
UC Irvine
ICS Technical Reports

Title
Swap file organizations in parallel virtual memory systems

Permalink
https://escholarship.org/uc/item/2br888hs

Authors
Scherson, Isaac D.
Reis, Veronica L. M.
Chen, Fan

Publication Date
1996-10-07

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2br888hs
https://escholarship.org
http://www.cdlib.org/

Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.G.)

Swap File Organizations in
Parallel Virtual Memory Systems *

Isciac D. Scherson, Veronica L. M. Reis and Fan Chen

Technical Report TR-96-46
October 7, 1996

Department of Information and Computer Science
University of California, Irvine,

Irvine, California 92717-3425, U.S.A.
Phone: 1-714-824-7713

FAX: 1-714-824-4056

{isaac,veronica,fchen}®ics.uci.edu

.sL

Abstract

This paper addresses the problem of providing a parallel virtual memory system with an efficient swap file
structure. It has been observed, experimentetUy, that the way data is organized in a parallel 1/0 environment
greatly influences the 1/0 performance [9, 6]. Therefore, if virtual memory is to be implemented in parallel
machines, its disk swap space organization will be one of the key factors determining the virtual memory system's
efficiency. We analyze different parallel file organizations in order to determine which one better suits the needs
of a parallel virtual memory system.

Simulation results collected thus far indicate that the best strategy is to assign to each I/O node data that
will be utilized mostly by neighbor processors. We observed that this approach better load balances I/O requests
among I/O nodes and better explores inter-processor locality.

•This research was supported in part by the AFOSR under grant number F49620-92-J-0126,the CNPq under grant number 200358-
92.8, the NASA under grant number NAG5-256I, and the NSF under grant numbers MIP-9106949 and MIF-9205737

Virtual Memory System *

Sw^ Space ?

W)o W)i M)2 ... lAI.
fL*l

Out-of-core access pattenu

I/O physical characteristics

Figure 1. About the need ofa swap space for a paraUel virtual memory system.

1 Introduction

Modern parallel machines, such as the CRAY T3D, do not provide virtual memory: it is the programmer's respon
sibility to adapt the data to the physical memory available or to code any required out-of-core space. Previous
attempts to provide virtual memory have not been successful [15], Several unsolved issues have prevented virtual
memory in parallel supercomputers from becoming reality. These issues include the lack of a complete understand
ing of locality of reference in parallel programs, how to efficiently manage the out-of-core data, and parallel I/O
scalability and performance.

This paper examines the management of the out-of-core space required by a virtual memory system. In order to
do so, we first empirically analyze data locality in parallel programs. We also present two virtual memory policies
for managing a program's data space. After defining the virtual memory system, we propose different ways of
spreading public data pages across the available I/O nodes: blocking and stripping (with various stripe sizes). The
main contribution of this work is to show how different parallel file organizations influence the efficiency of aparallel
virtual memory system. The analysis was done through simulation of public data access patterns of some parallel
applications. Although we have tried to use applications with different data access patterns, we do not claim to have
exhausted all possible situations but rather to have used different applications to demonstrate the need of flexibility
in an eventual parallel virtual memory system. Figure 1illustrates the proposed problem: given a parallel virtual
memory system, how to organize a disk swap space in order to minimize its access time?

The paper is organized as follows. Section 2defines the target environment for the proposed virtual memory system
(physical machine and programming model) and describes the parallel I/O characteristics necessary to implement a
swap file. Those characteristics are present in many commercial systems [7]. Section 3presents two parallel virtual
memory management strategies. These strategies were proposed in aprevious paper [14] and define how a program's

public data is divided among and managed by the processors executing that program. Section 4 describes different
organizations for a parallel swap file. The performance of the different file organizations are analyzed in Section 5.

2 Background and Parallel I/O Characteristics

The target architecture is MIMD, with physically distributed memory and I/O nodes equally accessible by all
computing nodes through the interconnection network. Among the available commercial machines, CRAY T3D and

Thinking Machines CM-5 fall in this category. The programming model is data-parallel and a globally addressable
space (virtual shared memory), bigger than the available core memory, is provided by the parallel virtual memory
system.

The virtued memory system divides a program's data in two categories:

• private data: the data that is accessed by one processor only. We include here one copy of the code and all
local variables;

• public data: the data that is shared by morethan one processor.

Because virtual memory for private data may be implemented in the same way as sequential virtual memory (as
long as each processor has a local disk), the problem ofmanaging the public data space cannot be resolved in the
same way as private data. Public data will be used by more than one processor and this raises more complicated
issues, as will be seen in the next section. We consider only public data throughout this paper.

The following characteristics should be provided by the I/O nodes to the parallel virtual memory system:

• control declustering: that is, to be able to define how data is to be distributed across multiple disks;

• independent I/O; each computing node should be able to access any page S at any location, independently
of other accesses that other computing nodes might perform.

Current systems that provide these features include the Paragon PFS, the nCUBE and IBM Vesta [7].

Typically, massivelly parallel machines have more computing nodes than I/O nodes. An I/O node is a processor
dedicated to I/O operations. It may contain more than one disk (or RAIDs [10]) as well as buffers.

We use performance figures from the CRAY T3D for disk latency (5.56 ms) and I/O node bandwidth (20 fis per
word) [13] in our simulations.

3 A Parallel Virtual Memory

Implementing parallel virtual memory cannot be done by simply expanding sequential virtual memory. For instance,
data-parallel programs do not have the same locality ofreference characteristics assequential programs do. Sequen
tial programs present two types of locality: temporal and spatial. Temporal locality means that if one address

Â page is the rrunimum amount of data transferred from any I/Onode to any computing node.

is referenced , it is likely to be referenced again in the near future. Spatial locality means that if one address is

referenced, another address nearby is likely to be referenced in the near future. The main cause for both localities

are loops: a loop will cause an instruction to be referenced many times (temporal locality) and will generally loop
through some organized structure, element after element (spatial locality). When a data-parallel program is exe

cuted, loops are flattened across processors, loosing most of its locality. On the other hand, although public data
uses up the majority of the program's memory, it only accounts for a small number of the references [2, 8]. These
references, however, are much more time consuming, given that they usually imply inter-processor communications,

therefore justifying any attempt tooptimize them. It has also been observed that some parallel programs do present
another type of locality: inter-processor locality [11]. Inter-processor locality means that although multiple
processors may reference addresses that are not contiguous, the aggregate requests reference a contiguous space [11].

Other important issues when implementing parallel virtual memory are the management levels ofsuch a system
and the data migration policy. Management level addresses the data search strategy. For example, if a cache-miss
occurs, where should the data be searched for next? Local main memory, some remote main memory or disk?

Data migration addresses the inter-processor communication problem and is tightly connected with management
level. It must be decided whether public data pages are allowed to migrate among processors or should remain
bounded to one processor.

In previous work, we suggested two management policies to implement parallel virtual memory [14]. They are:

• Static page allocation: the public data space is divided among processors such that each processor is
responsible for fetching any ofitsassigned pages every time the page is requested and not found in its memory.
For example, ifany processor needs page P, and page P is under responsibility ofprocessor A, then page P is
either in processor A main memory or processor A must load it from disk. If a processor other than A needs
data from page P, once P is loaded, A forwards the requested data.

• Dynamic page allocation: the responsibility ofknowing the present location of a page is divided among
processors. For example, if processor B needs page P, and page P is not in processor P's main memory, B
will query that page's manager. Suppose the manager for page P is A will check its manager table and
locate P. IfP is swapped out, Awill tell B to load the page and will update its manager table, showing B as
the current owner ofpage P. Contrary to the previous scheme, pages will migrate across processors as they
are needed.

This scheme is an extension ofthe virtual shared memory management proposed by Kai Li [12].

Figure 2 outlines the two management policies proposed: in static page allocation, each processor owns a fixed
sub-set of the public data pages and is responsible to provide any other processor with data from its sub-set. In

the dynamic page allocation, the public data sub-set owned by each processor will change in time and the processor
that needs some swapped out page is the one that fetches it from disk and keeps it in its memory until some other
processor requests that page or it has to be swapped out to make room for other pages. Observe that there are two

main differences between those two policies:

I Ote FB

MiiaM»Maqf

* DecidefnravheiettfeKhilBiiMingdta. Decide»taetherlhepigett(obefech»dfn(BdiAorcopie4ficiD enote
pneeteer'iinenMy.

Figure 2. Parallel virtual memory management policies: static (A) and dynamic (B).

1. Who fetches a page from disk: is the static case, the owner ofthe page does it, whereas in the dynamic case,
the processor that will use the page next does it;

2. The amount of data transferred through the interconnection network: is the static case only a few bites are
sent, while in the dynamic case an entire page is sent.

4 Parallel File Organizations for Swap Files

One of the most observed phenomena in parallel I/O is the existence ofa great variety in access patterns and the
sensitivity of current I/O systems to these access patterns [9]. Because virtual memory systems are constantly
performing I/O operations, they are not immune from this problem. Next we propose different ways ofspreading
public data pages across the available I/O nodes: blocking and stripping (with two different stripe sizes).

Suppose a parallel program public data space consists ofn pages [0...n— 1].

Blocking will partition the n pages among the i I/O nodes in blocks of continuous pages (see Figure 3), such that
I/O node J stores pages [J x (n/i)...(J + 1) x (n/i)]. Therefore, ifpage P is not found in main memory, I/O node
[P X I -I- nj should fetch it.

Stripping means spreading pages across all I/O nodes. Pages may be spread individually (stripe 1) or in small
blocks (stripe C). When using stripe 1, page P will be stored in I/O node P mod i (see Figure 4), and when using
stripe C, page P will be stored in I/O node [{P mod (C x i) CJ (Figure 5).

Because the proposed virtual memory systems do divide public data among processors, stripping will be simulated
with both stripe 1 and stripe n/partition, where n is the public data space size and pariition is the number of

processors executing the job. In other words, all public data assigned to a processor will be swapped out to the

same I/O node.

Because disk access patterns of parallel virtual memory systems are not known, it is not clear which swap file

structure better suits it. Given the two virtual memory policies presented earlier and the three file organizations

presented above, we performed event-driven simulations in order to shed some light in this matter. The simulations

performed will be presented in the next section, as well as the results and their analysis.

5 Simulating Swap Files for Virtual Memory

In order to evaluate the different swapfile organizations d^cribed in the previous section, an event-driven simulator

was built. This simulator allowed us to compare the efficiency of different file organizations not only for different

types ofapplication in terms ofpublic data access pattern and locality, but also for different number of I/O nodes
in the system (ratio of number of computing nodes to number of I/O nodes).

The next subsection describes the simulator structure, assumptions and strategies. Subsection 5.2 presents the

results, that are further analyzed in subsection 5.3.

5.1 Description

The simulator was written in Modsim, an event-driven simulation language.

Machine assumptions and OS environment: An MIMD, constant network delay, 16 processor machine was

simulated. The performance figures of the T3D, such as 10 latency and memory access times were used (for a
complete list see Table 2). Each processor has equal access all I/O nodes. Requests received by I/O nodes are

processed in a first-come-first-served basis. I/O nodes have an input queue (for incoming requests) and a constant
number of buffers to store pages. If an I/O node receives a request fora page already buffered, disk access is avoided.

When a page is fetched from disk, it is stored in the I/O buffer. Pages in the I/O buffer are replaced in a LRU-first
basis. The number of I/O nodes varied across simulations.

The simulations performed did not allow time sharing. Each job loaded had the entire "machine", with each
processor "executing" one virtual process (VP) ^ at a time. VPs were interrupted due to synchronization or page
faults.

Barrier synchronization was used: all VPs synchronized after executing for some 6T time (common to all). This 6T
was randomly defined at the end of the previous synchronization and was proportional to the percentage ofpublic
data access and the memory requirement of the job.

Page faults happened to both private and public data. Page faults to public data interrupt both the processor

requesting the page and the page owner (static policy) or the page manager and page owner (dynamic policy).

In the static case, the requesting processor will block, waiting for its data while the owner will either send the data

(if present) or page fault and suspend its VP'sexecution until the page is loaded.

2We call a virtual process the subset of a parallel program running on one computing node. A VP is composed of a copy of the
data-parallel program, a copy of the private data set and somesub-set of the public data.

In the dynamic case, the requesting processor will first try to locate the page in its local memory. If it page faults,

the manager is triggered while the requesting processor blocks. If the manager has the page, it sends it over. If a

third processor has the page, it receives a message from the manager with instructions to send the page over to the

requesting processor. Finally, if the page was never loaded, the requesting processor is told, by the manager, to do

Public data virtual address is represented as a triple (PE, Page, Offset), where PE is either the page owner (static
policy) or the page manager (dynamic policy), Page is the page offset inside a block assigned to a PE and Offset is
an address inside a page. Each VP stores its last public data access. When next access is to happen, its address

is calculated based on the locality information of the application. Next access time is decided randomly and it is a

function of the percentage of reference to PD of the application being simulated.

We need next to quantify locality. Again, we define locality as the probability of the next reference to public data

to fall into the same page as the last one. The values used in the simulation were determined empirically and can

be seen in Table 1.

In the static page allocation case, it is assumed that public data sent to another processor is used for read only and

that all updates from other processors are done at the barrier synchronizations. Release consistency is assumed in

the dynamic-page case. Every time a synchronization happens, all the copies of a page are removed and only the
one that was fetched last is maintained. This was done to keep the two policies compatible: in the static case, if
many processors request the same data at the same time, each one will receive one copy, so the same should be true

to the dynamic case. We assume, therefore, release consistency [4], in which multiple copies are allowed until next

synchronization point, when only the last update will be maintained and all other copies will be invalidated.

Only the fetching of pages (both local and public data) was simulated. A small overhead We»s considered when a

page was copied back to disk (to update system tables). This was done because computing nodes must wait for I/O
nodes to complete their task when loading a page, which is not the case when writing a page: they may proceed
after asking I/O nodes to write a page without waiting for the completion of the task.

The simulations can be divided in terms ofswap file organization, number ofI/O nodes, virtual memory management

policy and application type.

Three swap file organizations were simulated: blocking, stripe 1 and stripe C (C = n/partition). In all cases,
the processor responsible for fetching the page will use the page's address to define to which I/O node to send the
request. The reference address to I/O node identification conversion can be seen in Table 3.

Simulations were done for the following number of I/O nodes: 2, 4, 6 and 8.

The two virtual memory management policies simulated were static and dynamic page allocation, as previously
defined.

Application characteristics: Three types ofapplications, whose traces were obtained from the literature, were
simulated: WATER, MP3D and CHOLESKY(from the SPLASH benchmark [16]). From those applications we

consider two characteristics: public data access pattern and public data locality ofreference. Access pattern is the

Workload Characteristics Distribution

Job Ideal execution time(per VP)
Total Public Data Space (Size)
Percentage of public data access
Locality of reference of public data
Time between barrier synchs

Normal

Uniform

avg 450 sees, std deviation 75 sees
[512 M , 50 G] pages

18 (WATER), 29 (CHOLESKY) and 40 (MP3D)
0% (WATER), 2% (CHOLESKY) and 1% (MP3D)

Function of (% PD Access, PD Space)

Table 1. Statistical distributions used in the applications workload.

percentage of public data references out ofall references. Locality is the probability that the next access to public
data will be to the same page as the previous one.

The WATER problem simulates the evolution ofa system of water molecules. This is done through short-range
N-body [16]. The volume of water considered in the application is divided among processors and each processor
works on the molecules in one region. Public data sharing happens in the "borders", when a processor needs data

from the other side of the border in order to calculate its molecules movement. WATER presents no locality in
terms ofpublic data. Access to public data corresponds to 18% ofall references [2].

MP3D simulates rarefied fluid flow, done through particle-in-cell, Monte Carlo methods [16]. Each processor is
responsible for a subset ofmolecules and "follows" its subset through space. The active space considered is divided

in "cells", for the purpose of efficient collision pairing: molecules can only collide with other molecules in the same

ceil at the same time. Public datasharing happens during collisions and during accesses to the space array. Because
the partitioning of molecules is not related to their position in space, which changes considerably, each processor
will access thespace array ina non-regular pattern, many times sharing space cells with other processors. Therefore

MP3D presents racing conditions, some locality, and its access rate to public data is 40% [2].

CHOLESKY factorizes a sparse positive definite matrix Ainto a lower triangular matrix Lsuch that A= [16].
The non-zero elements of the matrix are stored in an array with pointers to the first non-zero element of each

column, with an auxiliary array storing the row number of each element. Sets of columns with similar non-zero

structures are clustered into supernodes, the "data element" ofthis application. Only one step ofthe algorithm is
used in the SPLASH benchmark, namely, the elimination of non-zero elements of certain rows in order to obtain

a lower triangular matrix. In that step, a supernode may be modified by many processors until all modifications
to that supernode are complete. It will be then placed in a "task queue" from where it will be removed and used

by only one processor to modify other supernodes. CHOLESKY presents a little racing but good locality, and its
access rate to public data is 29% [2].

Each application type was simulated separately for ten different program sizes in respect to execution time and

public data space. Table 1 depicts the distributions used.

5.2 Results

Simulations ran until ten jobs were "executed", that is, simulations ran ten jobs to completion.

Figures 6 and 9 show the average completion time for WATER under different number of I/O nodes. Figure 6

Machine Characteristics

Memory per PE for PD
Page size
Cache size

Number of PEs

Main memory latency
Other PE memory latency
10 bandwidth

Disk latency
10 node buffer size

1 word

1 clock cycle

OS overheads
Context switch

Table update
Enqueue delay
To fetch a line from main memory and update table
To fetch a line from other PE main memory and update table
To fetch a page from other PE main memory and update table
To fetch a page from disk and update table

8192 pages (8Mb)
128 words (1Kb)

16 words

16

52 ns per word
1 fts per word

20 fis per word
5.56 ms

4 pages

8 bytes

8x main memory latency
between 1.4(local) and 3.4(remote) us per entry

2.1 fis per object (job or VP)
2.232 X 10"® sees.

1.880 X 10-' sees.

1.315 X 10-* sees.
8.1249 X 10-' sees.

Table 2. Hardware and Operating System numbers used in the simulation.

File Organizations I Public Data Reference I I/O node
Blocking PE.Page (PE'C+Page) DIV (TotSpace DIV lOnodes)
Stripe 1 PE.Page (PE*C+Page) MOD lOnodes
Stripe C | PE.Page | PE MOD lOnodes

Table 3. Public data reference to I/O node identification conversion table.

shows the results for the execution under static page allocation, while Figure 9 depicts results for the dynamic
page allocation. Figures 7 and 10 show results for CHOLESKY (static and dynamic page allocation, respectively).
Finally Figures 8 and 11 refer to the MP3D application. Blocking outperformed the other two file organizations
in most cases. WATER presents a more irregular pattern, and stripe C presents better results when the number

ofI/O nodes increases. Stripe C also performed better for MP3D with static page allocation and 8I/O nodes.

Also observe that dynamic page allocation produced better results (smaller average completion times) in all cases.
This is coherent with previous simulation results [14], where disk access time was assumed to be constant.

Figures 12. 13 and 14 present the average disk access time (the average I/O wait time among all processors) for
each application and each page allocation policy. Blocking presents smaller average waiting times in 2dl cases.

Figures 15, 16 and 17 present the maximum disk access times, among a!) processors, for each application and
page allocation policy. Observe that the maximum waiting times are much bigger than the average ones. We
also observed that although the maximum waiting times were not very frequent, they did influence the overall

performance. This happened because ofthe characteristics ofthe programs executed: using barrier synchronization
whenever a synchronization was required, which forced all processors to wait for the slowest ones.

While the graphs depicting average cases are "well behaved" for all applications, that is not the case with the graphs
that show the maximum waiting times, where the increase in the number of I/O nodes did not linearly decrease
the maximum waiting time. In some cases, the maximum waiting time increased, with the increase in the number

ofI/O nodes! This behavior demonstrates the sensitivity ofpublic data access to public data partitioning: when
a different partitioning was used, more processors competed for the same I/O node, even though more I/O nodes

were available.

5.3 Analysis of the Results

Results obtained thus far point to blocking, with dynamic page allocation, as the best option. We believe this is

the case because blocking tends to store in the same I/O node pages that are more often accessed by a processor

and its neighbors (roughly). While each processor cannot fetch more than one page at a time (thus minimizing the
I/O queues), inter-processor locality between neighbor processors may be explored.

Although stripe C was designed with the division ofthe public data space among processors in mind, its results were

not as good as blocking. This phenomenon might be caused by the spread, among I/O nodes, of pages originally

"assigned" to neighbor processors, and therefore not exploring an eventual inter-processor locality. Notice, for
instance, that although the disk access averages ofstripe C and blocking are relatively close, the maximum disk

access values are much bigger for stripe C.

We also observe irregular performances in the WATER application for the same page allocation policy/file orga

nization. While blocking performs better with 4 I/O nodes, stripe C presents better results for both 6 and 8

I/O nodes (notice that this is true for both page allocation policies). WATER cycles through public data of the
neighbor processors only: each region will need information of the "borders" only, and the "borders" will be in a

limited number of neighbor processors This behavior, somehow, was sensible to stripping (and blocking) across
different number of I/O nodes.

In terms of the number of I/O nodes in the system, we observe that for the simulated system with 16 processors,
we have a significant performance improvement when moving from 2 and 4 I/O nodes to 6 I/O nodes. Not much

improvement is acquired when moving from 6 to 8 I/O nodes, though. This result is compatible with previous
observations [3, 5], that stated the existence of an ideal number ofI/O nodes per number of processor nodes in a
parallel system.

Notice the small difference, in terms of average completion time, among different file organizations for the same

application and page allocation policy. We believe that this is the case due to the low latency of the T3D's I/O
gateways. So, in order to better substantiate our results we intend, next, to repeat these experiments using another

platform. Because ofthe cost/performance benefits and accessibility ofnetworks ofworkstations (NOWs) aswell eis
the recent results in implementing distributed shared memory in a NOW [1], NOWs seem to be the natural choice
as the next platform to be experimented with. Our next step, then, is to repeat these experiments to a NOW

consisting of 16 workstations and varying number ofnetwork file systems (NSF) servers.

În the other two applications each processor cycles through the entire public data set (with different frequencies and strides).

6 Conclusions

This paper described two public data page management policies for a parallel virtual memory system (PVM). We

proposed different parallel swap file organizations for this PVM and simulated their behavior for three parallel

applications. The experiments performed indicate that blocking better load balances I/O requests among I/O
nodes and better explores inter-processor locality. Thus, among the file organizations analyzed in this study, the

one that better suits PVM seems to be blocking.

To organize the swap file in blocks is to maintain the compiler's decision to keep together data that will be mostly

accessed by a processor and its neighbors.

Although parallel virtual memory system is not yet reality, we believe such a system not only is possible but very

useful. Time sharing, for example, can be implemented with much more flexibility and efficiency if virtual memory

is present. A PVM system will also relieve the user from the need of programming out-of-core and from the trouble

of worrying with its data access patterns and related efficiency of the parallel I/O system. Notice that an eventual

PVM can be further improved by prefetching techniques, which were not considered in this study's simulations.

Future work includes the experimentation of the proposed swap file organizations and page allocation policies for

other platforms, and the analysisof alternative swap file organizations, as the understanding of locality of reference

in parallel programs evolves. We also intend to analyze parallel virtual memory policies and swap file organizations

in a time-shared environment.

M

O..CI .C.2C-1 a-nc-ic-i
(i*i)c.-a+2x:-i (2i.l)C.2iC-I

•-1

Figare 5. Stripping (C).

us.i

u*

»«.«

S3I.(

• S3<.«

f SJS.l

Tub e« CeivUcian (Settle Pwt talicyi • WltS

Figare 6.

•WlTBl_llockS
•>«Ami_StrlS
•MIOLKm

Atn-t** TtM to Ca«l«eion (Dyntaie PtM tollcv) • MHEB

Figure 9.

•"ATES^loAD* ♦
•»TBS_StrlB-
•"MWLSlrtD- •»•

mtrte* Tim to Cemi*ttcn (Settle Steo Selley) • CHOLESn Avorte* Tim to Com'otlen (Eyntale Stoo Policy) - CHOICSKYH»j

SM.S

_ SST.S V

I „,N

MoBtr of I/O ncaoi

Figure 7. Figure 10.

-CIKUSSyjlockD-
CK>i£sxy stno

•CWUSR StlCC

ftv«rt«o Tim to Comlotion (Settle Ptgo PsUcyl • HPIO Avortso Tim to Ccmlotlon (DyntUc ptfo Polley) - MPSO

•sinr of I/O IMM HitSm of I/O nedm

igure 8. Figure 11.

IIP3D_Blockl>-
•NPJB_Strie*
••PID StiCtr

Figure 12.

Figure 13.

St4 At9*
•M.StI St4lAvs* -•-
•M.StC.St*.**»• »•

•M.bloc.CynJkvs* *•

•C_bloc Sea_Avfl' -•—

•C_SlC.S««_»»9' •'•• •
"CJbioc OjrfljMrfl" *—
•c_sei Cynjnt*

Avpriqt TUM to load Gn* tas* Pren 0i9k (Static 4nd Dynaaic PoUciopj - ttM

Figure 15.

•M blPC.tt4.MiM*
•M tt:_St4 M4K- -- ,
'M.ttC.Sl4.M4K* ••

•M.bloc_Dyn_M4** -ib*

•C.bloe -*—
*C Stl

•c.«te_a« M>' B- .
•Cj9loc IVn.t««"

•C »I_IVn_"«»"
•C SbC (Vn Ml' •» -

i * i (1 t
•o^MT e(I/O nedn

Figure 16.

MaxUiuo fvm to Load Cn« Pas* Pm OiA (tttic ud OynMc PolleUo) - MP9D

Figure 17.

Mj)loc StajMx* -4-
H ttl tti.HiM -I-

'K.9LC ttaJtoM" B-
H bloc Cyn.H4x* «-
'M ttl Opn Max* •*-
K Stc cyrLHax •*

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu, and W. Zwaenepoel. TreadMarks:
Shared Memory Computing on Networks ofWorkstations. Computer, 29(2):18 -28. February 1996.

[2] Luiz Andre Barroso and Michel Dubois. The Performance of Cache-Coherent Ring-based Multiprocessors. In
The 20th Annual International Symposium on Computer Architecture, pages 268 - 277, May 1993.

[3] S. J. Baylor, C. Benveniste, and Y. Hsu. Performance evaluation of a parallel i/o architecture. In Proc.
International Conference on Supercompuiing, pages 404-413, Barcelona, July 1995.

[4] J. K. Bennet, J. C. Carter, and Z. Zwaenepoel. Munin: Distributed Shared Memory Using Multi-Protocol
Release Consistency. Lecture Notes on Computer 5cicncc 563, pages 56 - 60, July 1991.

[5] Fan Chen, Veronica L. Reis, and Isaac D. Scherson. AStudy ofParallel Input/Output Subsystems. In APPT95,
Beijing, China., September 1995.

[6] Thomas H. Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, Massachusetts Institute of
Technology, February 1993.

[7] Thomas H. Cormen and David Kotz. Integrating Theory and Practice in Parallel File Systems. In DAGS/PC
Symposium on Parallel I/O and Databases, pages 64 - 74, 1993.

[8] F. Darema-Rogers, G. F. Pfister, and K. So. Memory Access Patterns of Parallel Scientific Programs. Perfor
mance Evaluation Review, 15(1):45 - 58, May 1987.

[9] Juan Miguel del Rosario and Alok N. Choudhary. High-Performance I/O for Massively Parallel Computers:
Problems and Prospects. Computer, 27{3):59 - 68, March 1994.

[10] P. M, Chen et al, RAID: High-Performance, Reliable Secondary Storage. ACM Computing Surveys, 26(2):145
- 185, June 1994.

[11] Dror G. Feitelson, Peter F. Corbett, Sandra Johnson Baylor, and Yarsun Hsu. Parallel I/O Subsystems in
Massively Parallel Supercomputers. IEEE Parallel and Distributed Technology, 3(3):33 - 47, Fall 1995.

[12] Kai Li. Shared Virtual Memory on Loosely-coupled Multiprocessors. PhD thesis, Yale University, October 1986.

[13] Wilfried Oed. The Cray Research Massively Parallel Processor System CRAY T3D. available by anonymous
ftp from ftp.cray.com, November 1993.

[14] V. L. M. Reis and I. D. Scherson. AVirtual Memory Model for Parallel Supercomputers. In 10th International
Parallel Processing Symposium (IPPS), pages 537- 543, April 1996.

[15] Subhash Saini and Horst Simon. Enhancing Applications Performance on Intel Paragon through Dynamic
Memory Allocation. In Proceedings ofthe Scalable Parallel Libraries Conference, pages 232 - 239. Mississippi
State University, October 1993.

[16] Jaswinder Pal Singh, Wolf-Dietrich Weber, and Anoop Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory. SIGArch Computer Architecture News, 20(1), March 1992.

