockup Execution

The SystemC-on-a-Chip framework can be augmentedie the developer
unobtrusivetime-granularizeddebug and test capabilities. In contrast to tlaadsrd
instruction granularitydebugging approaches, the SystemC-on-a-Chip framkeaan

start, stop, and step a digital mockup’s simulditee, advancing time forward as slow or

119

fast as the developer requires. Figure 44 highdighe differences between instruction
level and time granularity debugging.

Time-controllable SystemC emulation possesses abaurmf advantages for
digital mockup execution. First, the medical devsodtware developer can control time
by running simulations between the digital mockup anedical device faster than real-
time. Running faster than real-time might alloweveloper to simulate a night’'s worth
of breathing in just a few hours, or make possible ability to test several different
control algorithms on the medical device in a tiynelanner. The ability to run faster
than real-time is of course determined by the dette step at which the digital mockup
is executing and how powerful the underlying platfois, but for many examples,
running faster than real-time is feasible.

Another advantage is the debugger can step thrtheglexecution of the digital
mockup at the level of time granularity the digitabckup computes. Stepping using an
explicit notion of time might allow a medical degisoftware developer to step through a
simulated cough of a digital lung mockup, a heantmur in a digital heart mockup, or
other anomalies and subtleties that might not otiser be seen, or easily observed,

executing at faster speeds

120

Figure 44: Time-Controllable Debugging. In contrast to tramtitil instruction granularity debugging, time gréamity
debugging allows a developer to monitor systematdess by explicitly controlling simulated time.

Traditional Instruction . , ,
Granularity Debugging Time Granularity Debugging
Explicit concept of time, and

useful for discovering subtle

BNE $1 $2 5 b oing SUDS
ADDI $4 $0 8@ Set Break changes and relationships in
ADDI $1 $O§ Step digital mockup system variables
8 o 05 -

ADDI $2 $Of

Start

BNE $1 $2
ADDI $4 $0 9
ADDI $1 $0 2
J44
ADDI $2 $0 ®

No explicit concept of tirr, Set Step Step Step”
and not immediately useful f Break

digital mockup execution

7.5 Experiments

We conducted several experiments to test the fiéigsibf capturing digital mockups

using SystemC, interfacing those models using ysetC-on-a-Chip framework to a
medical device, and testing the ability to contnamle by configuring faster than real-time
execution and incrementally stepping through tidée built a SystemC-on-a-Chip
framework to run on a Xilinx Virtex5 FPGA platforridVe wrote the SystemC-on-Chip
framework in approximately 20,000 lines of C, Cand VHDL. The main emulation
kernel was built on top of a Xilinx Microblaze pessor, with custom bytecode

accelerators [Sirowy] built on the native FPGA falfor increased performance. We also

121

built SystemC-on-a-Chip frameworks for a Xilinx ¥4x4 MI403 platform, and a Xilinx
Spartan 3E platform. The Virtex4 implementation \kadt on top of a PowerPC-based
system. All of the SystemC-on-a-Chip implementaticould execute the same SystemC
bytecode without recompiling for any particulartfdam.

We described a number of physiological models ist&pnC that we obtained
from the NSR Physiome Project. Figure 45 showsragroof the SystemC code used to
capture a two-compartmental respiratory system, lame@chial compartment and one
alveolar compartment. The respiratory system madehputes airway pressure, lung
pressure, flow, and volume values for a healthy d&nuhing at a simulated time step of
approximately 4 milliseconds. The respiratory systeas modeled using a series of four
ordinary differential equations, and nine lineau&ipns. We modeled the respiratory
system using approximately 400 lines of behavi@gdtemC. The SystemC description
compiled to approximately 500 lines of SystemC bgtke, and compiled through the

SystemC bytecode compiler in less than a second.

122

Figure 45: SystemC Implementation of a two-compartment raspiy system digital mockup.

#include “systemc.h”

template<int bit = 32>

class integrator : public sc_module {
sc_in_clk clock;
SC_in<sc_uint<32> > dft;
sc_in<sc_uint<32> > funct;
SC_out<sc_uint<32> > out;

sc_signal<sc_uint<32> > reg;

integrator(sc_module_name n) sc_module (n)
{
sc_method(process);
sensitive << clock;

void process(void) {
reg = funct.read() * dt.read() + reg;
out.write(reg);

b

class model : public sc_module {
sc_in_clk clock;
sc_in<sc_uint<32> > qalv, valv, gbr, vbr;
SC_out<sc_uint<32> > galv_t, valv_t;
SC_out<sc_uint<32>>qgbr_t, vbr_t;

sc_signal<sc_uint<32> > pbr, palv, fbr;
sc_signal<sc_uint<32> > falv, cbr, calv;

model(sc_module_name n) : sc_module(n) {
SC_METHOD(pbr_func);
sensitive << clock;
...
SC_METHOD(galv_t_func);
sensitive << clock;

}

void pbr_func(void) {
int COM_BR = 0x100;
int VBR_0 = 0x9600;
pbr = vbr.read() - VBR_0 / COM_BR,;

...

void galv_func(void) {
galv_t.write(falv * (cbr + calv));
}
h

class top : public sc_module {
sc_in_clk clock;
sSC_in<sc_uint<4> > buttons;
SC_in<sc_uint<32> > memory_in;
SC_in<sc_uint<8> > uart_rx;
SC_out<sc_uint<8> > uart_tx;
sc_out<sc_uint<32> > fb_h;
sc_out<sc_uint<32> > fb_v;
Sc_out<sc_uint<32> > fb_data;
SC_out<sc_uint<4> > leds;

sc_signal<sc_uint<32> > Qbr _t, Qalv_t;
sc_signal<sc_uint<32> > Vbr_t, Valv_t;
sc_signal<sc_uint<32> > Qbr, Qalv;
sc_signal<sc_uint<32> > Vbr, Valv;
sc_signal<sc_uint<32> > dt;

model model_1;
integrator<32> integrator_Qalv;
integrator<32> integrator_Qbr;
integrator<32> integrator_Valv;
integrator<32> integrator_Vbr;

top(sc_module_name n) : sc_module(n)
dt.write(0x1);

model_1->clock(clock);
model_1->galv(Qalv);
model_1->gbr(Qbr);
model_1->valv(Valv);
model_1->vbr(Vbr);
model_1->galv_t(Qalv_t);
model_1->gbr_t(Qbr_t);
model_1->valv_t(Valv_t);
model_1->vbr_t(Vbr_t);

integrator_Qalv->clock(clock);
integrator_Qalv->dt(dt);
integrator_Qalv->funct(Qalv_t);
integrator_Qalv->out(Qalv);

/...

integrator_Vbr->clock(clock);
integrator_Vbr->dt(dt);
integrator_Vbr->funct(Vbr_t);
integrator_Vbr->out(Vbr);

We executed the digital respiratory mockup on tilenXVirtex5 implementation

of the SystemC-on-a-Chip development platform. it $peed, the SystemC-on-a-Chip

platform could execute a full simulated time stefli6 milliseconds, or about 3X faster

than real-time. We also modeled an alternate imefgation of a lung that computes

123

Figure 46: SystemC Digital Mockup Implementation Summary.ttBespiration models were obtained from the
NSR Physiome Project and manually converted towoantly executing SystemC implementations.

Digital Mockup # of Eqns| # of ODEg SystemC LOC Simulate Dt Simulated Freq
-8
4 430 2°s ~800 Hz
Alveolar Bronchial 13 .
Lung w/ Gas (Behavioral)
Exchange
. 4 1 570 2°%s ~600 Hz
First Order Non- (Structural)
Linear Lung

concentration, lung mass, flow, bronchial pressare] alveolar pressure. The system
consisted of four equations, one of which was atinary differential equation. We
modeled the system using 600 lines of structuradte8yC. The SystemC bytecode
compiler compiled the model to approximately 30@4 of SystemC bytecode. While the
model computed fewer equations than the previouslelhahe SystemC-on-a-Chip
framework took longer to compute one time step bseathe model was captured
structurally with more interconnected processeguffé 46 summarizes the models.
Figure 47 illustrates one of our prototype setups & ventilator and the
respiratory system digital mockup. The digital ikge communicates to the ventilator
through four dedicated serial connections and owechsonization channel. The
dedicated serial connections bypass the ventikgirivay pressure, lung pressure, flow,
and volume transducers. The synchronization chaeneded to ensure that both models
are sampling at the same frequency. Since theatligibckup can simulate time 3X faster
than real-time when running on the virtualized folah, the medical device and digital

mockup use the synchronization channel to agres @ate at which both devices operate

124

Figure 47: Medical device(ventilator) and digital mockup(lymyototype setup. (a)The digital mockup can betim
controlled using a simple PC-based debug interfgd@he digital mockup and ventilator communicatdigitally.

Virtual Platform Debugger

© [Openter] [Cososein]
- [Csenare || 1

Ventilator

il

’1I|i|i=

)

Al

\1

Diapheagr!

Debug
[t | [s] [s |1]

(@ Digital Mockup Digital Bypas:
Connections ()
[Sirowy]. The rate at which the devices operatessr-defined by a separate PC-based
debug interface, and shown in Figure 47(a).

We tested the usefulness of the time controllgbitf the test platform by
developing a prototype PC-based debugging appmitaiihe debugger is able to stop,
start, and advance time at the smallest simulateel tate the digital mockup can achieve
(approx 4 milliseconds). Figure 47(b) shows tharewith a simple debugging interface
we can step through several steps of lung bregthmogitor pressures, volumes, and gas
concentrations, and also make sure the ventilatfiware is performing correctly. The
time-controllable debug commands given to the digimockup propagate to the

ventilator via the synchronization channel.

125

Chapter 8

SystemC Emulation in the Classroom

8.1 Overview

Computing was originally dominated by desktop arehde data-oriented systems.
However, embedded and hence time-oriented systehmeh must measure input events
or generate output events of specified time dunati@r must execute at regular time

intervals, are increasingly commonplace. Blinkingight on and off for 1 second

Figure 48: SystemC-on-a-Chip in the classroom.

class EDGE_DETECTOR : public
sc_rmodule {
fisignal declarations

EDGE_DETECTOR() 4
SC_method{mainComp);
sensitive €< dataReady;

SC_method{getPixel);
sensitive << clock.pos();

126

represents a “Hello World” example of a time-oramht system. Time-oriented
programming differs significantly from the more cmon data-oriented programming,
and developing correct maintainable time-orientexyams is challenging.

Similarly, many embedded systems possess spatiahectivity, wherein
component A is connected to B, component B is camaein component C, etc, and
requires a fundamentally different model and stmexd approaches for teaching
correctly.

We can address both the spatial and time-orienggplirements of many
embedded systems using SystemC. We present al spadidime-oriented approach to
teaching embedded systems using SystemC. Our abpnoeolves creating an easy-to-
use front end for the SystemC-on-a-Chip framewarkthe popular Xilinx Spartan 3E
board (shown in Figure 48), a website with a numbieravailable materials for the
instructor wanting to use the SystemC-on-a-Chighie classroom, including a course

worth of lab assignments.
8.2 Related Work

Several research projects attempt to improve eegimg education. Hodge [70]
introduces the concept of ¥Mirtual Circuit Laboratory a virtual environment for a
beginning electrical engineering course that minfadsire modes in order to aid students
in developing solid debugging techniques. The emment not only provides a
convenient test environment, but also allows artruc$r to concentrate more on

teaching. Butler [22] developed a web-based mioogssor fundamental course, which

127

includes aFundamental Computethat provides students in a first year engineering
course a less threatening introduction to microgssors and how to program.

Other researchers have concentrated on developingvaluating computing
architectures for beginning students or non-engmeBenjamin [16] describes the
BlackFin architecture, a hybrid microcontroller and digitsignal processor. The
architecture provides a rich instruction set basedIPS with variable width data, and
parallel processing support. Ricks [115] evalutted/ME Architecturan the context of
addressing the need for better embedded systenmatsmluc The Eblocks project [33]
concentrated on developing sensor blocks that peapithout programming or
electronics knowledge could connect to build basistomized sensor-based embedded
systems.

A number of real time operating systems have begaduced to provide a higher
level of abstraction between the application softnend embedded hardware, including
the open source eCos [42], and VxVorks and RTLifnom WindRiver [152].

There have also been several efforts to createualirenvironments of
microcontrollers suitable for running from the cenience of a standard desktop
computer. The Virdes [144] virtual development sgstprovides a virtual prototyping
environment for anyone learning to program usinge tipopular 8051/8052
microcontroller. Virdes ships with several alredmyit layouts to blink LEDs, work with
analog to digital converters, and a virtual UARTdaterminal. Images Scientific

Instruments [75] developed a virtual system fort@iyping PIC microcontrollers, while

128

Figure 49: Windows-based interface for programming System&aChip.

3 — =2
SystemC-on-a-Chip E]E][‘S__(J
File Compile and Download Debug
: EditYCompile hounce.cpp SystemC-an-a-Chip Interface |
1 f#include "systemc.h'" ~
2
3 f/Des=ign & system that toggles the LEDS
2y fdion, then off, every second.
5
[//toggle state machine
7 fidefine % _INIT O
] fidefine % UPDATE 1
=]
10 fé=zet period state wachine FU”y
11 #define I PERICD 1 H
1z #define 5 EMNABLE 2 IntegratEd
13 #define 5_DONE 3 development
14 .
15 #define ONE 1 environment
16 #define ZERC O
17
15 Folass JET_PERICD : public sc_module |
19 . -
o o Simple oneelick
21 se_in clk clock: environment
22 Sc:_out,<bool';-- timerl_enable: .
2 SCc_out<sc_uint<if> > timerl period: Compl|eS and
Zk
Z5 /istate variable for state machine dOWﬂ|0adS
Z6 int setPeriodState:; Systemc
2 . . e
applications
: Compile
Bomgiiatiiiniiog v
|Connecting to compile senser..
Connected!
Sending SystemiC Saurce..

other work has concentrated on developing virtuatipherals [60] for the AVR

microcontroller.

8.3 SystemC-on-a-Chip Software

8.3.1 Using the SystemC Bytecode Compiler

We considered a few approaches to distributing SigestemC bytecode compiler to

students and teachers. The first approach was ke itie SystemC bytecode compiler

129

Figure 50: Remote Compilation for SystemC-on-a-Chip.

Server

—

SystemC-on-a-Chip User SystemC Bytecode Compiler
source freely available, allowing students andheesto install the compiler framework
with no restrictions, and the freedom to make clkangt their leisure. However, the
SystemC bytecode compiler is currently difficult tostall, Linux-based, and not
desirable to setup. We instead chose to wrap yeee®C bytecode compiler framework
in a simple, but full functional Windows interfacghown in Figure 49. The Windows-
based environment showcases a full-featured edittmwing students to begin coding
immediately. The Windows-based approach is moralifanio most students, and allows
more novice users to quickly begin. The Windowseldasnvironment supports a simple
compile interface, wherein a student simple clitiesbig “Compile” button in the middle
of the screen.

In contrast to most integrated development envirmis wherein the backend

compiler is located on the local machine for whicimpilation is taking place, we take a

130

remote compilation approach. Modeled after appreactaken by companies like
Tensilica [136], remote compilation for SystemC-a&hip has a number of advantages,
including a simpler and smaller Windows-based fmd, and the ability to make
transparent updates to the compiler backend. €i§0rshows the SystemC-on-a-Chip
remote compilation framework. We can currently sarpmlozens of concurrent users,
allowing each to write and compile SystemC codef @&se compiler was on the local
machine. Such support enables classrooms of stdentwork concurrently. Such
support is limited is though, and we are curremtlyestigating approaches to reduce
latency when multiple users begin overloading thmiler server.

8.3.2 Downloading SystemC to Development Platform

We take two approaches to downloading the Systewt€cbde to the development
platform. In a previously explained approach, teeriplaces the SystemC bytecode onto
a USB thumb drive and inserts the thumb drive diyaato the platform. The approach
is simple, intuitive, and allows a student to migrais code to different platforms for
portability purposes. We offer an additional apptoausing the Windows-based
environment. After successfully compiling a Systemplication, the student has the
option of downloading the SystemC bytecode by angsa “Download” menu option,
or by pressing the “Download” button on the sectatul Assuming serial connectivity
with the development platform, the Windows-basedrenment maintains the software
(the emulation engine) and circuitry of the Systearza-Chip platform and will
download the SystemC bytecode automatically. pEa@aches are complementary, and

give the user additional options for interfacinghnwtheir development platform.

131

8.4 Spatial and Time-Oriented Programming

8.4.1

We previously developed virtual microcontroller 8l2echnology for the purposes of
teaching structured time-oriented programming tgifb@ng students to complement
traditional data-oriented programming paradigmshedt having to focus on the
complexities and nuances of real microcontroll@fse SystemC-on-a-Chip teaching
framework focuses on more advanced time-orientegrpmming while also introducing

the concept of spatial programming to college stteleAdditionally, the SystemC-on-a-

Figure 51: Time Oriented and Spatial Programming with Systel¥€ have developed a complete set of labs and

Course Plan

materials to complement a course in spatial and-tnented programming.

Example Title Purpose
. Beginning example on
1 Input/Output with LEDs how to write SystemC to
interface with peripherals
2 Seatbelt Warning Light Connecting Components.
Systen Spatial Programming
3 Toggle Switch Introduction to Time-
Ordered Behavior
4 Data Transmission and Introduction to Time-
Encryption Systen Interval Behavior
5 Working with an LCD More advanced periphe

132

interfacing and time-
interval programming

Chip framework gives students access to a numbpowerful peripherals often seen in
commercial systems, including LCDs, UARTS, and @ewi screens. The SystemC-on-a-
Chip teaching approach is complementary to theuairtnicrocontroller approach, and

could fit well as a more advanced course on emlzkdgetems programming.
8.4.2 Sample Labs

Figure 51 shows a listing of several exercisesniite we developed to teach
college students about time-oriented and spat@namming using SystemC, and within
the context of the SystemC-on-a-Chip platform. Tiking is part of a complete set of
materials available omttp://systemc.cs.ucr.edintended to give an instructor ample
materials to serve as a basis for time-oriented spadial programming. The examples
follow a progression that teach students the basicSystemC, spatial programming,
time-ordered and time-interval programming, andntimeore advanced programming
concepts. For each example, we introduce a newepbn@and how that concept is
implemented using SystemC. For the instructor, wevide our own source code
solution. The source code solution might be usetthénclassroom showing the students
the particular concept, or may be used to cheddesiiusolutions in a lab setting. We also
provide a series of additional exercises that &rrthid understanding in the particular
concept just learned. The additional exercises lsanpresented to the students in
numerous ways, including homework assignments,aegtactice, or as supplemental

laboratories.

133

Chapter 9

Contributions

9.1 Summary

We have demonstrated that SystemC serves as & \datfibution format for portable
FPGA binaries. Combined with a fast emulation freumek that dynamically and
transparently optimizes the SystemC applicatiomhsa distribution format can attain
high performance and still remain highly portable .

As FPGAs become more common in mainstream genarpbpe computing
platforms, distributing high-performance implemeiatas of applications on FPGAs will
become increasingly important. Even in the presenic€-based synthesis tools for
FPGAs, designers continue to implement applicatias<circuits, due in large part to
allow for capture of clever circuit-level implematiobn features leading to superior
performance and efficiency. We demonstrated thatewthe distribution of sequential
code (like C) for FPGA applications worked for 82¥the clever circuits we studied,
many circuits required explicit parallel concegtsd of the 82% that we could capture as

sequential code, 70% requiredatially-orientedC code. Clearly the distribution format

134

of the FPGA application should include parallelgmraomming constructs, along with the
already established sequential constructs.

We chose to use SystemC as a possible distributtomat for FPGA
applications. SystemC allows description of a digitsystem using traditional
programming features as well as spatial connegtifeatures common in hardware
description languages. We described an approacinfeystem emulation of SystemC
descriptions. The approach centers around a neter8¢sbytecode format that executes
on an emulation engine running on a microprocessal/or FPGA on a development
board. Emulating SystemC allows a designer to testircuit design using real
peripherals while eliminating the need for elimingt the need for expensive,
complicated, and often long-running synthesis tablhe cost of slower execution speed
compared to a circuit. We described a full Systemm&x-chip framework that includes a
SystemC bytecode compiler, the SystemC bytecodmdipr emulation engine, and
emulation accelerators. We demonstrated that abaumf examples could be written
once in SystemC, and then run unaltered on seyecabtype platforms from a USB
flash drive.

We observed that with the inclusion of SystemC >ie accelerators that
SystemC emulation could further benefit by adaptm@g dynamically changing event
queue. We defined th@nline SystemC Emulation Acceleratipnoblem and applied
several online heuristics to improve emulation @enfance by 9x over emulating all of

the SystemC on the SystemC emulation kernel, andvex statically preloading the

135

acceleration engines. Online heuristics could frtspeedup emulation by up to 20%
with kernel bypass.

While many SystemC-on-a-Chip implementations béresm FPGA resources,
which directly affect the use of SystemC bytecodeekerators and their dynamic
management, others do not, and are penalized \oith gerformance. We introduce JIT
compilation techniques that on average improvepgrormance of SystemC emulation
by 10x compared to basic SystemC emulation on adidiaze processor. The speedup
was obtained via a JIT/architecture codesign powdgerein the architecture was refined
and JIT compilation modified to yield additionalegalups. The net result is that our
SystemC emulator with JIT compilation on a Micra@agrocessor runs nearly as fast as
C code written for and compiled directly to the kbiolaze processor. Such fast
emulation can greatly broaden the usefulness ae8yS emulation.

We demonstrated that the SystemC-on-a-Chip framewoorks well with
developing digital mockups for medical device tegti Developing medical device
software by interfacing with a digital mockup eresbldevelopment without costly or
dangerous physical mockups, and enables executainid faster or slower than real-
time. Developing digital mockups in SystemC has #dded advantages that the
description closely models the high level mathecahtand physical model, can be tested
extensively with freely available SystemC suppdbtdries, and can interface to real
medical device software through the use of the édySton-a-Chip framework. The
SystemC-on-a-Chip framework enabldésne-controllable debug features, making

possible the ability to step through a digital mggls execution through simulated time.

136

We tested the feasibility of such an approach bylifgimg the existing SystemC-on-a-
Chip framework to support time-controllable debagd also tested multiple respiratory
digital mockup examples. We currently are modifyangommercial ventilation system to
interact with SystemC-based digital mockups.

We developed and demonstrated a working framewmréllow SystemC to be
taught and used in the college classroom. Our fwaorieincludes a networked compiler,
a simple and powerful Windows front end graphicaéiface, and a series of lessons to
guide the beginning student from beginning Systeoo@structs to more advanced

embedded system design.
9.2 Remaining Challenges

We are currently working to improve the SystemC ktmon tools in many
respects, including developing new hardware-basadation architectures, reducing the
footprint of the emulation software, and developiragneworks for a number of different
platforms. Possibly future improvements to the &yst-on-a-Chip architecture include
migrating the event queue kernel to hardware fgorowed performance, exacerbating
the speedups seen by both JIT compilation and erfigstemC acceleration. Another
future improvement is profile a number of Systemg@pligations to identify various
topologies of the SystemC bytecode acceleratotsatbald improve SystemC emulation.
We currently have only developed one kernel bypasshanism, but many such bypass
mechanisms might exist. Eventually, the entire &y&t-on-a-Chip framework might be
an array of connected SystemC accelerators thatireeqo overhead for maintaining

event and signal queues. Another future improverteethe emulation framework is to

137

integrate the JIT compilation framework with thelio@ acceleration management
problem, further increasing the performance ofdmeilation framework.

Further improvements include supporting a largero$ehe SystemC language
(constructs like memories, queues, fifos, etc),wadl as higher level programming
paradigms like transaction level modeling (TLM).eTBystemC-on-a-Chip framework
should eventually be built for PC-based platforimat talready support FPGA additions

(like Intel Quick assist), increasing the utilitysuch a framework.

138

References

[1]
2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Altera Corp. http://www.altera.com, 2005.

Adams, K. and Agesen, O. 2006. A comparison ofnsf and hardware techniques
for x86 virtualization. In Proceedings of the 1Zthternational Conference on
Architectural Support For Programming Languages @mérating Systems (San
Jose, California, USA, October 21 - 25, 2006).

Anderson, E., Agron, J., Peck, W., Stevens, JjoBdr., Komp, E., Sass, R., and
Andrews, D. 2006. Enabling a Uniform Programming ddlb Across the

Software/Hardware Boundary. In Proceedings of #ik Annual IEEE Symposium
on Field-Programmable Custom Computing Machinesi(2g - 26, 2006). FCCM

Andrews, D., Sass, R., Anderson, E., Agron, J.kPét, Stevens, J., Baijot, F., and
Komp, E. 2008. Achieving programming model abstoms for reconfigurable
computing. IEEE Trans. Very Large Scale Integr.tSi8, 1 (Jan. 2008), 34-44.

Azizi, N., Kuon, I., Egier, A., Darabiha, A., andh@w, P. 2004. Reconfigurable
Molecular Dynamics Simulator (April 20 - 23, 200ECCM

Balarin, F. , Lavagno, L., and Murthy P. Scheduliioy Embedded Real-Time
Systems. IEEE Design and Test of Computers, 1998

Baker, P., Todman, T., Styles, H., and Luk, W. 20RBconfigurable Designs for
Radiosity. - Volume 00 (April 18 - 20, 2005). FCCM

Baker, Z. K. and Prasanna, V. K. 2005. Efficientrddeare Data Mining with the
Apriori Algorithm on FPGAs. (Fccm'05) - Volume 08gril 18 - 20, 2005). FCCM

Baker, Z. K. and Prasanna, V. K. 2006. An Architeetfor Efficient Hardware Data
Mining using Reconfigurable Computing Systems. (F06) - Volume 00 (April 24
- 26, 2006). FCCM

[10] Bala, V., Duesterwald, E., and Banerjia, S. 20@namo: a transparent dynamic

optimization systemACM SIGPLAN Noticed/ol. 35, No. 5, pp. 1-12

139

[11] Baraz, L., Devor, T., Etzion, O., Goldenberg, Skal8tsky, A., Wang, Y., and
Zemach, Y. 2003. IA-32 execution layer: a twogihdynamic translator designed
to support 1A-32 applications on Iltanium®-basedtayss. In Proceedings of the
International Symposium on Microarchitecture (MICR@p. 191-201.

[12] Bauer, J., Bershteyn, M., Kaplan, I., and Vyedin,1P98. A reconfigurable logic
machine for fast event-driven simulation. In Praliegs of the 35th Annual Design
Automation Conference (San Francisco, Californiajtéfl States, June 15 - 19,
1998). DAC '98

[13] Beeckler, J. S. and Gross, W. J. 2005. FPGA Par@chphics Hardware (April 18 -
20, 2005). FCCM

[14] Benini, L., Bertozzi, D., Bruni, D., Drago, N., Fam F., and Poncino, M. 2003.
SystemC Cosimulation and Emulation of MultiprocesSoC Designs. /Computer/
36, 4 (Apr. 2003), 53-59

[15] Benini, L., Bruni, D., Drago, N., Fummi, F., andrieino, M. "Virtual in-circuit
emulation for timing accurate system prototyping,’Proc. IEEE Int. Conf. ASIC/-
SoC, 2002

[16] Benjamin, M., Kaeli, D., and Platcow, R. 2006. En@eces with the Blackfin
architecture in an embedded systems lab.. WCAE '06

[17] Bitton, D. , Dewitt, D.J, Hsaio, D.K, and j. Menot984. A taxonomy of parallel
sorting. ACM Comput. Surv. 16, 3 (Sep. 1984)

[18] Bondhugula, U., Devulapalli, A., Dinan, J., Fernand., Wyckoff, P., Stahlberg, E.,
and Sadayappan, P. 2006. Hardware/Software Integriar FPGA-based All-Pairs
Shortest-Paths. (April 24 - 26, 2006). FCCM.

[19] Bogdanov, A. and Mertens, M. C. 2006. A paralletdwaare architecture for fast
Gaussian Elimination over GF(2). FCCM, pp. 237-248.

[20] Botros, N., Akaaboune, M., Alghazo, J., and AlhneigM. 2000. Hardware
Realization of Biological Mechanisms Using VHDL aRBGAs

[21] Brown, J.C Parallel Architectures for Computer 8ys$. IEEE Computer vol 37,
no. 5. pp83-87 1989

[22] Butler, J. and Brockman, J. Web-based Learning sTooh Microprocessor
Fundamentals for a First-Year Engineering Courg)32 American Society for
Engineering Education

[23] Cadence Design Systems. http://www.cadence.conagsgidefault.aspx

140

[24] CatapultC. http://www.mentor.com/products/c-basesigh/
[25] Celoxica. http://www.celoxica.com/

[26] Chandran, P., Chandra, J., Simon, B. P., and Rav2009. Parallelizing SystemC
Kernel for Fast Hardware Simulation on SMP Machines

[27] Chang, C., Kuusilinna, K., Richards, B., and Breger, R. W. 2003. Implementation
of BEE: a real-time large-scale hardware emulagagine. In Proceedings of the
2003 ACM/SIGDA Eleventh international SymposiumFkield Programmable Gate
Arrays (Monterey, California, USA, February 23 - 2003). FPGA '03. ACM, New
York, NY, 91-99

[28] Chernoff, A., Herdeg, M., Hookway, R.,Reeve, C.pbRuN., Tye, T., Bharadwaj
Yadavalli, S., and Yates, J. 1998. FX!32 a prefiiected binary translatolEEE
Micro, Vol. 18, Issue 2, pp. 56 — 64.

[29] Cho, Y. H. and Mangione-Smith, W. H. 2004. Deepkieac-ilter with Dedicated
Logic and Read Only Memories. (April 20 - 23, 200 B¢ CM

[30] Chopard, B., Combes, P., and Zory, J. A Conseraf\pproach to SystemC
Parallelization. Lecture Notes in Computer Scieng¢elume 3994. 2006.

[31] Cifuentes, C. 1994. Reverse compilation technigu@geensland University of
Technology, Department of Computer Science, PhEighe

[32] Combes, P., Caron, E., Desprez, F., Chopard, BRI, Zory, J. 2008. Relaxing
Synchronization in a Parallel SystemC Kernel. lodeedings of the 2008 IEEE
international Symposium on Parallel and Distribudedcessing with Applications

[33] Cottrell, S. and F. Vahid. A Logic Enabling Configtion by Non-Experts in Sensor
Networks. HFC. 2005.

[34] Coware. http://www.coware.com/

[35] Danne, K., Platzner, M. Periodic Real-Time Schedulior FPGA Computers.
Intelligent Solutions in Embedded Systems, 2005

[36] Das, S. R. 1996. Adaptive protocols for parallescdete event simulation. In
Proceedings of the 28th Conference on Winter Sitiwnla

[37] Davis, B., Beatty, A., Casey, K., Gregg, D., andldizn, J. 2003. The case for
virtual register machines. In Proceedings of th@3@orkshop on interpreters,
Virtual Machines and Emulators (San Diego, Califaydune 12 - 12, 2003). IVME
'03. ACM, New York, NY, 41-49

141

[38] Dehnert, J. C., Grant, B. K., Banning, J. P., John&., Kistler, T., Klaiber, A., and
Mattson, J. 2003. The Transmeta Code Morphing™w&woé: using speculation,
recovery, and adaptive retranslation to addreddifeahallenges. In Proceedings of
the international Symposium on Code Generation @mpimization: Feedback-
Directed and Runtime Optimization

[39] Diniz, P., Hall, M., Park, J., So, B., and Ziegldr,2005. Automatic mapping of C to
FPGAs with the DEFACTO compilation and synthesistems. Journal on
Microprocessors and Microsystems, Vol. 29, Issu8s@. 51-62.

[40] Doom, T.; White, J.; Wojcik, A.; and G. Chisholm99B. Identifying high-level
components in combinational circuits. Proceedinds tlee 8th Great Lakes
Symposium on VLSI 1998

[41] Durbano, J. P., Ortiz, F. E., Humphrey, J. R., ChrtF., and Prather, D. W. 2004.
FPGA-based acceleration of the 3D finite-differenoee-domain method. FCCM.

[42] eCOS. http://ecos.sourceware.org/

[43]Eles, P., Peng, Z., Kuchchinski, K. and Doboli, A1997. System level
hardware/software partitioning based on simulatedealing and tabu search.
Journal on Design Automation for Embedded Syst&fak,2, No. 1, pp. 5-32.

[44] Emmert, J, and Bhatia, D. Partial ReconfiguratiorFBGA mapped designs with
Applications to Fault Tolerance and Yield Enhanceikecture Notes in Computer
Science. April 2006

[45] Enzler, R. Plessl, C. and Platzner, M. Virtualizidgrdware with Multi-Context
Reconfigurable Arrays. Lecture Notes in Computele@e. Springer Publishing.
September 2003.

[46] Fin, A., Fummi, F., and Signoretto, M. 2001. Systera homogenous environment
to test embedded systems. CODES, pp 17-22

[47] Fornaciari, W. and Piuri, V. Virtual FPGAs: Somee@ Behind the Physical
Barriers. In Parallel and Distributed Processind®P&/SPDP'98 Workshop
Proceedings), LNCS. 1998

[48] French, R. S., Lam, M. S., Levitt, J. R., and Oluko K. 1995. A general method
for compiling event-driven simulations. In Procewg$i of the 32nd ACM/IEEE
Conference on Design Automation (San Franciscoifd@aila, United States, June
12 - 16, 1995). DAC '95. ACM, New York, NY, 151-156

[49] Frigo, J., Gokhale, and M., Lavenier, D. 2001. Igsfon of the streams-C C-to-
FPGA compiler: an applications perspective. FPGA,134-140

142

[50]Fry, T. W. and Hauck, S. 2002. Hyperspectral ImaGempression on
Reconfigurable Platforms. (September 22 - 24, 200CCM.

[51] Fujimoto, R. M. 1989. Parallel discrete event s@atioh. In Proceedings of the 21st
Conference on Winter Simulation E. A. MacNair, K. Nlusselman, and P.
Heidelberger, Eds. WSC '89.

[52] Genko, N., Atienza, D., Micheli, G. D., Mendias,M., Hermida, R., and Catthoor,
F. 2005. A Complete Network-On-Chip Emulation Framek. In Proceedings of
the Conference on Design, Automation and Test irojal- Volume 1 (March 07 -
11, 2005). Design, Automation, and Test in Euroff(EE Computer Society,
Washington, DC, 246-251

[53]Ghiasi, S. and Sarrafzadeh, M. 2003. Optimal regardtion sequence
management. ASP-DAC '03. ACM, New York, NY, 359-365

[54] Gligor, M., Fournel, N., and Pétrot, F. 2009. Ushigary translation in event driven
simulation for fast and flexible MPSoC simulatiom Proceedings of the 7th
IEEE/ACM international Conference on Hardware/Saftsv Codesign and System
Synthesis (Grenoble, France, October 11 - 16, 2@OPES+ISSS '09

[55] Gross, D., and Harris, C.M. Fundamentals of queptieory. John Wiley & Sons,
Inc. New York, NY, USA. 1985

[56] Gschwind, M., Altman, E., Sathaye, S., Ledak, g &ppenzeller., D. 2000.
Dynamic and transparent binary translati@tEE ComputerVol. 33, No. 3, pp.54-
59.

[57] Gupta, S., Dutt, N.D., Gupta, R.K., and Nicolau, 2003. SPARK: a high-level
synthesis framework for applying parallelizing calaptransformations. VLSI.

[58] Gupta, S., and G. Demicheli 1991. VULCAN - A Systdor High-Level
Partitioning of Synchronous Digital Circuits. Teatal Report

[59]Hansen, M.C. Yalcin, H. and J.P Hayes, 1999.vdiimg the ISCAS-85
benchmarks: A Case Study in Reverse EngineeringEEI Design and Test in
Computers. Vol. 12, Issue 3

[60] Hapsim. http://www.helmix.at’/hapsim

[61] Harchol-Balter, M. and Downey, A. B. 1997. Explogi process lifetime
distributions for dynamic load balancing. ACM Trai@omput. Syst. 15, 3 (Aug.
1997), 253-285

143

[62] Hariri, A., Rastegar, R., Zamani, M. S., and Meyib&l R. 2005. Parallel hardware
implementation of cellular learning automata basedlutionary computing (CLA-
EC) on FPGA. FCCM, pp. 311-314.

[63] Haulbelt, C., Teich , J., Richter, K. and ErnstZR02. System design for flexibility.
Design, Automation, and Test in Europe (DATE).

[64] Henkel, J. 1999. A low power hardware/softwaretipaning approach for core-
based embedded systems. DAC, pp. 122-127

[65] He, C., Lu, M., and Sun, C. 2004. Acceleratingreg&smigration using FPGA-based
coprocessor platform. FCCM, pp. 207-216.

[66] He, C., Zhao, W., and Lu, M. 2005. Time domain nuoa simulation for transient
waves on reconfigurable coprocessor platform. FCad1,127-136.

[67] Hennessy, J. and Patterson, D. Computer ArchitectuA Quantitative Approach.
Morgan Kaufman Publishers. 3rd edition. 1996

[68] Hezel, S., Kugel, A., Manner, R., and Gavrila, D. 2002. FPGA-Based Template
Matching Using Distance Transforms. (September 22, 2002). FCCM.

[69] Hoare, C.A. 1961. Algorithm 64: Quicksort. Comm&&M 4, 7 (Jul. 1961).

[70]Hodge, H. Hinton, H.S, and Lightner, M. Virtual Quit Laboratory. ASEE.
American Society for Engineering Education. 2000

[71]Horta, E. L., Lockwood, J. W., Taylor, D. E., an@rlBur, D. 2002. Dynamic
hardware plugins in an FPGA with partial run-tineeanfiguration. InProceedings
of the 39th Annual Design Automation Confere(idew Orleans, Louisiana, USA,
June 10 - 14, 2002). DAC '02. ACM, New York, NY,33348.

[72] Huang, C., and Vahid, F. Dynamic Coprocessor Mamage for FPGA-Enhanced
Compute Platforms. CASES 2008.

[73] Huang, C. and Vahid, F. Dynamic Transmuting Copseoes. IEEE/ACM Design
Automation Conference. DAC. July 2009.

[74] Huang, Z. and Ercegovac, M. D. 2001. FPGA Impleaigm of Pipelined On-Line
Scheme for 3-D Vector Normalization. (April 29 - 82, 2001). FCCM

[75] Images Scientific Instruments. http://imagesco.com

[76] Impulse CoDeveloper. http://www.impulsec.com/

144

[77] Intel QuickAssist Technology
http://www.intel.com/technology/magazine/45nm/quaisgist-0507.htm

[78] Ishfag Ahmad , Arif Ghafoor , Kishan Mehrotra, Rerhance prediction of
distributed load balancing on multicomputer systerfAsoceedings of the 1991
ACM/IEEE conference on Supercomputing,

[79] IUPS Physiome Project. http://www.physiome.org.nz/

[80] James-Roxby, P., Brebner, G., and Bemmann, D. 200de-Critical Software
Deceleration in an FCCM. (April 20 - 23, 2004). H@C

[81] James-Roxby, P. B. and Downs, D. J. 2001. An HEficiContent-Addressable
Memory Implementation Using Dynamic Routing. (Apg8P - May 02, 2001).
FCCM

[82] Jefferson, D. and Reiher, P. 1991. Supercriticabdpp. In Proceedings of the 24th
Annual Symposium on Simulation Annual Simulatiomfysium. IEEE 159-168

[83] Kazi, I. H., Chen, H. H., Stanley, B., and Lilja, 2000. Techniques for obtaining
high performance in Java programs. ACM Comput. S8@y 3 (Sep. 2000), 213-240

[84] Kim, H. and Smith, J. E. 2003. Dynamic binary ttatien for accumulator-oriented
architectures. In Proceedings of the internatiddhposium on Code Generation
and Optimization: Feedback-Directed and Runtimeir@pation (San Francisco,
California, March 23 - 26, 2003).

[85] Kopetz, H. and Ochsenreiter, W. 1987. Clock syncization in distributed real-
time systems. IEEE Trans. Comput. 36, 8 (Aug. 19833-940

[86] Krueger, S. D. and Seidel, P. 2004. Design of adinen IEEE floating-point
addition unit for FPGAs. FCCM, pp. 239-246.

[87] Lamport, L. 1978. Time, clocks, and the orderingeeénts in a distributed system.
Commun. ACM 21, 7 (Jul. 1978), 558-56

[88] Lee, D., Luk, W., Villasenor, J., and Cheung, P2¥03. A hardware Gaussian noise
generator for channel code evaluation. FCCM.

[89] Lee, E. Computing Needs Time. Communications ofAlidM. May 2009. Vol 52.
Number 5

[90] Lee, I. Davidson, S., and Wolfe, V. Motivating Times a First-Class Entity.

Technical Report MS-CIS-87-54. Department of Corapand Information Science.
University of Pennsylvanis, Philadelphia, PA. A8Z

145

[91] Levine, B. A. and Schmit, H. H. 2003. Efficient Amation Representation for
HASTE: Hybrid Architectures with a Single, Transfable Executable. FCCM.
IEEE Computer Society, Washington, DC, 101

[92] Levis, P. and Culler, D. 2002. Maté: a tiny virtuahchine for sensor networks.
SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95

[93] Lysecky, R., Vahid, F. and Tan, S. Dynamic FPGAIfrw for Just-in-Time FPGA
Compilation. Design Automation Conference (DACKH&2004, pp. 954-959

[94] Lysecky R., Cotterell, S., and Vahid, F. A Fast Cmp Profiler Memory.
IEEE/ACM Design Automation Conference, June 20Q2,38-33

[95] Mahmoud, W. H., Haggard, R. L., and Abdelrahman, BQ01l. Hardware
Implementation of Automated Sensor Self-Validat®ystem for Cupola Furnaces
(April 29 - May 02, 2001). FCCM.

[96] MedGadget Internet Journal. 2008. Supercomputeat€seMost Advanced Heart
Model.
http://medgadget.com/archives/2008/01/worlds_bigdesart model_simulated_1.h
tml

[97] Message Passing Interface Standard. http://wwwankgov/research/projects/mpi/

[98] Min-You Wu. On runtime parallel scheduling for pessor load balancing, IEEE
TPDS 1997

[99] Mitra, T. and Chiueh, T. 2002. An FPGA Implemerdatiof Triangle Mesh
Decompression. (September 22 - 24, 2002). FCCM.

[100]Moore, N., Conti, A., Leeser, M., and King, IS. 2007. Writing Portable
Applications that Dynamically Bind at Run Time toed®nfigurable Hardware.
FCCM. IEEE Computer Society, Washington, DC, 228-23

[101]Moscola, J., Lockwood, J., Loui, R. P., andlires, M. 2003. Implementation of a
Content-Scanning Module for an Internet Firewalp(h09 - 11, 2003). FCCM

[102]Moy, M., Maraninchi, F., and Maillet-Contoz, P0O05. Pinapa: an extraction tool
for SystemC descriptions of systems-on-a-chip. tac@edings of the 5th ACM
international Conference on Embedded Software €yetsty, NJ, USA, September
18 - 22, 2005). EMSOFT '05. ACM, New York, NY, 3324

[103]Naguib, Y. N. and Guindi, R. S. 2007. Speedup SystemC Simulation through
Process Splitting. DATE

146

[104]Najjar, W., Bohm, W., Draper, B., Hammes, Rinker, R., Beveridge, R.,
Chawathe, M., and Ross, C. 2003. From algorithméaaware -- a high-level
language abstraction for reconfigurable computlegcE Computer, Vol. 36, Issue
8, August 2003, pp.63-69

[105]Nakamura, Y., Hosokawa, K., Kuroda, I., Yosiwia, K., and Yoshimura, T. 2004.
A fast hardware/software co-verification method fystem-on-a-chip by using a
C/C++ simulator and FPGA emulator with shared rtegicommunication. In
Proceedings of the 41st Annual Conference on De&igomation (San Diego, CA,
USA, June 07 - 11, 2004). DAC '04

[106]Nallatech. http://www.nallatech.com/
[L07]NSR Physiome Project. http://nsr.bioeng.wagtan.edu/.

[108]Noguera, J., Badia, R.M. Dynamic run-time HW/Sscheduling techniques for
reconfigurable architectures. CODES-ISSS, 2002

[109]OpenCaollector. http://opencollector.org/newitgBeam/

[110]Panel on “Programming Standards for FPGAs ighHPerformance Computing
Applications.” Supercomputing Conference, 2005.

[111]Pérez, D. G., Mouchard, G., and Temam, O. 280Mew Optimized Implemention
of the SystemC Engine Using Acyclic Scheduling. [EAZ004

[112]Pimentel, J. and Tirat-Gefen, Y. 2006. Hardwvakcceleration for Real-time
Simulation of Physiological Systems. EMBS. pp 223-2

[113]Plessl, C. and Platzner, M. 2002. Custom Camguwachines for the Set Covering
Problem (September 22 - 24, 2002). FCCM.

[114]Poletto, M. and Sarkar, V. 1999. Linear scagister allocation. ACM Trans.
Program. Lang. Syst. 21, 5 (Sep. 1999), 895-913

[115]Ricks, K. G., Jackson, D. J., and Stapleton AN2005. An evaluation of the VME
architecture for use in embedded systems educ&IGBED Rev. 2, 4 (Oct. 2005),
63-69.

[116]Rissa, T., Donlin, A., and Luk, W. 2005. Evation of SystemC Modelling of
Reconfigurable Embedded Systems. In ProceedingeeofConference on Design,
Automation and Test in Europe - Volume 3 (March 0721, 2005). Design,
Automation, and Test in Europe. IEEE Computer Sgcashington, DC, 253-258

[117]Rosenblum, M. 2004. The Reincarnation of \aitiMachines. Queue 2, 5 (Jul.
2004), 34-40.

147

[118]Scrofano, R., Gokhale, M., Trouw, F., and Brm, V. K. 2006.
Hardware/software approach to molecular dynamicsemonfigurable computers.
FCCM, pp. 23-34.

[119]SGI Altix. http://www.sgi.com/products/servéakix/

[120]Shin, H. and George, S. Impact of Axial Diffus on Nitric Oxide Exchange in the
Lungs. Journal of Applied Physiology. 2002

[121]Sidhu, R. and Prasanna, V. K. 2001. Fast Reghkkpression Matching Using
FPGAs. (April 29 - May 02, 2001). FCCM

[122]Sirowy, S., Givargis, T. and Vahid, F. DigltaBypassed Transducers: Interfacing
Digital Mockups to Real-Time Medical Equipment. EEEngineering and Biology
Society (EMBS). 2009. Minneapolis

[123]Sirowy, S. Sheldon, D., Givargis, T. and Vahig. Virtual Microcontrollers.
SIGBED Review 2009.

[124]Smith, J. and Nair, R. Virtual Machines: Vdilea Platforms for Systems and
Processes. Morgan-Kaufman Publishers. 2005

[125]Sourdis, I. and Pnevmatikatos, D. 2004. Predded CAMs for Efficient and High-
Speed NIDS Pattern Matching. (April 20 - 23, 20043CM

[126]Srinivasan, V., Radhakrishnan, S., and Vem®&i, 1998. Hardware/software
partitioning with integrated hardware design spaqaloration. DATE, pp. 28-35

[127]Stark, R., Schmid, J, and Borger, E. Java tadVirtual Machine- Definition,
Verification, and Validation. 2001

[128]Steiger, C., Walder, H., Platzner, M., andé€l@j L. 2003. Online Scheduling and
Placement of Real-time Tasks to Partially Recomfigle Devices. RTSS 2003

[129]Stitt, G., Vahid, F., McGregor, G., and EimptB. 2005. Hardware/software
partitioning of software binaries: a case studyHo264 decode. CODES/ISSS, pp.
285-290

[130]Stitt, G., And F. Vahid. 2006. A Code Refinemenethodology for performance-
improved synthesis from C. ICCAD

[131]Stitt, G. and Vahid, F. Binary Synthesis. ACIvansactions on Design Automation
of Electronic Systems (TODAES), Vol. 12 No. 3, A2@07

148

[132]Sukhwani, B., Forin, A., and Pittman, R. N.080 Extensible On-Chip Peripherals.
In Proceedings of the 2008 Symposium on Applicati@tiSp ProcessorgJune 08
- 09, 2008). SASP. IEEE Computer Society, WashmgixC, 55-62.

[133]SystemC. http://www.systemc.org
[134]SystemC Synthesizable Subset. http://www.systerg

[135]Tawhai, M., and Ben-Tal, A. 2004. Multiscaleobieling for the Lung Physiome.
Cardiovascular Engineering: An International Joyrval. 4, No. 1., March 2004.
pp 19-26

[136]Tensilica Inc. http://www.tensilica.com/

[137]Thomas, D. B. and Luk, W. 2006. Efficient Hamte Generation of Random
Variates with Arbitrary Distributions. (Fccm'06Volume 00 (April 24 - 26, 2006).
FCCM

[138]Tripp, J. L., Mortveit, H. S., Hansson, A. Aand Gokhale, M. 2005. Metropolitan
road traffic simulation on FPGAs. FCCM, pp. 117-126

[139]Tsoi, K. H., Lee, K. H., and Leong, P. H. 2002 Massively Parallel RC4 Key
Search Engine. (September 22 - 24, 2002). FCCM.

[140]Tsoi, K. H., Leung, K. H., and Leong, P. H.030 Compact FPGA-based True and
Pseudo Random Number Generators. (April 09 - 1a3RGF-CCM.

[141]Verilog Specification. http://www.verilog.cowiérilogBNF.html
[142]VHDL Specification Standard. http://www.vhdigd

[143]Villarreal, J., Park, A., Najjar, W. and Haad R. Designing Modular Hardware
Accelerators in C With ROCCC 2.0, in The 18th Ant. IEEE Symp. on Field-
Programmable Custom Computing Machines (FCCM), IGtiar NC, May 2010

[144]Virdes Development System. http://avoron.cowéix.php

[145]Vuletic, M., Pozzi, L., and lenne, P. 2004rtual Memory Window for a Portable
Reconfigurable Cryptography Coprocessor. (Aprit 23, 2004). FCCM

[146]Vuletic, M., Pozzi, L., and lenne, P. 2005aBeess Hardware-Software Integration
in Reconfigurable Computing Systems. IEEE Des. Z8s® (Mar. 2005), 102-113

[147]VmWare. http://www.vmware.com

149

[148]Wake, H. A. and Buell, D. A. 2003. Congruehtisieves on a Reconfigurable
Computer. (April 09 - 11, 2003). FCCM

[149]Wang, Z. and Maurer, P. M. 1990. LECSIM: a ékxed event driven compiled
logic simulation.). DAC '90

[150]Wang, X. and Nelson, B. E. 2003. Tradeoffafsigning Floating-Point Division
and Square Root on Virtex FPGAs. (April 09 - 11020 FCCM

[151]Whitton, K., Hu, X. S., Yi, C. X., and Chen,. . 2006. An FPGA Solution for
Radiation Dose Calculation. (April 24 - 26, 200B6ECM

[152]WindRiver Systems. http://www.windriver.com/
[153]Xen. http://www.xen.org

[154]Zhang, Y. and S.Q Zheng. 1995. Design andlyaisaof a systolic sorting
architecture. SPDP. IEEE Computer Society, WasbmdDC, 652

[155]Ziegler, H., So, B., Hall, M., and Diniz, P. @002. Coarse-Grain Pipelining on
Multiple FPGA Architectures (September 22 - 24, 206-:CCM

150

