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Abstract
Neurodevelopmental disorders (NDDs) affect 7–14% of all children in developed countries and are one of the leading causes
of lifelong disability. Epigenetic modifications are poised at the interface between genes and environment and are predicted
to reveal insight into NDD etiology. Whole-genome bisulfite sequencing was used to examine DNA cytosine methylation in
49 human cortex samples from 3 different NDDs (autism spectrum disorder, Rett syndrome, and Dup15q syndrome) and
matched controls. Integration of methylation changes across NDDs with relevant genomic and genetic datasets revealed
differentially methylated regions (DMRs) unique to each type of NDD but with shared regulatory functions in neurons and
microglia. NDD DMRs were enriched within promoter regions and for transcription factor binding sites with identified
methylation sensitivity. DMRs from all 3 disorders were enriched for ontologies related to nervous system development and
genes with disrupted expression in brain from neurodevelopmental or neuropsychiatric disorders. Genes associated with
NDD DMRs showed expression patterns indicating an important role for altered microglial function during brain
development. These findings demonstrate an NDD epigenomic signature in human cortex that will aid in defining
therapeutic targets and early biomarkers at the interface of genetic and environmental NDD risk factors.
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Introduction
Neurodevelopmental disorders (NDDs) are one of the leading
causes of lifelong disability. NDDs, which include autism
spectrum disorders (ASDs), intellectual disabilities, attention-
deficit/hyperactivity disorder, cerebral palsy, Down, and fetal
alcohol syndromes, affect 7–14% of all children in developed
countries (Miller et al. 2016). Current treatments consist of labor
intensive and expensive behavioral therapies, which are often
combined with drug therapies to treat comorbid symptoms such
as anxiety. The lifetime cost for a person with ASD, one type of

NDD, ranges from $1.2–4.7 million (Buescher et al. 2014) and can
cost an additional $5.5 million in caregiver time compared with
a neurotypical child (Dudley and Emery 2014). Combined with
the rising diagnosis rates of ASD and other NDDs and the limited
available treatments, there is an urgent need to accelerate the
discovery and development of novel NDD therapeutics and early
interventions.

The clinical diversity of idiopathic ASD parallels the genetic
complexity of the disorder, which includes hundreds of rare risk
variants and potentially thousands of common risk variants
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(Sanders et al. 2015; De La Torre-Ubieta et al. 2016; The Autism
Spectrum Disorders Working Group of The Psychiatric Genomics
Consortium 2017). Monogenic disorders with symptoms that
overlap ASD are commonly used to gain insight into the more
complex idiopathic ASD cases. For example, Rett syndrome
(RTT) is an X-linked, dominant syndromic ASD/NDD caused
by mutations in MECP2, affecting females. Duplication 15q11.2-
q13.3 (Dup15q) syndrome is an ASD/NDD caused by a maternally
inherited copy number variant that results in increased expres-
sion of the imprinted gene UBE3A. Recent exome sequencing
studies focused on identifying rare, highly penetrant, de novo
mutations in patients with ASD identified a number of high-
confidence ASD genes with functions in neuronal synapses
and transcriptional regulation (Ben-David and Shifman 2012;
Sanders et al. 2015). Genetic and environmental risks are
hypothesized to interact in the etiology of ASD (Vogel Ciernia
and LaSalle 2016), and a multitude of early life environmental
perturbations correlate with increased ASD risk, including
maternal immune activation and in utero pollutant exposure
(Lyall et al. 2014).

The disruption of epigenetic processes regulating brain
development is a potential mechanism linking environmental
and genetic risk. For example, transcription, DNA methylation,
and histone acetylation analyses in postmortem ASD brain have
consistently implicated gene pathways involved in synaptic
development and immune function (Voineagu et al. 2011; Gupta
et al. 2014; Ladd-Acosta et al. 2014; Nardone et al. 2014, 2017;
Lin et al. 2016; Parikshak et al. 2016; Sun et al. 2016). However,
most analyses of DNA methylation in human ASD brain have
been limited to less than 2% of the total Cytosine-p-Guanine
(CpG) sites in the human genome (Ladd-Acosta et al. 2014;
Nardone et al. 2014, 2017) or a specific syndromic subset
of ASD (Dunaway et al. 2016). Consequently, we examined
CpG methylation signatures across the human genome using
unbiased whole-genome bisulfite sequencing (WGBS) of human
cortices from 3 different NDDs and matched controls. By
leveraging cortical WGBS data of ASD, RTT, Dup15q, and matched
controls, we analyzed regions of differential methylation to
identify gene pathways and cell type-specific functions that
are convergent and divergent across NDDs. NDD differentially
methylated loci were enriched within promoters and for
neuronal transcription factor binding sites (TFBSs) with known
methylation sensitivity. NDD associated genes were enriched
for genes known to be differentially expressed in brain in ASD
and in several other neuropsychiatric disorders. Furthermore,
we observed functional enrichments related to nervous system
development and immune cell types, specifically microglia.
Therefore, differential DNA methylation analysis captures gene
pathways and cell types converging with both immune and
neuronal perturbations in brain development and suggests
novel therapeutic pathways for NDDs.

Methods
Sample Acquisition, DNA Isolation, and WGBS Library
Preparation ASD BA9

Human cerebral cortex samples from Broadmann Area (BA) 9
were obtained from the National Institute of Child Health and
Human Development Brain and Tissue Bank for Developmental
Disorders at the University of Maryland. DNA was isolated using
the QIAGEN Puregene kit (Qiagen, 158 667), and WGBS libraries
were prepared as described previously (Dunaway et al. 2016).

Briefly, 5 μg of DNA was fragmented to ∼300 bp using 28 cycles
of 15 s on/15 s off on a Diagenode Bioruptor. DNA was end-
repaired using 1× T4 DNA ligase buffer, 400 μM dNTPs, 15 U T4
DNA polymerase (NEB), and 50 U PNK (NEB) for 30 min at 20 ◦C.
After Polymerase Chain Reaction (PCR) purification (Qiagen),
adenine bases were appended to the ends using 1× NEB 2 buffer,
200 μM dATP, and 15 U Klenow Fragment (3′ to 5′ exo-, NEB) for
30 min at 37 ◦C. After another DNA purification using the PCR
MinElute kit (Qiagen), 3 μL of Illumina’s methylated sequencing
adapters were attached using 1× ligase buffer and 5 μL Quick
T4 DNA Ligase (NEB) for 30 min at room temperature. After a
final PCR purification, 500 ng of library was bisulfite converted
using Zymo’s EZ DNA Methylation-Direct kit according to the
manufacturer’s instructions. The library was then amplified
using 2.5 U PfuTurbo Cx Hotstart DNA Polymerase (Stratagene)
for 12 cycles using Illumina’s standard amplification protocol.
The library’s quality was assessed on a Bioanalyzer (Agilent) and
sequenced (100 bp, single-ended) on an Illumina HiSeq 2000.
Each biological sample was sequenced on a single lane.

Sample Acquisition, DNA Isolation, and WGBS Library
Preparation RTT BA9

DNA was extracted from BA9 cortex from RTT and Control
samples using the Zymo Duet Kit (Zymo). Two hundred
nanogram of total genomic DNA was bisulfite converted using
the EZ DNA Methylation-Lightning kit (Zymo), and 50 ng of
converted DNA was used as input for library construction
using the TruSeq DNA Methylation Kit (Illumina). Each sample
was given a unique barcode and subjected to 14 cycles of PCR
amplification. Final libraries were size selected with 2 rounds of
KAPA Pure Bead selection: 0.7X Left and 0.65X Left/0.55X Right
for a final library size distribution centered around 370–470 base
pairs. Final libraries were assessed with Bioanalyzer (Agilent),
quantified, and pooled, then 150 bp paired end sequencing was
performed on 2 lanes of the HiSeqX (Illumina).

WGBS Sample Processing

Raw FASTQ files were chastity filtered and then trimmed
using trim_galore (https://www.bioinformatics.babraham.ac.uk/
projects/trim_galore) to remove adapters and sequences at the
5′ and 3′ ends with methylation bias. Reads were then aligned
to the human genome (hg38), deduplicated, and extracted to a
CpG count matrix using Bismark (Krueger and Andrews 2011).
QC/QA was performed using Bismark, FastQ screen (Wingett
and Andrews 2018), and MultiQC (Ewels et al. 2016). Measures
of global methylation were assessed from the Bismark output
using a one-way analysis of variance (ANOVA) for diagnosis
with adjustments for age for all comparisons and sex for the
idiopathic ASD cohort.

DMRs and Blocks

Differentially methylated regions (DMRs) were called for diagno-
sis (NDD vs. Control) for each NDD separately using the R pack-
age dmrseq (Korthauer et al. 2018). This approach utilizes statis-
tical inference, where smoothed methylation values are calcu-
lated for CpG sites in a manner that weights them based on their
individual coverage. Bismark cytosine reports were processed
to collapse strand-symmetric CpGs using bsseq (Hansen et al.
2012). CpGs from unmapped scaffolds and the mitochondrial
chromosome were removed from subsequent analysis. For each
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NDD cohort, the respective cytosine reports were filtered to have
at least one read of coverage per CpG across all samples. A gener-
alized least squares regression model with a nested autoregres-
sive correlated error structure for the effect of interest was used
to estimate a region statistic for each candidate region. Empirical
P-values were calculated by comparing observed region statis-
tics to those generated from a permutation-based pooled null
distribution. DMRs were identified using the default parameters,
aside from setting the minimum number of CpGs to 4 for a
region, a methylation proportion difference coefficient of at least
0.05, and a permutation P-value of P < 0.05 for significance test-
ing without additional corrections. For all analyses, the covariate
of age was directly adjusted for, and for the ASD analysis sex was
also included as an adjustment.

BG Regions

Background (BG) regions for each NDD cohort were defined as
all regions meeting the above criteria for candidate regions (at
least one read of coverage per CpG across all samples and groups
of at least 4 CpGs), which includes a difference between NDD
and control samples for statistical testing. Consequently, the BG
regions represent the testable candidate regions subjected to a
permutation-based analysis for the identification of significant
DMRs. BG regions are regions capable of showing a methylation
difference that were subjected to statistical testing to identify
DMRs, and thus they are also likely to be similarly affected by
any inherent GC bias. For downstream enrichment testing, the 3
testable BG region sets were merged using bedtools to create a
set of consensus BG regions, allowing for the use of a consistent
BG across NDD cohorts. Individual smoothed methylation values
for the DMRs were generated using bsseq (Hansen et al. 2012).
Finally, blocks of differential methylation were identified using
the recommended block parameters from the dmrseq vignette
(Korthauer et al. 2018).

DMR Associated Genes

Genes associated with DMRs or BG regions were found using the
bedtools closest function on all hg38 Ensembl annotated genes
and a subsequent filter for genes within +/−10 kb from the start
or end of each DMR. With this approach, a DMR is first assigned
to a gene if it overlaps the gene body. If a DMR does not overlap a
gene body, then it is assigned based on the closest gene (or genes
in case of a tie) upstream or downstream, within the limit of
10 kb. To test for bias in the association between DMRs and genes
of longer size, gene length (gene start to gene end in base pairs)
was compared between NDD DMR associated genes, BG regions,
and all Ensembl genes in hg38 using permutation testing. Ran-
dom gene sets of the same number of genes as each DMR list
were subsampled from either the BG regions or hg38 genes. The
median gene length was then calculated for each sub-sample
and used to create a null distribution (100 000 permutations) for
comparison against the actual NDD DMR associated genes (see
Supplementary Fig. S8). The empirical P-value was calculated
as the sum of the number of sub-samples with median gene
lengths greater than or equal to the median gene length of the
DMR associated genes, divided by the number of permutations.

PCA

Principal components analysis (PCA) was performed using the
prcomp and ggbiplot functions in R on the average of smoothed

CpG methylation values within 20 kb windows tiled across the
genome.

MethylCIBERSORT Cell-Type Deconvolution

Methylation levels from all BA9 cortex samples were extracted
for CpGs showing unique cell type-specific methylation levels
among glutamatergic neurons, GABAergic neurons, and glial
cells (CpG sites used with at least one read/CpG for all samples;
see Supplementary Fig. S2) (Kozlenkov et al. 2014). The methyla-
tion values from Kozlenkov et al. (2014) were used as a custom
signature profile for input to CIBERSORT (Newman et al. 2015)
(https://cibersort.stanford.edu) in an approach used previously
to deconvolve WGBS data from tumor cells (Chakravarthy et al.
2018). MethylCIBERSORT was utilized to estimate the relative
levels of distinct cell types within each WGBS sample by com-
paring the methylation patterns of the same CpGs between the
samples and custom signature profile using machine learning
linear support vector regression (Newman et al. 2015).

Average Methylation Analysis over Genomic Features

Average smoothed methylation values were calculated for CpG
islands, shores (+/−2 kb from CpG islands), shelves (+/−2 kb
from shores), open sea (intergenic CpG IsIands), gene bodies, and
promoters. Gene bodies were assigned from transcription start
site to transcription end site by the Ensembl hg38 annotation
(http://www.ensembl.org/biomart). Promoters were taken from
the Ensembl hg38 promoters database (Zerbino et al. 2015),
and CpG Islands were taken from the R package annotatr
(Cavalcante 2017) for hg38. Average methylation levels and
average sequencing coverage were analyzed using a mixed
model ANOVA with main effects for diagnosis, genomic feature,
sex, the interaction between diagnosis and genomic feature, and
the random effect of sample. Post hoc comparisons were made
with Benjamini–Hochberg corrected t-tests.

GO Term Enrichment

Gene Ontology (GO) term enrichment on genomic regions was
performed for DMRs using the R package GOfuncR (Grote 2018)
for GO terms from the current version of the org.Hs.eg.db_3.6.0
package (March 2018). ASD, Dup15q, and RTT DMRs were com-
pared with BG consensus regions using a hypergeometric test
to compare the overlap between each DMR and gene extended
regions (10 kb up and downstream of each hg38 Ensembl gene
start and end site).

Region Overlap Enrichment and Datasets

Testing for the enrichment of DMRs within specific genomic
contexts was performed using the Genomic Association Tester
(GAT) (Heger et al. 2013) with a workspace defined by the consen-
sus BG regions, isochores for hg38 (controls for G+C Bias during
random sampling) and 100 000 permutations. Multiple compar-
isons were False Discovery Rate (FDR) corrected to P < 0.05. In
all figures nonsignificant enrichments are shown in gray. Cell
type open chromatin regions datasets were filtered to remove
regions in common across cell types for either brain or non-brain
samples using bedtools multiIntersectBed.

Cell-type DNase-seq and chromatin states were taken from
prefrontal cortex (PFC) from the ENCODE portal (Ernst et al.
2011; Ernst and Kellis 2013; Roadmap Epigenomics Consortium
et al. 2015) (http://www.roadmapepigenomics.org/). Human
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microglial ATAC-seq and PU.1 ChIP-seq datasets were taken
from Gosselin et al. (2017). Human data in hg19 or mouse data
were transferred to hg38 using LiftOver (Hinrichs et al. 2006).

Machine Learning Model of NDD DMR Diagnosis
Prediction

Smoothed methylation values were extracted for a merged list
of DMRs from all NDD analyses and corrected for sequencing
batch effects using the ComBat function from the sva R package
(Johnson et al. 2007). The caret R package was used to train a
5-fold cross-validated random forest model with 4 classes (ASD,
Dup15q, RTT, and Control) from the ComBat corrected smoothed
methylation values. In 5-fold cross-validation, the dataset is split
into 5 groups, where for each of the 5 resampling iterations,
the model is trained on 4 of the 5 groups and tested on the
remaining fifth group (see diagram in Supplementary Fig. S4).
The model was evaluated for overall prediction reliability of
classifiers (kappa statistic), overall prediction accuracy, and pre-
diction accuracy within each class. The kappa statistic, which
assesses the validity of a model, is a measure of agreement
between the actual diagnosis values and predicted diagnosis
values and takes into account the expected accuracy by ran-
dom chance. The kappa statistic can range from −1 to +1,
and a value between 0.21 and 0.40 is considered fair, 0.41–0.60
is moderate, 0.61–0.80 is substantial, and 0.81–1.00 is nearly
perfect interrater agreement (McHugh 2012). The kappa value
was calculated using the following formula: Kappa = (observed
accuracy−expected accuracy)/(1−expected accuracy).

For each of the 5 resampling folds, the observed accuracy was
the number of correctly classified samples in the fold divided by
the total number of samples in the fold. The expected accuracy
for each fold was the sum of the marginal frequency of each of
the classes in the fold divided by the total number of samples in
the fold. The marginal frequency for each class was calculated
by multiplying the number of actual samples in a class by the
number of samples that were classified as that class and finally
dividing by the total number of samples in the fold.

Gene Overlap Enrichment and Datasets

Testing for the enrichment of DMR associated genes within
previously published gene lists was performed by permutation
testing against a null distribution matched for gene length to
account for the bias for expression of longer genes in the brain
and in some types of ASD-linked mutations (Shohat and Shif-
man 2014). For each comparison, a random sub-sample of genes
(same number of genes as in the target gene list) was selected
from genes annotated to the BG regions so that the sub-sample
matched the median gene length of the target gene list (see
Supplementary Fig. S8). This median gene length-matched, ran-
dom sub-sample was then overlapped with the DMR associated
genes. This process was repeated for 100 000 permutations to
create a null distribution of overlaps between randomly selected
groups of BG genes with the same median gene length as the
target list. The null distribution was then compared with the
actual overlap between the DMR associated gene list and the
target gene list and a permutation P-value calculated as the
sum of the random sub-sampling of overlaps greater than the
actual overlap divided by the number of permutations. Permu-
tation testing for gene enrichment was conducted by randomly
sampling a distribution of length-matched genes from among
genes assigned to BG regions. Consequently, both length and GC

content are similar between the random BG distribution and the
target gene list for overlap. All gene lists, overlaps, statistics, and
citations are in Supplementary Table S8.

Briefly, ASD and ID genetic risk genes were taken from
SFARI (https://s1gene.sfari.org/autdb/GS_Statistics.do), SyS ID
database (Kochinke et al. 2016) (https://sysid.cmbi.umcn.nl/
table/human-gene-info), and recent exome sequencing studies
(Gilissen et al. 2014; Iossifov et al. 2014; Sanders et al. 2015).
pLI > 0.9 genes were identified from the Exome Aggregation
Consortium (Lek et al. 2016) as genes with a probability of
loss of function mutation >0.9, indicating that they are highly
intolerant to genetic variation in the human population. Human
ASD GWAS hits were taken from The Autism Spectrum Disor-
ders Working Group of The Psychiatric Genomics Consortium
(2017) using a threshold of an association P-value < 0.05 and
genes associated with ASD DMRs (Nardone et al. 2017). Lists of
differentially expressed genes from postmortem human brain
were obtained from published datasets for Dup15q syndrome
(Parikshak et al. 2016), ASD (Gupta et al. 2014; Parikshak et al.
2016; Gandal et al. 2018a, 2018b), RTT syndrome (Lin et al.
2016), Alzheimer’s disease (Miller et al. 2013), bipolar disorder,
alcoholism, schizophrenia (SCZ), irritable bowel disease, and
major depressive disorder (Gandal et al. 2018a, 2018b). Human
imprinted genes were obtained from http://www.geneimprint.
com. Microglial gene lists were taken from several studies
across different microglial isolation approaches and treatments
(Hickman et al. 2013; Cronk et al. 2015; Erny et al. 2015; Holtman
et al. 2015; Matcovitch-Natan et al. 2016; Hanamsagar et al. 2017;
Keren-Shaul et al. 2017; Mattei et al. 2017; Zhao et al. 2017; Vogel
Ciernia et al. 2018).

TFBS Analysis

NDD DMRs and BG regions were analyzed for TFBS using
the MethMotif Batch Query tool (Xuan Lin et al. 2018) on the
MethMotif website (https://bioinfo-csi.nus.edu.sg/methmotif/)
for the human SK-N-SH neuronal cell line. This tool combines
high-quality ENCODE ChIP-seq data with ENCODE WGBS
data for individual cell types, creating a cell type-specific
TFBS methylation status database (Xuan Lin et al. 2018). The
frequency of TFBS motifs for each set of NDD DMRs was tested
for enrichment relative to the frequency in consensus BG
regions using a one-tailed Fisher’s Exact test with FDR correction
to P < 0.1. Differences in average smoothed methylation
levels between Control and NDD subjects within NDD DMRs
containing the identified TFBSs were then examined using
a 2-way ANOVA with factors for DMR (NDD DMR vs. BG
region) and NDD (NDD vs. Ctrl) and sex as a covariate (for the
ASD cohort).

Microglial Developmental Time Course Gene
Expression

Raw count data per transcript were downloaded from GEO
GSE99622 (Hanamsagar et al. 2017). Two samples were excluded
due to low total read coverage of <200 000 total reads. The
remaining samples were processed in EdgeR to counts per
million for differential analysis between time points and sexes
with FDR corrected P-values to 0.05. Reads per kilobase per
million (RPKM) values were also calculated by normalizing to
gene length for weighted gene co-expression network analysis
(WGCNA).
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WGCNA

WGCNA was performed using the WGCNA R package (version
1.61, 5 August 2017) (Langfelder and Horvath 2008, 2012). Average
RPKM data from human brain single-cell RNA-seq collected
across developmental time (gestational weeks) (GEO GSE104276)
(Zhong et al. 2018) were used to construct cell type-specific
developmental co-expression networks. Genes with zero vari-
ance in expression or a median absolute deviation of zero were
removed from the analysis. Genes with a minimum RPKM of
0.001 or higher in at least one sample were kept for analysis
for a total of 10 895 genes (unique Ensembl IDs). Values were
then transformed to log2(RPKM+1) and clustered to visualize
outliers (see Supplementary Fig. S6). A correlation matrix using
biweight midcorrelation between all genes was then computed
for all samples. An estimated soft thresholding power of 15 was
used to derive a signed adjacency matrix with approximately
scale-free topology (r2 fit indices >0.80) that was then trans-
formed into a topological overlap matrix (TOM). The matrix 1-
TOM was used as input to calculate co-expression modules with
hierarchical clustering and a minimum module size of 20 genes.
The resulting module eigengenes (MEs) were clustered based on
their correlation, and modules were merged at a cutheight of 0.8
to produce co-expression modules and one additional module
with genes that did not show module membership (gray). The
expression profile of each module was further summarized by
the ME, the first principle component of the module. Pearson’s
correlation coefficients were used to calculate the correlation
between sample traits (cell type and gestational week) and each
module’s ME. Overlap between module genes and NDD DMR
associated genes was calculated using the EnrichmentAnalysis
function in the anRichment R package (version 0.82-1). The BG
was set to the intersection between genes in the analysis and the
organism database (org.Hs.eg.db_3.4.0) and a Fisher’s Exact test
was conducted for each module-gene list pair and corrected to
an FDR of P = 0.05. GO term enrichment was similarly calculated
using EnrichmentAnalysis with the current hg38 human GO
term database and corrected to an FDR of P = 0.05.

WGCNA was performed similarly for microglial samples col-
lected across development in male and female mice. RPKM val-
ues were calculated as described above for microglial develop-
ment data (GEO GSE99622) (Hanamsagar et al. 2017), and mouse
Ensembl IDs were converted into human using BioMart. Genes
with zero variance in expression or a median absolute deviation
of zero were removed from the analysis. Genes with a minimum
RPKM of 0.25 or higher in at least one sample were kept for
analysis for a total of 2597 for the microglia dataset (Hanamsagar
et al. 2017). Values were transformed to log2(RPKM+1) and clus-
tered to visualize outliers, and 2 samples were removed due to
poor clustering (see Supplementary Fig. S9). A correlation matrix
using biweight midcorrelation between all genes was then com-
puted for all samples. An estimated soft thresholding power of
10 was used to derive a signed adjacency matrix with approx-
imately scale-free topology (r2 fit indices > 0.80) that was then
transformed into a TOM. The matrix 1-TOM was used as input
to calculate co-expression modules with hierarchical clustering
and a minimum module size of 200 genes. The resulting MEs
were clustered based on their correlation, and modules were
merged at a cutheight of 0.25 (correlation of 0.75) to produce
co-expression modules and one additional module with genes
that did not show module membership (gray). The expression
profile of each module was further summarized by the ME, the
first principle component of the module. Pearson’s correlation

coefficients were used to calculate the correlation between sam-
ple traits and each module’s ME. Intramodule connectivity was
calculated as the correlation between every gene in the module
with the module ME. Enrichment for NDD DMR associated genes
within each module was calculated using the EnrichmentAnal-
ysis function in the anRichment R package (version 0.82-1) by
Fisher’s Exact test with correction to an FDR of P = 0.05. The BG
was set to the intersection between genes in the analysis and
the organism database (org.Hs.eg.db_3.4.0). GO term enrichment
was similarly calculated using EnrichmentAnalysis with the
current hg38 human GO term database and correction to an FDR
of P = 0.05.

Results
DMRs Identified in NDD Cortex

To identify an epigenomic signature for NDDs, we examined
genome-wide methylation profiles from postmortem cortices
from 3 different NDDs and matched controls (Fig. 1A). WGBS was
performed on a total of 49 cortical samples (both previously pub-
lished and newly generated) and then analyzed through a stan-
dardized bioinformatic pipeline (see Supplementary Table S1
and Fig. S1). We compared WGBS methylation levels between
brain samples from cortical region BA9 from donors diagnosed
with idiopathic ASD (n = 12 male and 5 female ASD vs. n = 5 M
and 5 F control), RTT (n = 6 F RTT vs. n = 6 F control), and BA19
from Dup15q syndrome (n = 5 M vs. n = 5 M control) (Dunaway
et al. 2016) (see Supplementary Table S1). After filtering for
CpG sites with at least 1× sequencing coverage per sample
for each NDD cohort (see Supplementary Fig. S1), we assayed
a total of 7.2 million CpGs for RTT, 3.5 million CpGs for Dup15q,
and 6.5 million CpGs for ASD, making this the most extensive
characterization of CpG methylation in NDD brain samples to
date. Consistent with previously published findings (Dunaway
et al. 2016), global hypomethylation was observed in Dup15q
(Dup15q < Ctrl, P = 2.379 × 10−6). There was no significant impact
on global levels of methylation at CpG sites (mCpG) and CpH
sites in the ASD or RTT cohorts (see Supplementary Table S1).
No significant differences in mCpG levels were observed over
several types of genomic features (see Supplementary Table S1),
and cell-type deconvolution with methylCIBERSORT (Newman
et al. 2015) using cell type-specific methylation data from sorted
human glutamatergic neurons, GABAergic neurons, and glial
cells (Kozlenkov et al. 2014) did not reveal any significant
cell-type composition differences (see Supplementary Fig. S2
and Table S2). Dup15q brain exhibited a large block (69 Mb) of
hypomethylation (Dup15q < Control) previously identified in
chromosome 15 (Dunaway et al. 2016) as well as an additional
novel 23 Mb region of hypomethylation on chromosome 16 (see
Supplementary Fig. S3). No large megabase block regions were
identified in either the ASD or RTT samples. Average smoothed
mCpG levels within 20 kb windows revealed strong technical
differences between NDD cohorts (disparate brain regions and
sequencing platforms), but not between sexes or diagnosis
within cohorts (see Supplementary Fig. S3 and Table S1), and
consequently further analysis was performed first within each
NDD cohort and then compared across cohorts.

We identified DMRs within each of the 3 NDD cohorts
when compared with age-matched controls by using an
inference and permutation-based statistical approach that
is conducive to identifying broad epigenomic signatures
of multiple gene loci rather than a few individual high-
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Figure 1. DMRs in ASD, Dup15q, and RTT cortex. (A) Experimental design. (B) Heatmap of 483 significant (empirical P < 0.05) DMRs for ASD compared with control

samples. Samples cluster by diagnosis, not sex. (C) Heatmap of 2936 significant (empirical P < 0.05) DMRs for Dup15q compared with control samples. Samples cluster
by diagnosis. (D) Heatmap of 4906 significant (empirical P < 0.05) DMRs for RTT compared with control samples. Samples cluster by diagnosis. For A, B, and C each
column represents an independent biological replicate, and Z-scores were calculated for each DMR (row) for the percent smoothed methylation values as the mean

[mCG divided by (mCG minus the mean mCG)].

confidence loci. Using the dmrseq R package (Korthauer et al.
2018) with a direct adjustment for the covariate of age
(all cohorts) and an additional direct adjustment for sex
in the ASD cohort, we identified 292 significant (permuta-
tion P < 0.05) DMRs with lower methylation (hypomethy-
lated) and 191 regions with higher methylation (hyperme-
thylated) in ASD compared with control cortices (Fig. 1B; see

Supplementary Table S3). Differences in methylation in ASD
DMRs ranged from 5% to 20% with a median difference of
11%. For the Dup15q cohort, 1801 hypermethylated DMRs
(Dup15q > Ctrl) and 1135 hypomethylated DMRs (Dupr15q < Ctrl)
were identified as significant (permutation P < 0.05) (Fig. 1C;
see Supplementary Table S3). Differences in methylation in
Dup15q DMRs ranged from 4% to 40% with a median difference
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Figure 2. NDD DMR enrichment in epigenomic regulatory regions. (A) Overlap of ASD, Dup15q, and RTT DMRs. No regions were commonly identified across NDDs.
(B) DMR enrichment within genomic features relative to BG regions. ASD, Dup15q, and RTT DMRs were enriched within promoter regions within 1 kb of the Transcription
Start Site (TSS) (FDR P = 8.83 × 10−46, P = 6.66 × 10−7, and P = 7.06 × 10−8, respectively). Dup15q and RTT DMRs were enriched for exons (FDR P = 6.66 × 10−7 and
P = 8.65 × 10−5) and the 3′ UTR (FDR P = 0.014 and P = 0.003). ∗P < 0.05 FDR corrected two-tailed Fisher’s Exact test. Table S3 includes statistics. UTR, untranslated region.

TSS, Transcription Start Site (C) Heatmap of log2(fold enrichment) (FDR P < 0.05) for GAT testing relative to BG regions for overlap between each NDD DMR set and
chromatin states identified in human PFC (Ernst et al. 2011; Ernst and Kellis 2013; Roadmap Epigenomics et al. 2015). (D) Heatmap of log2(fold enrichment) (P < 0.05) for
GAT testing for overlap between each NDD DMR set and regions of open chromatin unique to different brain cell populations (overlapping regions removed) (Roadmap

Epigenomics et al. 2015; Fullard et al. 2017; Gosselin et al. 2017). Statistic details are shown in Supplementary Table S4.

of 16%. Comparing the RTT cohort to controls identified 2931
hypermethylated (RTT > Ctrl) and 1975 hypomethylated (Ctrl>
RTT) significant DMRs (Fig. 1D; see Supplementary Table S3).
Differences in methylation in RTT DMRs ranged from 5%
to 43% with a median difference of 15%. The locations of
the NDD DMRs were largely nonoverlapping among the 3
different conditions (Fig. 2A; see Supplementary Table S3).
However, ASD, Dup15q, and RTT DMRs did impact several
common genomic elements including a significant enrich-
ment for all 3 sets of NDD DMRs (Fisher’s Exact test with
FDR correction P < 0.05) within promoter regions within
1 kb of the Transcription Start Site (TSS). Dup15q and RTT
DMRs were also enriched within exons and the 3′ UTR
(Fig. 2B; see Supplementary Table S3). We also trained a 4-class
model that was able predict NDD subtype despite technical
differences (sequencer, library preparation method, brain region,
and sex) with higher accuracy than random chance (see
Supplementary Fig. S4), suggesting that the identified DMRs
represent biological differences between groups that are largely
independent of technical artifacts.

To test the hypothesis that NDD DMRs reflect epige-
netic differences in functionally relevant loci, DMRs were

overlapped with chromatin state maps from human PFC
(Ernst et al. 2011; Ernst and Kellis 2013; Roadmap Epige-
nomics Consortium et al. 2015). Significant enrichment was
observed within promoter regions for all 3 NDD DMRs and
bivalent enhancers for Dup15q and RTT DMRs (Fig. 2C; see
Supplementary Table S4). ASD, Dup15q, and RTT DMRs were
depleted within regions of repressed polycomb, heterochro-
matin, weak transcription, quiescence, and several subtypes of
enhancers (Fig. 2C; see Supplementary Table S4), suggesting that
NDD DMRs may commonly impact regions of active chromatin
surrounding TSS.

To further examine whether regulatory regions overlapping
NDD DMRs were cell type-specific, DMRs were examined
for enrichment within differential regions of chromatin
accessibility specific to sorted cell populations (Fig. 2D). ASD
and RTT DMRs were significantly enriched within regions of
open chromatin that were specific to microglia (FDR P = 0.0002
and FDR P = 5.67 × 10−5). Further, RTT DMRs were enriched
within binding sites identified in human microglia for the
lineage determining immune cell transcription factor PU.1 (see
Supplementary Table S4) (P = 2.85 × 10−5). ASD DMRs were also
significantly enriched within regions uniquely open in T-helper
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2 cells and regulatory T cells (see Supplementary Fig. S5 and
Table S4). While T cell populations within the brain are limited,
T cells do circulate through the meningeal lymphatic system
in the brain and may play an important role in brain function
(Louveau et al. 2017). NDD DMRs were not enriched within any
other non-brain cell type-specific regions of open chromatin
(see Supplementary Fig. S4), highlighting the uniqueness of the
immune-related region enrichments.

ASD DMRs Are Enriched for Methylation-Sensitive
TFBSs in Neurons

To test the hypothesis that altered methylation at NDD
DMRs could affect TF binding, we examined NDD DMRs for
enrichment (relative to BG regions composed of all testable
candidate regions) of TFBSs with characterized methylation
sensitivity in the human neuronal SK-N-SH cell line using
MethMotif (Xuan Lin et al. 2018) (Fig. 3A). This tool utilizes highly
reproducible ChIP-seq peaks from SK-N-SH cells (ENCODE)
to call de novo TF motifs using the MEME-ChIP package.
The methylation status within a 200 bp window surrounding
each peak motif is then captured from WGBS data from
SK-N-SH cells to create a database of TF binding sites and
corresponding DNA methylation levels. Examination of NDD
DMRs identified 16 TFBS motifs within ASD DMRs, 20 within
Dup15q DMRs, and 19 within RTT DMRs, compared with
21 within BG regions (see Supplementary Table S5). Fisher’s
Exact testing revealed significant enrichment (compared
with BG regions) for 7 TFBSs in ASD DMRs, 10 in Dup15q
DMRs, and 4 in RTT DMRs (all FDR P < 0.1) (Fig, 3B; see
Supplementary Table S5).

To further test the impact of methylation changes in NDDs
on potential TF binding at these sites, smoothed methyla-
tion values were extracted for each NDD DMR overlapping
the enriched TFBSs and then compared between controls
and NDD samples (Fig. 3C; see Supplementary Table S5).
ASD samples showed significant differences in methylation
levels compared with control samples within ASD DMRs
containing binding sites for 4 of the enriched TFs (IRF3,
NRF1, RFX5, and YY1), but not within the same TFs within
BG regions (Fig. 3C; see Supplementary Fig. S6 and Table S5).
Dup15q and RTT samples showed significant differences in
methylation when compared with controls over 2 (NFIC and
TCF12) or 1 (RXRA) enriched TFBSs, respectively (Fig. 3D,E;
see Supplementary Fig. S6). Several of the enriched TFBSs
exhibited methyl sensitivity in the SK-N-SH neuronal cell
line. For example, both IRF3 and NRF1 show increased bind-
ing to sites with lower levels of methylation in SK-N-SH
cells, and the ASD DMRs with IRF3 or NRF1 binding sites
exhibited lower methylation in ASD compared with con-
trol samples. Together, these results are consistent with
the enrichment of ASD DMRs for 2 methyl-sensitive TFs,
where methylation differences in ASD are in the direction
expected for increased binding to an accessible cis-regulatory
element in neurons. While neurons were the only brain cell
type represented in MethMotif, several of the NDD DMR
enriched TFBSs also show preferential cell-type expression
patterns, including RFX5 in inhibitory neurons and TCF12 in
oligodendrocyte precursor cells (see Supplementary Fig. S7).
Together, these analyses provide support for functional con-
sequences related to changes in methylation levels over
NDD DMRs.

NDD DMRs Are Enriched for GO terms Critical to Brain
Development

To gain deeper insight into the potential functional role of NDD
DMRs, we examined enrichment for GO terms. ASD DMRs were
significantly enriched for 9 GO terms, Dup15q DMRs for 275 GO
terms, and RTT DMRs for 483 GO terms (FDR corrected P < 0.05)
(see Supplementary Table S6). The 3 NDDs shared significant
enrichment of 8 GO terms (Fig. 4A; see Supplementary Table S6),
including terms for nervous system development, cell morpho-
genesis involved in differentiation, generation of neurons, and
anatomical structure development. ASD and RTT DMRs were
commonly enriched for Rho GTPase binding, which did not reach
significance in Dup15q DMRs (see Supplementary Table S6). In
addition, RTT and Dup15q DMRs shared significant enrichments
for 197 GO terms, including terms for synapse, neuron part,
neurogenesis, and cell projection, indicating a shared disruption
of pathways (Fig. 4B). Both RTT and Dup15q DMRs were also
significantly enriched for GO terms that were unique to each
disorder, including 278 unique terms for RTT and 71 terms for
Dup15q. Dup15q unique GO terms included terms related to glial
differentiation, morphogenesis, and peripheral nervous system
development (Fig. 4C). RTT unique GO terms included terms
related to actin and cytoskeleton related processes as well as
vasculature development (Fig. 4D). Together, GO term analysis
highlights both shared and unique pathways and processes
impacted by changes in DNA methylation in NDDs.

ASD DMR Associated Genes Are Enriched for Genes
Transcriptionally Impacted by NDDs

To test the hypothesis that previously identified NDD genes
identified by mutation, variation, or transcriptional dysregula-
tion may coincide with NDD DMRs, we first assigned NDD DMRs
to the closest gene (within the gene body or within +/−10 kb
of the gene start or end sites; see Supplementary Fig. S8). ASD
DMRs were associated with 431 genes, Dup15q DMRs with 2323
genes, and RTT DMRs with 3647 genes (see Supplementary
Table S3). Genes associated with each set of NDD DMRs
significantly overlapped all 3 NDDs examined (Fig. 5A; see
Supplementary Table S8) with 65 Ensembl genes (57 gene
symbols) shared between all 3 DMR lists. Genes shared across
NDDs contained many genes previously identified as either
ASD or ID genetic risk factors or were differentially expressed
in either ASD or SCZ or both disorders (Fig. 5A). To further
investigate if NDD DMR associated genes were enriched for
genes with differential expression or with increased genetic risk
for neuropsychiatric disorders, we performed a permutation-
based gene enrichment analysis (see Supplementary Fig. S8)
with a series of published datasets of known genetic risk and
differentially expressed genes from human brain disorders (see
Table S8).

NDD DMR associated genes were significantly longer than
either the BG region associated genes or a random sample
of the same number of genes from the human genome
(hg38) (see Supplementary Fig. S8). In addition, gene lengths
associated with BG regions were also significantly higher
than random samples of all hg38 genes, reflecting either the
inherent bias of longer genes overlapping a DMR by chance
or a bias in defining BG regions as those with sufficient
variation in methylation between NDD conditions for testing
(see Supplementary Table S7). Given this bias, subsequent gene
enrichments were performed by permutation testing against a
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Figure 3. NDD DMRs are enriched for TFBS sensitive to DNA methylation in neurons. (A) TFBS were identified in NDD DMRs and BG regions using ChIP-seq peaks
identified in the human SK-N-SH neuronal cell line using MethMotif (Xuan Lin et al. 2018). The frequency of identified TFBS were then compared between NDD and

BG regions (B) and the average smoothed methylation values within the NDD DMRs and BG regions were then compared between NDD and Control samples (C and D).
(B) TFBS were significantly enriched within NDD DMRs compared with BG regions. Fisher’s Exact test results are shown as dots colored by FDR adjusted P-values (P < 0.1)
and scaled by Odds Ratio. (C) Percent smoothed methylation values for ASD DMRs and BG regions containing TFBSs enriched in B. Shown TFs have significant ANOVA
and Benjamini Hochberg corrected post hoc comparisons (∗P < 0.05) for ASD DMRs but not BG regions (see Supplementary Table S5 for statistics). TFBS MethMotif

logos identified using MethMotif (Xuan Lin et al. 2018) are shown above each TF with corresponding color bars for % methylation values at these CpG sites in neuronal
SK-N-SH cells. (D) Percent smoothed methylation values for Dup15q DMRs and BG regions containing TFBSs enriched in B. Shown TFs have significant ANOVA and
Benjamini Hochberg corrected post hoc comparisons (∗P < 0.05) for Dup15q DMRs but not BG regions. TFBS MethMotif logos are shown for each TF as described in C.

(E) Percent smoothed methylation values for RTT DMRs and BG regions containing TFBSs enriched in B. Shown TFs have significant ANOVA and Benjamini Hochberg
corrected post hoc comparisons (∗P < 0.05) for RTT DMRs but not BG regions. TFBS MethMotif logos are shown for each TF as described in C. See Supplementary Table S5
for full statistics.

null distribution matched for median gene length (Methods; see
Supplementary Fig. S8).

Overall, DMR associated genes were largely not enriched
for genetic risk genes identified across several studies and
databases for either ASD or ID risk. In exception to this, Dup15q
DMR associated genes were significantly enriched for multiple

lists of known risk genes for ASD (Fig. 5B shows significant
comparisons from Supplementary Table S8), including SFARI
lists and ASD missense recurrent genes identified from exome
sequencing studies (Iossifov et al. 2014). RTT DMR genes were
also enriched for genes on the “suggestive” SFARI ASD list. ASD
DMR genes were not enriched for any of the genetic risk factor
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Figure 4. NDD DMRs are enriched for both shared and distinct gene ontologies. NDD DMRs were analyzed for GO term enrichment using gene identifiers for hg38
Ensembl genes with a 10 kb extension up- and downstream of the gene start and end sites, respectively. All comparisons were performed with a hypergeometric test
and FDR corrected to P < 0.05 (see Table S6 for statistics). (A) Significantly enriched GO terms shared across all 3 NDD DMRs. (B) Top significantly (by FDR P-value)
enriched GO terms shared by RTT and Dup15q DMRs. These terms did not reach significance for ASD DMRs. (C) Top significant GO terms that were unique to Dup15q

DMRs. (D) Top GO terms that were unique to RTT DMRs. See Supplementary Table S6 for details and statistics.

lists but were significantly enriched for genes highly intolerant
to genetic variation in the human population (probability of loss
of function mutation >0.9 [pLI > 0.9]) (Lek et al. 2016), suggesting
that ASD DMR associated genes play critical roles in human
development.

All 3 groups of NDD DMR associated genes were enriched for
genes with differential expression in human brain from either
neurodevelopmental or neuropsychiatric disorders. All 3 NDD
DMR sets were enriched for genes with lower expression in ASD
brain collected from several datasets (ASD < Ctrl DGE) (Gupta
et al. 2014; Gandal et al. 2018a, 2018b) (Fig. 5B; see Supplementary
Table S8). Both Dup15q and RTT DMR genes were also enriched
for genes differentially expressed in RTT brain (Lin et al. 2016).
All 3 NDD DMR gene sets were also enriched for genes with
decreased expression in SCZ brain (SCZ < Ctrl DGE) (Gandal
et al. 2018a, 2018b), and both RTT and ASD DMR genes were
enriched for gene co-expression modules with differential gene
expression or differential isoform usage in SCZ, respectively.
Both RTT and Dup15q DMR genes were also enriched for genes
with differential transcript usage in SCZ brain (SCZ DTU) (Gandal
et al. 2018b) (Fig. 5B; see Supplementary Table S8). RTT DMR
genes also showed significant enrichment for genes differen-
tially expressed in bipolar disorder (Gandal et al. 2018a, 2018b).
Together, NDD DMR overlaps with differentially expressed genes

across ASD and SCZ indicate that shared gene pathways are
disrupted in these disorders. Further examination of the down
regulated gene list overlaps between DMR associated genes, and
ASD < Ctrl DEG and SCZ < Ctrl DEG gene lists revealed numerous
neuronal genes, including NRXN3 and ATP2B2, which are both
ASD genetic risk genes (Vaags et al. 2012; Iossifov et al. 2014).
Together, this suggests some common pathways and neuronal
gene targets with both altered expression and methylation in
ASD and SCZ.

Enrichment Analysis of NDD DMR Associated Genes
across Cell Types and Human Brain Development

To test the hypothesis that NDD DMR genes are transcriptionally
active during brain development, we utilized weighted gene co-
expression networks (WGCNA) (Langfelder and Horvath 2008)
built from single-cell RNA-seq data collected across early human
PFC development by gestational week (GW 8–26) (Zhong et al.
2018). Average expression across GW for cell types identified
by Zhong et al. (2018) (stem cells, oligodendrocytes [OPCs], neu-
rons, GABAergic neurons, astrocytes, and microglia) was used to
identify modules of genes that significantly co-varied with cell
type and developmental time (Fig. 6A). Five co-expression mod-
ules (and one uncorrelated gray module) were identified (see

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz115#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz115#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz115#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz115#supplementary-data


650 Cerebral Cortex, 2020, Vol. 30, No. 2

Figure 5. Enrichment of DMR associated genes for NDD genetic risk and differentially expressed genes. (A) ASD, Dup15q, and RTT DMR associated genes significantly
overlap with each other (all overlaps are FDR corrected permutation test corrected for gene length P < 1 × 10−5, statistics in Supplementary Table S8). The 65 genes
(57 gene symbols) shared across all 3 NDDs are shown below. Genes that are known genetic risk factors for ASD or ID are shown in bold (both ASD and ID), underlined
(ASD only), or italics (ID only). Genes differentially expressed (DE) or with differential transcript usage (DT) are shown in red for ASD and SCZ, blue for ASD only,

and purple for SCZ only. (B) DMR associated genes are significantly enriched (P-values <0.05 for gene length corrected null distribution permutation testing; see
Methods) for genes associated with ASD genetic risk (ASD Missense Mutations Recurrent and SAFARI ASD lists). DMR associated genes are significantly enriched for
genes with altered gene expression in numerous neurodevelopmental, neuropsychiatric, and neurodegenerative disorders including ASD, SCZ, ADD, and BD. DEG,
differentially expressed genes; SFARI, Simons Foundation Autism Research Initiative; SCZ, schizophrenia; BD, bipolar disorder; AAD, alcohol abuse disorder. Mutation

Intolerant pLI > 0.9, probability of being loss-of-function >0.9 (top genes that are intolerant to human mutation) (Lek et al. 2016), paternally imprinted genes for humans
from http://www.geneimprint.com, Nardone ASD DMR genes from (Nardone et al. 2017), and RTT human brain DEG: DEG from Lin et al. (2016). ASD < Ctrl DEG are a
compilation of overlaps between DMR genes and DEG genes from ASD brain from several papers (Gupta et al. 2014; Parikshak et al. 2016; Gandal et al. 2018a, 2018b).
SCZ < Ctrl and SCZ > Ctrl DGE and BD < Ctrl and BD > Ctrl DGE are a compilation of overlaps from Gandal et al. (2018a, 2018b). Individual gene list overlaps from each

source as well as all gene lists, citations, and overlap statistics are in Supplementary Table S8.

Supplementary Fig. S9), including 2 that were significantly cor-
related with cell type (purple module r2 = 0.69, FDR P = 1.98 × 10−6

and red module r2 = −0.69 and FDR P = 1.98 × 10−6) and 1 that was
significantly correlated with developmental time (skyblue mod-
ule r2 = 0.42, FDR P = 0.02) (Fig. 6A; see Supplementary Table S9).
We next looked for enrichment of the NDD DMR associated
genes within each module (see Supplementary Table S9). ASD
DMR associated genes were not significantly enriched within
any of the modules. However, both Dup15q DMR genes and
RTT DMR genes were significantly enriched within the purple
module (FDR P = 0.027 and FDR P = 7.44 × 10−5). Dup15q DMR
genes were also significantly enriched (FDR P = 0.003) within the
skyblue module that also associated with gestational age (GW)
but not cell type (Fig. 6A). Closer examination of the skyblue
module revealed enrichment for GO terms related to the extra-
cellular matrix, membrane function, cellular adhesion, morpho-
genesis, and other basic process of cellular development (see
Supplementary Table S9). The expression levels of skyblue mod-
ule genes reach a peak at GW 19 across multiple cell types (stem
cells, OPCs, and astrocytes) (Fig. 6B), suggesting that Dup15q
may impact methylation of regions important for basic cellu-
lar process of development occurring around GW 19. In com-
parison, the purple module revealed a significant enrichment

for GO terms related to immune function, cell activation, and
immune effector process (see Supplementary Table S9). These
enrichments were consistent with microglia showing the high-
est expression levels across cell types within the purple module
(Fig. 6C). Together, this indicates that both RTT and Dup15q
DMRs may impact microglial gene expression programs across
development.

In order to better understand phenotypes associated with
the immune signature observed in Figure 6 and previously
in ASD brain gene expression datasets (Voineagu et al. 2011;
Gupta et al. 2014; Gandal et al. 2016; Lin et al. 2016; Parikshak
et al. 2016), we tested the hypothesis that NDD DMR genes
are transcriptionally active in microglial development. We
constructed weighted gene co-expression modules using a
published RNA-seq dataset (Hanamsagar et al. 2017) from
microglia isolated from 4 developmental time points from
both male and female mice (see Supplementary Fig. S10 and
Table S10). Two modules were significantly correlated with
both microglial developmental time and enriched for NDD
DMRs. Genes in both modules were highly expressed in early
microglial development and were enriched for GO terms
related to nervous system development and metabolic function,
suggesting a role for NDD DMR associated genes within these

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhz115#supplementary-data
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Figure 6. NDD DMR associated genes are enriched in development and cell type-specific gene co-expression modules. (A) Gene expression within modules identified

by WGCNA that are significantly associated with human PFC brain development (gestational week) and cell type. Data from human PFC Single-Cell RNA-seq (GEO
GSE99622) (Zhong et al. 2018) across development (Gestational Week, GW 8–26). Both the purple and red MEs are significantly correlated with cell type and the skyblue
module ME was correlated with cell type (FDR P < 0.05). RTT DMRs were significantly enriched in the purple module. Dup15q DMRs were significantly enriched in the
purple and skyblue module (FDR P < 0.05). (B) Z-score of the mean gene expression (log2(RPKM+1)) for each cell type across gestational weeks for the skyblue module.

(C) Z-score of the mean gene expression (log2(RPKM+1)) for each cell type across gestational weeks for the purple module. WGCNA network construction, statistics,
and enrichments are shown in Supplementary Table S9.

modules in regulating microglial–neuron interactions during
early development (see Supplementary Table S10).

To further explore the role of NDD DMR genes in microglial
function, we compared NDD DMR genes to published lists of
microglial genes across developmental stages (Hanamsagar
et al. 2017) as well as genes dysregulated in microglia isolated
from both genetic and maternal immune challenge NDD
models (Mecp2 mutation, PolyI:C maternal immune activation,
and maternal allergic asthma). All 3 NDD DMR associated
gene lists showed significant enrichment for genes regulated
during microglial development, including lists from both pre-
and postnatal development (see Supplementary Table S11).
NDD DMR associated genes were also enriched for microglial
differentially expressed genes in several NDD mouse models.
Interestingly, all 3 NDD DMR gene sets were significantly
enriched for genes that were rescued in the adult animal with
minocycline treatment (see Supplementary Table S11). Together,
this integration of NDD DMRs with microglial WGCNA and gene
enrichments implicates altered microglial regulation during
fetal development in NDDs.

Discussion
This is the first study to perform in-depth, genome-wide DNA
methylation analysis in brain from NDDs. We greatly extended
previous work at the candidate gene loci MECP2 and OXTR (Vogel
Ciernia and LaSalle 2016) and the imprinted locus 15q11.2-q13.3
(Nagarajan et al. 2008; Gregory et al. 2009) to identify DMRs
within each disorder. We identified significant enrichment for
several genetic risk gene sets within NDD DMRs, but the majority
of genetic risk loci for ASD and other NDDs were not found
within NDD DMRs. This divergence in genetic and epigenetic
signatures for NDDs may indicate that epigenetic differences
reflect downstream genome-wide impacts of genetic mutations,
such as in the case of mutations occurring in chromatin remod-
elers (i.e., CHD8 or ARID1B) (De Rubeis et al. 2014; Iossifov et al.
2014), DNA methylation regulatory enzymes (DNMT3A)
(De Rubeis et al. 2014; Iossifov et al. 2014), or imprinted
genes (Lopez et al. 2017). Epigenetic changes may also reflect
a convergent signature of molecular events representing
abnormal processes at the interface of multiple genetic and
environmental risk factors.
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While the NDD DMRs did not significantly overlap across
disorders, at the gene level there was a significant overlap with
65 genes shared across all 3 NDDs. The higher NDD concor-
dance for genes rather than DMRs suggests a convergence in
altered gene functions in NDDs that was not precisely matched
at the individual CpG level. The shared sets of enriched GO
terms related to nervous system development observed between
different NDD DMR associated genes also provide evidence for
convergent epigenomic signatures between NDDs, despite a lack
of nucleotide precision. This indicates that a subset of regulatory
mechanisms is commonly impacted by changes in methyla-
tion across NDDs and particularly for genes with decreased
expression in ASD and SCZ brains. Prior WGBS analyses have
shown both a negative correlation with promoter methylation,
as well as a positive correlation with methylation over tran-
scriptionally active gene bodies (LaSalle et al. 2013; Roadmap
Epigenomics Consortium et al. 2015), which is consistent with
our findings of DMRs and gene expression associations (see
Supplementary Table S8). Furthermore, deficiencies in MeCP2 in
RTT brain are associated with both increased and decreased
transcriptional changes (Chahrour et al. 2008; Lin et al. 2016).
Methylation changes may be important at sites of transcription
factor binding, particularly neuronal methyl-sensitive TFs, such
as IRF3 and NRF1 that we found enriched in ASD DMRs. Future
work will be needed to directly test how methylation changes
at binding sites for these TFs specifically impact binding and
downstream gene regulation in neurons, as well as to identify
the methyl sensitivity of TFBSs in non-neuronal cell types such
as microglia.

One of the convergent findings across analyses was the
enrichment for NDD DMRs in regulatory regions, genes, and
developmental expression modules for immune genes. All 3
sets of NDD DMRs were significantly enriched within promoter
regions and near transcription start sites with active chromatin
signatures in PFC. Specifically, both ASD and RTT DMRs were
significantly enriched for regions of open chromatin unique to
microglia, RTT DMRs were enriched for microglial PU.1 bind-
ing sites, and both RTT and Dup15q DMR associated genes
were enriched within developmental gene expression modules
with the highest cell-type expression in microglia. In addition,
ASD DMRs with TFBSs for IRF3, a critical TF for immune gene
signaling, showed significantly lower levels of methylation in
ASD compared with control samples. These patterns led us to
further explore a potential role for NDD DMR associated genes
in microglial development. Genes associated with all 3 types of
NDD DMRs were specifically enriched within mouse microglial
gene expression modules characterized by a high level of gene
expression in early development. These 2 microglial develop-
mental modules were characterized by GO terms critical for
neuron–microglia interactions and energy regulation, indicating
that NDD DMR associated genes may be shaping early microglial
maturation and nervous system interactions. This is also con-
sistent with alterations in microglia morphology and density
previously observed in a subset of postmortem ASD brains (Yuen
et al. 2016), as well as previous transcriptional and epigenomic
profiling in human ASD brain that has consistently revealed
both synaptic and immune dysfunction (Voineagu et al. 2011;
Gupta et al. 2014; Gandal et al. 2016; Lin et al. 2016; Parikshak
et al. 2016). Together with the immune gene expression signa-
ture observed across multiple ASD human brain cohorts (Gupta
et al. 2014; Parikshak et al. 2016; Gandal et al. 2018a, 2018b),
our data support a convergent role for altered immune and
nervous system function in NDDs. As the resident immune cells

in the brain, microglia may be a common cell type impacted
by diverse NDD etiologies because they serve as important sen-
tinels that respond to both genetic and environmental disrup-
tions. Microglia not only constantly monitor the brain for signs of
infection but also respond to genetic abnormalities that impair
neuronal function (Derecki et al. 2012; Cronk et al. 2015; Horiuchi
et al. 2016), suggesting the immune signatures observed across
transcriptomic and epigenomic studies in human ASD brain
(Gupta et al. 2014; Parikshak et al. 2016; Gandal et al. 2018a,
2018b) may be partially driven by an immune response to abnor-
mal neuronal processes that arise from genetic and epigenetic
etiologies. Regardless of the initial cause of the NDD, microglia
and other immune cells may be an appropriate target for ther-
apy, since altered immune function may have profound impacts
on neuronal development and ongoing brain function. Our anal-
ysis provides initial support for this premise as all 3 NDD DMR
associated gene lists significantly overlapped genes normalized
by minocycline treatment in adult mice that had received PolyI:C
MIA in utero (Mattei et al. 2017). Together, these results suggest
that therapeutics that alter inflammation are candidates for fur-
ther study in relation to resetting the microglial transcriptome
and function in NDDs.

In addition to convergent immune signatures across NDDs,
we also identified regulatory regions, TFBSs, and pathways that
were unique to each disorder. For example, both Dup15q and
RTT DMRs were significantly enriched for sets of unique GO
terms. Dup15q was uniquely enriched for several GO terms
involved in glial cell development, and RTT DMRs were uniquely
enriched for terms involved in actin cytoskeleton and blood
vessels. Dup15q DMRs were also uniquely enriched within the
single-cell gene expression module related to developmental
timing of gene expression. This module peaked in expression at
GW 19 in several cell types including stem cells, OPCs, and astro-
cytes. These results suggest that changes in DNA methylation in
Dup15q may be particularly important for cell type transitions
occurring near week 19 of gestation.

One limitation of this work is the relatively small sample
size due to limited region-matched availability of human brain
samples and relatively high cost of WGBS. However, this work is
similar or larger in sample size than previous DNA methylation
microarray studies when considering the evaluation of a single
brain region. While our analysis is not sufficiently powered to
directly examine sex differences, we did identify epigenomic
signatures relevant to both male and female ASD cases. Future
work will be needed to more fully explore differences in males
and females across NDDs. The average WGBS genome coverage
is not sufficient to identify single CpG methylation differences,
but does allow for the assessment of DMRs (McGill et al. 2017),
which represent biologically relevant regional methylation dif-
ferences (Korthauer et al. 2018).

There are several potential explanations for the different
numbers of DMRs obtained among the different disorders. The
most likely explanation is biological; individuals with idiopathic
ASD are expected to be more heterogeneous in their etiology
and pathology than the 2 genetic syndromic NDDs and therefore
have fewer DMRs that reach significance. The ASD analysis also
included both males and females, and by including sex as a
covariate we exclude DMRs that have sex-specific methylation
differences in ASD.

The relatively limited sample size in this study also precluded
FDR correction of permutation P-values. However, within the
environmental epigenetics field, it is common to identify repro-
ducible and biological relevant epigenetic changes with small
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magnitude effect sizes (Breton et al. 2017), and our machine
learning model was able to predict NDD diagnosis from the
DMRs with a moderate level of accuracy despite these limi-
tations. Our study does not focus on a single gene or region,
but instead leverages multiple epigenomic and genetic datasets
to examine the epigenomic signature of cell types and gene
functions altered in NDDs. With the continued decrease in cost
of sequencing technologies and increased brain bank advocacy,
future work can more fully characterize additional NDD brain
samples by WGBS on a single sequencing platform with addi-
tional brain regions, disorders, and cell type-specific sorting.

In conclusion, findings from this study reveal a critical epige-
nomic signature in NDD cortex that overlaps with known neu-
ronal and immune dysfunction in NDDs. It remains unclear if
alterations in DNA methylation in NDDs are a contributing cause
or indirect consequence of the disorder; however, regardless of
the direction of causality, the identified DMRs may serve as a
unique read-out of the intersection between multiple genetic
and environmental perturbations to the developing brain. Inte-
gration with multiple data sources identified both neuronal and
microglial cell types and pathways as potentially relevant ther-
apeutic avenues that may be commonly dysregulated mediators
at the interface of genetic and environmental risk factors.
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