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information, apparatus, product, or process disclosed, or represents that its use would not
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process, or service by its trade name, trademark, manufacturer, or otherwise, does not
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ABSTRACT

The intuitive concept that a sector shaped centrifuge cell is free from
convection is criticized. Not only is a form of convection présent for a
single sedimenting species, but a more insidious type occurs ih a mixture
having an appreciable Johnston;Ogston effect. Rather than striving for con-
vection-free sedimentation, the proposal is to.utilize if possible an appar-
ently harmless type of convection occuring in a very thin annulus in order
to avoid the convectionvextending between boundaries in a mixture. The re-
quirement that the concentrétions be independent of time meets this conditioﬁ
gpd yields a hyperbolic cell, which is approximated by a sector cell placed
in the rotor backwards. Simultaneously, area measurements and caiculations
involving the Johnston»Ogston_anomaly are simplified because of the time
independence,

Hyperbolic centrifugation requires a concept of the sedimentation co-
efficient based on_the vélocity per unit field of the net mass transport.

across any level, rather than the classical velocity per unit field of each
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and every particle. This concept'of_s allows description of centrifugation
by the law of conservation of mass on an apparatus level ("macroscopic")_
which is thus different from the atomistic ("microscopicﬁ) theories relat-
ing an observed s rete to the molecular weight'of a single particle,

In order to show in coﬁtrast the theoretical simplification offered
by the hyperbolic cell, the classical equations for the sector cell are

derived (appendix).
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INTRODUCTION

: The.originai Johns‘bon-Ogstonl fpfmula was derived for the case of two
miérating species in a uniform field in‘a rectangular cell. The basic prin-
ciple that is applied is.the law of conservation of mass, given that the
velocity of the various speéies present éfe different in the various phases.
The result is.that the concentrations cannot be constant throughout the sys-
tem; but each comﬁonent present on one side of a b§undary must have a difm
ferent concentration on the other side. Hence the aréa of eaéh peak seen
én a schlieren diagram. of the boundary system does not.quéntitatively cor=-
respond to the concentration of any specific component,.

Other gr01J.ps'2’3 have considered the area anomaly to be due ﬁo backward
flow of solvent, not realizing that: (a) backward flow is just one of the
many mechanisms which can alter the sedimentation rate with rQSpect to the
cgil and the concentrétions in the various phases; and (b) that the Johnston-
Ogston treatment is on a level entirely different from this, encompassing |
any and all mechanisms altering s rates and éoncentrations since each net rate

and concentration is given a symbol and not éxpressed in terms of mechanisms.
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Harrington and Schachman® have chosen & system which shows a truly tre-
mendous area anomaly - mixtures of TMV (asymmetric fast component) and BSV
(ncarly spherical slow component). Their ckperiments indicate that the build-
ap of area of the slow peak is qualitatively as predicted from the limited
Johnston;Ogston formﬁla,.but that there was reasonable quantitative agreement

‘only when the slow area, corrected for sector-sedimentation; was in addition
~ extrapolated back to the meniscus. ' This decrease of area faster than ac-
counted for by the séctor—sedimentation impiied convection between the fast
and the slow boundaries. They pointed out that convection would be predicted
from the original Johnston=0géton formula since the dilution of the fast com-
ponent as the run progressed would give a smaller slowing of the slow com-
ponent and hence lcss of a build-up. The smaller build-up right behind the
fast boundary yieldsca negative density gradient with radius due to concen-
tration of solute, which can apparently cxceed the positive densitj gradient
due to compression and hence can convect., Thc convection between the'two
boundarieo ﬁust‘have been quite fast ahd efficient, for the sohlioren pat—
tern sﬁowed only two peaké separated by a baseline region. In a flotation
system thé.Johnston-Ogston formula would predict a greater build-up with
time, which woﬁld lead to a positive density gradient due to solute since

the solute is less dense than the soivento This is stable and a clear base-

- line region between the peaks would not be cxpected if the change in the
Johnston—Ogston'build—up witﬂ time were appreciable,

~ The sector cell in a centrifugal field thus comolicates an already com-
plicated build-up phcnomcﬁon by éivihg a time dependence in addi@;on ﬁogthatA
due to radial dilution on the areas measﬁred, and fo? sedimentation (but

not flotation) a convection between the fast thc‘slow boundaries, The sector

cell even for a single component must have a certain type of minute convections,
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for considering a differential lamina, more pa rtlcles leave than enter be-
cause the field increases with distance from the center of rotation., Thus
"holes® must be filled in by solvent. The intuitive idoa that by having the
walls of the cell radial so that nothing would collide with them and thus
yield convection free sedimentation is thus hot borne out. Since collision
with a wall does notkmade guantitative sedimentation impossible in the éngie
preparative ultracentrifuge, for example, it seeﬁs plausible to consider
redesign of the analytical cell such that concent;ations do not have a time
dependence. For those runs on unknown mixtures where separation of components
is complete enough for only one area measurement to be made on each component,
removal of the requirement of extrapolation fo the meniécué will be imperative.
On the assumption that a micro eddy type of convection wiiibprevail.to
yield uniform concentratlons, a macroscopic moving boundary theory can be
set-up which closely parallels the moving boundary theory for electrophore51s5°
Some of the more complicated formulae for sector-centrifugation can be de-
rived for reference (see Appendix). and may aid in interpreting existing or

future data obtained with sector cells;_

HYPERBOLIC CENTRIFUGATI ON

Derivation of hyperbolic shape.

‘The equatlon of contlnulty 1n the plateau region of a general cell can

be derived as follows (refer to Figure l)
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Figo'l Genéral cell

Consider fhe anuiar lamina at x of height dx

Onaés/time)in - (mass/”pime)out :l%%% . (vbl)

(mass/time)in = (s w?x) (2yb)e

(mass/time)out = 2btb2'csxy-+a(25LU§ csxy) dx

Thus,

de _ 5(25012 csxy) |
—= (2b = -
3t (Rbydx) Py dx / 1)

or

de(t) = _wle(t) s(t) dGy) (2)

dt y . dx

where c and s are assumed to be a function of t only, and s has been used
as a net §olocity to account for all transport. Now impose the condition
that the concentration has no time depéndencg (at points outside of boundary

regions). That is anéil = 0; Equation 2 then yields d(xy)/dx = o,

Therefore,

Xy = K, a constant, ' (3)

This is a hyperbolic cell.
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Consider thevquantity passing through level x, (Left to right):
;(Xz) 2y(x2) bc(xz) dt
and the quantity passingithrough %, (left to rigﬁt):
;(xl) 2y(x1) bc(xl) dt
If wercﬁoose y(x) such that c is a constant, then the quantity contained is
constant and _
;(xz) 2y(x2) be(x,) = ;(xl) 2y (x7) be(x))

ﬁ(xg) = Y(Xl)
F(x1)  ylxa)

Therefore from Eg, 3, the hyperbolic cell has:

v(x2) =X

;{xl) ‘ Xl

v(x v(x
('2) = ( l) = const,

X2 X

Hence the quantity

(4)

E.t.”. |
4"
E.:'é &)

X
willvbe a constant for any one run, and is to be interpreted as the average
velocity of particles at any level in the direction normal to the level per
unit field rather than the velocity ef any (and all) particles as it is in
tbe_eector cell, The s as defined here, thenvis the velocity per unit field
of the netvmaés transport across any level, Since the sedimentation'rate
ewie a constant, the derivation ofVE‘qa 2, asspmipg it independent of x,
is leg;tipate and thus the conclusion of a hyperbolic shape is valid,

The tangent to a rectangular hyperbola at the point (x,y) has slope

-y/%; hence a sector cell, with slope of side y/x, in reverse, represents
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approximating the hyperbola .with its tangent. For the dimensions used in

the Spinco6 ultracentrifuge, the largest error in y is less than 1 per cent,

Concept of Coavection in Hyperbolic Oe;;i

Let us considér thé microscopic viewpoint fof a mgmentol The instanw
taneous.random velocity of the partiéles undefgoing Bro@nian motion is many
factors afvien'greatervthan the averagé drift veloéity.ih the centrifugal
field, so that with any wall, tremendous collisions are occuring all the
time. But now note that ih tﬁe actual apparatus iﬁdividual particles are
not observed, and that to dérive an apparatus theory it is necessary oﬁly to
integrate expressions set up on the basis of-differential elements of volume
(or time), for exampleé, which aré small (or short) compared to.apparatus
dimensions (or time). These differential elements of volume contain such
large numbers of particles that even a "poinit® in thevGOOrainate system it-
self is considered large enough to contain a statistical number of particles,
That is, for example, when one says that the concentraﬁion at the point (x,y)
is ¢, he means that ¢ = }im f?% vhere AM is the quaﬁtity of particles
contained inAv ;:md AV is to beghrunk not to mathematical zero but to the size
of the point in the applied coordinate system which*iﬁ.ouf case contains a
statistical number of pérticléso\ It is only in this way that we describe
our ieasurementé with time or Qistahce in an apparatﬁs;

‘Referring to Figure 2, the concentration at each point along the wall
“which was originally uniform in (a)-is increased a very small amount after
d very short lapse of time., The resulting increase in‘density due to con-
centration is indicated by the ¢ross-hatched area in (b), Simultaﬁeously
'thg density in the center of the cell is decreased dﬁe té the gt@gmpted"gadial
dilution, and is indicated by stippling. Under the centrifugal field, the

hydrostatic leveling force ﬁill'be tremendous and will result in'convection°
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But will the conﬁection be of the form in {c) or (d)? It is.the premise of
this paper that to a first approximation, convection is of the form in (d).
The density gradient dﬁe to compression, the symmetry of the cell, and the
geometry chosen to yield a uniform concentration if convection in (d) occurs,
would_sﬁggest that the solution would not sustain an extersive circulating
radial convection, but would break into micro-eddies. By the macfoscopic
term level is meant, then, a very thin annulus containing not only a statis-
tical number of particles in Brownién motion, but also a statistical number
of micro-eddies such that the concentration is independent of y. It is in
this sense that the eqation of continuity was set up above. |

Preliminary e#periments with reversed cells indicate the:harrower the
cell, the more nearly the data is explained by.the assumption of micro-eddies
rather than radial convection. The 2° sector in reverse appears to be narrow

enough, whereas the 4° sector in reverse is too wide.

w /:_-—v w ’
N S B ot e - -
~;::‘“ : :
(@) | (k)

(c) (d)

Fig. 2 Convection in hyperbolic cell (see text)
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Boundary Definition.

Define a boundary region in a cell as the region in which the concentration
depends on distance from the center of rotation x. Define the boundary po-
sition x as the position of the,step\in concgntration if the material were
rearranged in the boundary region.to_give_an infinitely sharp bpugdary.bem
~tween the two concentrations at the extremes of the boundary region? (see

Fig. 3)o
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Fig. 3 Boundary position in centrifuge cell
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We want £o express X in terms of some property of the concentration
gradient curve, which is what is usually recrded in the schlieren optical
systems.

The quantity of material in a lamina of vheig;ht dx J':s

| e(x) 2y(x) bdx | ‘
Thé quantity -Qp, between X1 and %, is

Qo = B 5’2 c(x) y(x) dx
X

1

For the hypei'bolic cel;L Xy = K, so
Q, = 7bK SXZ-&(—i—ldx . | - (5)
% S
This can be expresséd in terms of the concentration gradient by symbol-
ically integrating by parts. Note that this is considered at a pafticular

time t, so that dt = O.

Let
u = c(x) dvm%
du-dc-\dcdx-o-acdt v = lnx
X Jt
=% & ' g
Q0 = 2 bK [c(‘x)‘ln xeZ ~(*2 In x Bc)ﬂx
‘ Xl x1 bX/
=2 bK. c(lenx' {(x1) 1 =z'{’g’dx (6)
. ) L c~Xl nxl )’X

In terms of x

y (2 o
2 bl( c(Xl axy| ~ o)) ax
o= X

X

= 2 bK {—c(xl) In %, + c(xé) 1n X, - iIn x [c(_xz) - c(xl):]}

92
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Equating (6) and (7) yields:

X
R gl
_ i[‘ In x(;x

In x - .

1
_ - 2
LT
1 \9x

This can be rewritten in a smipler form if the following very good ap-

(8)

proximation is made

x = x4+ z=x (1+ 2/x3)

In x = In x7 + In(1+ z/x)==1n % + z/ﬁcl (9)
Substitution of (9) in (8) yields:

(B

X c.\;xl
X2
lﬁ)ax
Xl bx_

Thus x is approximately the position of the center of gravity (first

(10)

moment) of the concentration gradient curve.

Dole Tradsformatigg.

By defining the boundary pésition as above, a given experimental pattern
can be replaced by a diagram composed of homogeneous~phases_separated by in-
finitely sharp boundaries. See Figure 4. Such a transformafion on the eﬁ»
perimental diffuse pattern will be called a ?Dole Transformation™ in honor
of Vo P. Dole who first used this concept in his famous moving béundary theory
for electrophofesissov The first value of such a transfcrmatioﬁ‘cémes from
the theorem that the boundaﬁy position of ailothé superimposed graaients in
é boundary region coincide° This theorem will not be rigorougly proven
here, but rather taken as a reasonable assumption on the basis‘bf the fol-
lowing reasonings Suppose that the bounda?y position of one-species

did not coincide with that of the species which caused the first to
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have grdisyyibupiop,>tbep gince it did co;ncidgAat the beginning of'the_;

run (when all the boundaries were at the menigcgs), it must be getting pro-
gressively further away. Since the boundary,position is defineq on the basis
of quantity of material, the relative movement éf two boundary positions means
a net quantity of material would be transférred? which would alter the s rates

- in such a way asaz? oppose the change.

? 20 ee slow component
‘ — fa§$ peak ~—.. fast component
/ | observed
slow peak '
4)},r‘\\> ; | \
: iy 8
| : V'
meniscus | | | bottom
3 | =
o i p ] ’ |~‘|
| | | .
"o s X i
y | | j
el 4P
| r | '
o . ' I
i$4' * - -:L::"l AS
4 i
X J'i " %g, x

Fig. 4 Dole Transformation
The second value of the Dole Tréhsformatibn is that in the absence éf
'conVection from boundary t§ boundary, the mathematical treatment of a moving
boundary éystem is greatly simplified ﬂecéuse the shape of the boundary need
not be considered.

| Moving Boundary Equation.

¢
in the g phase, and~c§' its concentration in the ¥ phase; and X, and X, be

Referring to Figure 4, let c: be the concentration of some species j

fixed with respect to the cell, Then the amount per unit time per unit thicke

ness of -hyperbolic cell entering thé region between Xy and X, from left to
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. PR PR |
right across x; is (w X sj) (2K/kl)_qf ; and that leaving across x,:

0N o 2 = . ' |
@“2 X, sj) (4K/i2) Cf « The rate of increase of the quantity contained between

- - 8y, _ : 4 '
Xl and X, is-@vz x S6 ) GZK/;) (cg -c;) where se is the velocity per unit

field of the boundary position, Henbe by the law of conservation of mass,

=2 X sjG ). (Z'K/xl) c:j(3 - (;,\)2 X, s;) (2&/22)‘ cJ‘ = (R ; 86‘5)(2K/§)(033 - cg)

8 0 _ ¢ v =-8Y .8
sj cj sj cj = s (cj - ¢ )
which cén be put into the following useful forms:
of of - fyzef o - ) @)
LI (12)
: -
cje_,
— =
| . L)
T P o B
J J S! mSje cj

Equation il is general; 12 and 13 are falid i; one dpés not divide by
zero, Because of the.fundamental theorém menﬁioned above, the boundary po-
sition for the distribution of each species coincides in ény’oné boundary
region with that for any other species, ana there is thus only one value
of 36( for each boundary region. Hence Eq. 11 is genefal for j =1, co0p
n if there are n species classified according to s fateso Therefore at each
boundary, in general, fhere are n equations of the form ll; n - 1 of which
are independent, for if n - 1 concentrations are specified, the remaining
‘one (say the s91vepﬁ) is thus determined.,

‘ Ip gnalyzing the Doleﬂtransformgd experimegtal pattern, s gates are to

be used instead of velocities. In fhe hyperbolic cell in centrifﬁgation
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or rectangular oell”in'a uniform field, areas as read from the plates are

to be used for boundary areas. In' the sector cell, areas should be extrapolated
from measurements from frame to frame to the menlscus for sedlmentatlon or

to the bottom of the cell for flotatlon° It 1s for these areas that the
'equatlons take a form s1milar to those for hyperbolic centrlfugatlon° (See

Eq. 46 in Appendix for t = 0). If only one concentration can be read dur-

ing a run, then the extrapolation to the menisous'cen-be done to a first ap-
proximation by the square law (this neglects the change in the area anomaly
during the run), (Compare again‘Eq., 46 in Appendix.)

Boundary s Rate.

In the usual dltracentrifuge teohnique, the initial boundary is the
meniscus for sedimenting and the bottom of the cell for floating species.
This technique is simpler than for electrophoresis, since in the latter,
it is neoessary to place an overlying eolution in order to be able to intro-
duce the electric field. The centrifuge pattern is always of the descending
type, i.e. phé boundaries always move into a solution containing proteino
In this notaﬁion, the d\phase is the (developed).supernatant and a protein
spe01es can only dlsappear across a boundary from a higher numbered phase
to a lower, e.g. can be present in¥ but absent 1n$ Suppose then that some
spe01es k appears across theé'ﬂ boundaryel Then 1n qu ll cﬁ = 0 and sk = 51;
Thus the s rate of a boundary measures the s rate of the appear ing specles

8

(called a leading species by Svensson® in electrophoresis) in the phase con-

taining this Species°
Area Anaomalzo

From Eq. 13, it follows that if the s rate of a componentlieldifferent
on ihe two sides of a ooundery, its concentretion will also be difjjf:‘erento

Thus in general, it is to be expected that each boundary is made up of super-
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@mpése§~g?§dients. ‘Thgrfgilure of an observed area to correspond to the
concentration of a particular component is one of the classical anomalies

Qf ultracentrifuggtion and eléctropﬁoresis° It is seen from Eq. 13 to be

a naturai consequence of the macroscopic léw of conservation of mass analysis
~of a moving boundary system. In particular, Johnston»and Ogsténl have em-
phasized the importance of the superimposed gradient of the slower species
on the bdundary of the faster component in a two component mixture. Their

¥

formula results if we let j = s, the slow component, 361 = &p

the s rate
of the fast COﬁponent in the ¥ phase in Eq. 13
cse sfx" SQK
=T = (14)
Cg Sl — Sg :
which can be rearranged toi
: [ 4 g
_c‘(_cez-sers_sx §f -_8s - Sg é
ittt s 8 o (5)

.- Enoksson? on the other hand, in his second effect of backward flow has
‘apparenily focussed attention on the solvent concentration change at a bound-
ary. Both effects are described by Eq. 11, letting j take all values, in-
cluding'§he solvent, Note that the first effect of Enoksson on backward -
flow is teken into éccount by referring quantities to the cell, éﬁd that |
when § = solvent net s rates and concentration of solvent are involved.

Thus at this level the analysis does not consider the partial flows making |
up the net flow which are so important to consider from the microscopic view-
‘point, L

- Equation 14 shows that in the h&perbolic cell we have not eliminated the
Johngton—bgston effecta but‘héve reﬁpved the time aependence it has in the
sector cell. Létvus focus our.attention on.refractivg,index gradient measure=

mentéo Then, the solvent concentration éhange is_included when the refractive
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increment, is specified, and we need consider for the area anomaly only the
protein concentration changes.. Hence for .a iwo component system, we can
write from Figure 43

-'ccsabs z cg, = cs" + (cg L& cs{ ) > c;{

ofhs o - (ef )< T e
o . Ce S
°°b§'+ ogbs = of 4 cp
Hence'it iS'important to}determine the relatiogship between cse and Cs{‘o
This is given by the Johnston-Ogston formula 15, whlch w1ll be oon51dered

in greater detall in the next sectlono

Deductlons About the Johnston-Qgston Effect Us1ng,an Assumed g versus ¢ De-~
pendence.

In order to make deductions from Eq;‘l5;'the-folldwing'assumptions are
pade:4 (1) s versus. ¢ curve for both the fast and slow species is‘linear
.in range used, i.e., |

sp = 5% (1-keop)

S a7
8g = Sg (1= kg cg) s
(2) In a mixture, the sedimentation rate is influencéd by other species in

 the same way in which those species influence themselves, i.e.,

8 =8 (1 -kgel - ke °f )

{ _ o, ' T 4
sp = 8, (1 - kg cs: - k cf ) | o | (;8)
B =% (1 of

sl =8 (1 ks.es )

Note that if the k's are constant, 1 - k; c;{ - kf cf{rcan be written linearly
in terms of the dilution - @ © if the same mixture is run at several dilutions
as
<. % , o ,
s - . . . 3 . . . 4
s - f - ¥ \6 = X { 19)
el ; kg 05 -—kpop T1-d (ke 4 kpop) é 2

a0 .
S5
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Substitution of Eq. 18 into Eq. 15 yields:
¢t cg = . 58 < ke cp ’]?s (eg" - cg ). cg

s@ - s :
8 | s ] -~ ks cg - kfvcfx 8

(20)

S

We would like to simplify this expression so that pr edictions of the
magnitude of the area anomaly and proper extrapolatioh plots to infinite
dilutions can be set up,

Assume for a first apprcximation that

W eenad @
ks'css + kfv cfb/« 1 ‘ (22)

The resulting value of«%g can be used to check the validity of the assumption.,
If it is not good enough then that value can be used in Eq. 20 -for a second
approximation.

Equation 20 reduces to

< [e)
is’é'”l - = ke cp
5]
Cs S? - Sg
@ _cf = s8g ke cf?‘ cse.’ (23)
s s ;g‘:’g:- . oo

This can be rearrangei to give

r o

R I i S %

k, (e -cg ) P ks cg (ke cp)
s -

Hence approximation(2l) will be valid if

'(ggji.u_ks cs%><1 | ()

—SS

Assuming that Eq. 24 is valid, the expressions for the fast and slow'observed
areas can be written from By, 16 and Eq. 23 in terms of the infinite dilute

s rates, concentrations in the cell, and the k's of the s versus ¢ dependence

plots °
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obs = ¥ | Sg obs
cf Cp 1 S k g
L £~ s ]
_ : (25)
cobs - éz 1 y
® {1 ke cf
L s
Therefore we can write
cgbs
o 1 - ”"S’"”‘""" o> ] (26)
°r + S °r +c _

cgbs i cq ¥ _ 5
égss +'ch§, = cfz‘fcsi 1l - 8 ke 35{

Note that the ratio
'cobs ) o _ v ; .
1= k GObs (lm"’ﬁ"ms""ﬁ’kf cf '
obs l Y ’?‘””“5‘ £ sp - Sg

is non linear in (c8PS+ Obs)

4

The usual deductions™ concerning the aréa anomaly foliow directly from °
these equationéo It is worthy of note that to a first approximation the
error in ascribing a measured area to the initial concentration of one com-
ponent &epends directly on the concentration of the other component, and on
the s versus c dependencé of the faster component. From a theoretical and
Pyact@cgl point 6fvview,>there is a definité needlto rigqrously investi gate
the limit as sg__gsg_, and to‘§xt§nd ihé analysis to a multicomponent system.

Exféns;on“to Mﬁlticomponent System.

o

Ip the absence of detailed mathematical theory for the'gengrél case, the
: fgllowiﬁg method is suggested for obtgining the cqmpqsition of an unknown
mixture in which the components are chemically independent, i.e., are not
~in some sort of.dissociétionmassociation équilibriumo

1. .Run the mixture at several dilutions,
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» 26 For each run detérmine the ratio of area of each peak t¢ the
total area of that peak andbéll the slower.peaksa

3. From the data for each run,‘ﬁiot these ratios for each peak
vefsus the area of all the slower peakso"Extrapolate these curves to infinite
dilution. They should be linear if thevk}s are constant accordihg to Eg. 26,

4. Obtain the true composition by successive differences. That
is, inva three component system, the trﬁe ratio of ‘the fastest component
to the‘total concentration is obtained directly from the pléto The ratio
-of the sum of the two slower compOnentS‘to.the total is obtained by differenéeo
Call this difference A, The composition‘of the middle component is obtained
by multiplying the extrapolated value of the ratio of the middle component
to the sum of the middle plus the slowest times A. The slowest component's
concentration is obtained by difference.

5, An idea of the magnitude of the k's can be obtained from the
slope of thé area ratio.plots and the %nfinite dilution s rates using Eq. 26.
The infinite dilution s rates can be obtained by extrapolating a plot of meas-
ured s fate versus area of that peak and all slower ﬁeaks tq infinite dilution,
This plot will be linear if the k's are conStanf as seen from Eq., 19,

6, In all unknown studies the aim should be to simplify the mixture
as much aé is possible before ru;ming° In particular when there are lipo-
'proteins present with other proteins,.an extreme case of ﬁhg_Johnston-Ogston
§§fe¢t:c§n be present ?n which ?elative velocity of two species is reversed
in sign on the two sides of a boundary. Thus, s versus total concentration
for the lipoprotein. species goes below éero due to the density effect in
~ addition to the viscosity effect., This resultgwinnpile;up, which hes been

adequately described by Gofman, Lindgren and Elliottga
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APPENDIX
10,11

Classical Plateau Concentration Relation in Sector-Centrifugatio
Referring to Fig. 3 we can draw arcs on the cell such that all the
particles dN between A and B at time t, are between A" and BY at time t2°

Assume that s is a constant.

X2
1n§—:§=:<f”s (t, - t,)
oo e w2 (b - ) | | (27)
X2 : .

Since this is true for particles at any x, it will be true for thoée located

at xz-f ax

5 moving to X3 + dx3. Tﬁus

%3 +'dxé‘_ 8“2 s (t, - tl)
X2 +-dX2u :

2 R 5 (to - te
X3 - xzew s (%5 - tl) = dx5 e (t2 1) = dx

3

Substitute Eq. 27

dx 2 X3
E% = s (ty - ) 2 = , (28).
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Now
¢ (20 %) = o

g - __daNn
&30 ) 2 5o mT

R (:XB, t2) = X2 d-xQ . :
S vy Rl ( ) (29)

Suppose that at tl the concentration everywhere was ¢,, i.e. neglect compress-

(¢}

Q

[¢]

ibility. Then (27) in (29) gives
c (XZ’ tg) - em2w2 s (ty - %7) | . (36)
o ' '
This is independent of x3, hence the concentration is everywhere the same
(i.e. a plateau exists), decreasing with time,

In moving boundary centrifugation there ;s_no source continually feed-
ing in material, so that when the material originally at the meniscus goes
past a point the concentration falls to zero. But until that time, we can
consider the_boundafy region to move down the cell pfeceded by a plateau
region, the area under thé curve being preportiénal to the concentration
in the plateau region,

. X it were not for the bottom of the cell, the maximum concentration

woald drop for a standard Spinco6 cell

meniscus .
= 0,67
( *bottom ) G 25

or by about one-thlrd in going from the meniscg$ to the bottom.

Knowing that diffusion occurs when there is a concentration gradient,
the concentration distfibution in sedimentation as a result of diffusion
broadening the boundary region and "back diffusion® broadening the pile=

up at the bottom of the cell is indicated in Fig. 5.
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. menlscus bottom

Fig. 5
Coneéentration Distribution at successive times
(1), (2), (3) in sector sedimentation

Boundary Position.
Paralleling the treatment leading to Eq. (8) we can write for the sector

cell:

fzxz-?&dx |
R = X 92X - : (31)

Thus, locating X involves determining the second moment of the concen-
tration gradient curve. Using the approximation

X=X1+Z

X2 x12 (1 + 22)
1

Equation 31 can be written

(e
() o

3~ |  (32)
X2
)=
1 UX

Sé that to a first approximation on skew areas; the position of the center

of gravity (first moment) should be used as the boundary position, rather

than the maximum ordinate,
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Hquation of Continuity for plateau region for Sector-Centrifugation.
The equation for a side of the sector cell is y = x tan 8 (Fig. 3) so
that Eq. (1) reduces to:

0¢ =~ o d(sc_x?) | | ' : (33)

-; bx

Qg

Becanse of the initial plateau of c, Eq. 30 and the discussion above
indicate that the pattern can always be interpreted as boundaries seﬁarated
by plateaus, Hence ¢ is not a function of x in any phase and therefore s
is also not a function of x (for the time that no boundary passes through

the level x). Equation 33 then becomes in genersl

de ;'__wz sc d (Xzi - 5,2 :
at =" Tx . ax 2 w" sC (34)

Integrate Eq. 34 for two special cases:

a. 8§ isvindependent of ¢
c :
i}/’ 9% = of s 5(t at
co . («] .
R
2% 2
e Tr(E)
Xo : ‘

which is the result obtained previously (Eg. 29).

be s=8° (1~ ke)

de - 2 L0
(it w

]

% /1L - kel . 2R %t
c (I-ke,"°©

This can be rearranged to give:

‘G 2(02$°t ~D
_%:e E__kco(l_e—éu‘sot)]
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o W2 0

o 2P 5% 122 s kegt |
= 292 5% (1 - keg) t | \

where e* has been approximated by 1 + x and vice versa.

Rewrite this in terms of x: .

X - w? sdt = w2 g° (1 - ke) it
X

b

- . .
kf $9 _ w? §° k ¢, e"zw2 $° (1« kecy) FJ

at
Integrate from X, to x, 0 to t: _ , el
' 2 o K 2
InE=z°s°t - Co -[1 - e sy 1-ke )ti]
Xo 2 -Ec) . | °
~ w28t - kog 2w250.'(1-kc)tJ-
~ 20 -kcy) | . _ °
zw? 8% (1 -k e)t
Therefore:
2 2 o ' :
W -
X\ 22w s (1-k c°>t = Co (35)
Xo c :

Hence even when s is a function of ¢, the square law relationship is a very
good approximation for areas.

General Equation for the Average Concentration in e Region.in Sector=Centri-~
fugation With or Without Convection.

Referring to Fig. 4 the total mass of the slow component S before sedi-
mentation begins between the meniscus in the cell, x,, and Xp the position
of the fast boundary after time ty is: g (x% - xg)'ﬁ'b E%% . Expressed

[¢]

per unit half angle, ©, per unit thickness b of cell, this is m 2)
s

08 (xf - x

The amount of slow component passing through -the level xf in time dt is
el (wzxfsgg)foebdt. Expressed per unit half angle ©, per unit thickness
b, this is dmg & 2wx3c s¥ dt . During the time t from the start of sedi-

mentation, the%total émount of slow component paséing through this level

.
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(expressed per unit half angle per unit thlckness) is
' t =%

m £ | dm_ = 2w? sz G: sg at (36)

S S

Since we would expect no radial convective transport in the ¥ solution,
- Eq. 34 can be expected to hold (even though s is a function of c). Thus
the integral of Eq. 36 can be expressed as

1
f cs? Ss&dt 55725 dcsb/dt

at

_5.1(52[ ¢ (8) - o (O)J

and mS can be written m = = Xp [l (t) - c (oi] The - amount remaining

2
behlnd the xo level is thus Amg = msO - mg = Xf cs (t) cso since

3

(o) . The volume that'thls quantlty of material is distributed

in is ?T(xf - Xg ) © b or expressed per unit half angle per unit thick-

Xp s

2w
2 L
ness: v = X% - X5 . 'The average concentration of the slow component
in the § region then is* 2t W A—-% x® gs (4) - o o #(37)
n e § region ’ s is* cg Z2_ g2 ' ,

From Fig. 4, the follow1ng can be written

dgbs 5~5;6'
- obs - ¥~ . 6 5) (38)
Cp =Cp - (e - Cg

where it is assumed that only a s1mple slow peak occurs as a result of the
denCity 1nver51on convectiono
Deflne corrected areas as the area of 'a peak multlplled by('\i where

x is the position of that peake

~ % This derivation is similar to that-in_referenee bo
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c; = <?Eij 2 cgbs R .

%o - : (39)
c_q = xf 2 Obs
f —<?: f

(40)

Investigate the sum of the two corrected areas S, 5 cf+ cd

and the difference Dpg & ci'- - cg

using the sector Johnston-Ogston formula Eq. 37. This can be rearranged

to o
2 ] ¢ -
() = (Ef () e - -
e . _
%o y %o %o (41)
2 —k X .
or c; = (gﬂ) (cg - 08?4- cs° . , (42)
o . : : _
Hence; : ' .
¥ o ' "
Spq T o8t ' T (22) “opt oy = ot o’ (43
(S

The sum of the corrected areas equals the sum of the true concentrations.
Similarly,

D, =

_ Q0 , A0
fs = c; = 2¢4 - (cf + cg)

el
£
Thus the\difference yields an expression containihg the sum of the true con—
centrations rather than their difference.and is hence of no value, when com-
bined with Eq. 43 forvcalculating ¢ and cf. | |

Effect of s versus ¢ Dependence,

From Eq. 35, Eq. 37 can be written:

® \%ol = (%o - W)

NG
Xo x
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and

e
0
(45)
Xs wZSﬁt
X0

To simplify this expression dnd to determine dependence on t, expand expo-

nentials according to e* - 1=x ex/2 o This yields

5 (46)

-and

Thus, in the sector cell, the ratio of concentrations of the slow species
at the fast boundary is modified over'thevJohnston-Ogston formula, Not only
is there an explicit dependence on t, but due to the dilution duriné the run

the s's will change with t.as_mentioned before, When t = O

1. s \6/\_ SX3 .
= gheey )
cg® SfT= 8t T

Thus Harrington and Schﬁchmén4 Trecommend extrapolation to the meniscus for
data to verify the Johnston—Ogston Formula, They obtained a straight line
relationship with negative slope when plotting e'/c° against X o

Using the.same s versus ¢ assumption as before (Eq 18) Eq. 46 can be

written

8., '&,f; ¢y 53/(5£° - 55°)
3320 - e o ) - xe [ @ - S OPITESRD

- w28 t



where the

This
trying to

determine
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¢c's have the time dependence:

: o
cﬁ (t) = e‘2°J2Ss0 (1 - kg g% ke cg°) ¢

cs (t) = e"2“”2$so(1 - by c5°)t

2 S o _ 03¢
qg (t) = 2% sg (1 - kg og -kp cp°)t
equation is quite complicated and shows the tremendous problem of
use one area measurement (ég) in a sector centrifugation run to

cg without foreknowledge of the magnitude of the s versus ¢ k's,

I corrected areas are also extrapolated back to the meniscus to remove the

time dependence, then Egq. 47 holds ahdvconclusions drawn from the Johnston-

Ogston formula should apply.

Information Division

‘7/10/52
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